Submission type: Research Article Molecular Evolution of Ecological Specialisation: Genomic Insights from the **Diversification of Murine Rodents** Emily Roycroft^{1,2,3*}, Anang Achmadi⁴, Colin M. Callahan⁵, Jacob A. Esselstyn^{6,7}, Jeffrey M. Good^{5,8}, Adnan Moussalli^{1,2}, Kevin C. Rowe^{1,2} ¹ School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia ² Sciences Department, Museums Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia ³ Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia ⁴ Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Jawa Barat, Indonesia ⁵ Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA ⁶ Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA ⁷ Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA ⁸ Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA * Corresponding author: Emily Roycroft (emily.roycroft@gmail.com) **Keywords:** adaptive radiation, comparative genomics, convergent evolution, exome capture, Murinae, positive selection

[©] The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Abstract

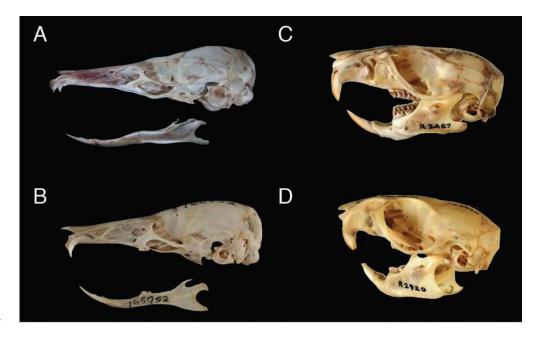
Adaptive radiations are characterised by the diversification and ecological differentiation of species, and replicated cases of this process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation, genes related to ecological specialisation may be subject to recurrent positive directional selection. However, it is not clear to what extent patterns of lineage-specific ecological specialisation (including phenotypic convergence) are correlated with shared signatures of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent species, a group characterised by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We found that genes associated with immunity, reproduction, diet, digestion and taste have been subject to pervasive positive selection during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and dietary specialisation, with a higher proportion of positively selected codon sites in derived dietary forms (i.e. carnivores and herbivores) than in ancestral forms (i.e. omnivores). Despite striking convergent evolution of skull morphology and dentition in two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection than in a non-convergent species comparison. While a small number of the genes we detected can be incidentally linked to craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent phenotype. Our results suggest a link between positive selection and derived ecological phenotypes, and highlight specific genes and general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents.

Significance statement

It is currently unclear whether bursts of rapid ecological diversification, which are the hallmarks of adaptive radiation, are associated with corresponding shifts in selective pressures across the genome. We address this question by generating and analysing 38 whole exomes from across the radiation of murine rodents, a group of over 700 ecologically diverse species. We find that genes associated with immunity,

reproduction, and dietary processes have been subject to pervasive positive selection. We also find a correlation between genome-wide positive selection and dietary specialisation, with a higher proportion of positively selected sites in derived dietary forms (i.e. carnivores and herbivores) when compared to ancestral forms (i.e. omnivores). Our results provide a link between rapid ecological diversification and the pattern and pace of molecular evolution in protein coding genes.

Introduction


Adaptive radiations provide natural experiments which allow us to characterise the diversification and convergent evolution of species in response to ecological forces (Schluter 2000; Yoder et al. 2010; Stroud and Losos 2016). Repeated phenotypic shifts and convergent evolution in response to similar environmental pressures provide indirect evidence for adaptive evolution (Losos and Ricklefs 2009; Salzburger 2009; Elmer et al. 2010; Elmer and Meyer 2011; Losos 2011). While the evolutionary patterns that underlie adaptive radiation and diversification have been studied for many decades at a phenotypic level, advances in DNA sequencing methodologies now allow a genomic view of adaptive radiation (Loh et al. 2008; Schluter and Conte 2009; Jones et al. 2012; Losos et al. 2013; Supple et al. 2013; Berner and Salzburger 2015; Lamichhaney et al. 2015; Tollis et al. 2018; Daane et al. 2019; Li et al. 2019; Marcionetti et al. 2019; Martin et al. 2019). Despite this, many genomic studies have primarily focused on small numbers of exemplar taxa. Genome-wide data from across the taxonomic and phenotypic diversity of species-rich adaptive radiations are generally lacking (but see Lamichhaney et al. 2015; Malinsky et al. 2018), as are broad-scale links between molecular evolution and periods of rapid ecological diversification. Consequently, it remains unclear if the pronounced ecological and phenotypic shifts that are hallmarks of adaptive radiations are also associated with corresponding shifts in the pace and pattern of molecular evolution across the genome.

The opening of novel ecological niche space can facilitate adaptive radiation, and this has classically been characterised with examples of island colonisation (Schluter 2000). Following colonisation and subsequent adaptive radiation, nascent species face

novel assemblages of biotic and abiotic factors. Particular functional categories of genes or pathways are expected to be under pervasive positive selection, i.e. positive selection in multiple lineages, as they enable adaptation to disparate, novel, and changing environments. In studies within and between species, recurrent positive selection is consistently recovered on genes associated with immune function (Castillo-Davis et al. 2004; Nielsen et al. 2005; Shultz and Sackton 2019) and reproduction (Swanson and Vacquier 2002; Swanson et al. 2003; Castillo-Davis et al. 2004; Nuzhdin et al. 2004; Zhang et al. 2004; Nielsen et al. 2005; Turner and Hoekstra 2006), respectively thought to be driven by host-pathogen evolutionary arms races and sexual selection. Additionally, signatures of positive selection across other functional categories of genes may reveal additional ecological factors of adaptive diversification (e.g. Kosiol et al. 2008). Clades that have undergone adaptive radiation in geographically constrained areas (e.g. on islands) often exhibit extensive phenotypic disparity among species due to ecological character displacement (Losos 1990; Grant and Grant 2006). In these cases, positive selection presumably also acts on genes underlying ecologically relevant traits such as diet, body size, or microhabitat niche (e.g. Shultz and Sackton 2019). However, it is unclear to what extent bursts of rapid speciation, phenotypic evolution, and ecological specialisation also trigger shifts in molecular evolution across the genome.

Murine rodents represent greater than 10% of all living mammalian species (> 700 species in subfamily Murinae; Burgin et al. 2018). Their diversity is the result of a recent (ca. 12 Myr) radiation, and murine species have repeatedly colonised most areas of the Eastern Hemisphere (Fabre et al. 2013; Aghová et al. 2018; Rowe et al. 2019). Recurring colonisation and multiple, independent adaptive radiations have led to extensive phenotypic diversity within Murinae, including a large range in body size (3–2700 g; Denys et al. 2017), diet (omnivorous, herbivorous and carnivorous; Rowe et al. 2016a), microhabitat niche (terrestrial, arboreal, semi-aquatic; Nations et al. 2019; Nations et al. 2020), and reproductive output (4 – 24 mammae; Denys et al. 2017). Given this process of repeated adaptive radiation in murines, genes associated with their ecological diversity and specialisation (e.g. diet, reproduction, or microhabitat) may have been subject to pervasive positive selection across multiple lineages.

Across the diversity of murine rodents, there are numerous examples of highly specialised morphologies, including cases of repeated convergent phenotypic evolution (Esselstyn et al. 2012; Rowe et al. 2014). One exceptional murine example of convergence is the independent evolution of vermivorous so called "shrew rats" on both the Indonesian island of Sulawesi (Murinae: Rattini) and the Philippine island of Luzon (Murinae: Hydromyini), with the most extreme examples among these groups being *Paucidentomys vermidax* (a species monotypic within its genus; Esselstyn et al. 2012) on Sulawesi, and Rhynchomys spp. (Rickart et al. 2019) on Luzon. Both are nested within independent, endemic clades of carnivorous rats on the two islands, respectively (Jansa et al. 2006; Rowe et al. 2016a; Rickart et al. 2019). Most murine species are omnivores, and previous work has reconstructed the ancestral dietary state for the group as omnivorous (Rowe et al. 2016). Subsequent to their independent shifts to carnivory, species in the genera *Paucidentomys* and *Rhynchomys* have converged on a phenotype that is exceptional among Murinae, with highly elongated rostra, slender mandibles, and greatly reduced or absent molars (Fig. 1; Esselstyn et al. 2012; Martinez et al. 2018; Rickart et al. 2019). These species share a common ancestor approximately 10 - 12 million years ago, near the base of all Murinae (Rowe et al. 2016a; Aghová et al. 2018; Rowe et al. 2019), and are isolated on oceanic islands, precluding any role for gene flow. As such, this striking ecomorphological convergence may be associated with convergent changes at the genomic level. Independent fixation of shared ancestral variation could also contribute to these observations, but this seems most unlikely to bridge 12 million years of independent evolution (Arendt and Reznick 2008). While convergence at particular coding sites within genes is unlikely to be directly associated with complex convergent phenotypes (Foote et al. 2015), common sets of genes may show parallel signatures of positive selection, or relaxed selection in convergent species (Bergey et al. 2018; Dixon and Kenkel 2019; Sahm et al. 2019). In Paucidentomys and Rhynchomys, ecological selective pressures which drove the evolution of their striking, shared phenotype may be linked to convergent shifts in selective pressures on genes associated with their derived diet and craniofacial or tooth development (Charles et al. 2013).

Figure 1 Exceptional convergence of craniofacial morphology and dentition in wormeating specialists; A) *Paucidentomys vermidax* (Muridae: Rattini) and B) *Rhynchomys labo* (Muridae: Hydromyini), compared to two generalist species belonging to the same respective clades; C) *Rattus fuscipes* (Muridae: Rattini), and D) *Pseudomys shortridgei* (Muridae: Hydromyini). Photos by A) D. Paul, Museums Victoria, B) modified from Rickart et al. (2019) with permission, C) and D) M. Rawlinson, C. Accurso and K. Walker, Museums Victoria

Murine rodents are also important model organisms, both in laboratory studies and in the wild, with *Mus musculus* and *Rattus norvegicus* among the most well-studied mammalian species (Mouse Genome Sequencing Consortium 2002; Gibbs et al. 2004; Guénet 2005; Phifer-Rixey and Nachman 2015). Despite their utility as model organisms, these generalist species represent only a miniscule fraction of the ecomorphological diversity in the broader murine radiation. Comparative genomic studies have not previously examined broader Murinae, and as such there is no prior understanding of the interactions between genes, traits, and ecology in this group. Repeated, nested adaptive radiations within Murinae, extensive diversity and recurrent ecomorphological specialisation make murine rodents an ideal system for testing correlates between trait evolution, convergence, and rapid molecular evolution. A broad-scale, comparative approach is warranted to begin to unlock what is largely an

untapped natural system for characterising genomic responses to ecological opportunity.

Here, we generate sequence data for > 14,000 protein-coding genes from 38 species spanning the phylogenetic breadth of murine diversity, and spanning multiple adaptive radiations within the subfamily, with focused sampling from independent radiations in the Philippines and Sulawesi. Using these data, we identify genes and gene categories with signatures of pervasive positive selection across Murinae, test if heterogeneity in positive selection across lineages is associated with ecological traits (i.e. diet, microhabitat, reproductive output, and body size), and screen for evidence of convergent molecular evolution between *Rhynchomys* and *Paucidentomys*, an extreme example of ecomorphological convergence in murines.

Results

Phylogenetic reconstruction

Using data from 1,360 phylogenetically informative exons, we inferred a consistent, well-supported species tree topology in both IQ-TREE 1.6.1 (Nguyen et al. 2015) and SVDquartets (Chifman and Kubatko 2014, Fig. 2) for 38 species (supplementary table S1). These species covered the phylogenetic breadth of subfamily Murinae, including representatives from Asian, Australian, and African radiations, and were also representative of the substantial ecomorphological variation of murine rodents, i.e. dietary, microhabitat, and body size variation. Almost all nodes (n = 71) received 100% bootstrap support across all approaches implemented. Two nodes received less support in more than one analysis, but no nodes were consistently poorly supported. Across the full dataset, average coverage ranged from 25 – 57X, with full mapping and coverage statistics per-sample summarised in supplementary table S2.

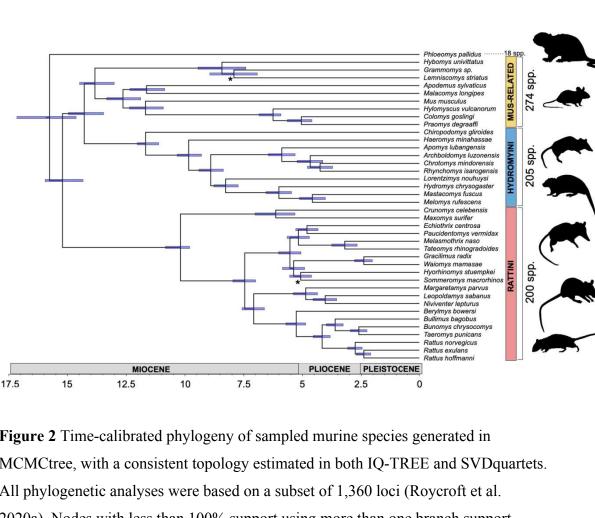
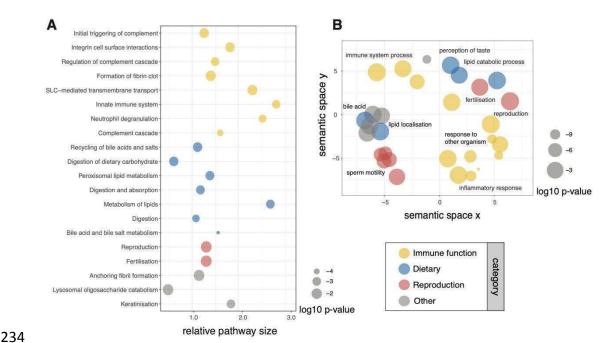
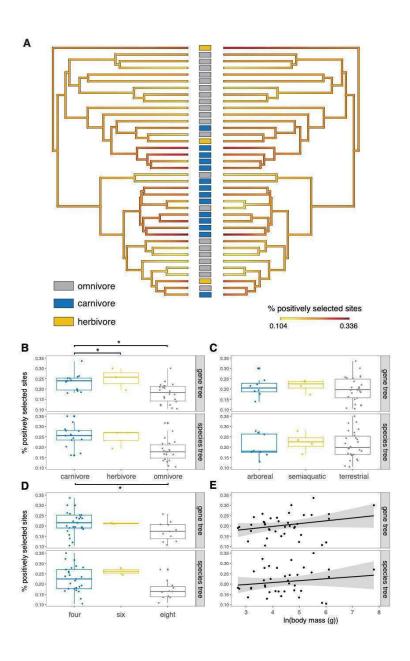



Figure 2 Time-calibrated phylogeny of sampled murine species generated in MCMCtree, with a consistent topology estimated in both IQ-TREE and SVDquartets. All phylogenetic analyses were based on a subset of 1,360 loci (Roycroft et al. 2020a). Nodes with less than 100% support using more than one branch support approach are indicated with an asterisk. Species numbers to the right of the phylogeny indicate the total number of described species in each of the three main murine clades, with *Phloeomys pallidus* the sole representative in this study of the tribe Phloeomyini.

Pervasive positive selection across Murinae

Across the murine phylogeny, site models in codeml 4.9i (Yang 2007) revealed 1,383 genes (out of 14,229 tested, supplementary table S4) with consistent evidence for sites under positive selection (p < 0.05, using a Benjamini-Hochberg false discovery rate correction; FDR), using both individually inferred gene trees (*gene tree topology* dataset) and the species tree (*species tree topology* dataset). Among these, we identified 42 over-represented Reactome pathways (Jassal et al. 2020) and 29 over-represented KEGG pathways (Kanehisa et al. 2016) using g:Profiler (Raudvere et al. 2019; supplementary tables S5 and S6). These pathways were largely involved in immune, digestive, taste, and reproductive functions (Fig. 3a). Additionally, there

were 53 'molecular function', 116 'biological process' and 38 'cellular component' GO category terms significantly over-represented (supplementary table S7). Over-represented biological processes also broadly included terms associated with immunity, reproduction, digestion, and taste (Fig. 3b). Over-represented molecular functions included peptidase and lipase activity, taste reception, and immune receptor activity. Over-represented cellular components included sperm morphological parts and immunity-related components, including secretory granule and cellular membranes.


Figure 3 Over-represented functions of genes under pervasive positive selection (p < 0.05) across Murinae using annotations from A) Reactome pathways, and B) Gene Ontology biological process categories, grouped using REVIGO semantic clustering (similarity threshold = 0.5). Circle size represents \log_{10} p-value for the significance of over-representation; colours indicate functions related to the immune system, dietary processes, and reproduction.

243 Ecological predictors of genome-wide positive selection

Overall, branch-specific values of positive selection estimated using aBSREL (Smith et al. 2015) in HyPhy 2.5.14. (Pond et al. 2005) revealed substantial heterogeneity in the proportion of sites under selection among murine lineages (Fig. 4a; supplementary table S8), which was not explained by variation in terminal branch length (gene tree topology: $R^2 = 0.025$, species tree topology: $R^2 = 0.008$). This pattern of heterogeneity was consistent in analyses of the species tree topology and gene tree topology datasets ($R^2 = 0.70$). Dietary state (carnivorous, herbivorous, or omnivorous) was a significant predictor (gene tree topology: p = 0.0026, species tree topology: p = 0.045) of mean proportion of sites under positive selection, when taking into account phylogenetic relatedness in a PGLS regression. There was also a significant difference (gene tree topology: p = 0.0094, species tree topology: p =0.0052) between dietary states in the mean proportion of sites under positive selection in a phylogenetic ANOVA, with carnivores being higher than omnivores (Fig. 4b; gene tree topology: p = 0.045, species tree topology: p = 0.012). Despite the small number of herbivores in this dataset (n = 3), herbivores had significantly higher values than omnivores in the gene tree topology dataset (p = 0.045) but not the species tree topology dataset (p = 0.082). These patterns were also consistent using the topologyfree pairwise dN/dS values estimated in codeml, where both carnivores (p = 0.003) and herbivores (p = 0.044) had significantly higher dN/dS values than omnivores. All models that jointly accounted for diet and relative population size (approximated by average heterozygosity across the whole-exome, and based only on third codon position sites) did not recover contemporary population size as a significant predictor for the mean proportion of sites under selection (whole exome estimate: species tree topology p-value = 0.21, gene tree topology p-value = 0.46, third codon estimate: species tree topology p-value = 0.25, gene tree topology p-value = 0.67).

 There was no significant effect of microhabitat (Fig. 4c), reproductive output (no. of mammae; Fig. 4d), or body mass (Fig. 4e) on the proportion of sites under positive selection in either PGLS or phylogenetic ANOVA analyses; however, the number of mammae was significantly correlated with the number of positively selected sites before, but not after phylogenetic correction. The proportion of positively selected sites across digestion-related genes was no more correlated with dietary state, than the

proportion of positively selected sites across genes with non-digestive functions. Similarly, the proportion of positively selected sites across reproduction-related genes was no more correlated with number of mammae, than across genes with function unrelated to reproduction. Over-representation and functional enrichment tests of genes that were most correlated with dietary specialisation (top 5% and 10%, and Spearman's ρ values), did not yield any significant functional categories or pathways. This suggests that the increase in positive selection across genes in dietary specialists is not restricted to genes directly related to, or associated with, digestion, but potentially a suite of interacting genes in other functional categories across the genome.

Figure 4 Heterogeneity in genome-wide positive selection and ecological predictors.

A) average percentage of sites under positive selection plotted as a heat map on the

species tree topology with dietary states indicated at the tips, calculated with aBSREL

in HyPhy using either the *species tree topology* (left) or *gene tree topology* (right,

293 with terminal branches matched to the species tree topology for visualisation)

datasets. B) Comparison of average percent sites under positive selection across

dietary states (carnivorous, herbivorous, or omnivorous), C) microhabitats (arboreal,

semiaquatic, or terrestrial), D) number of mammae, and E) log of body mass.

297 Significance values are derived from phylogenetic ANOVA (* = FDR corrected p <

298 0.05)

Shared positive and relaxed selection

Across both the *species tree topology* and *gene tree topology* datasets, 39 genes were consistently detected under shared positive selection in both Rhynchomys labo and *Paucidentomys vermidax* using the aBSREL test for positive selection (supplementary table S9). For all 39 positive genes, the standard aBSREL model was a better fit (AICc) to the data than models accounting for multinucleotide mutations (MNMs; aBSREL + Double and aBSREL + Double + Triple). Among these genes was the Androgen Receptor (Ar) gene, which encodes a transcription factor known to influence bone morphogenesis through interaction with the RUNX2 transcription factor. However, the number of total genes under shared positive selection in both of these strikingly convergent vermivorous rodents was not significantly greater than expected by chance, nor greater than the number of genes under shared positive selection in a non-convergent control comparison between Mastacomys fuscus and Echiothrix centrosa (59 convergent genes selected in the species tree topology and gene tree topology datasets). In addition, consistent signatures of relaxed selection in both Paucidentomys and Rhynchomys were detected in 14 genes across both the species tree topology and gene tree topology datasets (supplementary table S10).

Convergent amino acid profile shifts

After filtering, 47 genes showed strong evidence (posterior probably > 0.9) for site-based, convergent amino acid profile shifts using PCOC (Rey et al. 2018; supplementary table S11). We did not identify any significantly over-represented functional terms among these genes, nor at lower PCOC score thresholds. Among these genes, *Cdon* is associated with human disease phenotype pathways (HP) 'abnormality of the nasal cavity', 'cleft-lip', 'single median maxillary incisor' and 'midnasal stenosis'. In the two convergent vermivores, *Cdon* has undergone a significant shift in amino acid profile at site 414, where both *Rhynchomys* and *Paucidentomys* have independently experienced a shift from polar to non-polar residues. *Cdon* was also under significant positive selection in *Paucidentomys* but not in *Rhynchomys*.

Discussion

We found that genes associated with immune, reproductive, and dietary processes have been subject to pervasive positive selection across the murine radiation. We also recovered a higher proportion of positively selected sites in derived dietary forms (i.e. carnivores and herbivores) than in omnivorous species (the ancestral state, Rowe et al. 2016a), suggesting a link between ecological forces of diversification and rates of putatively adaptive molecular evolution. Consistent with expectations, genes involved in craniofacial morphology, tooth development, and diet were among those with shared selective shifts in convergent worm-eating species. Our results highlight functional categories of genes that may have played an integral role in the repeated radiation and extensive dietary diversification of murine rodents.

Pervasive selection on immunity and reproductive genes

We found strong evidence for pervasive positive selection on genes and pathways associated with the immune system and reproduction in Murinae. Numerous immunity- and reproduction-related GO, KEGG, and Reactome terms were significantly overrepresented among genes that experienced positive selection across the radiation. Many previous studies have identified that genes associated with immune function (Schlenke and Begun 2003; Castillo-Davis et al. 2004; Nielsen et al.

2005) and reproduction (Swanson and Vacquier 2002; Swanson et al. 2003; Castillo-Davis et al. 2004; Nuzhdin et al. 2004; Zhang et al. 2004; Good and Nachman 2005; Nielsen et al. 2005; Dean et al. 2008; Turner et al. 2008) are common targets of recurrent positive selection, and on average, tend to evolve faster than other protein coding genes. More recently, comparative genomic studies at both deep and shallow taxonomic scales indicate that these patterns are consistent across all scales of animal divergence (Nielsen et al. 2005; Kosiol et al. 2008; Roux et al. 2014; Cagan et al. 2016; Cicconardi et al. 2017; Sahm et al. 2019; Shultz and Sackton 2019). The strong signal of positive selection on immune and reproduction-related genes across Murinae confirm that these pervasive patterns remain consistent during species diversification, in consort with rapid evolution of ecologically significant phenotypes.

The adaptive immune system of animals is subject to constant pressure from rapidly evolving pathogens with shorter generation times than their hosts (Woolhouse et al. 2002). This co-evolutionary 'arms race' is a source of selective pressure and is thought to cause rapid adaptive evolution in immunity-related genes (Nielsen et al. 2005; Kosiol et al. 2008). Response to co-evolutionary change may similarly explain rapid evolution of reproductive proteins, with previous studies suggesting that sperm competition and sexual conflict are key drivers of positive directional selection (Wyckoff et al. 2000; Swanson and Vacquier 2002; Torgerson et al. 2002; Swanson et al. 2003). The set of reproductive genes under pervasive positive selection across murines in our results include a number of genes which have previously been identified as under positive selection in other mammals, including Zp3 (Swanson and Vacquier 2002; Jansa et al. 2003; Turner and Hoekstra 2006), which contains the primary species-specific sperm binding site, as well as the egg-binding proteins Adam2 and Spam1 (Torgerson et al. 2002). The coevolution of male and female reproductive proteins may be associated with the eventual development of barriers to fertilisation, reproductive isolation, and subsequent speciation (Swanson and Vacquier 2002). There is substantial divergence in sperm morphology between closely related murine species (e.g. Breed 2000; McLennan et al. 2017; Pahl et al. 2018), which may contribute to the rapid evolution of prezygotic isolation between populations. Accelerated evolution, or increased positive selection, in reproductive genes in murine rodents may be linked, in part, to the rapid speciation of murines in both allopatry,

and via ecological niche partitioning in spatially limited island systems. Future

putatively adaptive molecular evolution.

comparative studies may reveal whether diversifying selection, and positive selection, on immunity and reproductive genes is more intense during adaptive radiation, compared to background rates, as nascent species encounter novel pathogens, and rapidly diversify to fill available ecological niches.

Pervasive positive selection on dietary and taste-associated genes We also found significant overrepresentation of functional categories associated with diet (digestion and taste), which is likely related to the exceptional ecological diversity and success of murine rodents. Recent work has also identified selection on bitter-taste genes in the desert-adapted rodent, *Peromyscus eremicus* (Tigano et al. 2020). Pervasive positive selection in diet-related genes has not previously been identified across a recent radiation. A study of six mammalian genomes (Kosiol et al. 2008) identified positive selection on starch digestion and bitter taste genes in primates, but not in two murine species (M. musculus and R. norvegicus). This contrast highlights the importance of taxon sampling in detecting associations between ecological diversification and genomic adaptation, with our study examining this pattern across the broad phylogenetic and ecological diversity of murine rodents. At a broader scale, previous research suggests that dietary evolution may be associated with changes in gene copy number (Feng et al. 2014; Li and Zhang 2014; Pajic et al. 2019), gene family expansions (Whiteman et al. 2012; Gloss et al. 2019; Seppey et al. 2019), or loss of gene function (Kim et al. 2016; Hu et al. 2017; Hecker et al. 2019). For example, the evolution of carnivory across mammals at a broad scale is associated with repeated loss of sweet and bitter taste receptors (Jiang et al. 2012). However, our results provide the first strong link between rapid ecological diversification of species, including repeated evolution of dietary specialisation, and recurrent positive selection on multiple genes in functional categories related to dietary processes. Trophic niche is a crucial driver of phenotypic evolution (Price et al. 2012) and in the case of murine rodents, is arguably the main axis of differentiation between species, especially in island systems across the Indo-Australian Archipelago (e.g. Rowe et al. 2014; 2016a; 2016b). Pervasive positive selection on genes associated with diet, digestion, and taste in a clade with extensive dietary disparity provides a compelling link between ecological novelty, phenotypic evolution, and

Derived dietary states are associated with rapid molecular evolution

As well as triggering pervasive positive selection across dietary genes, the evolution of dietary specialisation in the murine species examined in our study was significantly correlated with a genome-wide increase in the average proportion of sites under positive selection, as well as higher overall dN/dS. This pattern was most compelling in carnivores (a derived state in murines; Rowe et al. 2016a), where there was a significantly higher average proportion of positively selected sites than in omnivores (the ancestral state). This pattern was similar in herbivores, but only significant when using the *gene tree topology* dataset or a pairwise (topology-free) contrast. Although there were only three herbivorous species in this study, these species represent three independent transitions to herbivory. The elevated dN/dS may result from long-term small effective population size (N_e), via increased fixation of deleterious mutations which are incorrectly inferred as signatures of positive selection (Ohta 1993; Deinum et al. 2015), or alternatively a large N_e resulting in increased adaptive efficacy (Gossmann et al. 2010). However, our comparative analyses found no significant effect of average heterozygosity (as a proxy for N_e). Similar patterns are evident in deeper-time comparisons among mammals, with increased signatures of molecular adaptation in carnivores (i.e. Felidae) when compared to omnivores (Hominidae) and herbivores (Bovidae; Kim et al. 2016). Our finding of an increase in positive selection at a genome-wide scale in carnivorous, and to a lesser extent in herbivorous murines, suggests that the evolution of dietary specialisation may have triggered increased positive selection on a suite of interacting traits (Goldman-Huertas et al. 2015), and subsequently affected many loci in the genome.

 Whether rates of molecular evolution, or positive selection, can be generally associated with the evolution of adaptive ecological traits remains an open question, and few specific examples exist. Temperate lacertid lizards were recently found to have experienced a genome-wide decrease in molecular evolution relative to tropical-and desert-adapted species (Garcia-Porta et al. 2019). Body size is a consistent predictor of neutral molecular evolutionary rate across broad taxonomic scales, with larger species expected to have slower rates due to longer generation times (Bromham 2002; Berv and Field 2018). A recent study suggested an extension of this generalisation to positive selection in birds, finding that body size was linked to

 variation in the proportion of positively selected sites (Shultz and Sackton 2019). In contrast to diet, there was no significant correlation between positive selection and any other traits tested in our comparative phylogenetic analyses, including body size. Although the murine species examined here vary by two orders of magnitude in body size $(20 - \sim 2000 \text{ g})$, differences in generation time may be insufficient to affect relative evolutionary rates.

A genomic basis for convergent evolution of worm-eating rodents?

There were not more genes under shared selective shifts (positive or relaxed) in the convergent worm-eating rodents *Paucidentomys* and *Rhynchomys* when compared to the non-convergent control comparison, *Mastacomys* and *Echiothrix*. These results are consistent with a recent study of shared positive selection in the convergent marsupial thylacine and eutherian canid (Feigin et al. 2018), suggesting that positive selection has not acted on the same genes in phenotypically convergent species more often than in general forms. However, comparing the number of genes under shared positive selection may be a relatively conservative benchmark for detecting molecular convergence. As such, it remains possible that the genes we recovered are linked to the evolution of the convergent phenotypes of *Paucidentomys* and *Rhynchomys*.

For example, we found shared positive selection on the Androgen Receptor (*Ar*) gene, which encodes a transcription factor known to influence bone morphogenesis through interaction with the *RUNX2* transcription factor (Baniwal et al. 2009). Variation between species in the number and ratio of short repeats in *RUNX2* has previously been associated with variation in mammalian cranial length (Fondon and Garner 2004; Sears et al. 2007; Pointer et al. 2012; Ritzman et al. 2017), and *RUNX2* also shows signatures of an ancient selective sweep after the divergence of anatomically modern humans from other archaic lineages (Green et al. 2010). Given shared signatures of positive selection and its pivotal role in mammalian bone metabolism (Kawano et al. 2003), the *Ar* transcription factor represents a potential candidate gene contributing to the evolution of elongated craniofacial morphology in *Paucidentomys* and *Rhynchomys*.

Additionally, shared positive selection and amino acid shifts in taste-receptor genes *Tas2r113* and *Tas2r114*, and relaxed selection in the glucose transporter gene *Slc2a2*, (part of the Reactome pathway '*Intestinal absorption*'), recapitulate the evolution of dietary specialisation across Murinae at a broad scale. We also detected convergent shifts in amino acid profile in the gene *Cdon*, associated with craniofacial and tooth development. However, genes involved in patterning and development of morphology are often highly pleiotropic (Sivakumaran et al. 2011), and changes at the coding level likely have consequences for the function of the gene in many different contexts. As such, parallel amino acid changes are thought to rarely be directly associated with phenotypic convergence (Foote et al. 2015). While the genes listed above can be incidentally linked to either craniofacial morphology or diet, the majority of genes we detected with convergent selective signatures in *Paucidentomys* and *Rhynchomys* do not have obvious links to their convergent phenotype.

Increasing evidence implicates regulatory elements controlling pleiotropic genes in the evolution of complex traits (Prud'homme et al. 2006; Kvon et al. 2016; Feigin et al. 2018; Roscito et al. 2018), especially in loss-of-function phenotypes such as limb loss in snakes (Kvon et al. 2016) and eye degeneration in subterranean mammals (Roscito et al. 2018). In such cases, changes in the timing and level of gene expression via evolution in regulatory regions may underlie the evolution of convergent phenotypes. Expansion or contraction of gene families also likely contributes to patterns of convergent evolution (e.g. Hoffmann et al. 2010; Whittington et al. 2010). Given the restricted genomic scope of whole exome data, future work examining whole genomes from across Murinae may shed light on the contribution of gene family evolution, non-coding regions, and regulatory elements. More broadly, information about the function of genes in unique morphological and ecological contexts may not be captured by model species, from which their functional annotations are derived. As such, any functional relevance for the majority of genes under convergent selection in *Paucidentomys* and *Rhynchomys* remains unclear. Inclusion of species representing extreme morphological adaptation in laboratory studies, including developmental studies, may reveal novel gene function and gene interactions previously unknown from classic model species.

Conclusion

Multiple, nested adaptive radiations within Murinae have resulted in repeated and convergent ecological specialisations, and we recover evidence for this at the genomic level. Pervasive positive selection on diet-related genes across the radiation, and an increase in positive selection in dietary specialists, suggests a link between ecological drivers of diversification and molecular evolution. We highlight both categories of genes, and specific genes, which may have played an integral role in the repeated invasion by murine rodents of novel ecological niches, and in the convergent evolution of worm-eating specialists. Our findings demonstrate the utility and opportunity for leveraging murine rodents as an emerging model system for understanding adaptive processes. Given the enormous phenotypic and species diversity of Murinae, and their existing genomic resources, murine rodents represent a largely untapped resource for studies of evolutionary processes.

Materials and Methods

Taxon sampling

We selected 38 representatives of rodents from the subfamily Murinae, including representatives from Asian, Australian and African radiations. We additionally included the model murine species *Mus musculus* (genome assembly GRCm38) and *Rattus norvegicus* (genome assembly Rnor6), with final sampling including ten species from tribe Hydromyini, 20 species from tribe Rattini, nine species from the *Mus*-related clade (tribes Apodemini (1), Arvicanthini (3), Murini (1), Malacomyini (1), and Praomyini (3)), and one species of Phloeomyini. Together, these species are representative of the substantial ecomorphological variation of murine rodents, including dietary, microhabitat, and body size variation. In this comparative framework, we assume that individual samples are representative of species-specific adaptations and acknowledge that some signatures could reflect local adaptation within species. Tissues were obtained from museum collections (see supplementary table S1 for details), where vouchers are permanently curated. These specimens were collected according to the relevant legal and ethical requirements of each country.

Sample preparation, v	whole-exome capture	and sequencing
-----------------------	---------------------	----------------

Total genomic DNA was extracted from liver or muscle tissue using a Qiagen DNeasy Blood and Tissue Kit, following the manufacturer protocol. DNA library preparation followed the Meyer and Kircher (2010) protocol. Target regions were enriched using two NimbleGen SeqCap EZ 1 mouse whole-exome capture reactions (Fairfield et al. 2011), targeting 54.3 Mb of exonic regions based on the *Mus musculus* reference genome (NCB137/mm9). These 203,225 target loci represent exons from nearly all protein-coding regions in *M. musculus* excluding known pseudogenes, and highly similar multi-copy gene families including olfactory receptor genes (a large paralogous gene family in murines). The use of *M. musculus* whole-exome enrichment probes has proven efficient across approximately 7.5 million years divergence (Sarver et al. 2017). Enriched libraries were sequenced across two lanes of Illumina NextSeq 550 paired-end, two lanes of Illumina NextSeq 550 single-end, one lane of MiSeq, and one lane of HiSeq 4000.

Obtaining a database of putatively single-copy loci among Murinae

To generate an initial reference set of putatively single-copy exons across Murinae, we first used liftOver (Hinrichs 2006) to convert *Mus musculus* (mm9) nucleotide target regions from the whole-exome bait-design (Fairfield et al. 2011) to orthologous co-ordinates in the *Rattus norvegicus* (Rn5) genome. The final reference set excluded any loci that could not be aligned between both the mm9 and Rn5 genomes, spanning ~12 million years of murine evolution. We also removed any exons from the reference set which had more than one internal hit of > 95% amino acid identity within either the mm9 or Rn5 genomes, which would suggest they represent recent duplications. This filtering resulted in a final set of 162,566 exons from 18,797 genes and was used as the reference for all subsequent analyses.

Sequence assembly and alignment

We processed raw sequence data using ECPP v1.1.0, largely following the workflow described in Roycroft et al. (2020a), but with some modifications. Briefly, raw reads were de-duplicated using FastUniq v1.1 (Xu et al. 2012) and quality trimmed using Trimmomatic (Bolger et al. 2014). Cleaned reads for assembled *de*

novo using TRINITY 2.4 (Grabherr et al. 2011; Haas et al. 2014) to generate a sample-specific contig file for each of 38 sequenced species. Using the filtered, putatively single-copy murine loci described above, we identified the best matching contigs in each assembly using tblastn. Using BLAST coordinates, we extracted local matches from assembled contigs to create a sample-specific reference for mapping. We then mapped the cleaned reads to the sample-specific reference using BBmap (version 35.82, Bushnell B. 2015, sourceforge.net/projects/bbmap/) with minid=0.8. Mapping and coverage statistics per-sample are summarised in supplementary table S2. Consensus sequences and variants were called using the mpileup2cns command in VarScan v2.3.7 (Koboldt et al. 2012). Consensus sequences were then collated across all samples for each exon and were aligned using MAFFT v7.310 (Katoh and Standley 2013).

Data filtering and post-hoc paralog detection

We only included exons in the final dataset which were successfully captured and mapped for at least 27 of 38 samples. To screen for lineage-specific paralogs that were not detected in initial filtering, we calculated average heterozygosity for each sample in each alignment. Alignments with two or more samples with > 3% average heterozygosity (Teasdale et al. 2016; Roycroft et al. 2020a) were excluded, as these may represent loci with pervasive paralogy. We assumed that cases where only one sample had > 3% average heterozygosity represented lineage-specific duplications and removed only that sample from the alignment. A total of 89,621 exons were retained, that were concatenated into 14,229 gene alignments for analysis.

Phylogenetic analyses

For phylogenetic analysis, we reduced the full dataset to alignments to a previously qualified, murine-specific set of 1,360 phylogenetically informative single-copy exons (Roycroft et al. 2020a) and estimated the maximum likelihood (ML) phylogeny in IQ-TREE 1.6.1 (Nguyen et al. 2015) from a concatenated supermatrix partitioned by codon position (i.e. three global partitions). We used ModelFinder (Kalyaanamoorthy et al. 2017) to determine the best substitution model for each partition, and executed 1000 ultrafast bootstrap replicates, using UFBoot2 (Hoang et al. 2017). We also

 $c \cap \cap$

009	estimated support in 1Q-1 KEE using two-tiered resampting of genes and sites (—ospec
610	GENESITE), an approach which we previously showed provided more accurate
611	estimates of uncertainty in phylogenomic datasets (Roycroft et al. 2020a). To verify
612	this inferred ML topology, we estimated the species tree topology using the coalescent
613	approach SVDquartets (Chifman and Kubatko 2014) implemented in PAUP* v4.0a
614	(Swofford 2002). We used MCMCtree (Yang 2007) to estimate time-calibrated
615	branch lengths, with the ML topology inferred in IQ-TREE, a GTR+ Γ substitution
616	model, an uncorrelated Γ relaxed clock, and using the approximate likelihood
617	calculation (Thorne et al. 1998; Reis and Yang 2011). We used three secondary
618	calibrations from Aghová et al. (2018) that best matched our sampling of Murinae: the
619	MRCA of Rattini (95% HPD 9.91 – 12.67 Ma), the MRCA of Sahul Hydromyini
620	$(95\% \ HPD \ 6.48 - 8.34 \ Ma)$ and the MRCA Praomyini $(95\% \ HPD \ 5.98 - 7.84 \ Ma)$.
621	Samples were drawn every 1,000 MCMC steps from a total of 10 ⁷ steps, with a burn-
622	in of 10 ⁵ steps. Convergence was assessed by comparing parameter estimates from
623	two independent runs, with all effective sample sizes greater than 200.
624	
625	Mendes and Hahn (2016) showed that estimates of positive selection derived from a
626	fixed species tree can be subject to false positives when the individual genealogical
627	history conflicts with the species tree. To help combat this in downstream molecular
628	evolution analyses, we estimated individual gene trees from each alignment in IQ-
629	TREE 1.6.1 (Nguyen et al. 2015) using ModelFinder (Kalyaanamoorthy et al. 2017)
630	to select the single best fitting substitution model for each gene.
631	
632	Detecting genes under positive directional selection
633	For all 14,229 orthologous genes, we ran two site-based models in codeml 4.9i, the

M1 and M2 models (Yang 2007). The M1 model allows for two ω (dN/dS) rates across sites (ω < 1 and ω = 1), whereas M2 allows three rates (ω < 1, ω = 1 and ω > 1). Evidence of pervasive positive selection at particular sites can be inferred when the M2 model is a significantly better fit for that gene than the M1 model. Using a likelihood ratio test (LRT), we compared log-likelihood estimates for models M1 and M2 to identify genes with sites under positive selection across the murine phylogeny. These tests were performed using both the species tree and gene tree as the reference

topology. We calculated LRT p-values using chi-squared distribution (d.f. = 2) and

corrected for multiple tests at a p < 0.05 threshold, using a Benjamini-Hochberg false discovery rate (FDR) correction. Genes were considered to have sites under positive selection only if both the LRT was significant after correction, and at least one site was significantly selected using a Bayes Empirical Bayes (BEB) test (posterior probability > 0.95; Yang et al. 2005) against both the species tree and gene tree.

Functional overrepresentation of genes under pervasive selection

Using g:GOSt in g:Profiler (Raudvere et al. 2019), we tested for overrepresentation of GO terms, KEGG pathways (Kanehisa et al. 2016) and Reactome pathways (Jassal et al. 2020) among genes identified as being under significant positive selection in site model tests. We used a custom background including all tested genes and applied an FDR correction for multiple comparisons (p < 0.05). To visualise over-represented functional categories, we used REVIGO (Supek et al. 2011) to generate semantic clustering of GO biological process (GO:BP), molecular function (GO:MF) and cellular component (GO:CC) terms (allowing 0.5 term similarity).

Branch-specific selection pressures

While site-based models can identify genic sites under significant positive selection across multiple lineages in a phylogeny, they do not provide information about heterogeneity in selection throughout time and across lineages. To investigate this, we used the flexible branch-site test aBSREL (Smith et al. 2015) in HyPhy 2.5.14. (Pond et al. 2005) to estimate ω values and proportion of sites under positive selection for each terminal branch in the tree. To reduce potential false positive rates due to tree misspecification (Mendes and Hahn 2016), we applied two approaches to estimating branch-specific selection in aBSREL. First, we estimated values for all terminal branches and genes using the fixed species tree topology: the *species tree topology* data set. Second, we inferred selection across branches and genes using each individually estimated gene tree: the *gene tree topology* data set.

Positive selection and ecomorphological variation

For each terminal branch, we calculated the mean proportion of sites under positive selection across all genes in aBSREL, to obtain a genome-wide estimate of the

 Downloaded from https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evab103/6275684 by Louisiana State University user on 24 May 2021

proportion of sites under positive selection for each species. To first visualise heterogeneity in positive selection across the tree, we used the R function *contMap* in phytools (Revell 2012) to plot values from both the species tree topology and gene tree topology datasets as a heat map on the species tree. To additionally estimate the strength of positive selection for each species using a topology-free approach, we calculated average pairwise dN/dS across all species-pair comparisons using codeml (Yang and Nielsen 2000). To test whether this proportion of sites under positive selection, or strength of selection (dN/dS) were correlated with ecological factors, we obtained dietary, microhabitat, reproductive, and body mass data for each species from the literature (Smith et al. 2003; Breed and Ford 2007; Rowe et al. 2016a; Rowe et al. 2016b; Nations et al. 2019; Roycroft et al. 2020b). We coded species according to their diet (carnivore, omnivore, or herbivore), their microhabitat (terrestrial, arboreal, or semi-aquatic), and their reproductive output, (based on the number of mammae for each species, supplementary table S3). Using the time-calibrated species tree inferred in MCMCtree, we performed phylogenetic generalised least squares (PGLS) regression and phylogenetic ANOVA with a Bonferroni correction in phytools (Revell 2012), to test the effects of diet, microhabitat, reproductive output, and body size on genome-wide positive selection. Further, because effective population size (N_e) can affect estimates of positive selection (Ohta 1993; Gossmann et al. 2010; Deinum et al. 2015), we jointly modelled the additive and interacting effects of average exome-wide heterozygosity, and third codon position heterozygosity (as proxies for N_e), with ecological traits in the comparative analysis.

To further determine whether there was an interaction between gene function, positive selection, and ecological traits, we used GO annotations and *Gene ORGANizer* (Gokhman et al. 2017) classifications to identify genes with function in the digestive (1,657 genes) and reproductive systems (2,077 genes). We then estimated the mean percent of positively selected genes across digestive and non-digestive genes, and reproductive and non-reproductive genes. Using the same approach described above, we ran PGLS and phylogenetic ANOVA with dietary state or number of mammae as the predictor, respectively. Using a binary measure of dietary state (1 = specialist; i.e. herbivore or carnivore, 0 = generalist; i.e. omnivore), we also performed a Spearman's rank correlation test to determine which genes

showed the highest correlation between positively selected sites and lineages with

dietary specialisation. Using g:Profiler, we tested for over-representation of functional
 categories in the top and bottom 10% and 5% of genes, and performed functional
 enrichment analysis using the calculated Spearman's ρ value for each gene.

Branch-specific convergence in positive and relaxed selection

We tested for branch-specific convergent positive selection by performing a branch-site test in aBSREL across all genes, with two phenotypically convergent vermivorous rodents, *Paucidentomys vermidax* and *Rhynchomys labo*, set as foreground branches. All analyses were repeated using both the species tree topology and gene tree topology datasets. A recent study showed that multinucleotide mutations (MNMs) may cause false inferences in branch-site tests of positive selection (Venkat et al. 2018). For genes where we detected positive selection in both Paucidentomys and Rhynchomys, we accounted for this by applying models that allow double and triple MNMs using the --multiple-hits Double and --multiple-hits Double+Triple options in HyPhy 2.5.14. As MNM models include additional parameters compared to the standard aBSREL model, we compared AICc scores from standard aBSREL, aBSREL + Double and aBSREL + Double + Triple, and retained results from the model with the lowest AICc score. To further determine whether there were more shared genes under positive selection in *Paucidentomys* and Rhynchomys than in other non-convergent murine forms, we repeated all analysis using a non-convergent 'control' comparison, i.e., by comparing genes under positive selection in the graminivorous Australian rodent Mastacomys fuscus (tribe Hydromyini), and the carnivorous Sulawesi shrew rat *Echiothrix centrosa* (tribe Rattini) as the foreground test branches. These control species are phylogenetically equidistant to the *Paucidentomys* (tribe Rattini) and *Rhynchomys* (tribe Hydromyini)

To test for genes with evidence for shared relaxation of selection in *Paucidentomys* and *Rhynchomys*, we ran RELAX in HyPhy 2.5.14 using both the *species tree* topology and gene tree topology datasets. For comparison, relaxation analyses were also repeated using the same non-convergent species pair as above, *Mastacomys* fuscus and *Echiothrix centrosa*. All p-values were corrected for multiple tests at a p < 0.05 threshold, using a Benjamini-Hochberg false discovery rate (FDR) correction.

comparison and occur along comparable terminal branch lengths in the tree.

741	
742	Detecting convergence site-based functional shifts
743	To detect potential convergence of positively selected sites in Paucidentomys
744	vermidax and Rhynchomys labo, we tested all genes for evidence of convergent amino
745	acid shifts using PCOC (Rey et al. 2018). This approach applies a CAT model (Quang
746	et al. 2008) of protein evolution in a species-tree context to detect convergent shifts in
747	amino acid profile along branches with convergent phenotypes. To filter for only sites
748	with strong evidence for convergent profile shifts, we set a posterior probability
749	threshold of > 0.9 for all PCOC, OC and PC output.
750	
751	Data Availability
752	Processed sequence alignments underlying the analyses in this manuscript will be
753	made available in the Dryad Digital Repository. Raw sequence reads are available via
754	the NCBI Sequence Read Archive under BioProject ID PRJNA705792, BioSample
755	accession numbers SAMN18102763 - SAMN18102800, SRA accession numbers
756	SRR13848278 – SRR13848315. Code used to process sequence data is available at
757	https://github.com/Victaphanta/ECPP/
758	
759	Acknowledgements
760	This work was supported by the U.S. Government National Science Foundation (grant
761	numbers DEB-1457654, DEB-1754393, DEB-1754096, DEB-1441634, and OISE-
762	0965856), National Institutes of Health (grant numbers R01-HD073439, R01-
763	HD094787), National Geographic Society (9025-11), Australia and Pacific Science
764	Foundation (12-6). E.R was supported by an Australian Government Research
765	Training Program Scholarship, the Dame Margaret Blackwood Soroptimist
766	Scholarship and the Alfred Nicholas Fellowship. We are grateful to Gregg Thomas for
767	providing feedback on an earlier version of this manuscript, Jonathan Nations for
768	advice on murine trait data and comparative analyses, and comments from two
769	anonymous reviewers that improved the final version. We are indebted to the
770	Indonesian Institute of Sciences (Lembaga Ilmu Pengetahuan Indonesia, LIPI) for
771	access to material from Sulawesi, and to Museums Victoria, the Australian Biological
772	Tissue Collection, Louisiana State University Museum of Natural Science, University
773	of Kansas Biodiversity Research Center, and the Field Museum of Natural History for

access to specimens. We also thank Melbourne Bioinformatics and Research Platform
 Services at the University of Melbourne for access to high-performance computing
 resources.

Figure Legends

- Figure 1 Exceptional convergence of craniofacial morphology and dentition in wormeating specialists; A) *Paucidentomys vermidax* (Muridae: Rattini) and B) *Rhynchomys labo* (Muridae: Hydromyini), compared to two generalist species belonging to the same respective clades; C) *Rattus fuscipes* (Muridae: Rattini), and D) *Pseudomys shortridgei* (Muridae: Hydromyini). Photos by A) D. Paul, Museums Victoria, B) modified from Rickart et al. (2019) with permission, C) and D) M. Rawlinson, C.
- Accurso and K. Walker, Museums Victoria
- MCMCtree, with a consistent topology estimated in both IQ-TREE and SVDquartets.

 All phylogenetic analyses were based on a subset of 1,360 loci (Roycroft et al.

 2020a). Nodes with less than 100% support using more than one branch support

 approach are indicated with an asterisk. Species numbers to the right of the phylogeny

 indicate the total number of described species in each of the three main murine clades,

 with *Phloeomys pallidus* the sole representative in this study of the tribe Phloeomyini.

Figure 2 Time-calibrated phylogeny of sampled murine species generated in

Figure 3 Over-represented functions of genes under pervasive positive selection (p < 0.05) across Murinae using annotations from A) Reactome pathways, and B) Gene Ontology biological process categories, grouped using REVIGO semantic clustering (similarity threshold = 0.5). Circle size represents log₁₀ p-value for the significance of over-representation; colours indicate functions related to the immune system, dietary processes, and reproduction.

Figure 4 Heterogeneity in genome-wide positive selection and ecological predictors.

A) average percentage of sites under positive selection plotted as a heat map on the species tree topology with dietary states indicated at the tips, calculated with aBSREL in HyPhy using either the *species tree topology* (left) or *gene tree topology* (right,

805	with terminal branches matched to the species tree topology for visualisation)
806	datasets. B) Comparison of average percent sites under positive selection across
807	dietary states (carnivorous, herbivorous, or omnivorous), C) microhabitats (arboreal,
808	semiaquatic, or terrestrial), D) number of mammae, and E) log of body mass.
809	Significance values are derived from phylogenetic ANOVA (* = FDR corrected p <
810	0.05)
811	
812	References
813	Aghová T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. 2018. Fossils
814	know it best: Using a new set of fossil calibrations to improve the temporal
815	phylogenetic framework of murid rodents (Rodentia: Muridae). Mol. Phylogenet.
816	Evol. [Internet] 128:98–111. Available from:
817	https://doi.org/10.1016/j.ympev.2018.07.017
818	Arendt J, Reznick D. 2008. Convergence and parallelism reconsidered: what have we
819	learned about the genetics of adaptation? <i>Trends Ecol. Evol.</i> 23:26–32.
820	Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B. 2009. Repression
821	of Runx2 by Androgen Receptor (AR) in Osteoblasts and Prostate Cancer Cells:
822	AR Binds Runx2 and Abrogates Its Recruitment to DNA. Mol. Endocrinol.
823	23:1203–1214.
824	Bergey CM, Lopez M, Harrison GF, Patin E, Cohen JA, Quintana-Murci L, Barreiro
825	LB, Perry GH. 2018. Polygenic adaptation and convergent evolution on growth
826	and cardiac genetic pathways in African and Asian rainforest hunter-gatherers.
827	Proc. Natl. Acad. Sci. U. S. A. 115:E11256–E11263.
828	Berner D, Salzburger W. 2015. The genomics of organismal diversification
829	illuminated by adaptive radiations. Trends Genet. [Internet] 31:491-499.
830	Available from: http://dx.doi.org/10.1016/j.tig.2015.07.002
831	Berv JS, Field DJ. 2018. Genomic Signature of an Avian Lilliput Effect across the K-
832	Pg Extinction. Syst. Biol. 67:1–13.
833	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina

834	sequence data. Bioinformatics 30:2114–2120.
835	Breed B, Ford F. 2007. Native Mice and Rats. Collingwood: CSIRO Publishing
836	Breed WG. 2000. Taxonomic implications of variation in sperm head morphology of
837	the Australian delicate mouse, Pseudomys delicatulus. <i>Aust. Mammal.</i> :193–199.
838	Bromham L. 2002. Molecular clocks in reptiles: Life history influences rate of
839	molecular evolution. Mol. Biol. Evol. 19:302-309.
840	Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals
841	are there? <i>J. Mammal.</i> 99:1–14.
842	Cagan A, Theunert C, Laayouni H, Santpere G, Pybus M, Casals F, Prüfer K, Navarro
843	A, Marques-Bonet T, Bertranpetit J, et al. 2016. Natural selection in the great
844	apes. Mol. Biol. Evol. 33:3268–3283.
845	Castillo-Davis CI, Kondrashov FA, Hartl DL, Kulathinal RJ. 2004. The functional
846	genomic distribution of protein divergence in two animal phyla: Coevolution,
847	genomic conflict, and constraint. Genome Res. 14:802-811.
848	Charles C, Solé F, Rodrigues HG, Viriot L. 2013. Under pressure? Dental adaptations
849	to termitophagy and vermivory among mammals. Evolution (N. Y). 67:1792-
850	1804.
851	Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent
852	model. Bioinformatics 30:3317–3324.
853	Cicconardi F, Marcatili P, Arthofer W, Schlick-Steiner BC, Steiner FM. 2017.
854	Positive diversifying selection is a pervasive adaptive force throughout the
855	Drosophila radiation. Mol. Phylogenet. Evol. [Internet] 112:230-243. Available
856	from: http://dx.doi.org/10.1016/j.ympev.2017.04.023
857	Daane JM, Dornburg A, Smits P, MacGuigan DJ, Brent Hawkins M, Near TJ,
858	William Detrich H, Harris MP. 2019. Historical contingency shapes adaptive
859	radiation in Antarctic fishes. Nat. Ecol. Evol. [Internet] 3:1102–1109. Available
860	from: http://dx.doi.org/10.1038/s41559-019-0914-2

861	Dean MD, Good JM, Nachman MW. 2008. Adaptive evolution of proteins secreted
862	during sperm maturation: An analysis of the mouse epididymal transcriptome.
863	Mol. Biol. Evol. 25:383–392.
864	Deinum EE, Halligan DL, Ness RW, Zhang YH, Cong L, Zhang JX, Keightley PD.
865	2015. Recent evolution in rattus norvegicus is shaped by declining effective
866	population size. Mol. Biol. Evol. 32:2547–2558.
867	Denys C, Taylor PJ, Aplin KP. 2017. Family Muridae. (Wilson DE, Lacher TE,
868	Mittermeier R., editors.). Barcelona: Lynx Edicions
869	Dixon G, Kenkel C. 2019. Molecular convergence and positive selection associated
870	with the evolution of symbiont transmission mode in stony corals. Proc. R. Soc.
871	B Biol. Sci. 286:20190111.
872	Elmer KR, Kusche H, Lehtonen TK, Meyer A. 2010. Local variation and parallel
873	evolution: Morphological and genetic diversity across a species complex of
874	neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. B Biol. Sci.
875	365:1763–1782.
876	Elmer KR, Meyer A. 2011. Adaptation in the age of ecological genomics: Insights
877	from parallelism and convergence. <i>Trends Ecol. Evol.</i> 26:298–306.
878	Esselstyn JA, Achmadi AS, Rowe KC. 2012. Evolutionary novelty in a rat with no
879	molars. <i>Biol. Lett.</i> :1–7.
880	Fabre P-H, Pagès M, Musser GG, Fitriana YS, Fjeldså J, Jennings A, Jønsson KA,
881	Kennedy J, Michaux J, Semiadi G, et al. 2013. A new genus of rodent from
882	Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for
883	biogeography and Indo-Pacific Rattini systematics. Zool. J. Linn. Soc. 169:408-
884	447.
885	Fairfield H, Gilbert GJ, Barter M, Corrigan RR, Curtain M, Ding Y, D'Ascenzo M,
886	Gerhardt DJ, He C, Huang W, et al. 2011. Mutation discovery in mice by whole
887	exome sequencing. Genome Biol. [Internet] 12:R86. Available from:
888	http://genomebiology.com/2011/12/9/R86

889	Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, Gower G,
890	Llamas B, Soubrier J, Heider TN, et al. 2018. Genome of the Tasmanian tiger
891	provides insights into the evolution and demography of an extinct marsupial
892	carnivore. Nat. Ecol. Evol. [Internet] 2:182-192. Available from:
893	http://dx.doi.org/10.1038/s41559-017-0417-y
894	Feng P, Zheng J, Rossiter SJ, Wang D, Zhao H. 2014. Massive losses of taste receptor
895	genes in toothed and baleen whales. Genome Biol. Evol. 6:1254-1265.
896	Fondon JW, Garner HR. 2004. Molecular origins of rapid and continuous
897	morphological evolution. Proc. Natl. Acad. Sci. U. S. A. 101:18058–18063.
898	Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE,
899	Hunter ME, Joshi V, et al. 2015. Convergent evolution of the genomes of marine
900	mammals. Nat. Genet. [Internet] 47:272–275. Available from:
901	http://www.ncbi.nlm.nih.gov/pubmed/25621460
902	Garcia-Porta J, Irisarri I, Kirchner M, Rodríguez A, Kirchhof S, Brown JL, MacLeod
903	A, Turner AP, Ahmadzadeh F, Albaladejo G, et al. 2019. Environmental
904	temperatures shape thermal physiology as well as diversification and genome-
905	wide substitution rates in lizards. Nat. Commun. 10:1–12.
906	Gibbs RA, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D,
907	Worley KC, Burch PE. 2004. Genome sequence of the Brown Norway rat yields
908	insights into mammalian evolution. <i>Nature</i> 428:493–521.
909	Gloss AD, Dittrich ACN, Lapoint RT, Huertas BG, Verster KI, Pelaez JL, Nelson
910	ADL, Aguilar J, Armstrong E, Charboneau JLM, et al. 2019. Evolution of
911	herbivory remodels a Drosophila genome. bioRxiv [Internet]:767160. Available
912	from:
913	https://www.biorxiv.org/content/10.1101/767160v1.abstract?%3Fcollection=
914	Gokhman D, Kelman G, Amartely A, Gershon G, Tsur S, Carmel L. 2017. Gene
915	ORGANizer: Linking genes to the organs they affect. Nucleic Acids Res.
916	45:W138–W145.
917	Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG,

918	Whiteman NK. 2015. Evolution of herbivory in Drosophilidae linked to loss of
919	behaviors, antennal responses, odorant receptors, and ancestral diet. Proc. Natl.
920	Acad. Sci. U. S. A. 112:3026–3031.
921	Good JM, Nachman MW. 2005. Rates of protein evolution are positively correlated
922	with developmental timing of expression during mouse spermatogenesis. Mol.
923	Biol. Evol. 22:1044–1052.
924	Gossmann TI, Song BH, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov M V.,
925	Filatov DA, Eyre-Walker A. 2010. Genome wide analyses reveal little evidence
926	for adaptive evolution in many plant species. Mol. Biol. Evol. 27:1822–1832.
927	Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X,
928	Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full-length transcriptome
929	assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.
930	[Internet] 29:644–652. Available from:
931	http://www.nature.com/doifinder/10.1038/nbt.1883
932	Grant PR, Grant B. 2006. Evolution of Character Displacement in Darwin's Finches.
933	Science (80). 313:224–226.
934	Guénet JL. 2005. The mouse genome. Genome Res. 15:1729–1740.
935	Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Philip D, Bowden J, Couger MB,
936	Eccles D, Li B, Macmanes MD, et al. 2014. De novo transcript sequence
937	construction from RNA-Seq: reference generation and analysis with Trinity. Nat.
938	Protoc. 8.
939	Heaney LR, Balete DS, Rickart EA. 2016. The mammals of Luzon: biogeography and
940	natural history of a Philippine fauna. Baltimore, Maryland: Johns Hopkins
941	University Press
942	Hecker N, Sharma V, Hiller M. 2019. Convergent gene losses illuminate metabolic
943	and physiological changes in herbivores and carnivores. Proc. Natl. Acad. Sci. U.
944	S. A. 116:3036–3041.
945	Hinrichs AS. 2006. The UCSC Genome Browser Database: update 2006. Nucleic

946	Acids Res. 34:D590–D598.
947	Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. 2017. UFBoot2:
948	Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. [Internet]
949	35:518–522. Available from:
950	http://academic.oup.com/mbe/article/doi/10.1093/molbev/msx281/4565479/UFB
951	oot2-Improving-the-Ultrafast-Bootstrap
952	Hoffmann FG, Opazo JC, Storz JF. 2010. Gene cooption and convergent evolution of
953	oxygen transport hemoglobins in jawed and jawless vertebrates. Proc. Natl.
954	Acad. Sci. U. S. A. 107:14274–14279.
955	Hu Y, Wu Q, Ma S, Ma T, Shan L, Wang X, Nie Y, Ning Z, Yan L, Xiu Y, et al.
956	2017. Comparative genomics reveals convergent evolution between the bamboo-
957	eating giant and red pandas. Proc. Natl. Acad. Sci. [Internet] 114:201613870.
958	Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1613870114
959	Jansa SA, Lundrigan BL, Tucker PK. 2003. Tests for positive selection on immune
960	and reproductive genes in closely related species of the murine genus Mus. J .
961	Mol. Evol. 56:294–307.
962	Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR,
963	Beauchamp GK. 2012. Major taste loss in carnivorous mammals. Proc. Natl.
964	Acad. Sci. U. S. A. 109:4956–4961.
965	Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R,
966	Pirun M, Zody MC, White S, et al. 2012. The genomic basis of adaptive
967	evolution in threespine sticklebacks. <i>Nature</i> 484:55–61.
968	Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017.
969	ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat.
970	Methods 14:587–589.
971	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
972	7: Improvements in performance and usability. Mol. Biol. Evol. 30:772–780.

Kim Soonok, Cho YS, Kim HM, Chung O, Kim H, Jho S, Seomun H, Kim J, Bang

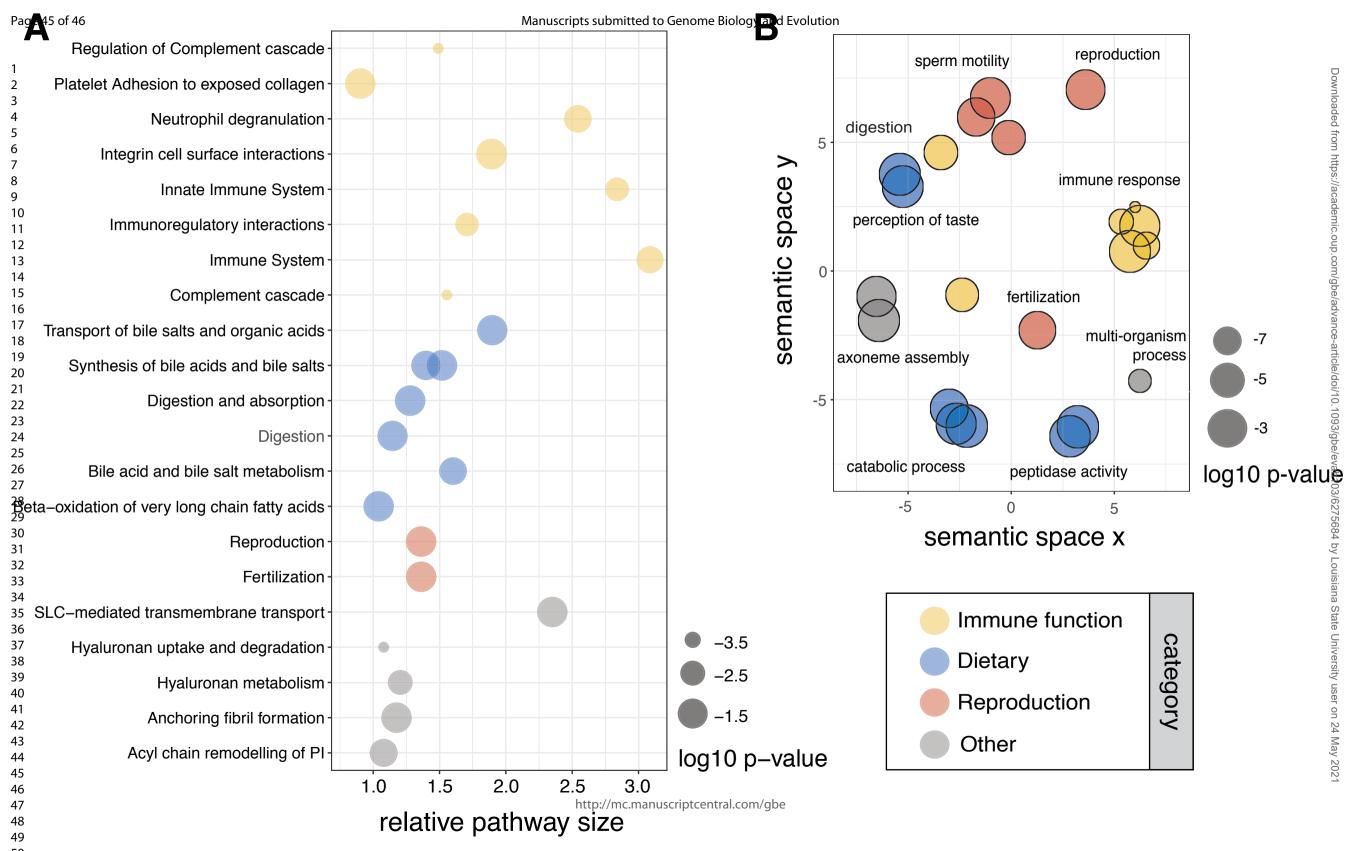
974	WY, Kim C, et al. 2016. Comparison of carnivore, omnivore, and herbivore
975	mammalian genomes with a new leopard assembly. Genome Biol. [Internet]
976	17:1–12. Available from: http://dx.doi.org/10.1186/s13059-016-1071-4
977	Koboldt DC, Zhang Q, Larson DE, Shen D, Mclellan MD, Lin L, Miller CA, Mardis
978	ER, Ding L, Wilson RK. 2012. VarScan 2: Somatic mutation and copy number
979	alteration discovery in cancer by exome sequencing. <i>Genome Res.</i> 22:568–576.
980	Kosiol C, Vinař T, Da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A.
981	2008. Patterns of positive selection in six mammalian genomes. <i>PLoS Genet.</i> 4.
982	Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières
983	V, Pickle CS, Plajzer-Frick I, Lee EA, et al. 2016. Progressive Loss of Function
984	in a Limb Enhancer During Snake Evolution. Cell 167:633-642.
985	Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A,
986	Promerová M, Rubin C-J, Wang C, Zamani N, et al. 2015. Evolution of
987	Darwin's finches and their beaks revealed by genome sequencing. Nature
988	[Internet] 518:371–375. Available from:
989	http://www.nature.com/doifinder/10.1038/nature14181
990	Li D, Zhang J. 2014. Diet shapes the evolution of the vertebrate bitter taste receptor
991	gene repertoire. Mol. Biol. Evol. 31:303–309.
992	Li W, Cong Q, Shen J, Zhang J, Hallwachs W, Janzen DH, Grishin N V. 2019.
993	Genomes of skipper butterflies reveal extensive convergence of wing patterns.
994	Proc. Natl. Acad. Sci. U. S. A. 116:6232–6237.
995	Loh YHE, Katz LS, Mims MC, Kocher TD, Yi S V., Streelman JT. 2008.
996	Comparative analysis reveals signatures of differentiation amid genomic
997	polymorphism in Lake Malawi cichlids. Genome Biol. 9:1-12.
998	Losos JB. 1990. A Phylogenetic Analysis of Character Displacement in Caribbean
999	Anolis Lizards. Evolution (N. Y). 44:558.
1000	Losos JB. 2011. Convergence, adaptation, and constraint. Evolution (N. Y). 65:1827-
1001	1840.

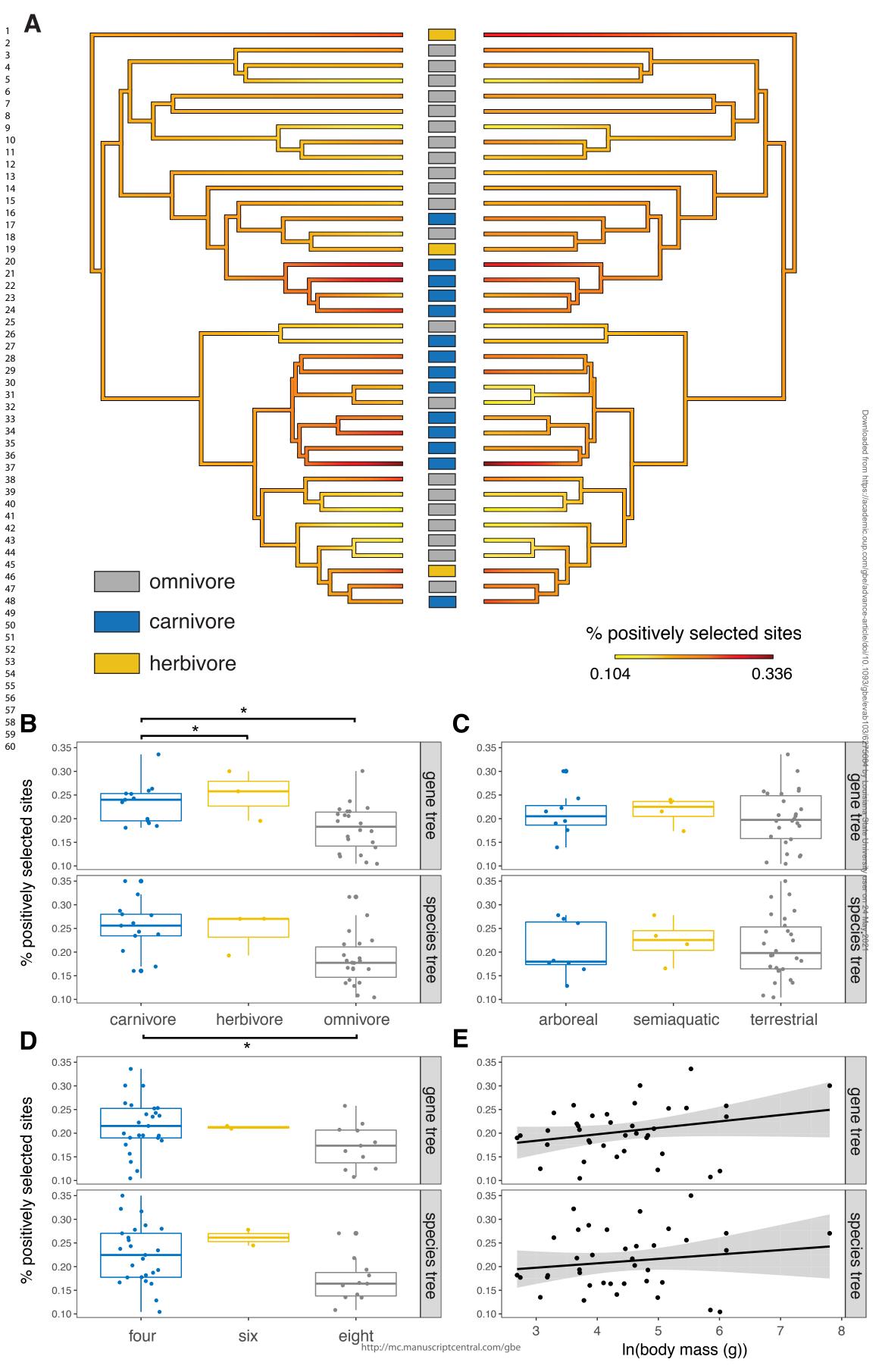
100210031004	Losos JB, Arnold SJ, Bejerano G, Brodie ED, Hibbett D, Hoekstra HE, Mindell DP, Monteiro A, Moritz C, Orr HA, et al. 2013. Evolutionary Biology for the 21st Century. <i>PLoS Biol.</i> 11.
1005 1006	Losos JB, Ricklefs RE. 2009. Adaptation and diversification on islands. <i>Nature</i> 457:830–836.
1007 1008	Malinsky M, Svardal H, Tyers AM, Miska EA, Genner MJ, Turner GF, Durbin R. 2018. Whole-genome sequences of Malawi cichlids reveal multiple radiations
1009	interconnected by gene flow. Nat. Ecol. Evol. 2:1940–1955. Marsianatti A. Bassian V. Bayy N. Salis B. Laudet V. Salamin N. 2010. Insights into
101010111012	Marcionetti A, Rossier V, Roux N, Salis P, Laudet V, Salamin N. 2019. Insights into the genomics of clownfish adaptive radiation: Genetic basis of the mutualism with sea anemones. <i>Genome Biol. Evol.</i> 11:869–882.
1013 1014	Martin SH, Davey JW, Salazar C, Jiggins CD. 2019. Recombination rate variation shapes barriers to introgression across butterfly genomes. <i>PLoS Biol.</i> 17:1–28.
1015	Martinez Q, Lebrun R, Achmadi AS, Esselstyn JA, Evans AR, Heaney LR, Miguez
1016	RP, Rowe KC, Fabre P-H. 2018. Convergent evolution of an extreme dietary
1017 1018	specialisation, the olfactory system of worm-eating rodents. <i>Sci. Rep.</i> [Internet] 8:17806. Available from: https://doi.org/10.1038/s41598-018-35827-0
1019	McLennan HJ, Lüpold S, Smissen P, Rowe KC, Breed WG. 2017. Greater sperm
10201021	complexity in the Australasian old endemic rodents (Tribe: Hydromyini) is associated with increased levels of inter-male sperm competition. <i>Reprod. Fertil.</i>
1021	Dev. 29:921–930.
1023	Mendes FK, Hahn MW. 2016. Gene tree discordance causes apparent substitution rate
1024	variation. <i>Syst. Biol.</i> 65:711–721.
1025	Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly
1026	multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010.
1027	Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative
1028	analysis of the mouse genome. <i>Nature</i> [Internet] 420:520–562. Available from:
1029	http://www.nature.com/nature/journal/v420/n6915/full/nature01262.html

1030	Nations JA, Heaney LR, Demos TC, Achmadi AS, Rowe KC, Esselstyn JA. 2019. A
1031	simple skeletal measurement effectively predicts climbing behaviour in a diverse
1032	clade of small mammals. <i>Biol. J. Linn. Soc.</i> :1–14.
1033	Nations JA, Mount GG, Morere SM, Achmadi AS, Rowe KC, Esselstyn JA. 2020.
1034	Locomotory mode transitions alter phenotypic evolution and lineage
1035	diversification in an ecologically rich clade of mammals. Evolution (N. Y).
1036	Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and
1037	effective stochastic algorithm for estimating maximum-likelihood phylogenies.
1038	Mol. Biol. Evol. 32:268–274.
1039	Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-
1040	Alon A, Tanenbaum DM, Civello D, White TJ, et al. 2005. A scan for positively
1041	selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3:0976-
1042	0985.
1043	Nuzhdin S V., Wayne ML, Harmon KL, McIntyre LM. 2004. Common pattern of
1044	evolution of gene expression level and protein sequence in Drosophila. Mol.
1045	Biol. Evol. 21:1308–1317.
1046	Ohta T. 1993. Amino acid substitution at the Adh locus of Drosophila is facilitated by
1047	small population size. Proc. Natl. Acad. Sci. U. S. A. 90:4548-4551.
1048	Pahl T, McLennan HJ, Wang Y, Achmadi AS, Rowe KC, Aplin K, Breed WG. 2018.
1049	Sperm morphology of the Rattini-are the interspecific differences due to
1050	variation in intensity of intermale sperm competition? Reprod. Fertil. Dev.
1051	30:1434–1442.
1052	Pajic P, Pavlidis P, Dean K, Neznanova L, Romano RA, Garneau D, Daugherity E,
1053	Globig A, Ruhl S, Gokcumen O. 2019. Independent amylase gene copy number
1054	bursts correlate with dietary preferences in mammals. Elife 8:1-22.
1055	Phifer-Rixey M, Nachman MW. 2015. Insights into mammalian biology from the
1056	wild house mouse Mus musculus. <i>Elife</i> 2015:1–13.
1057	Pointer MA, Kamilar JM, Warmuth V, Chester SGB, Delsuc F, Mundy NI, Asher RJ,

1058 1059	Bradley BJ. 2012. RUNX2 tandem repeats and the evolution of facial length in placental mammals. <i>BMC Evol. Biol.</i> 12.
1060	Pond SLK, Frost SDW, Muse S V. 2005. HyPhy: Hypothesis testing using
1061	phylogenies. Bioinformatics 21:676–679.
1062	Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR,
1063	Carroll SB. 2006. Repeated morphological evolution through cis-regulatory
1064	changes in a pleiotropic gene. <i>Nature</i> 440:1050–1053.
1065	Quang LS, Gascuel O, Lartillot N. 2008. Empirical profile mixture models for
1066	phylogenetic reconstruction. <i>Bioinformatics</i> 24:2317–2323.
1067	Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019.
1068	g:Profiler: a web server for functional enrichment analysis and conversions of
1069	gene lists. Nucleic Acids Res. [Internet]:1-8. Available from:
1070	https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz369/5486750
1071	Reis M Dos, Yang Z. 2011. Approximate likelihood calculation on a phylogeny for
1072	Bayesian Estimation of Divergence Times. Mol. Biol. Evol. 28:2161–2172.
1073	Revell LJ. 2012. phytools: An R package for phylogenetic comparative biology (and
1074	other things). Methods Ecol. Evol. 3:217–223.
1075	Rey C, Guéguen L, Sémon M, Boussau B. 2018. Accurate detection of convergent
1076	amino-acid evolution with PCOC. Mol. Biol. Evol. 35:2296-2306.
1077	Rickart EA, Balete DS, Timm RM, Alviola PA, Esselstyn JA, Heaney LR. 2019. Two
1078	new species of shrew-rats (Rhynchomys: Muridae: Rodentia) from Luzon Island,
1079	Philippines. J. Mammal. 100:1112–1129.
1080	Ritzman TB, Banovich N, Buss KP, Guida J, Rubel MA, Pinney J, Khang B, Ravosa
1081	MJ, Stone AC. 2017. Facing the facts: The Runx2 gene is associated with
1082	variation in facial morphology in primates. J. Hum. Evol. [Internet] 111:139-
1083	151. Available from: http://dx.doi.org/10.1016/j.jhevol.2017.06.014
1084	Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M,
1085	Rodrigues MT, Hiller M. 2018. Phenotype loss is associated with widespread

1086	divergence of the gene regulatory landscape in evolution. Nat. Commun.
1087	[Internet] 9. Available from: http://dx.doi.org/10.1038/s41467-018-07122-z
1088	Roux J, Privman E, Moretti S, Daub JT, Robinson-Rechavi M, Keller L. 2014.
1089	Patterns of positive selection in seven ant genomes. Mol. Biol. Evol. 31:1661-
1090	1685.
1091	Rowe KC, Achmadi AS, Esselstyn JA. 2014. Convergent Evolution of aquatic
1092	foraging in a new genus and species from Sulawesi Island. 3815:541–564.
1093	Rowe KC, Achmadi AS, Esselstyn Jacob A. 2016. Repeated evolution of carnivory
1094	among Indo-Australian rodents. Evolution (N. Y). 70:653–665.
1095	Rowe KC, Achmadi AS, Esselstyn Jacob A. 2016. A new genus and species of
1096	omnivorous rodent (Muridae: Murinae) from Sulawesi, nested within a clade of
1097	endemic carnivores. J. Mammal.:0–34.
1098	Rowe KC, Achmadi AS, Fabre PH, Schenk JJ, Steppan SJ, Esselstyn JA. 2019.
1099	Oceanic islands of Wallacea as a source for dispersal and diversification of
1100	murine rodents. J. Biogeogr. 46:2752–2768.
1101	Roycroft Emily J, Moussalli A, Rowe KC. 2020. Phylogenomics Uncovers
1102	Confidence and Conflict in the Rapid Radiation of Australo-Papuan Rodents.
1103	Syst. Biol. 69:431–444.
1104	Roycroft Emily J., Nations JA, Rowe KC. 2020. Environment predicts repeated body
1105	size shifts in a recent radiation of Australian mammals. Evolution (N. Y). 74:671–
1106	680.
1107	Sahm A, Almaida-Pagán P, Bens M, Mutalipassi M, Lucas-Sánchez A, De Costa Ruiz
1108	J, Görlach M, Cellerino A. 2019. Analysis of the coding sequences of clownfish
1109	reveals molecular convergence in the evolution of lifespan. BMC Evol. Biol.
1110	19:1–12.
1111	Salzburger W. 2009. The interaction of sexually and naturally selected traits in the
1112	adaptive radiations of cichlid fishes. Mol. Ecol. 18:169–185.
1113	Sarver B Keeble S Cosart T Tucker P Dean M Good J 2017 Phylogenomic


1114 1115	Insights into Mouse Evolution Using a Pseudoreference Approach. <i>Genome Biol Evol.</i> 9:726–739.
1116	Schlenke TA, Begun DJ. 2003. Natural selection drives Drosophila immune system
1117	evolution. Genetics 164:1471–1480.
1118	Schluter D. 2000. The Ecology of Adaptive Radiation. New York: Oxford University
1119	Press
1120	Schluter D, Conte GL. 2009. Genetics and ecological speciation. <i>Proc. Natl. Acad.</i>
1121	Sci. [Internet] 106:9955–9962. Available from:
1122	http://www.pnas.org/cgi/doi/10.1073/pnas.0901264106
1123	Sears KE, Goswami A, Flynn JJ, Niswander LA. 2007. The correlated evolution of
1124	Runx2 tandem repeats, transcriptional activity, and facial length in Carnivora.
1125	Evol. Dev. 9:555–565.
1126	Seppey M, Ioannidis P, Emerson BC, Pitteloud C, Robinson-rechavi M, Roux J,
1127	Escalona HE, Mckenna DD, Misof B. 2019. Genomic signatures accompanying
1128	the dietary shift to phytophagy in polyphagan beetles. :1–14.
1129	Shultz AJ, Sackton TB. 2019. Immune genes are hotspots of shared positive selection
1130	across birds and mammals. <i>Elife</i> 8:1–33.
1131	Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T,
1132	Rudan I, McKeigue P, Wilson JF, Campbell H. 2011. Abundant pleiotropy in
1133	human complex diseases and traits. Am. J. Hum. Genet. [Internet] 89:607-618.
1134	Available from: http://dx.doi.org/10.1016/j.ajhg.2011.10.004
1135	Smith FA, Lyons SK, Ernest SKM, Jones KE, Kaufman DM, Dayan T, Marquet PA,
1136	Brown JH, Haskell JP. 2003. Body Mass of Late Quaternary Mammals. Ecology
1137	84:3403–3403.
1138	Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL.
1139	2015. Less is more: An adaptive branch-site random effects model for efficient
1140	detection of episodic diversifying selection. <i>Mol. Biol. Evol.</i> 32:1342–1353.
1141	Stroud JT Losos JB 2016 Ecological Opportunity and Adaptive Radiation Annu.


1142	Rev. Ecol. Evol. Syst. 47:507–532.
1143	Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes
1144	long lists of gene ontology terms. PLoS One 6.
1145	Supple MA, Hines HM, Dasmahapatra KK, Lewis JJ, Nielsen DM, Lavoie C, Ray
1146	DA, Salazar C, McMillan WO, Counterman BA. 2013. Genomic architecture of
1147	adaptive color pattern divergence and convergence in Heliconius butterflies.
1148	Genome Res. 23:1248–1257.
1149	Swanson WJ, Nielsen R, Yang Q. 2003. Pervasive adaptive evolution in mammalian
1150	fertilization proteins. Mol. Biol. Evol. 20:18–20.
1151	Swanson WJ, Vacquier VD. 2002. The rapid evolution of reproductive proteins. <i>Nat.</i>
1152	Rev. Genet. 3:137–144.
1153	Swofford D. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other
1154	methods), ver.4.0a163. 4.0a163. Sunderland, Massachusetts: Sinauer Associates
1155	Teasdale LC, Kohler F, Murray KD, O'Hara T, Moussalli A. 2016. Identification and
1156	qualification of 500 nuclear, single-copy, orthologous genes for the Eupulmonata
1157	(Gastropoda) using transcriptome sequencing and exon capture. Mol. Ecol.
1158	Resour. 16:1107–1123.
1159	Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of
1160	molecular evolution. Mol. Biol. Evol. 15:1647–1657.
1161	Tigano A, Colella JP, MacManes MD. 2020. Comparative and population genomics
1162	approaches reveal the basis of adaptation to deserts in a small rodent. Mol. Ecol.
1163	29:1300–1314.
1164	Tollis M, Hutchins ED, Stapley J, Rupp SM, Eckalbar WL, Maayan I, Lasku E,
1165	Infante CR, Dennis SR, Robertson JA, et al. 2018. Comparative Genomics
1166	Reveals Accelerated Evolution in Conserved Pathways during the Diversification
1167	of Anole Lizards. Genome Biol. Evol. [Internet] 10:489–506. Available from:
1168	https://academic.oup.com/gbe/article/10/2/489/4817506
1169	Torgerson DG, Kulathinal RJ, Singh RS. 2002. Mammalian sperm proteins are

1170	rapidly evolving: Evidence of positive selection in functionally diverse genes.
1171	Mol. Biol. Evol. 19:1973–1980.
1172	Turner LM, Chuong EB, Hoekstra HE. 2008. Comparative analysis of testis protein
1173	evolution in rodents. <i>Genetics</i> 179:2075–2089.
1174	Turner LM, Hoekstra HE. 2006. Adaptive evolution of fertilization proteins within a
1175	genus: Variation in ZP2 and ZP3 in deer mice (Peromyscus). Mol. Biol. Evol.
1176	23:1656–1669.
1177	Venkat A, Hahn MW, Thornton JW. 2018. Multinucleotide mutations cause false
1178	inferences of lineage-specific positive selection. Nat. Ecol. Evol. [Internet]
1179	2:1280–1288. Available from: http://dx.doi.org/10.1038/s41559-018-0584-5
1180	Whiteman NK, Gloss AD, Sackton TB, Groen SC, Humphrey PT, Lapoint RT,
1181	Sønderby IE, Halkier BA, Kocks C, Ausubel FM, et al. 2012. Genes involved in
1182	the evolution of herbivory by a leaf-mining, drosophilid fly. <i>Genome Biol. Evol.</i>
1183	4:900–916.
1103	4.700 710.
1184	Whittington CM, Papenfuss AT, Locke DP, Mardis ER, Wilson RK, Abubucker S,
1185	Mitreva M, Wong ESW, Hsu AL, Kuchel PW, et al. 2010. Novel venom gene
1186	discovery in the platypus. Genome Biol. 11.
1187	Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. 2002.
1188	Biological and biomedical implications of the co-evolution of pathogens and
1189	their hosts. Nat. Genet. 32:569–577.
1190	Wyckoff GJ, Wang W, Wu CI. 2000. Rapid evolution of male reproductive genes inn
1191	the descent of man. <i>Nature</i> 403:304–309.
1192	Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S. 2012. FastUniq: A
1193	fast de novo duplicates removal tool for paired short reads. <i>PLoS One</i> 7:1–6.
1194	Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. <i>Mol. Biol.</i>
1195	Evol. 24:1586–1591.
1196	Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution
1196	rates under realistic evolutionary models. <i>Mol. Biol. Evol.</i> 17:32–43.
117/	rates under realistic evolutionary injoders. With Bill. Evol. 17.32-43.

1198	Yang Z, wong wsw, Nielsen R. 2005. Bayes empirical Bayes interence of amino
1199	acid sites under positive selection. Mol. Biol. Evol. 22:1107–1118.
1200	Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ,
1201	Jochimsen D, Oswald BP, Robertson J, et al. 2010. Ecological opportunity and
1202	the origin of adaptive radiations. J. Evol. Biol. 23:1581–1596.
1203	Zhang Z, Hambuch TM, Parsch J. 2004. Molecular evolution of sex-biased genes in
1204	Drosophila. Mol. Biol. Evol. 21:2130–2139.
1205	

