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Abstract

Gradient descent-based optimization methods underpin the parameter training of neural
networks, and hence comprise a significant component in the impressive test results found
in a number of applications. Introducing stochasticity is key to their success in practical
problems, and there is some understanding of the role of stochastic gradient descent in this
context. Momentum modifications of gradient descent such as Polyak’s Heavy Ball method
(HB) and Nesterov’s method of accelerated gradients (NAG), are also widely adopted. In
this work our focus is on understanding the role of momentum in the training of neural
networks, concentrating on the common situation in which the momentum contribution is
fixed at each step of the algorithm. To expose the ideas simply we work in the deterministic
setting.

Our approach is to derive continuous time approximations of the discrete algorithms;
these continuous time approximations provide insights into the mechanisms at play within
the discrete algorithms. We prove three such approximations. Firstly we show that stan-
dard implementations of fixed momentum methods approximate a time-rescaled gradient
descent flow, asymptotically as the learning rate shrinks to zero; this result does not dis-
tinguish momentum methods from pure gradient descent, in the limit of vanishing learning
rate. We then proceed to prove two results aimed at understanding the observed practical
advantages of fixed momentum methods over gradient descent, when implemented in the
non-asymptotic regime with fixed small, but non-zero, learning rate. We achieve this by
proving approximations to continuous time limits in which the small but fixed learning rate
appears as a parameter; this is known as the method of modified equations in the numerical
analysis literature, recently rediscovered as the high resolution ODE approximation in the
machine learning context. In our second result we show that the momentum method is ap-
proximated by a continuous time gradient flow, with an additional momentum-dependent
second order time-derivative correction, proportional to the learning rate; this may be used
to explain the stabilizing effect of momentum algorithms in their transient phase. Fur-
thermore in a third result we show that the momentum methods admit an exponentially
attractive invariant manifold on which the dynamics reduces, approximately, to a gradient
flow with respect to a modified loss function, equal to the original loss function plus a small
perturbation proportional to the learning rate; this small correction provides convexifica-
tion of the loss function and encodes additional robustness present in momentum methods,
beyond the transient phase.

c©2021 Nikola B. Kovachki and Andrew M. Stuart.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-466.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-466.html


Kovachki and Stuart

Keywords: Optimization, Machine Learning, Deep Learning, Gradient Flows, Momen-
tum Methods, Modified Equation, Invariant Manifold

1. Introduction

1.1 Background and Literature Review

At the core of many machine learning tasks is solution of the optimization problem

arg min
u∈Rd

Φ(u) (1)

where Φ : Rd → R is an objective (or loss) function that is, in general, non-convex and differ-
entiable. Finding global minima of such objective functions is an important and challenging
task with a long history, one in which the use of stochasticity has played a prominent role
for many decades, with papers in the early development of machine learning Geman and
Geman (1987); Styblinski and Tang (1990), together with concomitant theoretical analyses
for both discrete Bertsimas et al. (1993) and continuous problems Kushner (1987); Kushner
and Clark (2012). Recent successes in the training of deep neural networks have built on
this older work, leveraging the enormous computer power now available, together with em-
pirical experience about good design choices for the architecture of the networks; reviews
may be found in Goodfellow et al. (2016); LeCun et al. (2015). Gradient descent plays
a prominent conceptual role in many algorithms, following from the observation that the
equation

du

dt
= −∇Φ(u) (2)

will decrease Φ along trajectories. The most widely adopted methods use stochastic gradient
decent (SGD), a concept introduced in Robbins and Monro (1951); the basic idea is to use
gradient decent steps based on a noisy approximation to the gradient of Φ. Building on deep
work in the convex optimization literature, momentum-based modifications to stochastic
gradient decent have also become widely used in optimization. Most notable amongst these
momentum-based methods are the Heavy Ball Method (HB), due to Polyak (1964), and
Nesterov’s method of accelerated gradients (NAG) Nesterov (1983). To the best of our
knowledge, the first application of HB to neural network training appears in Rumelhart
et al. (1986). More recent work, such as Sutskever et al. (2013), has even argued for the
indispensability of such momentum based methods for the field of deep learning.

From these two basic variants on gradient decent, there have come a plethora of adap-
tive methods, incorporating momentum-like ideas, such as Adam Kingma and Ba (2014),
Adagrad Duchi et al. (2011), and RMSProp Tieleman and Hinton (2012). There is no con-
sensus on which method performs best and results vary based on application. The recent
work of Wilson et al. (2017) argues that the rudimentary, non-adaptive schemes SGD, HB,
and NAG result in solutions with the greatest generalization performance for supervised
learning applications with deep neural network models.

There is a natural physical analogy for momentum methods, namely that they relate to
a damped second order Hamiltonian dynamic with potential Φ:

m
d2u

dt2
+ γ(t)

du

dt
+∇Φ(u) = 0. (3)
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This perspective goes back to Polyak’s original work Polyak (1964, 1987) and was further
expanded on in Qian (1999), although no proof was given. For NAG, the work of Su et al.
(2014) proves that the method approximates a damped Hamiltonian system of precisely this
form, with a time-dependent damping coefficient. The analysis in Su et al. (2014) holds
when the momentum factor is chosen according to the rule

λ = λn =
n

n+ 3
, (4)

where n is the iteration count; this choice was proposed in the original work of Nesterov
(1983) and results in a choice of λ which is asymptotic to 1. In the setting where Φ is
µ-strongly convex, it is proposed in Nesterov (2014) that the momentum factor is fixed and
chosen close to 1; specifically it is proposed that

λ =
1−
√
µh

1 +
√
µh

(5)

where h > 0 is the time-step (learning rate). In Wilson et al. (2016), a limiting equation
for both HB and NAG of the form

ü+ 2
√
µu̇+∇Φ(u) = 0

is derived under the assumption that λ is fixed with respect to iteration number n, and
dependent on the time-step h as specified in (5); convergence is obtained to order O(h1/2).
Using insight from this limiting equation it is possible to choose the optimal value of µ to
maximize the convergence rate in the neighborhood of a locally strongly convex objective
function. Further related work is developed in Shi et al. (2018) where separate limiting
equations for HB and NAG are derived both in the cases of λ given by (4) and (5), obtaining
convergence to order O(h3/2). Much work has also gone into analyzing these methods in the
discrete setting, without appeal to the continuous time limits, see Hu and Lessard (2017);
Lessard et al. (2016), as well as in the stochastic setting, establishing how the effect on the
generalization error, for example, Gadat et al. (2018); Loizou and Richtárik (2017); Yang
et al. (2016). In this paper, however, our focus is on the use of continuous time limits as a
methodology to explain optimization algorithms.

In many machine learning applications, especially for deep learning, NAG and HB are
often used with a constant momentum factor λ that is chosen independently of the iteration
count n (contrary to (4)) and independently of the learning rate h (contrary to (5)). In
fact, popular books on the subject such as Goodfellow et al. (2016) introduce the methods
in this way, and popular articles, such as He et al. (2016) to name one of many, simply
state the value of the constant momentum factor used in their experiments. Widely used
deep learning libraries such as Tensorflow Abadi et al. (2015) and PyTorch Paszke et al.
(2017) implement the methods with a fixed choice of momentum factor. Momentum based
methods used in this way, with fixed momentum, have not been carefully analyzed. We
will undertake such an analysis, using ideas from numerical analysis, and in particular
the concept of modified equations Griffiths and Sanz-Serna (1986); Chartier et al. (2007)
and from the theory of attractive invariant manifolds Hirsch et al. (2006); Wiggins (2013);
both ideas are explained in the text Stuart and Humphries (1998). It is noteworthy that
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the high resolution ODE approximation described in Shi et al. (2018) may be viewed as a
rediscovery of the method of modified equations. We emphasize the fact that our work is
not at odds with any previous analyses of these methods, rather, we consider a setting which
is widely adopted in deep learning applications and has not been subjected to continuous
time analysis to date.

1.2 Our Contribution

We study momentum-based optimization algorithms for the minimization task (1), with
learning rate independent momentum, fixed at every iteration step, focusing on determin-
istic methods for clarity of exposition. Our approach is to derive continuous time approxi-
mations of the discrete algorithms; these continuous time approximations provide insights
into the mechanisms at play within the discrete algorithms. We prove three such approxi-
mations. The first shows that the asymptotic limit of the momentum methods, as learning
rate approaches zero, is simply a rescaled gradient flow (2). The second two approxima-
tions include small perturbations to the rescaled gradient flow, on the order of the learning
rate, and give insight into the behavior of momentum methods when implemented with
momentum and fixed learning rate. Through these approximation theorems, and accompa-
nying numerical experiments, we make the following contributions to the understanding of
momentum methods as often implemented within machine learning:

• We show that momentum-based methods with a fixed momentum factor, satisfy, in
the continuous-time limit obtained by sending the learning rate to zero, a rescaled
version of the gradient flow equation (2).

• We show that such methods also approximate a damped Hamiltonian system of the
form (3), with small mass m (on the order of the learning rate) and constant damping
γ(t) = γ; this approximation has the same order of accuracy as the approximation of
the rescaled equation (2) but provides a better qualitative understanding of the fixed
learning rate momentum algorithm in its transient phase.

• We also show that, for the approximate Hamiltonian system, the dynamics admit an
exponentially attractive invariant manifold, locally representable as a graph mapping
co-ordinates to their velocities. The map generating this graph describes a gradient
flow in a potential which is a small (on the order of the learning rate) perturbation of Φ
– see (21); the correction to the potential is convexifying, does not change the global
minimum, and provides insight into the fixed learning rate momentum algorithm
beyond its initial transient phase.

• We provide numerical experiments which illustrate the foregoing considerations, for
simple linear test problems, and for the MNIST digit classification problem; in the
latter case we consider SGD and thereby demonstrate that the conclusions of our
theory have relevance for understanding the stochastic setting as well.

Taken together our results are interesting because they demonstrate that the popular
belief that (fixed) momentum methods resemble the dynamics induced by (3) is misleading.
Whilst it is true, the mass in the approximating equation is small and as a consequence
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understanding the dynamics as gradient flows (2), with modified potential, is more instruc-
tive. In fact, in the first application of HB to neural networks described in Rumelhart
et al. (1986), the authors state that “[their] experience has been that [one] get[s] the same
solutions by setting [the momentum factor to zero] and reducing the size of [the learning
rate].” However our theorems should not be understood to imply that there is no practical
difference between momentum methods (with fixed learning rate) and SGD. There is indeed
a practical difference as has been demonstrated in numerous papers throughout the machine
learning literature, and our experiments in Section 5 further confirm this. We show that
while these methods have the same transient dynamics, they are approximated differently.
Our results demonstrate that, although momentum methods behave like a gradient descent
algorithm, asymptotically, this algorithm has a modified potential. Furthermore, although
this modified potential (20) is on the order of the learning rate, the fact that the learning
rate is often chosen as large as possible, constrained by numerical stability, means that the
correction to the potential may be significant. Our results may be interpreted as indicating
that the practical success of momentum methods stems from the fact that they provide a
more stable discretization to (2) than the forward Euler method employed in SGD. The
damped Hamiltonian dynamic (11), as well the modified potential, give insight into how
this manifests. Our work gives further theoretical justification for the exploration of the use
of different numerical integrators for the purposes of optimization such as those performed
in Scieur et al. (2017); Betancourt et al. (2018); Zhang et al. (2018).

While our analysis is confined to the non-stochastic case to simplify the exposition, the
results will, with some care, extend to the stochastic setting using ideas from averaging and
homogenization Pavliotis and Stuart (2008) as well as continuum analyses of SGD as in Li
et al. (2017); Feng et al. (2018); indeed, in the stochastic setting, sharp uniform in time error
estimates are to be expected for empirical averages Mattingly et al. (2010); Dieuleveut et al.
(2017). To demonstrate that our analysis is indeed relevant in the stochastic setting, we
train a deep autoencoder with mini-batching (stochastic) and verify that our convergence
results still hold. The details of this experiment are given in section 5. Furthermore we
also confine our analysis to fixed learning rate, and impose global bounds on the relevant
derivatives of Φ; this further simplifies the exposition of the key ideas, but is not essential
to them; with considerably more analysis the ideas exposed in this paper will transfer to
adaptive time-stepping methods and much less restrictive classes of Φ.

The paper is organized as follows. Section 2 introduces the optimization procedures
and states the convergence result to a rescaled gradient flow. In section 3 we derive the
modified, second-order equation and state convergence of the schemes to this equation.
Section 4 asserts the existence of an attractive invariant manifold, demonstrating that it
results in a gradient flow with respect to a small perturbation of Φ. In section 5, we train
a deep autoencoder, showing that our results hold in a stochastic setting with Assumption
1 violated. We conclude in section 6. All proofs of theorems are given in the appendices so
that the ideas of the theorems can be presented clearly within the main body of the text.

1.3 Notation

We use | · | to denote the Euclidean norm on Rd. We define f : Rd → Rd by f(u) := −∇Φ(u)
for any u ∈ Rd. Given parameter λ ∈ [0, 1) we define λ̄ := (1− λ)−1.
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For two Banach spaces A,B, and A0 a subset in A, we denote by Ck(A0;B) the set of
k-times continuously differentiable functions with domain A0 and range B. For a function
u ∈ Ck(A0;B), we let Dju denote its j-th (total) Fréchet derivative for j = 1, . . . , k. For

a function u ∈ Ck([0,∞),Rd), we denote its derivatives by du
dt ,

d2u
dt2
, etc. or equivalently by

u̇, ü, etc.

To simplify our proofs, we make the following assumption about the objective function.

Assumption 1 Suppose Φ ∈ C3(Rd;R) with uniformly bounded derivatives. Namely, there
exist constants B0, B1, B2 > 0 such that

‖Dj−1f‖ = ‖DjΦ‖ ≤ Bj−1

for j = 1, 2, 3 where ‖ · ‖ denotes any appropriate operator norm.

We again stress that this assumption is not key to developing the ideas in this work,
but is rather a simplification used to make our results global. Without Assumption 1, and
no further assumption on Φ such as convexity, one could only hope to give local results
i.e. in the neighborhood of a critical point of Φ. Such analysis could indeed be carried out
(see for example Carr (2012)), but we choose not to do so here for the sake of clarity of
exposition. In section 5, we give a practical example where this assumption is violated and
yet the behavior is as predicted by our theory.

Finally we observe that the nomenclature “learning rate” is now prevalent in machine
learning, and so we use it in this paper; it refers to the object commonly referred to as
“time-step” in the field of numerical analysis.

2. Momentum Methods and Convergence to Gradient Flow

In subsection 2.1 we state Theorem 2 concerning the convergence of a class of momentum
methods to a rescaled gradient flow. Subsection 2.2 demonstrates that the HB and NAG
methods are special cases of our general class of momentum methods, and gives intuition
for proof of Theorem 2; the proof itself is given in Appendix A. Subsection 2.3 contains a
numerical illustration of Theorem 2.

2.1 Main Result

The standard Euler discretization of (2) gives the discrete time optimization scheme

un+1 = un + hf(un), n = 0, 1, 2, . . . . (6)

Implementation of this scheme requires an initial guess u0 ∈ Rd. For simplicity we consider
a fixed learning rate h > 0. Equation (2) has a unique solution u ∈ C3([0,∞);Rd) under
Assumption 1 and for un = u(nh)

sup
0≤nh≤T

|un − un| ≤ C(T )h;

see Stuart and Humphries (1998), for example.
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In this section we consider a general class of momentum methods for the minimization
task (1) which can be written in the form, for some a ≥ 0 and λ ∈ (0, 1),

un+1 = un + λ(un − un−1) + hf(un + a(un − un−1)), n = 0, 1, 2, . . . ,

u1 = u0 + hf(u0) .
(7)

Again, implementation of this scheme requires an an initial guess u0 ∈ Rd. The parameter
choice a = 0 gives HB and a = λ gives NAG. In Appendix A we prove the following:

Theorem 2 Suppose Assumption 1 holds and let u ∈ C3([0,∞);Rd) be the solution to

du

dt
= −(1− λ)−1∇Φ(u)

u(0) = u0

(8)

with λ ∈ (0, 1). For n = 0, 1, 2, . . . let un be the sequence given by (7) and define un := u(nh).
Then for any T ≥ 0, there is a constant C = C(T ) > 0 such that

sup
0≤nh≤T

|un − un| ≤ Ch.

Note that (8) is simply a sped-up version of (2): if v solves (2) and w solves (8) then
v(t) = w((1 − λ)t) for any t ∈ [0,∞). This demonstrates that introduction of momentum
in the form used within both HB and NAG results in numerical methods that do not differ
substantially from gradient descent.

2.2 Link to HB and NAG

The HB method is usually written as a two-step scheme taking the form (Sutskever et al.
(2013))

vn+1 = λvn + hf(un)

un+1 = un + vn+1

with v0 = 0, λ ∈ (0, 1) the momentum factor, and h > 0 the learning rate. We can re-write
this update as

un+1 = un + λvn + hf(un)

= un + λ(un − un−1) + hf(un)

hence the method reads

un+1 = un + λ(un − un−1) + hf(un)

u1 = u0 + hf(u0).
(9)

Similarly NAG is usually written as (Sutskever et al. (2013))

vn+1 = λvn + hf(un + λvn)

un+1 = un + vn+1
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with v0 = 0. Define wn := un + λvn then

wn+1 = un+1 + λvn+1

= un+1 + λ(un+1 − un)

and

un+1 = un + λvn + hf(un + λvn)

= un + (wn − un) + hf(wn)

= wn + hf(wn).

Hence the method may be written as

un+1 = un + λ(un − un−1) + hf(un + λ(un − un−1))

u1 = u0 + hf(u0).
(10)

It is clear that (9) and (10) are special cases of (7) with a = 0 giving HB and a = λ
giving NAG. To intuitively understand Theorem 2, re-write (8) as

du

dt
− λdu

dt
= f(u).

If we discretize the du/dt term using forward differences and the −λdu/dt term using
backward differences, we obtain

u(t+ h)− u(t)

h
− λu(t)− u(t− h)

h
≈ f(u(t)) ≈ f

(
u(t) + ha

u(t)− u(t− h)

h

)
with the second approximate equality coming from the Taylor expansion of f . This can be
rearranged as

u(t+ h) ≈ u(t) + λ(u(t)− u(t− h)) + hf(u(t) + a(u(t)− u(t− h)))

which has the form of (7) with the identification un ≈ u(nh).

2.3 Numerical Illustration

Figure 1 compares trajectories of the momentum numerical method (7) with the rescaled
gradient flow (8), for the two-dimensional problem Φ(u) = 1

2〈u,Qu〉. We pick Q to be
positive-definite so that the minimum is achieved at the point (0, 0)T and make it diagonal
so that we can easily control its condition number. In particular, the condition number of
Q is given as

κ =
max{Q11, Q22}
min{Q11, Q22}

.

We see that, as the condition number is increased, both HB and NAG exhibit more pro-
nounced transient oscillations and are thus further away from the trajectory of (8), however,
as the learning rate h is decreased, the oscillations dampen and the trajectories match more
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(a) HB: κ = 5 (b) HB: κ = 10 (c) HB: κ = 20

(d) NAG: κ = 5 (e) NAG: κ = 10 (f) NAG: κ = 20

Figure 1: Comparison of trajectories for HB and NAG with the gradient flow (8) on the two-
dimensional problem Φ(u) = 1

2〈u,Qu〉 with λ = 0.9 fixed. We vary the condition number
of Q as well as the learning rate h.

(a) HB (b) NAG

Figure 2: The numerical rate of convergence, as a function of the learning rate h, of HB
and NAG to the gradient flow (8) for the problem described in Figure 1.

and more closely. This observation from Figure 1 is quantified in Figure 2 where we estimate
the rate of convergence, as a function of h, which is defined as

∆ = log2

‖u(h) − u‖∞
‖u(h/2) − u‖∞

where u(α) is the numerical solution using time-step α. The figure shows that the rate of
convergence is indeed close to 1, as predicted by our theory. In summary the behavior
of the momentum methods is precisely that of a rescaled gradient flow, but with initial
transient oscillations which capture momentum effects, but disappear as the learning rate
is decreased. We model these oscillations in the next section via use of a modified equation.
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3. Modified Equations

The previous section demonstrates how the momentum methods approximate a time rescaled
version of the gradient flow (2). In this section we show how the same methods may also be
viewed as approximations of the damped Hamiltonian system (3), with mass m on the order
of the learning rate, using the method of modified equations. In subsection 3.1 we state
and discuss the main result of the section, Theorem 3. Subsection 3.2 gives intuition for
proof of Theorem 3; the proof itself is given in Appendix B. And the section also contains
comments on generalizing the idea of modified equations. In subsection 3.3 we describe a
numerical illustration of Theorem 3.

3.1 Main Result

The main result of this section quantifies the sense in which momentum methods do, in
fact, approximate a damped Hamiltonian system; it is proved in Appendix B.

Theorem 3 Fix λ ∈ (0, 1) and assume that a ≥ 0 is chosen so that α := 1
2(1+λ−2a(1−λ))

is strictly positive. Suppose Assumption 1 holds and let u ∈ C4([0,∞);Rd) be the solution
to

hα
d2u

dt2
+ (1− λ)

du

dt
= −∇Φ(u)

u(0) = u0,
du

dt
(0) = u′0.

(11)

Suppose further that h ≤ (1− λ)2/2αB1. For n = 0, 1, 2, . . . let un be the sequence given by
(7) and define un := u(nh). Then for any T ≥ 0, there is a constant C = C(T ) > 0 such
that

sup
0≤nh≤T

|un − un| ≤ Ch.

Theorem 2 demonstrates the same order of convergence, namely O(h), to the rescaled
gradient flow equation (8), obtained from (11) simply by setting h = 0. In the standard
method of modified equations the limit system (here (8)) is perturbed by small terms (in
terms of the assumed small learning rate) and an increased rate of convergence is obtained
to the modified equation (here (11)). In our setting however, because the small modification
is to a higher derivative (here second) than appears in the limit equation (here first order),
an increased rate of convergence is not obtained. This is due to the nature of the modified
equation, whose solution has derivatives that are inversely proportional to powers of h; this
fact is quantified in Lemma 8 from Appendix B. It is precisely because the modified equation
does not lead to a higher rate of convergence that the initial parameter u′0 is arbitrary; the
same rate of convergence is obtained no matter what value it takes.

It is natural to ask, therefore, what is learned from the convergence result in Theorem 3.
The answer is that, although the modified equation (11) is approximated at the same order
as the limit equation (8), it actually contains considerably more qualitative information
about the dynamics of the system, particularly in the early transient phase of the algorithm;
this will be illustrated in subsection 3.3. Indeed we will make a specific choice of u′0 in our
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numerical experiments, namely

du

dt
(0) =

1− 2α

2α− λ+ 1
f(u0), (12)

to better match the transient dynamics.

3.2 Intuition and Wider Context

3.2.1 Idea Behind The Modified Equations

In this subsection, we show that the scheme (7) exhibits momentum, in the sense of ap-
proximating a momentum equation, but the size of the momentum term is on the order of
the step size h. To see this intuitively, we add and subtract un−un−1 to the right hand size
of (7) then we can rearrange it to obtain

h
un+1 − 2un + un−1

h2
+ (1− λ)

un − un−1

h
= f(un + a(un − un−1)).

This can be seen as a second order central difference and first order backward difference
discretization of the momentum equation

h
d2u

dt2
+ (1− λ)

du

dt
= f(u)

noting that the second derivative term has size of order h.

3.2.2 Higher Order Modified Equations For HB

We will now show that, for HB, we may derive higher order modified equations that are
consistent with (9). Taking the limit of these equations yields an operator that agrees with
with our intuition for discretizing (8). To this end, suppose Φ ∈ C∞b (Rd,R) and consider
the ODE(s),

p∑
k=1

hk−1(1 + (−1)kλ)

k!

dku

dtk
= f(u) (13)

noting that p = 1 gives (8) and p = 2 gives (11). Let u ∈ C∞([0,∞),Rd) be the solution to

(13) and define un := u(nh), u
(k)
n := dku

dtk
(nh) for n = 0, 1, 2, . . . and k = 1, 2, . . . , p. Taylor

expanding yields

un±1 = un +

p∑
k=1

(±1)khk

k!
u(k)
n + hp+1I±n

where

I±n =
(±1)p+1

p!

∫ 1

0
(1− s)pd

p+1u

dtp+1
((n± s)h)ds.

11
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Then

un+1 − un − λ(un − un−1) =

p∑
k=1

hk

k!
u(k)
n + λ

p∑
k=1

(−1)khk

k!
u(k)
n + hp+1(I+

n − λI−n )

= h

p∑
k=1

hk−1(1 + (−1)kλ)

k!
u(k)
n + hp+1(I+

n − λI−n )

= hf(un) + hp+1(I+
n − λI−n )

showing consistency to order p+ 1. As is the case with (11) however, the I±n terms will be
inversely proportional to powers of h hence global accuracy will not improve.

We now study the differential operator on the l.h.s. of (13) as p → ∞. Define the
sequence of differential operators Tp : C∞([0,∞),Rd)→ C∞([0,∞),Rd) by

Tpu =

p∑
k=1

hk−1(1 + (−1)kλ)

k!

dku

dtk
, ∀u ∈ C∞([0,∞),Rd).

Taking the Fourier transform yields

F(Tpu)(ω) =

p∑
k=1

hk−1(1 + (−1)kλ)(iω)k

k!
F(u)(ω)

where i =
√
−1 denotes the imaginary unit. Suppose there is a limiting operator Tp → T

as p→∞ then taking the limit yields

F(Tu)(ω) =
1

h
(eihω + λe−ihω − λ− 1)F(u)(ω).

Taking the inverse transform and using the convolution theorem, we obtain

(Tu)(t) =
1

h
F−1(eihω + λe−ihω − λ− 1)(t) ∗ u(t)

=
1

h
(−(1 + λ)δ(t) + λδ(t+ h) + δ(t− h)) ∗ u(t)

=
1

h

∫ ∞
−∞

(−(1 + λ)δ(t− τ) + λδ(t− τ + h) + δ(t− τ − h))u(τ) dτ

=
1

h
(−(1 + λ)u(t) + λu(t− h) + u(t+ h))

=
u(t+ h)− u(t)

h
− λ

(
u(t)− u(t− h)

h

)
where δ(·) denotes the Dirac-delta distribution and we abuse notation by writing its action
as an integral. The above calculation does not prove convergence of Tp to T , but simply
confirms our intuition that (9) is a forward and backward discretization of (8).
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(a) HB: κ = 5 (b) HB: κ = 10 (c) HB: κ = 20

(d) NAG: κ = 5 (e) NAG: κ = 10 (f) NAG: κ = 20

Figure 3: Comparison of trajectories for HB and NAG with the Hamiltonian dynamic (11)
on the two-dimensional problem Φ(u) = 1

2〈u,Qu〉 with λ = 0.9 fixed. We vary the condition
number of Q as well as the learning rate h.

(a) HB (b) NAG

Figure 4: The numerical rate of convergence, as a function of the learning rate h, of HB
and NAG to the momentum equation (11) for the problem described in Figure 3.

3.3 Numerical Illustration

Figure 3 shows trajectories of (7) and (11) for different values of a and h on the two-
dimensional problem Φ(u) = 1

2〈u,Qu〉, varying the condition number of Q. We make the
specific choice of u′0 implied by the initial condition (12). Figure 4 shows the numerical
order of convergence as a function of h, as defined in Section 2.3, which is near 1, matching
our theory. We note that the oscillations in HB are captured well by (11), except for a
slight shift when h and κ are large. This is due to our choice of initial condition which
cancels the maximum number of terms in the Taylor expansion initially, but the overall
rate of convergence remains O(h) due to Lemma 8. Other choices of u′0 also result in O(h)

13
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convergence and can be picked on a case-by-case basis to obtain consistency with different
qualitative phenomena of interest in the dynamics. Note also that α|a=λ < α|a=0. As a
result the transient oscillations in (11) are more quickly damped in the NAG case than
in the HB case; this is consistent with the numerical results. However panels (d)-(f) in
Figure 1 show that (11) is not able to adequately capture the oscillations of NAG when h
is relatively large. We leave for future work, the task of finding equations that are able to
appropriately capture the oscillations of NAG in the large h regime.

4. Invariant Manifold

The key lessons of the previous two sections are that the momentum methods approximate
a rescaled gradient flow of the form (2) and a damped Hamiltonian system of the form
(3), with small mass m which scales with the learning rate, and constant damping γ.
Both approximations hold with the same order of accuracy, in terms of the learning rate,
and numerics demonstrate that the Hamiltonian system is particularly useful in providing
intuition for the transient regime of the algorithm. In this section we link the two theorems
from the two preceding sections by showing that the Hamiltonian dynamics with small mass
from section 3 has an exponentially attractive invariant manifold on which the dynamics
is, to leading order, a gradient flow. That gradient flow is a small, in terms of the learning
rate, perturbation of the time-rescaled gradient flow from section 2.

4.1 Main Result

Define
vn := (un − un−1)/h (14)

noting that then (7) becomes

un+1 = un + hλvn + hf(un + havn)

and

vn+1 =
un+1 − un

h
= λvn + f(un + havn).

Hence we can re-write (7) as

un+1 = un + hλvn + hf(un + havn)

vn+1 = λvn + f(un + havn).
(15)

Note that if h = 0 then (15) shows that un = u0 is constant in n, and that vn converges
to (1− λ)−1f(u0). This suggests that, for h small, there is an invariant manifold which is a
small perturbation of the relation vn = λ̄f(un) and is representable as a graph. Motivated
by this, we look for a function g : Rd → Rd such that the manifold

v = λ̄f(u) + hg(u) (16)

is invariant for the dynamics of the numerical method:

vn = λ̄f(un) + hg(un)⇐⇒ vn+1 = λ̄f(un+1) + hg(un+1). (17)

14
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We will prove the existence of such a function g by use of the contraction mapping
theorem to find fixed point of mapping T defined in subsection 4.2 below. We seek this
fixed point in set Γ which we now define:

Definition 4 Let γ, δ > 0 be as in Lemmas 9, 10. Define Γ := Γ(γ, δ) to be the closed
subset of C(Rd;Rd) consisting of γ-bounded functions:

‖g‖Γ := sup
ξ∈Rd
|g(ξ)| ≤ γ, ∀g ∈ Γ

that are δ-Lipshitz:

|g(ξ)− g(η)| ≤ δ|ξ − η|, ∀g ∈ Γ, ξ, η ∈ Rd.

Theorem 5 Fix λ ∈ (0, 1). Suppose that h is chosen small enough so that Assumption 11
holds. For n = 0, 1, 2, . . ., let un, vn be the sequences given by (15). Then there is a τ > 0
such that, for all h ∈ (0, τ), there is a unique g ∈ Γ such that (17) holds. Furthermore,

|vn − λ̄f(un)− hg(un)| ≤ (λ+ h2λδ)n|v0 − λ̄f(u0)− hg(u0)|

where λ+ h2λδ < 1.

The statement of Assumption 11, and the proof of the preceding theorem, are given
in Appendix C. The assumption appears somewhat involved at first glance but inspection
reveals that it simply places an upper bound on the learning rate h, as detailed in Lemmas
9, 10. The proof of the theorem rests on the Lemmas 13, 14 and 15 which establish that
the operator T is well-defined, maps Γ to Γ, and is a contraction on Γ. The operator T is
defined, and expressed in a helpful form for the purposes of analysis, in the next subsection.

In the next subsection we obtain the leading order approximation for g, given in equation
(31). Theorem 5 implies that the large-time dynamics are governed by the dynamics on the
invariant manifold. Substituting the leading order approximation for g into the invariant
manifold (16) and using this expression in the definition (14) shows that

vn = −(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
, (18a)

un = un−1 − h(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
. (18b)

Setting

c = λ̄

(
λ̄− a+

1

2

)
(19)

we see that for large time the dynamics of momentum methods, including HB and NAG,
are approximately those of the modified gradient flow

du

dt
= −(1− λ)−1∇Φh(u) (20)

15
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with

Φh(u) = Φ(u) +
1

2
hc|∇Φ(u)|2. (21)

To see this we proceed as follows. Note that from (20)

d2u

dt2
= −1

2
(1− λ)−2∇|∇Φ(u)|2 +O(h)

then Taylor expansion shows that, for un = u(nh),

un = un−1 + hu̇n −
h2

2
ün +O(h3)

= un−1 − hλ̄
(
∇Φ(un) +

1

2
hc∇|∇Φ(un)|2

)
+

1

4
h2λ̄2∇|∇Φ(un)|2 +O(h3)

where we have used that

Df(u)f(u) =
1

2
∇
(
|∇Φ(u)|2

)
.

Choosing c = λ̄(λ̄− a+ 1/2) we see that

un = un−1 − h(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
+O(h3). (22)

Notice that comparison of (18b) and (22) shows that, on the invariant manifold, the dy-
namics are to O(h2) the same as the equation (20); this is because the truncation error
between (18b) and (22) is O(h3).

Thus we have proved:

Theorem 6 Suppose that the conditions of Theorem 5 hold. Then for initial data started
on the invariant manifold and any T ≥ 0, there is a constant C = C(T ) > 0 such that

sup
0≤nh≤T

|un − un| ≤ Ch2,

where un = u(nh) solves the modified equation (20) with c = λ̄(λ̄− a+ 1/2).

4.2 Intuition

We will define mapping T : C(Rd;Rd)→ C(Rd;Rd) via the equations

p = ξ + hλ
(
λ̄f(ξ) + hg(ξ)

)
+ hf

(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
λ̄f(p) + h(Tg)(p) = λ

(
λ̄f(ξ) + hg(ξ)

)
+ f

(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
.

(23)

A fixed point of the mapping g 7→ Tg will give function g so that, under (23), identity (17)
holds. Later we will show that, for g in Γ and all h sufficiently small, ξ can be found from
(23a) for every p, and that thus (23b) defines a mapping from g ∈ Γ into Tg ∈ C(Rd;Rd).
We will then show that, for h sufficiently small, T : Γ 7→ Γ is a contraction.
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For any g ∈ C(Rd;Rd) and ξ ∈ Rd define

wg(ξ) := λ̄f(ξ) + hg(ξ) (24)

zg(ξ) := λwg(ξ) + f
(
ξ + hawg(ξ)

)
. (25)

With this notation the fixed point mapping (23) for g may be written

p = ξ + hzg(ξ),

λ̄f(p) + h(Tg)(p) = zg(ξ).
(26)

Then, by Taylor expansion,

f
(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
= f

(
ξ + hawg(ξ)

)
= f(ξ) + ha

∫ 1

0
Df
(
ξ + shawg(ξ)

)
wg(ξ)ds

= f(ξ) + haI(1)
g (ξ)

(27)

where the last line defines I
(1)
g . Similarly

f(p) = f(ξ + hzg(ξ))

= f(ξ) + h

∫ 1

0
Df
(
ξ + shzg(ξ)

)
zg(ξ)ds

= f(ξ) + hI(2)
g (ξ),

(28)

where the last line now defines I
(2)
g . Then (23b) becomes

λ̄
(
f(ξ) + hI(2)

g (ξ)
)

+ h(Tg)(p) = λλ̄f(ξ) + hλg(ξ) + f(ξ) + haI(1)
g (ξ)

and we see that
(Tg)(p) = λg(ξ) + aI(1)

g (ξ)− λ̄I(2)
g (ξ).

In this light, we can rewrite the defining equations (23) for T as

p = ξ + hzg(ξ), (29)

(Tg)(p) = λg(ξ) + aI(1)
g (ξ)− λ̄I(2)

g (ξ). (30)

for any ξ ∈ Rd.
Perusal of the above definitions reveals that, to leading order in h,

wg(ξ) = zg(ξ) = λ̄f(ξ), I(1)
g (ξ) = I(2)

g (ξ) = λ̄Df(ξ)f(ξ).

Thus setting h = 0 in (29), (30) shows that, to leading order in h,

g(p) = λ̄2(a− λ̄)Df(p)f(p). (31)

Note that since f(p) = −∇Φ(p), Df is the negative Hessian of Φ and is thus symmetric.
Hence we can write g in gradient form, leading to

g(p) =
1

2
λ̄2(a− λ̄)∇

(
|∇Φ(p)|2

)
. (32)

Remark 7 This modified potential (21) also arises in the construction of Lyapunov func-
tions for the one-stage theta method – see Corollary 5.6.2 in Stuart and Humphries (1998).
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(a) HB: un given by (15) (b) HB: vn given by (15) (c) HB: en given by (34)

(d) NAG: un given by (15) (e) NAG: vn given by (15) (f) NAG: en given by (34)

Figure 5: Invariant manifold for HB and NAG with h = 2−6 and λ = 0.9 on the two-
dimensional problem Φ(u) = 1

2〈u,Qu〉, varying the condition number of Q. Panels (c), (f)
show the distance from the invariant manifold for the largest condition number κ = 20.

4.3 Numerical Illustration

In Figure 5 panels (a),(b),(d),(e), we plot the components un and vn found by solving (15)
with initial conditions u0 = (1, 1)T and vn = (0, 0)T in the case where Φ(u) = 1

2〈u,Qu〉.
These initial conditions correspond to initializing the map off the invariant manifold. To
leading order in h the invariant manifold is given by (see equation (18))

v = −(1− λ)−1∇
(

Φ(u) +
1

2
hλ̄(λ̄− a)|∇Φ(u)|2

)
. (33)

To measure the distance of the trajectory shown in panels (a),(b),(d),(e) from the invariant
manifold we define

en =

∣∣∣∣vn + (1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)∣∣∣∣ . (34)

Panels (c),(f) show the evolution of en as well as the (approximate) bound on it found
from substituting the leading order approximation of g into the following upper bound from
Theorem 5:

(λ+ h2λδ)n|v0 − λ̄f(u0)− hg(u0)|.

5. Deep Learning Example

Our theory is developed under quite restrictive assumptions, in order to keep the proofs
relatively simple and to allow a clearer conceptual development. The purpose of the nu-
merical experiments in this section is twofold: firstly to demonstrate that our theory sheds
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h = 20 h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6

GF n/a 4.3948 4.5954 5.6769 7.0049 8.6468 10.6548

HB 3.6775 4.0157 4.5429 5.6447 7.0720 8.7070 10.6848

NAG 3.2808 3.7166 4.4579 5.6087 7.0557 8.6987 10.6814

Wilson 6.7395 7.5177 8.3491 9.2543 10.2761 11.3776 12.4123

HB-µ 5.7099 6.6146 7.6202 8.6629 9.7838 11.0039 12.1743

NAG-µ 5.6867 6.6033 7.6131 8.6556 9.7783 11.0015 12.1738

Figure 6: Final training errors for the autoencoder on MNIST for six training methods over
different learning rates. GF refers to equation (35) while HB and NAG to (7) all with fixed
λ = 0.9.

(a) HB, NAG to (35) (b) HB-µ, NAG-µ to (36)

Figure 7: The numerical rate of convergence for the parameters of the autoencoder, as a
function of the learning rate h, of HB and NAG to (35) (a), as well as of HB-µ and NAG-µ
to (36) (b).

light on a stochastic version of gradient descent applied, furthermore, to a setting in which
the objective function does not satisfy the global assumptions which facilitate our analysis;
and second to show that methods implemented as we use them here (with learning-rate
independent momentum, fixed at every step of the iteration) can out-perform other choices
on specific problems.

Our numerical experiments in this section are undertaken with in the context of the ex-
ample given in Sutskever et al. (2013). We train a deep autoencoder, using the architecture
of Hinton and Salakhutdinov (2006) on the MNIST dataset LeCun and Cortes (2010). Since
our work is concerned only with optimization and not generalization, we present our results
only on the training set of 60,000 images and ignore the testing set. We fix an initialization
of the autoencoder following Glorot and Bengio (2010) and use it to test every optimization
method. Furthermore, we fix a batch size of 200 and train for 500 epochs, not shuffling the
data set during training so that each method sees the same realization of the noise. We use
the mean-squared error as our loss function.
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We compare HB and NAG given by (7) to the re-scaled gradient flow (8) which we
discretize in the standard way to yield the numerical method

un+1 = un −
h

(1− λ)
∇Φ(un), (35)

hence the momentum term λ only acts to re-scale the learning rate. We do not test against
equation (11) because, to discretize it faithfully, we would need to use a time-step much
lower than h (because (11) contains a term of order h), but doing so would mean that we
need to train for many more epochs compared to HB and NAG so that the same final time
is reached. This, in turn, implies that the methods would see different realization of the
noise. Thus, to compare them well, we would need to perform a Monte Carlo simulation,
however, since we do not state any of our results in a stochastic setting, we leave this for
future work.

We also compare our results to those of Wilson et al. (2016) which analyze HB and
NAG in the setting where Φ is µ-strongly convex and λ is given by (5) that is

λ =
1−
√
µh

1 +
√
µh
.

They obtain the limiting equation

ü+ 2
√
µu̇+∇Φ(u) = 0

which we discretize via a split-step method to yield

un+1 = un +
1

2
√
µ

(
1− e−2

√
µh
)
vn

vn+1 = e−2
√
µhvn −

√
h∇Φ(un+1)

(36)

where we have mapped the the time-step h in HB and NAG to
√
h as in done in Wilson et al.

(2016). We choose this discretization because it allows us to directly solve for the linear
parts of the ODE (in the enlarged state-space), yielding a more accurate approximation than
the forward-Euler method used to obtain (35). A detailed derivation is given in Appendix
D. We will refer to the method in equation (36) as Wilson. Further we refer to equation
(7) with λ given by (5) and a = 0 as HB-µ and equation (7) with λ given by (5) and a = λ
as NAG-µ. Since deep neural networks are not strongly convex, there is no single optimal
choice of µ; we simply set µ = 1 in our experiments.

Figure 6 gives the final training errors for each method for several learning rates. We
were unable to train the autoencoder using (35) with h = 1 since λ = 0.9 implies an
effective learning rate of 10 for which the system blows up. In general, NAG is the best
performing method for relatively large h which is an observation that is consistently made
in the deep learning literature. Further, we note that as the learning rate decreases, the
final errors become closer indicating convergence to the appropriate limiting equations.
Figure 6 showcases the practical effectiveness of momentum methods as they provide a
way of discretizing the gradient flow (2) with a large effective learning rate that forward
Euler cannot accommodate. From this perspective, we can view momentum methods as
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providing a more stable discretization to gradient flows in a manner illustrated by (20).
Such a viewpoint informs the works Scieur et al. (2017); Betancourt et al. (2018); Zhang
et al. (2018).

To further illustrate the point of convergence to the limiting equation, we compute the
numerical rate of convergence, defined in Section 2.3, as a function of h for the neural
network parameters between (35) and HB and NAG as well as between (36) and HB-µ and
NAG-µ. Figure 7 gives the results. We note that this rate is around 1 as predicted by
our theory while the rate for (36) is around 0.5 which is also consistent with the theory in
Wilson et al. (2016).

6. Conclusion

Together, equations (8), (11) and (20) describe the dynamical systems which are approx-
imated by momentum methods, when implemented with fixed momentum, in a manner
made precise by the four theorems in this paper. The insight obtained from these theorems
sheds light on how momentum methods perform optimization tasks.
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Appendix A

Proof [of Theorem 2] Taylor expanding yields

un+1 = un + hλ̄f(un) +O(h2)

and
un = un−1 + hλ̄f(un) +O(h2).

Hence
(1 + λ)un − λun−1 = un + hλλ̄f(un) +O(h2).

Subtracting the third identity from the first, we find that

un+1 − ((1 + λ)un − λun−1) = hf(un) +O(h2)

by noting λ̄− λ̄λ = 1. Similarly,

a(un − un−1) = haλ̄f(un) +O(h2)

hence Taylor expanding yields

f(un + a(un − un−1)) = f(un) + aDf(un)(un − un−1)

+ a2

∫ 1

0
(1− s)D2f(un + sa(un − un−1))[un − un−1]2ds

= f(un) + haλ̄Df(un)f(un) +O(h2).

From this, we conclude that

hf(un + a(un − un−1)) = hf(un) +O(h2)

hence
un+1 = (1 + λ)un − λun−1 + hf(un + a(un − un−1)) +O(h2).

Define the error en := un − un then

en+1 = (1 + λ)en − λen−1 + h (f(un + a(un − un−1))− f(un + a(un − un−1))) +O(h2)

= (1 + λ)en − λen−1 + hMn((1 + a)en − aen−1) +O(h2)

where, from the mean value theorem, we have

Mn =

∫ 1

0
Df
(
s
(
un + a(un − un−1)

)
+
(
1− s

)(
un + a(un − un−1)

))
ds.

Now define the concatenation En+1 := [en+1, en] ∈ R2d then

En+1 = A(λ)En + hA(a)
n En +O(h2)

where A(λ), A
(a)
n ∈ R2d×2d are the block matrices

A(λ) :=

[
(1 + λ)I −λI

I 0I

]
, A(a)

n :=

[
(1 + a)Mn −aMn

0I 0I

]
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with I ∈ Rd×d the identity. We note that A(λ) has minimal polynomial

µA(λ)(z) = (z − 1)(z − λ)

and is hence diagonalizable. Thus there is a norm on ‖ · ‖ on R2d such that its induced
matrix norm ‖ · ‖m satifies ‖A(λ)‖m = ρ(A(λ)) where ρ : R2d×2d → R+ maps a matrix to its
spectral radius. Hence, since λ ∈ (0, 1), we have ‖A(λ)‖m = 1. Thus

‖En+1‖ ≤ (1 + h‖A(a)
n ‖m)‖En‖+O(h2).

Then, by finite dimensional norm equivalence, there is a constant α > 0, independent of h,
such that

‖A(a)
n ‖m ≤ α

∥∥∥∥[1 + a −a
0 0

]
⊗Mn

∥∥∥∥
2

= α
√

2a2 + 2a+ 1‖Mn‖2

where ‖ · ‖2 denotes the spectral 2-norm. Using Assumption 1, we have

‖Mn‖2 ≤ B1

thus, letting c := α
√

2a2 + 2a+ 1B1, we find

‖En+1‖ ≤ (1 + hc)‖En‖+O(h2).

Then, by Grönwall lemma,

‖En+1‖ ≤ (1 + hc)n‖E1‖n +
(1 + hc)n+1 − 1

ch
O(h2)

= (1 + hc)n‖E1‖n +O(h)

noting that the constant in the O(h) term is bounded above in terms of T , but independently
of h. Finally, we check the initial condition

E1 =

[
u1 − u1

u0 − u0

]
=

[
h(λ̄− 1)f(u0) +O(h2)

0

]
= O(h)

as desired.

Appendix B

Proof [of Theorem 3] Taylor expanding yields

un±1 = un ± hu̇n +
h2

2
ün ±

h3

2
I±n

where

I±n =

∫ 1

0
(1− s)2...

u ((n± s)h)ds.
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Then using equation (11)

un+1 − un − λ(un − un−1) = h(1− λ)u̇n +
h2

2
(1 + λ)ün +

h3

2
(I+
n − λI−n )

= hf(un) + h2a(1− λ)ün +
h3

2
(I+
n − λI−n ).

(37)

Similarly

a(un − un−1) = hau̇n −
h2

2
aün +

h3

2
aI−n

hence

f(un + a(un − un−1)) = f(un) + haDf(un)u̇n −Df(un)

(
h2

2
aün −

h3

2
aI−n

)
+ Ifn

where

Ifn = a2

∫ 1

0
(1− s)D2f(un + sa(un − un−1))[un − un−1]2ds.

Differentiating (11) yields

hα
d3u

dt3
+ (1− λ)

d2u

dt2
= Df(u)

du

dt

hence

hf(un + a(un − un−1)) = hf(un) + h2a (hα
...
un + (1− λ)ün)−Df(un)

(
h3

2
aün −

h4

2
aI−n

)
+ hIfn

= hf(un) + h2a(1− λ)ün + h3aα
...
un −Df(un)

(
h3

2
aün −

h4

2
aI−n

)
+ hIfn .

Rearranging this we obtain an expression for hf(un) which we plug into equation (37) to
yield

un+1 − un − λ(un − un−1) = hf(un + a(un − un−1)) + LTn

where

LTn =
h3

2
(I+
n − λI−n )︸ ︷︷ ︸

O
(
hexp

(
− (1−λ)

2α
n
))
− h3aα

...
un︸ ︷︷ ︸

O
(
hexp

(
− (1−λ)

2α
n
)) +Df(un)

(
h3

2
aün −

h4

2
aI−n

)
︸ ︷︷ ︸

O(h2)

− hIfn︸︷︷︸
O(h3)

.

The bounds (in braces) on the four terms above follow from employing Assumption 1 and
Lemma 8. From them we deduce the existence of constants K1,K2 > 0 independent of h
such that

|LTn| ≤ hK1exp

(
−(1− λ)

2α
n

)
+ h2K2.

We proceed similarly to the proof of Theorem 2, but with a different truncation error
structure, and find the error satsifies

‖En+1‖ ≤ (1 + hc)‖En‖+ hK1exp

(
−(1− λ)

2α
n

)
+ h2K2
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where we abuse notation and continue to write K1,K2 when, in fact, the constants have
changed by use of finite-dimensional norm equivalence. Define K3 := K2/c then summing
this error, we find

‖En+1‖ ≤ (1 + hc)n‖E1‖+ hK3((1 + hc)n+1 − 1) + hK1

n∑
j=0

(1 + hc)jexp

(
−(1− λ)

2α
(n− j)

)
= (1 + hc)n‖E1‖+ hK3((1 + hc)n+1 − 1) + hK1Sn.

where

Sn = exp

(
−(1− λ)

2α
n

)(1 + hc)n+1exp
(

(1−λ)
2α (n+ 1)

)
− 1

(1 + hc)exp
(

1−λ
2α

)
− 1

 .

Let T = nh then

Sn ≤
(1 + hc)n+1exp

(
1−λ
2α

)
(1 + hc)exp

(
1−λ
2α

)
− 1

≤
2exp

(
cT + 1−λ

2α

)
exp

(
1−λ
2α

)
− 1

From this we deduce that

‖En+1‖ ≤ (1 + hc)n‖E1‖+O(h)

noting that the constant in the O(h) term is bounded above in terms of T , but independently
of h. For the initial condition, we check

u1 − u1 = h(u′0 − f(u0)) +
h2

2
ü0 +

h3

2
I+

0

which is O(h) by Lemma 8. Putting the bounds together we obtain

sup
0≤nh≤T

‖En‖ ≤ C(T )h.

Lemma 8 Suppose Assumption 1 holds and let u ∈ C3([0,∞);Rd) be the solution to

hα
d2u

dt2
+ (1− λ)

du

dt
= f(u)

u(0) = u0,
du

dt
(0) = v0

for some u0, v0 ∈ Rd and α > 0 independent of h. Suppose h ≤ (1 − λ)2/2αB1 then there

are constants C(1), C
(2)
1 , C

(2)
2 , C

(3)
1 , C

(3)
2 > 0 independent of h such that for any t ∈ [0,∞),

|u̇(t)| ≤ C(1),

|ü(t)| ≤ C
(2)
1

h
exp

(
−(1− λ)

2hα
t

)
+ C

(2)
2 ,

|...u (t)| ≤ C
(3)
1

h2
exp

(
−(1− λ)

2hα
t

)
+ C

(3)
2 .
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One readily verifies that the result of Lemma 8 is tight by considering the one-dimensional
case with f(u) = −u. This implies that the result of Theorem 3 cannot be improved without
further assumptions.
Proof [of Lemma 8] Define v := u̇ then

v̇ = − 1

hα
((1− λ)v − f(u)) .

Define w := (1− λ)v − f(u) hence v̇ = −(1/hα)w and u̇ = v = λ̄(w + f(u)). Thus

ẇ = (1− λ)v̇ −Df(u)u̇

= −(1− λ)

hα
w −Df(u)(λ̄(w + f(u))).

Hence we find

1

2

d

dt
|w|2 = −(1− λ)

hα
|w|2 − λ̄〈w,Df(u)w〉 − λ̄〈w,Df(u)f(u)〉

≤ −(1− λ)

hα
|w|2 + λ̄|〈w,Df(u)w〉|+ λ̄|〈w,Df(u)f(u)〉|

≤ −(1− λ)

hα
|w|2 + λ̄B1|w|2 + λ̄B0B1|w|

≤ −(1− λ)

hα
|w|2 +

(1− λ)

2hα
|w|2 + λ̄B0B1|w|

= −(1− λ)

2hα
|w|2 + λ̄B0B1|w|

by noting that our assumption h ≤ (1− λ)2/2αB1 implies λ̄B1 ≤ (1− λ)/2hα. Hence

d

dt
|w| ≤ −(1− λ)

2hα
|w|+ λ̄B0B1

so, by Grönwall lemma,

|w(t)| ≤ exp

(
−(1− λ)

2hα
t

)
|w(0)|+ 2hλ̄2αB0B1

(
1− exp

(
−(1− λ)

2hα
t

))
≤ exp

(
−(1− λ)

2hα
t

)
|w(0)|+ hβ1

where we define β1 := 2λ̄2αB0B1. Hence

|ü(t)| = |v̇(t)|

=
1

hα
|w(t)|

≤ 1

hα
exp

(
−(1− λ)

2hα
t

)
|w(0)|+ β1

α

=
|(1− λ)v0 − f(u0)|

hα
exp

(
−(1− λ)

2hα
t

)
+
β1

α
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thus setting C
(2)
1 = |(1−λ)v0− f(u0)|/α and C

(2)
1 = β1/α gives the desired result. Further,

|u̇(t)| = |v(t)|
≤ λ̄(|w(t)|+ |f(u(t))|)
≤ λ̄(|w(0)|+ hβ1 +B0)

hence we deduce the existence of C(1). Now define z := ẇ then

ż = −(1− λ)

hα
z − λ̄Df(u)z +G(u, v, w)

where we define G(u, v, w) := −λ̄(Df(u)(Df(u)v) +D2f(u)[v, w] +D2f(u)[Df(u)v, f(u)]).
Using Assumption 1 and our bounds on w and v, we deduce that there is a constant C > 0
independent of h such that

|G(u, v, w)| ≤ C
hence

1

2

d

dt
|z|2 = −(1− λ)

hα
|z|2 − λ̄〈z,Df(u)z〉+ 〈z,G(u, v, w)〉

≤ −(1− λ)

hα
|z|2 + λ̄B1|z|2 + C|z|

≤ −(1− λ)

2hα
|z|2 + C|z|

as before. Thus we find
d

dt
|z| ≤ −(1− λ)

2hα
|z|+ C

so, by Grönwall lemma,

|z(t)| ≤ exp

(
−(1− λ)

2hα
t

)
|z(0)|+ hβ2

where we define β2 := 2λ̄αC. Recall that

...
u = v̈ = − 1

hα
ẇ = − 1

hα
z

and note

|z(0)| ≤ (1− λ)|(1− λ)v0 − f(u0)|
hα

+B1|v0|

hence we find

|...u (t)| ≤
(

(1− λ)|(1− λ)v0 − f(u0)

h2α2
+
B1|v0|
hα

)
exp

(
−(1− λ)

2hα
t

)
+
β2

α
.

Thus we deduce that there is a constant C
(3)
1 > 0 independent of h such that

|...u (t)| ≤ C
(3)
1

h2
exp

(
−(1− λ)

2hα
t

)
+ C

(3)
2

as desired where C
(3)
2 = β2/α.
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Appendix C.

For the results of Section 4 we make the following assumption on the size of h. Recall first
that by Assumption 1 there are constants B0, B1, B2 > 0 such that

‖Dj−1f‖ = ‖DjΦ‖ ≤ Bj−1

for j = 1, 2, 3.

Lemma 9 Suppose h > 0 is small enough such that

λ+ hB1(a+ λλ̄) < 1

then there is a τ1 > 0 such that for any γ ∈ [τ1,∞)

(λ+ hB1(a+ λλ̄))γ + λ̄B0B1(a+ λ̄) ≤ γ. (38)

Using Lemma 9 fix γ ∈ [τ1,∞) and define the constants

K1 := λ̄B0 + hγ

K3 := B0 + λK1

α2 := h2(λ+ haB1),

α1 := λ− 1 + h
(
B1(λ̄+ a(1 + hλ̄B1)) + λλ̄(B1 + hB2K3) + ha(aB2K1 +B1λ̄(B1 + hB2K3)

)
,

α0 := aB2K1(1 + haλ̄B1) + λ̄(aB2
1 +B2K3) + λ̄2B1(1 + haB1)(B1 + hB2K3).

(39)

Lemma 10 Suppose h > 0 is small enough such that

α2
1 > 4α2α0, α1 < 0

then there are τ±2 > 0 such that for any δ ∈ (τ−2 , τ
+
2 ]

α2δ
2 + α1δ + α0 ≤ 0. (40)

Using Lemma 10 fix δ ∈ (τ−2 , τ
+
2 ]. We make the following assumption on the size of the

learning rate h which is achievable since λ ∈ (0, 1).

Assumption 11 Let Assumption 1 hold and suppose h > 0 is small enough such that the
assumptions of Lemmas 9, 10 hold. Define K2 := λ̄B1 + hδ and suppose h > 0 is small
enough such that

c := h(λK2 +B1(1 + haK2)) < 1. (41)

Define constants

Q1 := λδ + a(B1K2 +B2K1(1 + haK2)) + λ̄((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3),

Q2 := h(a(B1 + haB2K1) + λ̄(λ+ haB1)(B1 + hB2K3)),

Q3 := h(λK2 +B1(1 + haK2)),

µ := λ+Q2 +
h2(λ+ haB1)Q1

1−Q3
.

(42)
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Suppose h > 0 is small enough such that

Q3 < 1, µ < 1. (43)

Lastly assume h > 0 is small enough such that

λ+ h2λδ < 1. (44)

Proof [of Lemma 9.] Since λ+ hB1(a+ λλ̄) < 1 and λ̄B0B1(a+ λ̄) > 0 the line defined by

(λ+ hB1(a+ λλ̄))γ + λ̄B0B1(a+ λ̄)

will intersect the identity line at a positive γ and lie below it thereafter. Hence setting

τ1 =
λ̄B0B1(a+ λ̄)

1− λ+ hB1(a+ λλ̄)

completes the proof.

Proof [of Lemma 10.] Note that since α2 > 0, the parabola defined by

α2δ
2 + α1δ + α0

is upward-pointing and has roots

ζ± =
−α1 ±

√
α2

1 − 4α2α0

2α2
.

Since α2
1 > 4α2α0, ζ± ∈ R with ζ+ 6= ζ−. Since α1 < 0, ζ+ > 0 hence setting τ+

2 = ζ+ and
τ−2 = max{0, ζ−} completes the proof.

The following proof refers to four lemmas whose statement and proof follow it.

Proof [of Theorem 5.] Define τ > 0 as the maximum h such that Assumption 11 holds. The
contraction mapping principle together with Lemmas 13, 14, and 15 show that the operator
T defined by (29) and (30) has a unique fixed point in Γ. Hence, from its definition and
equation (23b), we immediately obtain the existence result. We now show exponential
attractivity. Recall the definition of the operator T namely equations (29), (30):

p = ξ + hzg(ξ)

(Tg)(p) = λg(ξ) + aI(1)
g (ξ)− λ̄I(2)

g (ξ).

Let g ∈ Γ be the fixed point of T and set

p = un + hzg(un)

g(p) = λg(un) + aI(1)
g (un)− λ̄I(2)

g (un).
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Then

|vn+1 − λ̄f(un+1)− hg(un+1)| ≤ |vn+1 − λ̄f(un+1)− hg(p)|+ h|g(p)− g(un+1)|
≤ |vn+1 − λ̄f(un+1)− hg(p)|+ hδ|p− un+1|

since g ∈ Γ. Since, by definition,

vn+1 = λvn + f(un + havn)

we have,

|vn+1 − λ̄f(un+1)− hg(p)| = |λvn + f(un + havn)− λ̄f(un+1)− h(λg(un) + aI(1)
g (un)− λ̄I(2)

g (un))|
= λ|vn − λ̄f(un)− hg(un)|

by noting that

f(un + havn) = f(un) + haI(1)
g (un)

f(un+1) = f(un) + hI(2)
g (un).

From definition,

un+1 = un + hλvn + hf(un + havn)

thus

|p− un+1| = |un + hzg(un)− un − hλvn − hf(un + havn)|
= h|λ(λ̄f(un) + hg(un)) + f(un + havn)− λvn − f(un + havn)|
= hλ|vn − λ̄f(un)− hg(un)|.

Hence

|vn+1 − λ̄f(un+1)− hg(un+1)| ≤ (λ+ h2λδ)|vn − λ̄f(un)− hg(un)|

as desired. By Assumption 11, λ+ h2λδ < 1.

The following lemma gives basic bounds which are used in the proof of Lemmas 13, 14,
15.
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Lemma 12 Let g, q ∈ Γ and ξ, η ∈ Rd then the quantities defined by (24), (25), (27), (28)
satisfy the following:

|wg(ξ)| ≤ K1,

|wg(ξ)− wg(η)| ≤ K2|ξ − η|,
|wg(ξ)− wq(ξ)| ≤ h|g(ξ)− q(ξ)|,

|zg(ξ)| ≤ K3,

|zg(ξ)− zg(η)| ≤ (λK2 +B1 (1 + haK2)) |ξ − η|,
|zg(ξ)− zq(ξ)| ≤ h (λ+ haB1) |g(ξ)− q(ξ)|,

|I(1)
g (ξ)| ≤ B1K1,

|I(1)
g (ξ)− I(1)

g (η)| ≤ (B1K2 +B2K1(1 + haK2))|ξ − η|,

|I(1)
g (ξ)− I(1)

q (ξ)| ≤ h(B1 + haB2K1)|g(ξ)− q(ξ)|,

|I(2)
g (ξ)| ≤ B1K3

|I(2)
g (ξ)− I(2)

g (η)| ≤ ((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3)|ξ − η|,

|I(2)
g (ξ)− I(2)

q (ξ)| ≤ h(λ+ hB1a)(B1 + hB2K3)|g(ξ)− q(ξ)|.

Proof These bounds relay on applications of the triangle inequality together with bound-
edness of f and its derivatives as well as the fact that functions in Γ are bounded and

Lipschitz. To illustrate the idea, we will prove the bounds for wg, wq, I
(1)
g , and I

(1)
q . To that

end,

|wg(ξ)| = |λ̄f(ξ) + hg(ξ)|
≤ λ̄|f(ξ)|+ h|g(ξ)|
≤ λ̄B0 + hγ

= K1

establishing the first bound. For the second,

|wg(ξ)− wg(η)| ≤ λ̄|f(ξ)− f(η)|+ h|g(ξ)− g(η)|
≤ λ̄B1|ξ − η|+ hδ|ξ − η|
= K2|ξ − η|

as desired. Finally,

|wg(ξ)− wq(ξ)| = |λ̄f(ξ) + hg(ξ)− λ̄f(ξ)− hq(ξ)|
= h|g(ξ)− q(ξ)|

as desired. We now turn to the bounds for I
(1)
g , I

(1)
q ,

|I(1)
g (ξ)| ≤

∫ 1

0
|Df(ξ + shawg(ξ))||wg(ξ)|ds

≤
∫ 1

0
B1K1ds

= B1K1
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establishing the first bound. For the second bound,

|I(1)
g (ξ)− I(1)

g (η)| ≤
∫ 1

0
|Df(ξ + shawg(ξ))wg(ξ)−Df(η + shawg(η))wg(ξ)|ds

+

∫ 1

0
|Df(η + shawg(η))wg(ξ)−Df(η + shawg(η))wg(η)|ds

≤ K1B2

∫ 1

0
(|ξ − η|+ sha|wg(ξ)− wg(η)|)ds+B1|wg(ξ)− wg(η)|

≤ K1B2(|ξ − η|+ haK2|ξ − η|) +B1K2|ξ − η|
= (B1K2 +B2K1(1 + haK2))|ξ − η|

as desired. Finally

|I(1)
g (ξ)− I(1)

q (ξ)| ≤
∫ 1

0
|Df(ξ + shawg(ξ))wg(ξ)−Df(ξ + shawg(ξ))wq(ξ)|ds

+

∫ 1

0
|Df(ξ + shawg(ξ))wq(ξ)−Df(ξ + shawq(ξ))wq(ξ)|ds

≤ B1

∫ 1

0
|wg(ξ)− wq(ξ)|ds+K1B2

∫ 1

0
|ξ + shawg(ξ)− ξ − shawq(ξ)|ds

≤ hB1|g(ξ)− q(ξ)|+ h2aB2K1|g(ξ)− q(ξ)|
= h(B1 + haB2K1)|g(ξ)− q(ξ)|

as desired. The bounds for zg, zq, I
(2)
g , and I

(2)
q follow similarly.

We also need the following three lemmas:

Lemma 13 Suppose Assumption 11 holds. For any g ∈ Γ and p ∈ Rd there exists a unique
ξ ∈ Rd satisfying (29).

Lemma 14 Suppose Assumption 11 holds. The operator T defined by (30) satisfies T : Γ→ Γ.

Lemma 15 Suppose Assumption 11 holds. For any g1, g2 ∈ Γ, we have

‖Tg1 − Tg2‖Γ ≤ µ‖g1 − g2‖Γ

where µ < 1.

Now we prove these three lemmas.
Proof [of Lemma 13.] Consider the iteration of the form

ξk+1 = p− hzg(ξk).

For any two sequences {ξk}, {ηk} generated by this iteration we have, by Lemma 12,

|ξk+1 − ηk+1| ≤ h|zg(ηk)− zg(ξk)|
≤ h(λK2 +B1(1 + haK2))|ξk − ηk|
= c|ξk − ηk|
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which is a contraction by (41).

Proof [of Lemma 14.] Let g ∈ Γ and p ∈ Rd then by Lemma 13 there is a unique ξ ∈ Rd
such that (29) is satisfied. Then

|(Tg)(p)| ≤ λ|g(ξ)|+ a|I(1)
g (ξ)|+ λ̃|I(2)

g (ξ)|
≤ λγ + aB1(λ̃B0 + hγ) + λ̃B1(λ(λ̃B0 + hγ) +B0)

= (λ+ hB1(a+ λλ̃))γ + λ̃B0B1(a+ λ̃)

≤ γ

with the last inequality following from (38).
Let p1, p2 ∈ Rd then, by Lemma 13, there exist ξ1, ξ2 ∈ Rd such that (29) is satisfied

with p = {p1, p2}. Hence, by Lemma 12,

|(Tg)(p1)− (Tg)(p2)| ≤ λ|g(ξ1)− g(ξ2)|+ a|I(1)
g (ξ1)− I(1)

g (ξ2)|+ λ̃|I(2)
g (ξ1)− I(2)

g (ξ2)|
≤ K|ξ1 − ξ2|

where we define

K := λδ + a(B1K2 +B2K1(1 + haK2)) + λ̃((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3).

Now, using (29) and the proof of Lemma 13,

|ξ1 − ξ2| ≤ |p1 − p2|+ h|zg(ξ1)− zg(ξ2)|
≤ |p1 − p2|+ c|ξ1 − ξ2|.

Since c < 1 by (41), we obtain

|ξ1 − ξ2| ≤
1

1− c
|p1 − p2|

thus

|(Tg)(p1)− (Tg)(p2)| ≤ K

1− c
|p1 − p2| ≤ δ|p1 − p2|.

To see the last inequality, we note that

K

1− c
≤ δ ⇐⇒ K − δ(1− c) ≤ 0

and K − δ(1− c) = α2δ
2 + α1δ + α0 by (39) hence (40) gives the desired result.

Proof [of Lemma 15.] By Lemma 13, for any p ∈ Rd and g1, g2 ∈ Γ, there are ξ1, ξ2 ∈ Rd
such that

p = ξj + hzgj (ξj)

(Tgj)(p) = λgj(ξj) + aI(1)
gj (ξj)− λ̃I(2)

gj (ξj)
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for j = 1, 2. Then

|(Tg1)(p)− (Tg2)(p)| ≤ λ|g1(ξ1)− g2(ξ2)|+ a|I(1)
g1 (ξ1)− I(1)

g2 (ξ2)|+ λ̃|I(2)
g1 (ξ1)− I(2)

g2 (ξ2)|.

Note that

|g1(ξ1)− g2(ξ2)| = |g1(ξ1)− g2(ξ2)− g2(ξ1) + g2(ξ1)|
≤ |g1(ξ1)− g2(ξ1)|+ δ|ξ1 − ξ2|.

Similarly, by Lemma 12,

|I(1)
g1 (ξ1)− I(1)

g2 (ξ2)| = |I(1)
g1 (ξ1)− I(1)

g2 (ξ2)− I(1)
g2 (ξ1) + I(1)

g2 (ξ1)|

≤ |I(1)
g1 (ξ1)− I(1)

g2 (ξ1)|+ |I(1)
g2 (ξ1)− I(1)

g2 (ξ2)|
≤ h(B1 + haB2K1)|g1(ξ1)− g2(ξ1)|+ (B1K2 +B2K1(1 + haK2))|ξ1 − ξ2|

Finally,

|I(2)
g1 (ξ1)− I(2)

g2 (ξ2)| = |I(2)
g1 (ξ1)− I(2)

g2 (ξ2)− I(2)
g2 (ξ1) + I(2)

g2 (ξ1)|

≤ |I(2)
g1 (ξ1)− I(2)

g2 (ξ1)|+ |I(2)
g2 (ξ1)− I(2)

g2 (ξ2)|
≤ h(λ+ hB1a)(B1 + hB2K3)|g1(ξ1)− g2(ξ1)|+
+ ((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3)|ξ1 − ξ2|

Putting these together and using (42), we obtain

|(Tg1)(p)− (Tg2)(p)| ≤ (λ+Q2)|g1(ξ1)− g2(ξ1)|+Q1|ξ1 − ξ2|.

Now, by Lemma 12,

|ξ1 − ξ2| ≤ h|zg1(ξ1)− zg2(ξ2)− zg2(ξ1) + zg2(ξ1)|
≤ h(|zg1(ξ1)− zg2(ξ1)|+ |zg2(ξ1)− zg2(ξ2)|)
≤ h2(λ+ haB1)|g1(ξ)− g2(ξ1)|+ h(λK2 +B1(1 + haK2))|ξ1 − ξ2|
= h2(λ+ haB1)|g1(ξ)− g2(ξ1)|+Q3|ξ1 − ξ2|

using (42). Since, by (43), Q3 < 1, we obtain

|ξ1 − ξ2| ≤
h2(λ+ haB1)

1−Q3
|g1(ξ1)− g2(ξ1)|

and thus

|(Tg1)(p)− (Tg2)(p)| ≤
(
λ+Q2 +

h2(λ+ haB1)Q1

1−Q3

)
|g1(ξ1)− g2(ξ1)|

= µ|g1(ξ1)− g2(ξ1)|

by (42). Taking the supremum over ξ1 then over p gives the desired result. Since µ < 1 by
(43), we obtain that T is a contraction on Γ.
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Appendix D

We consider the equation

ü+ 2
√
µu̇+∇Φ(u) = 0

u(0) = u0, u̇(0) = v0.

Set v = u̇ then we have [
u̇
v̇

]
=

[
v

−2
√
µv −∇Φ(u)

]
.

Define the maps

f1(u, v) :=

[
v

−2
√
µv

]
, f2(u, v) :=

[
0

−∇Φ(u)

]
then [

u̇
v̇

]
= f1(u, v) + f2(u, v).

We first solve the system [
u̇
v̇

]
= f1(u, v).

Clearly

v(t) = e−2
√
µtv0

hence

u(t) = u0 +

∫ t

0
e−2
√
µsv0 ds

= u0 +
1

2
√
µ

(
1− e−2

√
µt
)
v0.

This gives us the flow map

ψ1(u, v; t) =

[
u + 1

2
√
µ

(
1− e−2

√
µt
)
v

e−2
√
µtv

]
.

We now solve the system [
u̇
v̇

]
= f2(u, v).

Clearly

u(t) = u0

hence

v(t) = v0 − t∇Φ(u0).

This gives us the flow map

ψ2(u, v; t) =

[
u

v − t∇Φ(u)

]
.
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The composition of the flow maps is then

(ψ2 ◦ ψ1)(u, v; t) =

[
u + 1

2
√
µ

(
1− e−2

√
µt
)
v

e−2
√
µtv − t∇Φ

(
u + 1

2
√
µ

(
1− e−2

√
µt
)
v
)] .

Mapping t to the time-step
√
h gives the numerical method (36).
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