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Abstract

Adaptive radiations are characterised by the diversification and ecological
differentiation of species, and replicated cases of this process provide natural
experiments for understanding the repeatability and pace of molecular evolution.
During adaptive radiation, genes related to ecological specialisation may be subject to
recurrent positive directional selection. However, it is not clear to what extent patterns
of lineage-specific ecological specialisation (including phenotypic convergence) are
correlated with shared signatures of molecular evolution. To test this, we sequenced
whole exomes from a phylogenetically dispersed sample of 38 murine rodent species,
a group characterised by multiple, nested adaptive radiations comprising extensive
ecological and phenotypic diversity. We found that genes associated with immunity,
reproduction, diet, digestion and taste have been subject to pervasive positive
selection during the diversification of murine rodents. We also found a significant
correlation between genome-wide positive selection and dietary specialisation, with a
higher proportion of positively selected codon sites in derived dietary forms (i.e.
carnivores and herbivores) than in ancestral forms (i.e. omnivores). Despite striking
convergent evolution of skull morphology and dentition in two distantly related
worm-eating specialists, we did not detect more genes with shared signatures of
positive or relaxed selection than in a non-convergent species comparison. While a
small number of the genes we detected can be incidentally linked to craniofacial
morphology or diet, protein-coding regions are unlikely to be the primary genetic
basis of this complex convergent phenotype. Our results suggest a link between
positive selection and derived ecological phenotypes, and highlight specific genes and
general functional categories that may have played an integral role in the extensive

and rapid diversification of murine rodents.

Significance statement

It is currently unclear whether bursts of rapid ecological diversification, which are
the hallmarks of adaptive radiation, are associated with corresponding shifts in selective
pressures across the genome. We address this question by generating and analysing 38
whole exomes from across the radiation of murine rodents, a group of over 700

ecologically diverse species. We find that genes associated with immunity,
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reproduction, and dietary processes have been subject to pervasive positive selection.
We also find a correlation between genome-wide positive selection and dietary
specialisation, with a higher proportion of positively selected sites in derived dietary
forms (i.e. carnivores and herbivores) when compared to ancestral forms (i.e.
omnivores). Our results provide a link between rapid ecological diversification and the

pattern and pace of molecular evolution in protein coding genes.

Introduction

Adaptive radiations provide natural experiments which allow us to characterise the
diversification and convergent evolution of species in response to ecological forces
(Schluter 2000; Yoder et al. 2010; Stroud and Losos 2016). Repeated phenotypic
shifts and convergent evolution in response to similar environmental pressures
provide indirect evidence for adaptive evolution (Losos and Ricklefs 2009; Salzburger
2009; Elmer et al. 2010; Elmer and Meyer 2011; Losos 2011). While the evolutionary
patterns that underlie adaptive radiation and diversification have been studied for
many decades at a phenotypic level, advances in DNA sequencing methodologies
now allow a genomic view of adaptive radiation (Loh et al. 2008; Schluter and Conte
2009; Jones et al. 2012; Losos et al. 2013; Supple et al. 2013; Berner and Salzburger
2015; Lamichhaney et al. 2015; Tollis et al. 2018; Daane et al. 2019; Li et al. 2019;
Marcionetti et al. 2019; Martin et al. 2019). Despite this, many genomic studies have
primarily focused on small numbers of exemplar taxa. Genome-wide data from across
the taxonomic and phenotypic diversity of species-rich adaptive radiations are
generally lacking (but see Lamichhaney et al. 2015; Malinsky et al. 2018), as are
broad-scale links between molecular evolution and periods of rapid ecological
diversification. Consequently, it remains unclear if the pronounced ecological and
phenotypic shifts that are hallmarks of adaptive radiations are also associated with
corresponding shifts in the pace and pattern of molecular evolution across the

genome.
The opening of novel ecological niche space can facilitate adaptive radiation, and

this has classically been characterised with examples of island colonisation (Schluter

2000). Following colonisation and subsequent adaptive radiation, nascent species face
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novel assemblages of biotic and abiotic factors. Particular functional categories of
genes or pathways are expected to be under pervasive positive selection, i.e. positive
selection in multiple lineages, as they enable adaptation to disparate, novel, and
changing environments. In studies within and between species, recurrent positive
selection is consistently recovered on genes associated with immune function
(Castillo-Davis et al. 2004; Nielsen et al. 2005; Shultz and Sackton 2019) and
reproduction (Swanson and Vacquier 2002; Swanson et al. 2003; Castillo-Davis et al.
2004; Nuzhdin et al. 2004; Zhang et al. 2004; Nielsen et al. 2005; Turner and
Hoekstra 2006), respectively thought to be driven by host-pathogen evolutionary arms
races and sexual selection. Additionally, signatures of positive selection across other
functional categories of genes may reveal additional ecological factors of adaptive
diversification (e.g. Kosiol et al. 2008). Clades that have undergone adaptive radiation
in geographically constrained areas (e.g. on islands) often exhibit extensive
phenotypic disparity among species due to ecological character displacement (Losos
1990; Grant and Grant 2006). In these cases, positive selection presumably also acts
on genes underlying ecologically relevant traits such as diet, body size, or
microhabitat niche (e.g. Shultz and Sackton 2019). However, it is unclear to what
extent bursts of rapid speciation, phenotypic evolution, and ecological specialisation

also trigger shifts in molecular evolution across the genome.

Murine rodents represent greater than 10% of all living mammalian species (> 700
species in subfamily Murinae; Burgin et al. 2018). Their diversity is the result of a
recent (ca. 12 Myr) radiation, and murine species have repeatedly colonised most
areas of the Eastern Hemisphere (Fabre et al. 2013; Aghova et al. 2018; Rowe et al.
2019). Recurring colonisation and multiple, independent adaptive radiations have led
to extensive phenotypic diversity within Murinae, including a large range in body size
(3-2700 g; Denys et al. 2017), diet (omnivorous, herbivorous and carnivorous; Rowe
et al. 2016a), microhabitat niche (terrestrial, arboreal, semi-aquatic; Nations et al.
2019; Nations et al. 2020), and reproductive output (4 — 24 mammae; Denys et al.
2017). Given this process of repeated adaptive radiation in murines, genes associated
with their ecological diversity and specialisation (e.g. diet, reproduction, or
microhabitat) may have been subject to pervasive positive selection across multiple

lineages.
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Across the diversity of murine rodents, there are numerous examples of highly
specialised morphologies, including cases of repeated convergent phenotypic
evolution (Esselstyn et al. 2012; Rowe et al. 2014). One exceptional murine example
of convergence is the independent evolution of vermivorous so called “shrew rats” on
both the Indonesian island of Sulawesi (Murinae: Rattini) and the Philippine island of
Luzon (Murinae: Hydromyini), with the most extreme examples among these groups
being Paucidentomys vermidax (a species monotypic within its genus; Esselstyn et al.
2012) on Sulawesi, and Rhynchomys spp. (Rickart et al. 2019) on Luzon. Both are
nested within independent, endemic clades of carnivorous rats on the two islands,
respectively (Jansa et al. 2006; Rowe et al. 2016a; Rickart et al. 2019). Most murine
species are omnivores, and previous work has reconstructed the ancestral dietary state
for the group as omnivorous (Rowe et al. 2016). Subsequent to their independent
shifts to carnivory, species in the genera Paucidentomys and Rhynchomys have
converged on a phenotype that is exceptional among Murinae, with highly elongated
rostra, slender mandibles, and greatly reduced or absent molars (Fig. 1; Esselstyn et
al. 2012; Martinez et al. 2018; Rickart et al. 2019). These species share a common
ancestor approximately 10 — 12 million years ago, near the base of all Murinae (Rowe
et al. 2016a; Aghova et al. 2018; Rowe et al. 2019), and are isolated on oceanic
islands, precluding any role for gene flow. As such, this striking ecomorphological
convergence may be associated with convergent changes at the genomic level.
Independent fixation of shared ancestral variation could also contribute to these
observations, but this seems most unlikely to bridge 12 million years of independent
evolution (Arendt and Reznick 2008). While convergence at particular coding sites
within genes is unlikely to be directly associated with complex convergent phenotypes
(Foote et al. 2015), common sets of genes may show parallel signatures of positive
selection, or relaxed selection in convergent species (Bergey et al. 2018; Dixon and
Kenkel 2019; Sahm et al. 2019). In Paucidentomys and Rhynchomys, ecological
selective pressures which drove the evolution of their striking, shared phenotype may
be linked to convergent shifts in selective pressures on genes associated with their

derived diet and craniofacial or tooth development (Charles et al. 2013).
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Figure 1 Exceptional convergence of craniofacial morphology and dentition in worm-
eating specialists; A) Paucidentomys vermidax (Muridae: Rattini) and B) Rhynchomys
labo (Muridae: Hydromyini), compared to two generalist species belonging to the
same respective clades; C) Rattus fuscipes (Muridae: Rattini), and D) Pseudomys
shortridgei (Muridae: Hydromyini). Photos by A) D. Paul, Museums Victoria, B)
modified from Rickart et al. (2019) with permission, C) and D) M. Rawlinson, C.

Accurso and K. Walker, Museums Victoria

Murine rodents are also important model organisms, both in laboratory studies and
in the wild, with Mus musculus and Rattus norvegicus among the most well-studied
mammalian species (Mouse Genome Sequencing Consortium 2002; Gibbs et al. 2004;
Guénet 2005; Phifer-Rixey and Nachman 2015). Despite their utility as model
organisms, these generalist species represent only a miniscule fraction of the
ecomorphological diversity in the broader murine radiation. Comparative genomic
studies have not previously examined broader Murinae, and as such there is no prior
understanding of the interactions between genes, traits, and ecology in this group.
Repeated, nested adaptive radiations within Murinae, extensive diversity and recurrent
ecomorphological specialisation make murine rodents an ideal system for testing
correlates between trait evolution, convergence, and rapid molecular evolution. A

broad-scale, comparative approach is warranted to begin to unlock what is largely an
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untapped natural system for characterising genomic responses to ecological

opportunity.

Here, we generate sequence data for > 14,000 protein-coding genes from 38 species
spanning the phylogenetic breadth of murine diversity, and spanning multiple
adaptive radiations within the subfamily, with focused sampling from independent
radiations in the Philippines and Sulawesi. Using these data, we identify genes and
gene categories with signatures of pervasive positive selection across Murinae, test if
heterogeneity in positive selection across lineages is associated with ecological traits
(i.e. diet, microhabitat, reproductive output, and body size), and screen for evidence of
convergent molecular evolution between Rhynchomys and Paucidentomys, an extreme

example of ecomorphological convergence in murines.

Results

Phylogenetic reconstruction

Using data from 1,360 phylogenetically informative exons, we inferred a
consistent, well-supported species tree topology in both IQ-TREE 1.6.1 (Nguyen et al.
2015) and SVDquartets (Chifman and Kubatko 2014, Fig. 2) for 38 species
(supplementary table S1). These species covered the phylogenetic breadth of
subfamily Murinae, including representatives from Asian, Australian, and African
radiations, and were also representative of the substantial ecomorphological variation
of murine rodents, i.e. dietary, microhabitat, and body size variation. Almost all nodes
(n="71) received 100% bootstrap support across all approaches implemented. Two
nodes received less support in more than one analysis, but no nodes were consistently
poorly supported. Across the full dataset, average coverage ranged from 25 — 57X,
with full mapping and coverage statistics per-sample summarised in supplementary

table S2.
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Figure 2 Time-calibrated phylogeny of sampled murine species generated in
MCMCtree, with a consistent topology estimated in both IQ-TREE and SVDquartets.
All phylogenetic analyses were based on a subset of 1,360 loci (Roycroft et al.
2020a). Nodes with less than 100% support using more than one branch support
approach are indicated with an asterisk. Species numbers to the right of the phylogeny
indicate the total number of described species in each of the three main murine clades,

with Phloeomys pallidus the sole representative in this study of the tribe Phloeomyini.

Pervasive positive selection across Murinae

Across the murine phylogeny, site models in codeml 4.91 (Yang 2007) revealed
1,383 genes (out of 14,229 tested, supplementary table S4) with consistent evidence
for sites under positive selection (p < 0.05, using a Benjamini-Hochberg false
discovery rate correction; FDR), using both individually inferred gene trees (gene tree
topology dataset) and the species tree (species tree topology dataset). Among these,
we identified 42 over-represented Reactome pathways (Jassal et al. 2020) and 29
over-represented KEGG pathways (Kanehisa et al. 2016) using g:Profiler (Raudvere
et al. 2019; supplementary tables S5 and S6). These pathways were largely involved

in immune, digestive, taste, and reproductive functions (Fig. 3a). Additionally, there
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were 53 ‘molecular function’, 116 ‘biological process’ and 38 ‘cellular component’
GO category terms significantly over-represented (supplementary table S7). Over-
represented biological processes also broadly included terms associated with
immunity, reproduction, digestion, and taste (Fig. 3b). Over-represented molecular
functions included peptidase and lipase activity, taste reception, and immune receptor
activity. Over-represented cellular components included sperm morphological parts
and immunity-related components, including secretory granule and cellular

membranes.
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Figure 3 Over-represented functions of genes under pervasive positive selection (p <
0.05) across Murinae using annotations from A) Reactome pathways, and B) Gene
Ontology biological process categories, grouped using REVIGO semantic clustering
(similarity threshold = 0.5). Circle size represents log,o p-value for the significance of
over-representation; colours indicate functions related to the immune system, dietary

processes, and reproduction.
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Ecological predictors of genome-wide positive selection

Overall, branch-specific values of positive selection estimated using aBSREL
(Smith et al. 2015) in HyPhy 2.5.14. (Pond et al. 2005) revealed substantial
heterogeneity in the proportion of sites under selection among murine lineages (Fig.
4a; supplementary table S8), which was not explained by variation in terminal branch
length (gene tree topology: R? = 0.025, species tree topology: R* = 0.008). This
pattern of heterogeneity was consistent in analyses of the species tree topology and
gene tree topology datasets (R? = 0.70). Dietary state (carnivorous, herbivorous, or
omnivorous) was a significant predictor (gene tree topology: p = 0.0026, species tree
topology: p = 0.045) of mean proportion of sites under positive selection, when taking
into account phylogenetic relatedness in a PGLS regression. There was also a
significant difference (gene tree topology: p = 0.0094, species tree topology: p =
0.0052) between dietary states in the mean proportion of sites under positive selection
in a phylogenetic ANOVA, with carnivores being higher than omnivores (Fig. 4b;
gene tree topology: p = 0.045, species tree topology: p = 0.012). Despite the small
number of herbivores in this dataset (n = 3), herbivores had significantly higher values
than omnivores in the gene tree topology dataset (p = 0.045) but not the species tree
topology dataset (p = 0.082). These patterns were also consistent using the topology-
free pairwise dN/dS values estimated in codeml, where both carnivores (p = 0.003)
and herbivores (p = 0.044) had significantly higher dN/dS values than omnivores. All
models that jointly accounted for diet and relative population size (approximated by
average heterozygosity across the whole-exome, and based only on third codon
position sites) did not recover contemporary population size as a significant predictor
for the mean proportion of sites under selection (whole exome estimate: species tree
topology p-value = 0.21, gene tree topology p-value = 0.46, third codon estimate:
species tree topology p-value = 0.25, gene tree topology p-value = 0.67).

There was no significant effect of microhabitat (Fig. 4c), reproductive output (no.
of mammae; Fig. 4d), or body mass (Fig. 4e) on the proportion of sites under positive
selection in either PGLS or phylogenetic ANOVA analyses; however, the number of
mammae was significantly correlated with the number of positively selected sites
before, but not after phylogenetic correction. The proportion of positively selected

sites across digestion-related genes was no more correlated with dietary state, than the
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proportion of positively selected sites across genes with non-digestive functions.
Similarly, the proportion of positively selected sites across reproduction-related genes
was no more correlated with number of mammae, than across genes with function
unrelated to reproduction. Over-representation and functional enrichment tests of
genes that were most correlated with dietary specialisation (top 5% and 10%, and
Spearman’s p values), did not yield any significant functional categories or pathways.
This suggests that the increase in positive selection across genes in dietary specialists
is not restricted to genes directly related to, or associated with, digestion, but
potentially a suite of interacting genes in other functional categories across the

genome.
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Figure 4 Heterogeneity in genome-wide positive selection and ecological predictors.
A) average percentage of sites under positive selection plotted as a heat map on the
species tree topology with dietary states indicated at the tips, calculated with aBSREL
in HyPhy using either the species tree topology (left) or gene tree topology (right,
with terminal branches matched to the species tree topology for visualisation)
datasets. B) Comparison of average percent sites under positive selection across
dietary states (carnivorous, herbivorous, or omnivorous), C) microhabitats (arboreal,
semiaquatic, or terrestrial), D) number of mammae, and E) log of body mass.
Significance values are derived from phylogenetic ANOVA (* = FDR corrected p <
0.05)

Shared positive and relaxed selection

Across both the species tree topology and gene tree topology datasets, 39 genes
were consistently detected under shared positive selection in both Rhynchomys labo
and Paucidentomys vermidax using the aBSREL test for positive selection
(supplementary table S9). For all 39 positive genes, the standard aBBSREL model was
a better fit (AICc) to the data than models accounting for multinucleotide mutations
(MNMs; aBSREL + Double and aBSREL + Double + Triple). Among these genes
was the Androgen Receptor (4r) gene, which encodes a transcription factor known to
influence bone morphogenesis through interaction with the RUNX2 transcription
factor. However, the number of total genes under shared positive selection in both of
these strikingly convergent vermivorous rodents was not significantly greater than
expected by chance, nor greater than the number of genes under shared positive
selection in a non-convergent control comparison between Mastacomys fuscus and
Echiothrix centrosa (59 convergent genes selected in the species tree topology and
gene tree topology datasets). In addition, consistent signatures of relaxed selection in
both Paucidentomys and Rhynchomys were detected in 14 genes across both the

species tree topology and gene tree topology datasets (supplementary table S10).
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Convergent amino acid profile shifts

After filtering, 47 genes showed strong evidence (posterior probably > 0.9) for site-
based, convergent amino acid profile shifts using PCOC (Rey et al. 2018;
supplementary table S11). We did not identify any significantly over-represented
functional terms among these genes, nor at lower PCOC score thresholds. Among
these genes, Cdon is associated with human disease phenotype pathways (HP)
‘abnormality of the nasal cavity’, ‘cleft-lip’, ‘single median maxillary incisor’ and
‘midnasal stenosis’. In the two convergent vermivores, Cdon has undergone a
significant shift in amino acid profile at site 414, where both Rhynchomys and
Paucidentomys have independently experienced a shift from polar to non-polar
residues. Cdon was also under significant positive selection in Paucidentomys but not

in Rhynchomys.

Discussion

We found that genes associated with immune, reproductive, and dietary processes
have been subject to pervasive positive selection across the murine radiation. We also

recovered a higher proportion of positively selected sites in derived dietary forms (i.e.

carnivores and herbivores) than in omnivorous species (the ancestral state, Rowe et al.

2016a), suggesting a link between ecological forces of diversification and rates of
putatively adaptive molecular evolution. Consistent with expectations, genes involved
in craniofacial morphology, tooth development, and diet were among those with
shared selective shifts in convergent worm-eating species. Our results highlight
functional categories of genes that may have played an integral role in the repeated

radiation and extensive dietary diversification of murine rodents.

Pervasive selection on immunity and reproductive genes

We found strong evidence for pervasive positive selection on genes and pathways
associated with the immune system and reproduction in Murinae. Numerous
immunity- and reproduction-related GO, KEGG, and Reactome terms were
significantly overrepresented among genes that experienced positive selection across
the radiation. Many previous studies have identified that genes associated with

immune function (Schlenke and Begun 2003; Castillo-Davis et al. 2004; Nielsen et al.
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2005) and reproduction (Swanson and Vacquier 2002; Swanson et al. 2003; Castillo-
Davis et al. 2004; Nuzhdin et al. 2004; Zhang et al. 2004; Good and Nachman 2005;
Nielsen et al. 2005; Dean et al. 2008; Turner et al. 2008) are common targets of
recurrent positive selection, and on average, tend to evolve faster than other protein
coding genes. More recently, comparative genomic studies at both deep and shallow
taxonomic scales indicate that these patterns are consistent across all scales of animal
divergence (Nielsen et al. 2005; Kosiol et al. 2008; Roux et al. 2014; Cagan et al.
2016; Cicconardi et al. 2017; Sahm et al. 2019; Shultz and Sackton 2019). The strong
signal of positive selection on immune and reproduction-related genes across Murinae
confirm that these pervasive patterns remain consistent during species diversification,

in consort with rapid evolution of ecologically significant phenotypes.

The adaptive immune system of animals is subject to constant pressure from rapidly
evolving pathogens with shorter generation times than their hosts (Woolhouse et al.
2002). This co-evolutionary ‘arms race’ is a source of selective pressure and is
thought to cause rapid adaptive evolution in immunity-related genes (Nielsen et al.
2005; Kosiol et al. 2008). Response to co-evolutionary change may similarly explain
rapid evolution of reproductive proteins, with previous studies suggesting that sperm
competition and sexual conflict are key drivers of positive directional selection
(Wyckoff et al. 2000; Swanson and Vacquier 2002; Torgerson et al. 2002; Swanson et
al. 2003). The set of reproductive genes under pervasive positive selection across
murines in our results include a number of genes which have previously been
identified as under positive selection in other mammals, including Zp3 (Swanson and
Vacquier 2002; Jansa et al. 2003; Turner and Hoekstra 2006), which contains the
primary species-specific sperm binding site, as well as the egg-binding proteins
Adam?2 and Spam1 (Torgerson et al. 2002). The coevolution of male and female
reproductive proteins may be associated with the eventual development of barriers to
fertilisation, reproductive isolation, and subsequent speciation (Swanson and Vacquier
2002). There is substantial divergence in sperm morphology between closely related
murine species (e.g. Breed 2000; McLennan et al. 2017; Pahl et al. 2018), which may
contribute to the rapid evolution of prezygotic isolation between populations.
Accelerated evolution, or increased positive selection, in reproductive genes in murine
rodents may be linked, in part, to the rapid speciation of murines in both allopatry,

and via ecological niche partitioning in spatially limited island systems. Future
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comparative studies may reveal whether diversifying selection, and positive selection,
on immunity and reproductive genes is more intense during adaptive radiation,
compared to background rates, as nascent species encounter novel pathogens, and

rapidly diversify to fill available ecological niches.

Pervasive positive selection on dietary and taste-associated genes

We also found significant overrepresentation of functional categories associated
with diet (digestion and taste), which is likely related to the exceptional ecological
diversity and success of murine rodents. Recent work has also identified selection on
bitter-taste genes in the desert-adapted rodent, Peromyscus eremicus (Tigano et al.
2020). Pervasive positive selection in diet-related genes has not previously been
identified across a recent radiation. A study of six mammalian genomes (Kosiol et al.
2008) identified positive selection on starch digestion and bitter taste genes in
primates, but not in two murine species (M. musculus and R. norvegicus). This
contrast highlights the importance of taxon sampling in detecting associations
between ecological diversification and genomic adaptation, with our study examining
this pattern across the broad phylogenetic and ecological diversity of murine rodents.
At a broader scale, previous research suggests that dietary evolution may be
associated with changes in gene copy number (Feng et al. 2014; Li and Zhang 2014;
Pajic et al. 2019), gene family expansions (Whiteman et al. 2012; Gloss et al. 2019;
Seppey et al. 2019), or loss of gene function (Kim et al. 2016; Hu et al. 2017; Hecker
et al. 2019). For example, the evolution of carnivory across mammals at a broad scale
is associated with repeated loss of sweet and bitter taste receptors (Jiang et al. 2012).
However, our results provide the first strong link between rapid ecological
diversification of species, including repeated evolution of dietary specialisation, and
recurrent positive selection on multiple genes in functional categories related to
dietary processes. Trophic niche is a crucial driver of phenotypic evolution (Price et
al. 2012) and in the case of murine rodents, is arguably the main axis of differentiation
between species, especially in island systems across the Indo-Australian Archipelago
(e.g. Rowe et al. 2014; 2016a; 2016b). Pervasive positive selection on genes
associated with diet, digestion, and taste in a clade with extensive dietary disparity
provides a compelling link between ecological novelty, phenotypic evolution, and

putatively adaptive molecular evolution.
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Derived dietary states are associated with rapid molecular evolution

As well as triggering pervasive positive selection across dietary genes, the
evolution of dietary specialisation in the murine species examined in our study was
significantly correlated with a genome-wide increase in the average proportion of sites
under positive selection, as well as higher overall dN/dS. This pattern was most
compelling in carnivores (a derived state in murines; Rowe et al. 2016a), where there
was a significantly higher average proportion of positively selected sites than in
omnivores (the ancestral state). This pattern was similar in herbivores, but only
significant when using the gene tree topology dataset or a pairwise (topology-free)
contrast. Although there were only three herbivorous species in this study, these
species represent three independent transitions to herbivory. The elevated dN/dS may
result from long-term small effective population size (N,), via increased fixation of
deleterious mutations which are incorrectly inferred as signatures of positive selection
(Ohta 1993; Deinum et al. 2015), or alternatively a large N, resulting in increased
adaptive efficacy (Gossmann et al. 2010). However, our comparative analyses found
no significant effect of average heterozygosity (as a proxy for N.). Similar patterns are
evident in deeper-time comparisons among mammals, with increased signatures of
molecular adaptation in carnivores (i.e. Felidae) when compared to omnivores
(Hominidae) and herbivores (Bovidae; Kim et al. 2016). Our finding of an increase in
positive selection at a genome-wide scale in carnivorous, and to a lesser extent in
herbivorous murines, suggests that the evolution of dietary specialisation may have
triggered increased positive selection on a suite of interacting traits (Goldman-Huertas

et al. 2015), and subsequently affected many loci in the genome.

Whether rates of molecular evolution, or positive selection, can be generally
associated with the evolution of adaptive ecological traits remains an open question,
and few specific examples exist. Temperate lacertid lizards were recently found to
have experienced a genome-wide decrease in molecular evolution relative to tropical-
and desert-adapted species (Garcia-Porta et al. 2019). Body size is a consistent
predictor of neutral molecular evolutionary rate across broad taxonomic scales, with
larger species expected to have slower rates due to longer generation times (Bromham
2002; Berv and Field 2018). A recent study suggested an extension of this

generalisation to positive selection in birds, finding that body size was linked to
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variation in the proportion of positively selected sites (Shultz and Sackton 2019). In
contrast to diet, there was no significant correlation between positive selection and
any other traits tested in our comparative phylogenetic analyses, including body size.
Although the murine species examined here vary by two orders of magnitude in body
size (20 — ~2000 g), differences in generation time may be insufficient to affect

relative evolutionary rates.

A genomic basis for convergent evolution of worm-eating rodents?

There were not more genes under shared selective shifts (positive or relaxed) in the
convergent worm-eating rodents Paucidentomys and Rhynchomys when compared to
the non-convergent control comparison, Mastacomys and Echiothrix. These results are
consistent with a recent study of shared positive selection in the convergent marsupial
thylacine and eutherian canid (Feigin et al. 2018), suggesting that positive selection
has not acted on the same genes in phenotypically convergent species more often than
in general forms. However, comparing the number of genes under shared positive
selection may be a relatively conservative benchmark for detecting molecular
convergence. As such, it remains possible that the genes we recovered are linked to

the evolution of the convergent phenotypes of Paucidentomys and Rhynchomys.

For example, we found shared positive selection on the Androgen Receptor (A4r)
gene, which encodes a transcription factor known to influence bone morphogenesis
through interaction with the RUNX2 transcription factor (Baniwal et al. 2009).
Variation between species in the number and ratio of short repeats in RUNX2 has
previously been associated with variation in mammalian cranial length (Fondon and
Garner 2004; Sears et al. 2007; Pointer et al. 2012; Ritzman et al. 2017), and RUNX2
also shows signatures of an ancient selective sweep after the divergence of
anatomically modern humans from other archaic lineages (Green et al. 2010). Given
shared signatures of positive selection and its pivotal role in mammalian bone
metabolism (Kawano et al. 2003), the Ar transcription factor represents a potential
candidate gene contributing to the evolution of elongated craniofacial morphology in

Paucidentomys and Rhynchomys.
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Additionally, shared positive selection and amino acid shifts in taste-receptor genes
Tas2rl13 and Tas2ri14, and relaxed selection in the glucose transporter gene Slc2a?2,
(part of the Reactome pathway ‘Intestinal absorption’), recapitulate the evolution of
dietary specialisation across Murinae at a broad scale. We also detected convergent
shifts in amino acid profile in the gene Cdon, associated with craniofacial and tooth
development. However, genes involved in patterning and development of morphology
are often highly pleiotropic (Sivakumaran et al. 2011), and changes at the coding level
likely have consequences for the function of the gene in many different contexts. As
such, parallel amino acid changes are thought to rarely be directly associated with
phenotypic convergence (Foote et al. 2015). While the genes listed above can be
incidentally linked to either craniofacial morphology or diet, the majority of genes we
detected with convergent selective signatures in Paucidentomys and Rhynchomys do

not have obvious links to their convergent phenotype.

Increasing evidence implicates regulatory elements controlling pleiotropic genes in
the evolution of complex traits (Prud’homme et al. 2006; Kvon et al. 2016; Feigin et
al. 2018; Roscito et al. 2018), especially in loss-of-function phenotypes such as limb
loss in snakes (Kvon et al. 2016) and eye degeneration in subterranean mammals
(Roscito et al. 2018). In such cases, changes in the timing and level of gene
expression via evolution in regulatory regions may underlie the evolution of
convergent phenotypes. Expansion or contraction of gene families also likely
contributes to patterns of convergent evolution (e.g. Hoffmann et al. 2010;
Whittington et al. 2010). Given the restricted genomic scope of whole exome data,
future work examining whole genomes from across Murinae may shed light on the
contribution of gene family evolution, non-coding regions, and regulatory elements.
More broadly, information about the function of genes in unique morphological and
ecological contexts may not be captured by model species, from which their
functional annotations are derived. As such, any functional relevance for the majority
of genes under convergent selection in Paucidentomys and Rhynchomys remains
unclear. Inclusion of species representing extreme morphological adaptation in
laboratory studies, including developmental studies, may reveal novel gene function

and gene interactions previously unknown from classic model species.
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Conclusion

Multiple, nested adaptive radiations within Murinae have resulted in repeated and
convergent ecological specialisations, and we recover evidence for this at the genomic
level. Pervasive positive selection on diet-related genes across the radiation, and an
increase in positive selection in dietary specialists, suggests a link between ecological
drivers of diversification and molecular evolution. We highlight both categories of
genes, and specific genes, which may have played an integral role in the repeated
invasion by murine rodents of novel ecological niches, and in the convergent
evolution of worm-eating specialists. Our findings demonstrate the utility and
opportunity for leveraging murine rodents as an emerging model system for
understanding adaptive processes. Given the enormous phenotypic and species
diversity of Murinae, and their existing genomic resources, murine rodents represent a

largely untapped resource for studies of evolutionary processes.

Materials and Methods

Taxon sampling

We selected 38 representatives of rodents from the subfamily Murinae, including
representatives from Asian, Australian and African radiations. We additionally
included the model murine species Mus musculus (genome assembly GRCm38) and
Rattus norvegicus (genome assembly Rnor6), with final sampling including ten
species from tribe Hydromyini, 20 species from tribe Rattini, nine species from the
Mus-related clade (tribes Apodemini (1), Arvicanthini (3), Murini (1), Malacomyini
(1), and Praomyini (3)), and one species of Phloeomyini. Together, these species are
representative of the substantial ecomorphological variation of murine rodents,
including dietary, microhabitat, and body size variation. In this comparative
framework, we assume that individual samples are representative of species-specific
adaptations and acknowledge that some signatures could reflect local adaptation
within species. Tissues were obtained from museum collections (see supplementary
table S1 for details), where vouchers are permanently curated. These specimens were

collected according to the relevant legal and ethical requirements of each country.
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Sample preparation, whole-exome capture and sequencing

Total genomic DNA was extracted from liver or muscle tissue using a Qiagen
DNeasy Blood and Tissue Kit, following the manufacturer protocol. DNA library
preparation followed the Meyer and Kircher (2010) protocol. Target regions were
enriched using two NimbleGen SeqCap EZ 1 mouse whole-exome capture reactions
(Fairfield et al. 2011), targeting 54.3 Mb of exonic regions based on the Mus musculus
reference genome (NCB137/mm9). These 203,225 target loci represent exons from
nearly all protein-coding regions in M. musculus excluding known pseudogenes, and
highly similar multi-copy gene families including olfactory receptor genes (a large
paralogous gene family in murines). The use of M. musculus whole-exome
enrichment probes has proven efficient across approximately 7.5 million years
divergence (Sarver et al. 2017). Enriched libraries were sequenced across two lanes of
[Nlumina NextSeq 550 paired-end, two lanes of [llumina NextSeq 550 single-end, one
lane of MiSeq, and one lane of HiSeq 4000.

Obtaining a database of putatively single-copy loci among Murinae

To generate an initial reference set of putatively single-copy exons across Murinae,
we first used liftOver (Hinrichs 2006) to convert Mus musculus (mm9) nucleotide
target regions from the whole-exome bait-design (Fairfield et al. 2011) to orthologous
co-ordinates in the Rattus norvegicus (Rn5) genome. The final reference set excluded
any loci that could not be aligned between both the mm9 and Rn5 genomes, spanning
~12 million years of murine evolution. We also removed any exons from the
reference set which had more than one internal hit of > 95% amino acid identity
within either the mm9 or Rn5 genomes, which would suggest they represent recent
duplications. This filtering resulted in a final set of 162,566 exons from 18,797 genes

and was used as the reference for all subsequent analyses.

Sequence assembly and alignment

We processed raw sequence data using ECPP v1.1.0, largely following the
workflow described in Roycroft et al. (2020a), but with some modifications. Briefly,
raw reads were de-duplicated using FastUniq v1.1 (Xu et al. 2012) and quality

trimmed using Trimmomatic (Bolger et al. 2014). Cleaned reads for assembled de
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novo using TRINITY 2.4 (Grabherr et al. 2011; Haas et al. 2014) to generate a
sample-specific contig file for each of 38 sequenced species. Using the filtered,
putatively single-copy murine loci described above, we identified the best matching
contigs in each assembly using tblastn. Using BLAST coordinates, we extracted local
matches from assembled contigs to create a sample-specific reference for mapping.
We then mapped the cleaned reads to the sample-specific reference using BBmap
(version 35.82, Bushnell B. 2015, sourceforge.net/projects/bbmap/) with minid=0.8.
Mapping and coverage statistics per-sample are summarised in supplementary table
S2. Consensus sequences and variants were called using the mpileup2cns command in
VarScan v2.3.7 (Koboldt et al. 2012). Consensus sequences were then collated across
all samples for each exon and were aligned using MAFFT v7.310 (Katoh and
Standley 2013).

Data filtering and post-hoc paralog detection

We only included exons in the final dataset which were successfully captured and
mapped for at least 27 of 38 samples. To screen for lineage-specific paralogs that
were not detected in initial filtering, we calculated average heterozygosity for each
sample in each alignment. Alignments with two or more samples with > 3% average
heterozygosity (Teasdale et al. 2016; Roycroft et al. 2020a) were excluded, as these
may represent loci with pervasive paralogy. We assumed that cases where only one
sample had > 3% average heterozygosity represented lineage-specific duplications
and removed only that sample from the alignment. A total of 89,621 exons were

retained, that were concatenated into 14,229 gene alignments for analysis.

Phylogenetic analyses

For phylogenetic analysis, we reduced the full dataset to alignments to a previously
qualified, murine-specific set of 1,360 phylogenetically informative single-copy exons
(Roycroft et al. 2020a) and estimated the maximum likelihood (ML) phylogeny in IQ-
TREE 1.6.1 (Nguyen et al. 2015) from a concatenated supermatrix partitioned by
codon position (i.e. three global partitions). We used ModelFinder (Kalyaanamoorthy
et al. 2017) to determine the best substitution model for each partition, and executed

1000 ultrafast bootstrap replicates, using UFBoot2 (Hoang et al. 2017). We also
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estimated support in IQ-TREE using two-tiered resampling of genes and sites (—bspec
GENESITE), an approach which we previously showed provided more accurate
estimates of uncertainty in phylogenomic datasets (Roycroft et al. 2020a). To verify
this inferred ML topology, we estimated the species tree topology using the coalescent
approach SVDquartets (Chifman and Kubatko 2014) implemented in PAUP* v4.0a
(Swofford 2002). We used MCMCtree (Yang 2007) to estimate time-calibrated
branch lengths, with the ML topology inferred in IQ-TREE, a GTR+T" substitution
model, an uncorrelated I' relaxed clock, and using the approximate likelihood
calculation (Thorne et al. 1998; Reis and Yang 2011). We used three secondary
calibrations from Aghova et al. (2018) that best matched our sampling of Murinae: the
MRCA of Rattini (95% HPD 9.91 — 12.67 Ma), the MRCA of Sahul Hydromyini
(95% HPD 6.48 — 8.34 Ma) and the MRCA Praomyini (95% HPD 5.98 — 7.84 Ma).
Samples were drawn every 1,000 MCMC steps from a total of 107 steps, with a burn-
in of 10° steps. Convergence was assessed by comparing parameter estimates from

two independent runs, with all effective sample sizes greater than 200.

Mendes and Hahn (2016) showed that estimates of positive selection derived from a
fixed species tree can be subject to false positives when the individual genealogical
history conflicts with the species tree. To help combat this in downstream molecular
evolution analyses, we estimated individual gene trees from each alignment in 1Q-
TREE 1.6.1 (Nguyen et al. 2015) using ModelFinder (Kalyaanamoorthy et al. 2017)

to select the single best fitting substitution model for each gene.

Detecting genes under positive directional selection

For all 14,229 orthologous genes, we ran two site-based models in codeml 4.9i, the
M1 and M2 models (Yang 2007). The M1 model allows for two ® (dN/dS) rates
across sites (o < 1 and o = 1), whereas M2 allows three rates (0 <1, ® =1 and © >
1). Evidence of pervasive positive selection at particular sites can be inferred when
the M2 model is a significantly better fit for that gene than the M1 model. Using a
likelihood ratio test (LRT), we compared log-likelihood estimates for models M1 and
M2 to identify genes with sites under positive selection across the murine phylogeny.
These tests were performed using both the species tree and gene tree as the reference

topology. We calculated LRT p-values using chi-squared distribution (d.f. = 2) and
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corrected for multiple tests at a p < 0.05 threshold, using a Benjamini-Hochberg false
discovery rate (FDR) correction. Genes were considered to have sites under positive
selection only if both the LRT was significant after correction, and at least one site
was significantly selected using a Bayes Empirical Bayes (BEB) test (posterior

probability > 0.95; Yang et al. 2005) against both the species tree and gene tree.

Functional overrepresentation of genes under pervasive selection

Using g:GOSt in g:Profiler (Raudvere et al. 2019), we tested for overrepresentation
of GO terms, KEGG pathways (Kanehisa et al. 2016) and Reactome pathways (Jassal
et al. 2020) among genes identified as being under significant positive selection in site
model tests. We used a custom background including all tested genes and applied an
FDR correction for multiple comparisons (p < 0.05). To visualise over-represented
functional categories, we used REVIGO (Supek et al. 2011) to generate semantic
clustering of GO biological process (GO:BP), molecular function (GO:MF) and

cellular component (GO:CC) terms (allowing 0.5 term similarity).

Branch-specific selection pressures

While site-based models can identify genic sites under significant positive selection
across multiple lineages in a phylogeny, they do not provide information about
heterogeneity in selection throughout time and across lineages. To investigate this, we
used the flexible branch-site test aBSREL (Smith et al. 2015) in HyPhy 2.5.14. (Pond
et al. 2005) to estimate ® values and proportion of sites under positive selection for
each terminal branch in the tree. To reduce potential false positive rates due to tree
misspecification (Mendes and Hahn 2016), we applied two approaches to estimating
branch-specific selection in aBSREL. First, we estimated values for all terminal
branches and genes using the fixed species tree topology: the species tree topology
data set. Second, we inferred selection across branches and genes using each

individually estimated gene tree: the gene tree topology data set.

Positive selection and ecomorphological variation

For each terminal branch, we calculated the mean proportion of sites under positive

selection across all genes in aBSREL, to obtain a genome-wide estimate of the
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proportion of sites under positive selection for each species. To first visualise
heterogeneity in positive selection across the tree, we used the R function contMap in
phytools (Revell 2012) to plot values from both the species tree topology and gene
tree topology datasets as a heat map on the species tree. To additionally estimate the
strength of positive selection for each species using a topology-free approach, we
calculated average pairwise dN/dS across all species-pair comparisons using codeml
(Yang and Nielsen 2000). To test whether this proportion of sites under positive
selection, or strength of selection (AN/dS) were correlated with ecological factors, we
obtained dietary, microhabitat, reproductive, and body mass data for each species
from the literature (Smith et al. 2003; Breed and Ford 2007; Rowe et al. 2016a; Rowe
et al. 2016b; Nations et al. 2019; Roycroft et al. 2020b). We coded species according
to their diet (carnivore, omnivore, or herbivore), their microhabitat (terrestrial,
arboreal, or semi-aquatic), and their reproductive output, (based on the number of
mammae for each species, supplementary table S3). Using the time-calibrated species
tree inferred in MCMCtree, we performed phylogenetic generalised least squares
(PGLS) regression and phylogenetic ANOVA with a Bonferroni correction in
phytools (Revell 2012), to test the effects of diet, microhabitat, reproductive output,
and body size on genome-wide positive selection. Further, because effective
population size (N,) can affect estimates of positive selection (Ohta 1993; Gossmann
et al. 2010; Deinum et al. 2015), we jointly modelled the additive and interacting
effects of average exome-wide heterozygosity, and third codon position

heterozygosity (as proxies for N,), with ecological traits in the comparative analysis.

To further determine whether there was an interaction between gene function,
positive selection, and ecological traits, we used GO annotations and Gene
ORGANizer (Gokhman et al. 2017) classifications to identify genes with function in
the digestive (1,657 genes) and reproductive systems (2,077 genes). We then
estimated the mean percent of positively selected genes across digestive and non-
digestive genes, and reproductive and non-reproductive genes. Using the same
approach described above, we ran PGLS and phylogenetic ANOVA with dietary state
or number of mammae as the predictor, respectively. Using a binary measure of
dietary state (1 = specialist; i.e. herbivore or carnivore, 0 = generalist; i.e. omnivore),
we also performed a Spearman’s rank correlation test to determine which genes

showed the highest correlation between positively selected sites and lineages with
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dietary specialisation. Using g:Profiler, we tested for over-representation of functional
categories in the top and bottom 10% and 5% of genes, and performed functional

enrichment analysis using the calculated Spearman’s p value for each gene.

Branch-specific convergence in positive and relaxed selection

We tested for branch-specific convergent positive selection by performing a
branch-site test in aBSREL across all genes, with two phenotypically convergent
vermivorous rodents, Paucidentomys vermidax and Rhynchomys labo, set as
foreground branches. All analyses were repeated using both the species tree topology
and gene tree topology datasets. A recent study showed that multinucleotide
mutations (MNMs) may cause false inferences in branch-site tests of positive
selection (Venkat et al. 2018). For genes where we detected positive selection in both
Paucidentomys and Rhynchomys, we accounted for this by applying models that allow
double and triple MNMSs using the --multiple-hits Double and --multiple-hits
Double+Triple options in HyPhy 2.5.14. As MNM models include additional
parameters compared to the standard aBSREL model, we compared AICc scores from
standard aBSREL, aBSREL + Double and aBSREL + Double + Triple, and retained
results from the model with the lowest AICc score. To further determine whether
there were more shared genes under positive selection in Paucidentomys and
Rhynchomys than in other non-convergent murine forms, we repeated all analysis
using a non-convergent ‘control’ comparison, i.e., by comparing genes under positive
selection in the graminivorous Australian rodent Mastacomys fuscus (tribe
Hydromyini), and the carnivorous Sulawesi shrew rat Echiothrix centrosa (tribe
Rattini) as the foreground test branches. These control species are phylogenetically
equidistant to the Paucidentomys (tribe Rattini) and Rhynchomys (tribe Hydromyini)

comparison and occur along comparable terminal branch lengths in the tree.

To test for genes with evidence for shared relaxation of selection in Paucidentomys
and Rhynchomys, we ran RELAX in HyPhy 2.5.14 using both the species tree
topology and gene tree topology datasets. For comparison, relaxation analyses were
also repeated using the same non-convergent species pair as above, Mastacomys
fuscus and Echiothrix centrosa. All p-values were corrected for multiple tests at a p <

0.05 threshold, using a Benjamini-Hochberg false discovery rate (FDR) correction.
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Detecting convergence site-based functional shifts

To detect potential convergence of positively selected sites in Paucidentomys
vermidax and Rhynchomys labo, we tested all genes for evidence of convergent amino
acid shifts using PCOC (Rey et al. 2018). This approach applies a CAT model (Quang
et al. 2008) of protein evolution in a species-tree context to detect convergent shifts in
amino acid profile along branches with convergent phenotypes. To filter for only sites
with strong evidence for convergent profile shifts, we set a posterior probability

threshold of > 0.9 for all PCOC, OC and PC output.

Data Availability

Processed sequence alignments underlying the analyses in this manuscript will be
made available in the Dryad Digital Repository. Raw sequence reads are available via
the NCBI Sequence Read Archive under BioProject ID PRINA705792, BioSample
accession numbers SAMNI18102763 — SAMN18102800, SRA accession numbers
SRR 13848278 — SRR13848315. Code used to process sequence data is available at
https://github.com/Victaphanta/ECPP/
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Figure Legends

Figure 1 Exceptional convergence of craniofacial morphology and dentition in worm-
eating specialists; A) Paucidentomys vermidax (Muridae: Rattini) and B) Rhynchomys
labo (Muridae: Hydromyini), compared to two generalist species belonging to the
same respective clades; C) Rattus fuscipes (Muridae: Rattini), and D) Pseudomys
shortridgei (Muridae: Hydromyini). Photos by A) D. Paul, Museums Victoria, B)
modified from Rickart et al. (2019) with permission, C) and D) M. Rawlinson, C.

Accurso and K. Walker, Museums Victoria

Figure 2 Time-calibrated phylogeny of sampled murine species generated in
MCMCtree, with a consistent topology estimated in both IQ-TREE and SVDquartets.
All phylogenetic analyses were based on a subset of 1,360 loci (Roycroft et al.
2020a). Nodes with less than 100% support using more than one branch support
approach are indicated with an asterisk. Species numbers to the right of the phylogeny
indicate the total number of described species in each of the three main murine clades,

with Phloeomys pallidus the sole representative in this study of the tribe Phloeomyini.

Figure 3 Over-represented functions of genes under pervasive positive selection (p <
0.05) across Murinae using annotations from A) Reactome pathways, and B) Gene
Ontology biological process categories, grouped using REVIGO semantic clustering
(similarity threshold = 0.5). Circle size represents log,o p-value for the significance of
over-representation; colours indicate functions related to the immune system, dietary

processes, and reproduction.

Figure 4 Heterogeneity in genome-wide positive selection and ecological predictors.
A) average percentage of sites under positive selection plotted as a heat map on the
species tree topology with dietary states indicated at the tips, calculated with aBSREL
in HyPhy using either the species tree topology (left) or gene tree topology (right,
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with terminal branches matched to the species tree topology for visualisation)
datasets. B) Comparison of average percent sites under positive selection across
dietary states (carnivorous, herbivorous, or omnivorous), C) microhabitats (arboreal,
semiaquatic, or terrestrial), D) number of mammae, and E) log of body mass.
Significance values are derived from phylogenetic ANOVA (* = FDR corrected p <
0.05)
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Malacomys longipes

Mus musculus

' Hylomyscus vulcanorum
Colomys goslingi
Praomys degraaffi
Chiropodomys gliroides
Haeromys minahassae

MUS-RELATED [
O
O

Apomys lubangensis
=S = ' Archboldomys luzonensis
=1 Chrotomys mindorensis
= = Rhynchomys isarogensis
Lorentzimys nouhuysi

= Hydromys chrysogaster
—_— Mastacomys fuscus
Melomys rufescens
Crunomys celebensis
Maxomys surifer
Echiothrix centrosa
Paucidentomys vermidax
Melasmothrix naso

iRy

205 spp

(
|
HYDROMYINI

= | Tateomys rhinogradoides
Gracilimus radix

Waiomys mamasae
Hyorhinomys stuempkei
—_— * Sommeromys macrorhinos
Margaretamys parvus
Leopoldamys sabanus
Niviventer lepturus
Berylmys bowersi

Bullimus bagobus
Bunomys chrysocomys
—_— Taeromys punicans

Rattus norvegicus

Rattus exulans

Rattus hoffmanni _
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200 spp.
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