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Abstract Cells possess a multiplicity of non-membrane-bound compartments, which form via
liquid-liquid phase separation. These condensates assemble and dissolve as needed to enable
central cellular functions. One important class of condensates is those composed of two associating
polymer species that form one-to-one specific bonds. What are the physical principles that underlie
phase separation in such systems? To address this question, we employed coarse-grained
molecular dynamics simulations to examine how the phase boundaries depend on polymer valence,
stoichiometry, and binding strength. We discovered a striking phenomenon - for sufficiently strong
binding, phase separation is suppressed at rational polymer stoichiometries, which we termed the
magic-ratio effect. We further developed an analytical dimer-gel theory that confirmed the magic-
ratio effect and disentangled the individual roles of polymer properties in shaping the phase
diagram. Our work provides new insights into the factors controlling the phase diagrams of
biomolecular condensates, with implications for natural and synthetic systems.

Introduction

Eukaryotic cells are host to a multiplicity of non-membrane-bound compartments. Recent studies
have shown that these compartments form via liquid-liquid phase separation (Brangwynne et al.,
2009; Li et al., 2012; Molliex et al., 2015). The phase-separated condensates enable many central
cellular functions — from ribosome assembly, to RNA regulation and storage, to signaling and metab-
olism (Shin and Brangwynne, 2017, Banani et al., 2017). Unlike conventional liquid-liquid phase
separation, for example water-oil demixing, the underlying interactions that drive biomolecular
phase separation typically involve strong one-to-one saturable interactions, often among multiple
components (Ditlev et al., 2018). As a result, the phase diagrams of biomolecular condensates are
complex and are sensitive to a variety of physical properties of the biomolecules, included number
of binding sites, binding strengths, and additional nonspecific interactions. Importantly, these physi-
cal parameters can be subject to biological regulation, and can thus directly impact the organization
and function of the condensates. It is therefore crucial to understand how the physical properties of
the components shape the phase diagram of biomolecular condensates.

Biomolecular condensates typically contain tens to hundreds of types of molecules. Yet, when
characterized in detail, only a small number of components are responsible for condensate formation
(Ditlev et al., 2018). One class of such condensates are those formed by the association of two
essential components. In the simplest case, each component consists of repeated domains/stickers
that bind in a one-to-one fashion with the domains of the other component (Figure 1A and B;
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Figure 1. Phase behavior of sticker and spacer associative polymers. (A) Schematic of multivalent associative
polymers. Each polymer consists of complementary domains (stickers) connected by flexible linkers (spacers). A
and B denote the polymer type and m and n denote their valences (number of stickers). (B) Association of stickers
drives phase separation, leading to the formation of a dense, network phase coexisting with a dilute phase of
small oligomers (depicted by a dimer). (C) The phase diagram depends on variety of biologically tunable
parameters. In this study, we focus on the effects of sticker-sticker binding strength, sticker:sticker concentration
ratio (i.e. stoichiometry), and polymer valences. (D) Schematic of a representative 3D phase diagram of an A, : B,
system as a function of temperature (inverse of binding strength) and A and B sticker concentrations. The dilute-
phase concentration displays anomalous dependence on the binding strength and sticker concentrations in the
strong binding regime. This is the ‘magic-ratio’ effect which we explore here in detail.

Choi et al., 2019; Xu et al., 2020). Such two-component condensates have been observed in both
natural and engineered contexts. For example, the pyrenoid, an organelle responsible for carbon fix-
ation in the alga Chlamydomonas reinhardtii, is a condensate of the CO,-fixing enzyme Rubisco with
the linker protein Essential PYrenoid Component 1 (EPYC1). EPYC1 consists of five evenly-spaced
Rubisco-binding regions, while Rubisco holoenzyme has eight specific binding sites for EPYC1. Multi-
valent interactions between Rubisco and EPYC1 are responsible for pyrenoid formation
(Freeman Rosenzweig et al., 2017; Wunder et al., 2018; He et al., 2020). Promyelocytic leukemia
(PML) nuclear bodies are condensates of PML proteins. PML is SUMOylated at three main positions
and several minor sites. These modifications and a C-terminal SUMO Interaction Motif (SIM) found in
most PML isoforms contribute to the formation of these bodies (Shen et al., 2006). Engineered pol-
ySUMO and polySIM proteins (10 repeats of Small Ubiquitin-like Modifier [SUMO] and SIM, respec-
tively) phase separate when mixed together, but not as individual components (Banani et al., 2016;
Ditlev et al., 2018).

Previous simulations (Freeman Rosenzweig et al., 2017; Xu et al., 2020) of average cluster size
in such two-component systems revealed a striking phenomenon - for sufficiently strong binding,
the formation of large clusters is suppressed when the valence of one species equals or is an integral
multiple of the valence of the other species, favoring the formation of small stable oligomers instead
of a condensate. The phenomenon reminiscent of the exact filling of atomic shells leading to the
unreactive noble gases was termed the ‘'magic-number’ effect. A similar effect was found in a ternary
system modeling the clustering of nephrin, Nck, and NWASP proteins which regulates cell-cell adhe-
sion in podocyte cells of the kidney (Chattaraj et al., 2019). However, cluster size may reflect a sol-
gel percolation transition rather than a thermodynamic phase transition (Harmon et al., 2017), and
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Figure 2. Coarse-grained molecular-dynamics simulations of two-component multivalent associative polymers. (A)
The system consists of two types of polymers A (blue) and B (red) of varying lengths and concentrations. Depicted
are A and B polymers of length 10, denoted as A;g and B1o. Each polymer is modeled as a linear chain of spherical
particles connected by harmonic bonds. Stickers of different types interact pairwisely through an attractive
potential, while repulsion between stickers of the same type prevents them from overlapping and thus ensures
one-to-one binding of stickers of different types (see Appendix 1 for details). (B) Snapshots of dimers formed by
Ay and Byg with one-to-one bonds. (C) Snapshot of a simulation with 125 Ajg and 125 By polymers. The system
phase separates into a dense phase (middle region) and a dilute phase (two sides) in a 250 nmx50 nmx50 nm
simulation box with periodic boundary conditions. (D) Same as C but with 138 Aqg and 112 B4g polymers, yielding
an overall sticker concentration ratio 1.23. (E) Sticker concentration profiles of A19:B1g systems at various overall
sticker stoichiometries (total global sticker concentration fixed at 6.64 mM), each with the center of the dense
phase aligned at x = 0 and averaged over time and over ten simulation repeats (see Appendix 1). All simulations
performed in LAMMPS (Plimpton, 1995).

thus provides at best a qualitative measure of phase separation. Moreover, these previous studies
focused on equal sticker stoichiometry, whereas biomolecular condensates cover a broad range of
stoichiometries both in vitro (Li et al., 2012; Banani et al., 2016) and in vivo (Sanders et al., 2020).
Here, we directly delineate the full phase diagram of such two-component systems. Using coarse-
grained molecular dynamics simulations, we explore systematically how phase boundaries depend
on valence, stoichiometry, and binding strength of two associating polymers (Figure 1C and D). Our
studies reveal an unanticipated effect — when the numbers of polymers of the two types have a ratio-
nal stoichiometry (1:1, 1:2, etc.), phase separation can be strongly suppressed, which we call the
‘magic-ratio’ effect (Figure 1D, phase diagram at low temperatures). To understand the magic-ratio
effects better, we develop a two-component sticker theory a la Semenov and Rubinstein
(Semenov and Rubinstein, 1998). We model the system as dominated by polymer dimers in the
dilute phase and by a condensate of independent stickers in the dense phase (Figure 1B). The
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resulting analytical theory captures the magic-ratio effect discovered in simulations, and allows us to
disentangle the individual roles of valence, stoichiometry, specific-bond strength, and nonspecific
attraction in determining the phase boundaries of two-component multivalent systems. Living cells
regulate the valence and interactions of biomolecules through chemical modification, or on a slower
timescale, tune the stoichiometry via synthesis/degradation or sequestration, and over evolutionary
time, adapt the strength of specific and nonspecific interactions through mutation of molecular
sequences. Understanding the individual roles of these biologically tunable variables thus brings
new insights into possible cellular strategies for regulating the formation and dissolution of biomo-
lecular condensates.

Results

Coarse-grained molecular-dynamics simulations

We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to
determine the phase boundaries of two-component multivalent systems (Figure 2). Briefly, we
model the two polymer species as flexible linear chains of beads connected by harmonic springs
(Figure 2A). Each bead represents one associative domain/sticker of the polymer. To ensure associa-
tive domains of different polymer types bind in a one-to-one fashion, we impose a finite-ranged
attractive interaction between beads of different types. This, however, could lead to more than one-
to-one associations. Therefore, to avoid such unwanted associations, we impose strong repulsive
interactions between beads of the same type over a large enough range to prevent other beads
overlapping with a bound pair, thus preventing multiple-to-one binding (Figure 2B and Appen-
dix 1—figure 1), see Appendix 1 for details.

To find the binodal phase boundaries, we simulate hundreds of polymers of types A and B with,
respectively, m and n stickers (an A, : B, system) in a box with periodic boundary conditions
(Figure 2C and D). We initialize the system by constructing a dense slab of polymers in the middle
of the box (Dignon et al., 2018). The system evolves and relaxes according to Langevin dynamics
(Langevin, 1908). After the system has achieved equilibrium, two phases coexist: a dilute phase con-
sisting of dimers and other small oligomers, and a dense phase of an interconnected polymer con-
densate. We measure the corresponding density profile (Figure 2E) and calculate the dilute- and
dense-phase concentrations by averaging the density profile over the regions (x < —100nm or
x > 100nm) and (—10nm < x < 10 nm), respectively. See Appendix 1 for simulation details.

Effect of valence

It was shown previously that for equal sticker stoichiometry in the strong-binding regime, clustering
is substantially suppressed when the number of binding sites on one polymer species is an integer
multiple of the number of binding sites on the other, as this condition favors the assembly of small
oligomers in which all binding sites are saturated (Freeman Rosenzweig et al., 2017, Xu et al.,
2020). What does this magic-number effect imply for the actual phase diagram? To address this
question, we fix the valence of polymer A at 14 and systematically vary the valence of polymer B
from 5 to 16 while keeping the two sticker concentrations the same, that is, at equal global sticker
stoichiometry.

Figure 3A and B show simulation results for the total sticker concentrations of the dilute and
dense phases for A;4:Bs to Aq4:B1 systems. In the strong binding regime, for magic-number cases,
that is when the valence of B is 7 or 14, the dilute-phase concentration shows pronounced peaks
(Figure 3A, black curve). What is the origin of the peak at A14:B14? Intuitively, when the dilute phase
of the two-component system is dominated by dimers (for systems Aq4:B1> to Aq4:Bq4, as supported
by cluster size analysis in Appendix 1—figure 2), each of these dimers has high translational
entropy, whereas polymers in the dense condensate have low translational entropy. For A;4:Bqy, all
binding sites can pair up in a dimer just as well as in the condensate, so the energy per polymer is
not necessarily lower in the condensate. Why then is the condensate still competitive with the dilute
phase? In a dimer, the binding sites of A;4 must match all the binding sites of Bq,, leading to a
reduced overall conformational entropy. By comparison, the polymers in the condensate are more
independent, binding to multiple members of the other species and enjoying a relatively higher
overall conformational entropy. Because the translational entropy of each dimer decreases as their
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Figure 3. Simulations of associative polymers reveal a magic-number effect with respect to relative valence. Total
sticker concentrations (type A plus type B) in (A) dilute and (B) dense phases for simulated polymer systems at
different binding strengths. Uy denotes the depth of the potential well, in units of kgT (see Appendix 1 for details).
The valence of polymer A is 14, and the valence of polymer B ranges from 5 to 16. Global sticker stoichiometry is
one and total global sticker concentration is 6.64 mM. Histograms of cluster size in (C) A14:B14 and (D) Aq4:B,
systems, for Uy = 14. ‘Counts’ refer to number of clusters. Cluster size is measured in stickers. Red dots indicate
the dominant oligomer in the dilute phase.

concentration goes up, the condensed phase eventually becomes more favorable and so the system
phase separates with increasing concentration. Therefore, phase separation in A14:B4 is primarily
driven by a competition between translational entropy and conformational entropy.

By contrast, for Aq4:Bq3 and Aq4:B;s, one of the stickers in the dimer cannot be paired, and for
A14:Bq2 and Aq4:Bqg, two stickers per dimer cannot be paired. Therefore, forming a condensate not
only increases the conformational entropy but more importantly lowers the energy of these systems.
This significantly tilts the balance in favor of condensation. As a result, the dilute-phase concentra-
tion is sharply peaked at A4:Bq4, falling off rapidly for increasingly unequal polymer lengths. We
note that the dense-phase concentration shows no such feature (Figure 3B), indicating that the peak
at Aq4:Bq4 does not arise from differences in the internal structure of the dense phase.

The dilute phase of two-component systems is not always dominated by dimers (Appendix 1—
figure 2). For example, the dilute phase of the A;4:B; system is dominated by fully-bonded trimers
with 1 Aq4 and 2 By, the dilute phase of Aq4:Bg is dominated by trimers with 1 Aj4 and 2 Bg, which
has two unpaired stickers per trimer, and the dilute phase of Aq4:B, is dominated by oligomers with
3 A4 and 7 By, which although fully-bonded is not small (Figure 3D). Consistent with the above
logic, we find another peak in the dilute-phase concentration at A;4:B; (Figure 3A). More generally,
in contrast to the magic-number systems, the dilute phases in other cases are dominated by oligom-
ers which are not capable of being fully bonded (high energy) and/or not small (low translational
entropy) (Appendix 1—figure 2). The dilute-phase concentration is therefore lower in these non-
magic-number cases.
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Figure 4. Simulations of associative polymers reveal a magic-ratio effect with respect to polymer stoichiometry.
Sticker concentrations in (A) dilute and (B) dense phases for equal polymer length systems (i.e. A, : B,,) at different
global sticker stoichiometries. Sticker concentrations in (C) dilute and (D) dense phases for systems where polymer
B is one sticker shorter than polymer A (i.e. A, : B,_;) at different global sticker stoichiometries; black dots indicate
cases where the number of polymers of each type is the same. Interaction strength Uy = 14 and total global sticker
concentration 6.64 mM.

Effect of binding strength

How do the phase boundaries depend on the strength of binding? Figure 3A shows that, for non-
magic-number systems, the dilute-phase concentration decreases monotonically with increasing
binding strength, whereas for magic-number systems the dependence can be non-monotonic. This
difference is attributed to the distinct underlying driving forces for phase separation. For non-magic-
number systems, as clustering allows a larger fraction of binding sites to be paired, the stronger the
binding, the more the energy is lowered by condensate formation. Therefore, the dilute-phase con-
centration drops as binding strength increases (or as temperature decreases). Such energy-depen-
dence is expected for conventional phase-separation models, such as Flory, 1942; Huggins, 1941.

Interestingly, for the magic-number system A;4:B14, the dilute-phase concentration first decreases
with increasing binding strength in the weak binding regime, similar to non-magic-number systems.
However, as the binding energy is increased further, most of binding sites pair up in both dilute and
dense phases. Phase separation is then primarily driven by a competition between conformational
and translational entropy. The pairing up of binding sites reduces the conformational entropy of
both the dense and dilute phases. By contrast, the translational entropy of the dilute-phase compo-
nents is almost unaffected. Consequently, the dilute phase becomes more competitive relative to
the condensate, so the dilute phase boundary shifts to higher concentration.

By comparison, the dense-phase concentration increases monotonically with increasing binding
strength for all systems (Figure 3B). This follows because the stronger the binding, the more stickers
are paired, which tightens the condensate structure. We note that at substantially higher binding
energies than studied here, essentially all the binding sites are satisfied in both magic-number and
non-magic-number systems, and the phase boundaries become independent of binding energy.
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Figure 5. Simulations of associative polymers reveal a magic-ratio effect. Sum of concentrations of stickers A and
B in (A) dilute and (B) dense phases for systems A14:B15.14 at global sticker stoichiometries 14:12-16. Parameters:
interaction strength Uy = 14 and total global sticker concentration 6.64 mM.

Effect of sticker stoichiometry

How do the phase boundaries depend on overall sticker stoichiometry? Figure 4A and B show total
sticker concentrations of the dilute and dense phases for magic-number systems Ag:Bg to Aq4:Bq4 at
different global sticker stoichiometries. For each system, the dilute-phase concentration peaks at
equal sticker ratio, falls off initially as the ratio deviates from 1, and then curves back up. What is the
origin of the peak at equal sticker stoichiometry? Recall that, in the strong binding regime, phase
separation of magic-number systems is primarily driven by a competition between translational
entropy and conformational entropy. Now consider starting with a system at equal sticker concentra-
tion, and adding more of one polymer species to the system. At the beginning, the added polymers
readily enter the dense phase, which relaxes the conformational constraint that every sticker in the
condensate has to pair with a partner. This increase of the conformational entropy of the condensate
makes it more competitive, so the dilute-phase concentration decreases. However, as the ratio
between the two polymers is increased further, it becomes possible to form a spectrum of dilute-
phase oligomers which typically contain one extra polymer of the majority type (Appendix 1—table
1). These new oligomers have more relaxed structures than fully bonded dimers, which raises the
conformational entropy of the dilute phase. Therefore, the dilute phase is favored over the conden-
sate and its concentration curves back up.

Figure 4A also reveals that the dilute-phase concentration decreases with increasing polymer
valence. This follows in part because translational entropy in the dilute phase is per dimer center of
mass, whereas conformational entropy in both phases scales with the number of stickers. The entro-
pic gain of joining the dense phase is therefore more on a per sticker basis for longer polymers, so
the dilute-phase concentration decreases with increasing valence. As a less apparent yet important
point, Figure 4A also shows that increasing polymer valence enhances both the width and relative
height of the peak in the dilute-phase concentration. The inferred phase diagram for the Ag:Bg sys-
tem at Uy = 14kgT is shown in Appendix 1—figure 3 together with the homogeneous gelation/per-
colation threshold obtained at Uy = 8kgT. We also report in Appendix 1—figure 5C the volume
fraction of the polymers in the dense phase, which is ~10%, comparable to the volume fraction of
proteins in the cell cytoplasm.

Figure 4C and D show total sticker concentrations of the dilute and dense phases for unequal
valence polymers Ag:B; to Aq4:Bq3 at different global sticker stoichiometries. The dilute phase
boundary shows a symmetric minimum around equal stoichiometry for Ag:By, yet surprisingly, the
phase boundary becomes asymmetric and then peaks at equal polymer stoichiometry with increasing
polymer length (Figure 4C). What is the origin of these peaks? Taking the Aq4:Bq3 system as an
example, its dilute phase is dominated by dimers with an unpaired A sticker. This strongly disfavors
the dilute phase in the strong binding regime at equal sticker stoichiometry. However, as the overall
A:B sticker stoichiometry increases, the excess As cannot be paired anyway. In particular, at equal
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polymer stoichiometry (denoted as black dots in Figure 4C), forming dimers is no longer energeti-
cally costly. Therefore, to the left of the A4:B13 peak at equal polymer stoichiometry, the dilute-
phase concentration is low because dimers are energetically disfavored as more bonds can be satis-
fied in the condensate. By contrast, to the right of the peak, the dilute-phase concentration is low
for a different reason — because the condensate is entropically favored, similar to the peak with
respect to stoichiometry for magic-number systems. Eventually, the dilute-phase concentration
curves back up due to formation of higher oligomers in the dilute phase, as discussed for magic-
number systems.

We note that for all these systems the dense-phase concentration shows no such striking features.
Rather, the concentration decreases monotonically as the global sticker stoichiometry departs from
one and as the valence of polymers decreases (Figure 4B and D).

Effect of valence and stoichiometry

Above, we considered the role of both relative valence and relative stoichiometry. By plotting phase
boundaries as joint functions of valence and stoichiometry, we obtain a unified picture: Figure 5A
and B show the dilute- and dense-phase concentrations for systems A14:B15.14 at global sticker stoi-
chiometries 14:12-16. Notably, the dilute-phase concentration is peaked along the diagonal
(Figure 5A), that is at equal polymer stoichiometry, which we term the ‘magic-ratio’ effect because
it occurs for rational ratios of associative polymers. Intuitively, all cases along the diagonal favor 1:1
polymer dimers: the dimers enjoy high translation entropy and there is no energy penalty involved in
their formation. Thus, a dilute phase of dimers is strongly favored at equal polymer stoichiometry.

As for the dense phase concentration, it decreases monotonically as the global sticker stoichiom-
etry departs from one and as the valence of polymers decreases (Figure 5B). This again indicates
that the anomalous dependence of the dilute-phase concentration on valence and stoichiometry
does not arise from special properties of the dense phase.

Dimer-gel theory

While our simulations have revealed that a magic-ratio effect influences the boundaries of phase sep-
aration for associating polymers, we desire a deeper understanding of the interplay of factors such
as overall valence, stoichiometry, and interaction strength. To this end, we develop a mean field the-
ory of two-component associative polymers a la Semenov and Rubinstein (Semenov and Rubinstein,
1998; Xu, 2018).

Specifically, we consider a system of A and B polymers as in our simulations. Each polymer is a lin-
ear chain of Ly or L, stickers of type A or type B, respectively. Without loss of generality, we take
L, > L,. stickers of different types associate in a one-to-one fashion. Our simulations suggest that for
polymers of similar valence close to equal polymer stoichiometry the dilute phase is dominated by
dimers and the dense phase is a gel network. Therefore, we assume that polymers can associate
either as dimers or, alternatively, as a condensate in which pairs of stickers bind independently. This
assumption of independence is a mean field approximation, as it neglects correlations between
stickers in the same chain, and thus only applies when the polymers strongly overlap, that is at densi-
ties above the semidilute regime (De Gennes, 1979).

The partition function of such a system can be divided into three parts: Z = Z,;Z;Z,s, where Z;,
the partition function of a solution of non-interacting polymers, captures the translational and con-
formational entropy of the two polymer species, Z; captures specific interactions between associat-
ing stickers, and Z,; captures all nonspecific interactions.

The corresponding free-energy density for the mixed non-interacting polymers is Semenov and
Rubinstein, 1998:

Foi ¢, ¢ ¢

e 1
el L el T, e, M

where ¢1 and ¢; are the concentrations of A and B polymers measured in terms of stickers. Note that
the terms for the conformational entropy of non-interacting polymers are omitted in Equation 1, as
they are linear in ¢q and ¢, and thus do not influence the phase boundaries.
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To include specific interactions, we first consider the partition function Z(Ng1, Na2, Ny,) for states
with exactly Ng; and Ngs total numbers of stickers of A and B types in dimers (i.e. number of dimers
equals Nq1/L; = Ngo/L,) and N;, additional sticker pairs,

Zy(Na1,Naz,N,) = P(Nai, Naz2, Ny, )W (Na1, Naz, Ny, ) exp(Nai€q /Ly + Nyey,). 2)

In Equation 2, P is the number of different ways that polymers and stickers can be chosen to pair
up to form dimers and independent bonds,

N]/L1 Nz/Lz) (Nl_Nd1)<N2_Nd2)
P(Ngi,Ngo,Ny) = Nqi/L)! Ny! 3
(Na1,Naz,Ny,) (N<11/L1)(N<12/L2 (Na1/Ly) N, N, bl 3)

where N1 and N, are the total numbers of stickers of A and B types. (Note that in Equation (3) if
Li>L,, the excess stickers of type A in dimers do not form additional bonds.) In Equation (2), W is
the probability that all chosen polymers and stickers are, respectively, close enough to their speci-
fied partners in the non-interacting state to form dimers and independent bonds,

Nai
1

= (2 ()"

where vq and v, are effective interaction volumes and V is the system volume. The last term in Equa-
tion (2) is the Boltzmann factor for specific interactions, where ¢; and ¢, are the effective binding
energies of dimers and sticker pairs, in units of kgT.

The part of the free-energy density due to specific interactions is

F. 1
-z, 5
A ®)

Using Stirling’s approximation InN! = NInN — N, we obtain

C1 —Cd1

] In(c; —cq1) + (¢1 —ca1 — ) In(c) — cq1 — cp)
(6)
In(cy — caa) + (c2 — caa — ep) In(ca — caa — ep) + %ln(echLle) + cp In(ecyKy),

Fs (4]
—_9 1-L
ot L, et -h)

() Cy —Ca2
—Zlney + (1 — L) 22
Zlncy+(1- L)
where Kq =e¢ % /vq and K, =e~® /v, are, respectively, the dissociation constants of a dimer and of a
pair of stickers. c¢q1 and cgo are the concentrations of stickers of A and B types in dimers (so
ca1/L1 = caa/L,), and ¢y, is the concentration of independent bonds.
In the thermodynamic limit, F; will be minimized with respect to cq1, cq2 and ¢y, which implies

KacaaLi(c1 — car)™ ez = can)? "= (c1 = car — )" (€2 — car — )™, (7)

Ky, = (c1 — ca1 —ep)(c2 — cag — ). (8)

Note that if ¢, in Equation (7) and cq; and cgo in Equation (8) are set to zero, these equations
reduce to

Kapa = (p1 — pa)(p2 — pa)s 9

Kbe = (C] — Cb)(CZ — Cb), (10)

where p;, p2, and py are the total concentrations of A and B polymers and dimers (measured in poly-
meric units), that is, p1 =c1/L1, p2 =c2/L2, and pq =ca1 /L) = ca2/L>. Equations (9) and (10) are con-
sistent with the definitions of the dissociation constants of a dimer and of an independent bond,
respectively.

The free-energy density due to nonspecific interactions can in general be written as a power
expansion in the concentrations (Semenov and Rubinstein, 1998; De Gennes, 1979),

Fos 1 1
kBTZEIZjVijCiCj +6%I;Wijchj0k7 (11)
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Figure 6. A dimer-gel theory predicts the magic-ratio effect. Phase diagrams of (A) Ag:Bg and (B) Ag:B; systems:
one-phase region white, two-phase region green. The dilute- and dense-phase concentrations are connected by
representative tie lines. The tie line along the direction of equal polymer stoichiometry is denoted with a black
dot. Insets: fraction of stickers in dimers for (A) Ag:Bg and (B) Ag:B; systems. White curve in A inset is the transition
boundary between dimer- and independent bonds-dominated regions predicted by cs. Dashed white line in (B)
inset denotes equal polymer stoichiometry. Sticker concentrations in (C) dilute and (D) dense phases for systems
Ag:Bs 10 at global sticker stoichiometries 8:6-10. The total global sticker concentration is the same as in
simulations, 6.64 mM. For details see Appendix 2. Parameters: v, =9 x 1072mM ™!, w, =7 x 107> mM2,
Ky, = 3.8 x 107*mM, and K, values in Appendix 1—table 3.

where the sum is over all the species in the system, including free polymers/stickers, dimers and
independent bonds, and v; and wy; are two- and three-body interaction parameters. For our simula-
tion system, we derive a specific form of Fs by taking into account that (1) we are interested in the
strong-binding regime where the magic-ratio effect is observed, (2) there is no nonspecific interac-
tion between free polymers of different types in our simulation, and (3) nonspecific interactions are
only important at high concentrations. The result is

Fns Vb

= max(cn,e2) + a2’ (12)

where v, and wy, are the two- and three-body interaction parameters for a solution of independent
bonds. See Appendix 2 for details of the derivation.

Finally, substituting the conditions Equations (7) and (8) into Equation (6), we obtain the total
free-energy density F = Fy; + Fs + Fys,

F _a, a—ca c1—Ca1—Cp | Ca1
n——+cqln————+4—
ksT Ll eL, c1—cal Ly (13)
(&) —Cq2 —Cd2 — Cp Vb 2 Wh 3
2 +c1n —+cb +—max(c,¢;)” +—max(cy, ),
[Q eL Cy) —Cq2 2 6
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where cq1, cq2, and ¢, are the solutions of Equations (7) and (8). Equations (7), (8) and (13) form a
complete set which predicts the free-energy density of the two-component associative polymer sys-
tem at given total global sticker concentrations, ci and c;, of the two species.

Intuitively, in the strong-binding regime, that is when ¢y, ¢, > Ky, Ky, polymers either associate as
dimers or as independent bonds depending on their relative free energies. In the limit that dimers
are preferred (pqg = min(py, p2) and ¢, = 0), the contribution from specific interactions is

dim
s

kT

:pdand—i—(p—pd)lnp_epd—plng, (14)
where p=max(p;,p:) is the concentration of the majority species in polymeric units. The terms on
the right of Equation (14) reflect, respectively, the free-energy density due to dimer formation,
translational entropy of leftover polymers, and loss of translational entropy of the majority species
(in effect, the formation of each dimer removes the translation entropy of one free polymer). In the
opposite limit that independent bonds are preferred (¢, = min(cy,¢;) and pg =0),

ind

*—=c,InKp+(c—cp)In
kg

Cicb—clng (15)

where ¢ =max(c,c;), and the terms are analogous to those in Equation (14). Numerical studies
show that the full F(cy,c;) in Equation (6) is always well approximated by the lower of the two limit-
ing values of F; (Equation (14) and (15)).

In which regions of concentration space are dimers versus independent bonds preferred? For a
magic-number system composed of two polymer species of valence L at equal sticker stoichiometry,
FIm kT = pIn(Kqe/p) and F'/kpT = cIn(Kpe/c). Comparing the two expressions, dimers are
favored at low concentrations, whereas a network of independent bonds is favored at high concen-
trations. The transition occurs when Fim — Find that is at concentration ¢y = e(KE:/(KqL))"/*“".

Away from equal stoichiometry, the transition occurs at a lower concentration ¢, = co(s — 1)S_ls*“',
where s = max(cy, ¢2)/ min(cy, ¢2)>1 (see Appendix 2 for details). As ¢, decreases rapidly with increas-
ing s (Figure 6A inset, white curve), the preference for dimers over a gel exhibits a sharp peak
around equal stoichiometry.

To give a concrete example of the above analysis, we extract the values of K4 for dimers from
simulations, choose a value of K, for independent bonds close to the dissociation constant of a pair
of stickers (see Appendix 2 for details), and numerically solve Equation (7) and (8) for cq1, cq2, and ¢,
to find the fraction of stickers in dimers and independent bonds for all concentrations (c;,c;). We
find that indeed for polymers of equal valence, dimers are favored at low concentrations and inde-
pendent bonds at high concentrations. The dimer dominated region extends sharply to higher con-
centrations in a narrow zone around the diagonal, as quantitatively captured by c, (Figure 6A inset
and Appendix 2—figure 1A). For polymers of similar but unequal valence, the dimer dominated
region extends to higher concentrations along the direction of equal polymer stoichiometry
(Figure 6B inset and Appendix 2—figure 1B).

Finally, to extract the binodal phase boundaries, we substitute the values of cq;, cq2, and ¢, into
Equation (13) to first obtain the free energy as a function of ¢; and c,. The free-energy landscape
has two basins, one at small concentrations corresponding to the dilute dimer-dominated phase,
and one at high concentrations corresponding to the dense independent-bond-dominated gel-
phase (Appendix 2—figure 2). We locate the phase boundaries by applying convex-hull analysis to
this free-energy landscape (see Appendix 2).

Does the dimer-gel theory capture the magic-ratio effect revealed by our simulations? Figure 6A
and B show the phase diagrams of Ag:Bg and Ag:B; systems. In both cases, the phase boundaries on
the dilute side extend sharply into the two-phase region along the direction of equal polymer stoi-
chiometry (tie lines along this direction are denoted by black dots). Figure 6C and D show the
dilute- and dense-phase concentrations for systems Ag:Bg4.1¢ at global sticker stoichiometries 8:6-10.
Notably, the dilute-phase concentrations are substantially shifted up around the diagonal, verifying
the magic-ratio effect observed in simulations (Figure 5A).

One of the major assumptions of the dimer-gel theory is a mean-field approximation. Mean-field
theory ignores correlations in binding between stickers in the same chain, and therefore has been
applied to long chains in the weak binding regime (such that not every sticker is bound)
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(Prusty et al., 2018; Choi et al., 2020b). Our dimer-gel theory bypasses this stringent requirement
by explicitly assuming the dilute-phase components to be dimers, and only considers stickers to
associate independently in the dense phase. This approximation captures a key feature of the dense
phase, namely that a single polymer binds to multiple partners. Nevertheless, because stickers
belonging to the same polymer are tethered together with relatively short linkers in our simulations,
correlations in binding exist (Appendix 2—figure 5A). Therefore, what should be considered to be
‘independent’ is not individual stickers but rather segments of the binding correlation length (~1.8
stickers). The dense phase of a valence 14 system is thus more accurately described by the theory at
valence 14/1.8=8. We therefore present results for valence eight systems in Figure 6. (The theoreti-
cal phase diagrams and the dilute- and dense-phase concentrations for valence 14 systems also ver-
ify the magic-ratio effect (Appendix 2—figure 4)).

The dimer-gel theory has only a handful of parameters: the valences L and L, of polymers A and
B, the dissociation constants K4 and Kj, of dimers and independent bonds, and the nonspecific inter-
action parameters v, and wy,. How are the phase boundaries and the magic-ratio effects determined
collectively by these parameters? If valence is increased while keeping all other parameters fixed in
the theory, for equal valence polymers we find that the dilute-phase concentration decreases, while
the dense-phase concentration increases, and the peak with respect to stoichiometry is enhanced in
terms of the dilute-phase peak-to-valley ratio (Appendix 2—figure 6A and B). If valence is increased
for unequal valence polymers, we observe that the shape of the dilute phase boundary transitions
from a shoulder to a peak (Appendix 2—figure 6C and D). All these features are consistent with the
simulation results in Figure 4.

For the theory to agree quantitatively with the phase boundaries from simulations, we find that
smaller values of nonspecific interaction parameters are necessary for higher valence systems
(Appendix 2—figure 6C and D). Intuitively, this follows because higher valence polymers have more
backbone bonds, which bring bound sticker pairs closer together in the dense phase - effectively
reducing the nonspecific repulsion between them. Finally, the dimer-gel theory also predicts that the
magic-ratio effect disappears in the weak-binding regime (Appendix 2—figure 7), consistent with
our simulation results (Figure 3).

Discussion

Intracellular phase separation is driven by multivalent interactions between macromolecules. These
interactions are separated into two classes (Ditlev et al., 2018; Pak et al., 2016): (1) specific interac-
tions, such as binding between protein domains, are relatively strong and involve specific partners
and (2) nonspecific interactions, such as electrostatic and hydrophobic interactions, which are much
weaker, more generic, and non-saturable. Multivalent systems with specific interactions allow for
‘orthogonal’ condensates to form: the specific interactions holding together one class of droplets
will typically not interfere with those holding together another class. Motivated by the key role of
specific interactions in intracellular phase separation, we focused on exploring the effects of specific
interactions on the phase boundaries of two-component associative polymers. Specifically, we com-
bined coarse-grained molecular dynamics simulations and analytical theory to examine the individual
roles of valence, stoichiometry, and binding strength on the phase boundaries. In particular, we
identified a magic-ratio effect: for sufficiently strong binding, phase separation is strongly sup-
pressed at equal polymer stoichiometry.

The magic-ratio effect occurs exclusively in the strong-binding regime. Are specific protein-pro-
tein, protein-RNA, and RNA-RNA interactions strong enough to lead to the magic-ratio effect? The
onset of the effect in our simulations occurs around Uy = 9%kgT (Figure 3A), which corresponds to a
sticker-sticker dissociation constant K; = 0.4mM. This value is consistent with the onset K3 of 1-2.5
mM estimated from 3D lattice simulations with one polymer and one rigid component (Xu et al.,
2020). For comparison, the measured K4 for a SUMO protein domain with a SIM peptide is 0.01 mM
(Banani et al., 2016) and the K, for an SH3 domain and a PRM peptide is 0.35 mM (Li et al., 2012).
Thus for systems as strongly interacting as SUMO-SIM or SH3-PRM, the magic-ratio effect in princi-
ple should manifest in their phase diagrams. However, the magic-ratio effect has not been observed
in these systems (Li et al., 2012; Banani et al., 2016), possibly due to size and linker length mis-
match between the two associating polymers. Furthermore, real biological systems are more com-
plex than our simple model. For example, there can be multiple-to-one binding, multiple
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components, and the spacers/linkers can also play nontrivial roles (Banjade et al., 2015;
Harmon et al., 2017). Currently, the in vivo relevance of the effects explored in this work remains an
open question. Magic-ratio effects could also manifest in other experimental systems, such as non-
biological polymers, DNA origami (Hu and Niemeyer, 2019), or patchy colloid systems
(Bianchi et al., 2011). As an inverse problem, the magic-ratio effect could be exploited to determine
the relative valence of associating biomolecules by measuring their phase diagram.

The magic-ratio effect allows for novel mechanisms of regulation. Chemical modifications, such as
phosphorylation or SUMOQylation, which change the effective valence of one component into or out
of a magic-ratio condition could shift the phase boundary as a means of condensate regulation. Cells
may also have evolved to avoid magic ratios so as to better promote condensate formation. For
example, EPYC1 has valence five and Rubisco has valence eight, and the geometry of binding sites
on Rubisco and the length of linkers in EPYC1 are such that they disfavor fully-bonded Rubisco-
EPYC1 dimers even at equal polymer stoichiometry, which suppresses the magic-ratio effect
(He et al., 2020). However, active removal of a terminal EPYC1 binding site, for example by phos-
phorylation (Turkina et al., 2006), would dramatically change the valence ratio to 1:2, which would
then favor stable trimer formation, as previously suggested (Freeman Rosenzweig et al., 2017). We
hope that our work will stimulate exploration of magic-ratio effects in both natural and synthetic mul-
tivalent, multicomponent systems.

The simulations and theory presented here are aimed at providing conceptual insights into the
phase separation of associating polymers that form one-to-one specific bonds. Quantitative descrip-
tions of related real systems will likely require additional features, such as details of molecular shape
and flexibility, linker lengths, as well as range and type of interactions. For example, while the
magic-ratio effect is robust with respect to the strength of nonspecific interactions and linker length,
these variables do strongly influence phase boundaries. The dilute-phase concentrations in our simu-
lations are ~mM, while the reported values for biological systems are typically tens of uM or less.
The discrepancy is likely due to different strengths of nonspecific attraction, different length scales
of steric replusion between stickers, and/or different lengths and flexibilities of the linkers
(Bhandari et al., 2021). Indeed, increasing the nonspecific attraction in our simulations by a small
amount 0.07kgT leads to a 50% reduction in the dilute-phase concentration (Appendix 1—figure
4A). Reducing the steric repulsion between beads of the same type has a similar effect (Appen-
dix 1—figure 5A). More significantly, increasing the mean linker length from 4.7 nm to 5.9 nm leads
to a more than 10-fold reduction in the dilute-phase concentration (Appendix 1—figure 6A). On
the other hand, the dense-phase concentration strongly depends on the steric repulsion — increas-
ing the sticker size from 2.5 to 2.9 nm decreases the dense phase concentration by a factor of 2
(Appendix 1—figure 5B). This is consistent with results from previous studies on the role of linkers:
a self-avoiding random coil linker which occupies a large volume can substantially lower the dense-
phase concentration and even prevent phase separation (Harmon et al., 2017). Future work will
explore the interplay between specific and nonspecific interactions, and other molecular properties,
and their roles in determining the physical properties of droplets, such as surface tension, viscosity,
and rate of exchange between phases.
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Appendix 1

Modeling two-component multivalent associative polymers

We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to
simulate two-component multivalent associative polymers. Individual polymers are modeled as linear
chains of spherical particles connected by harmonic bonds (Appendix 1—figure 1A, type A polymer
in blue and type B polymer in yellow). Bonds are modeled using a harmonic potential (Appendix 1—

figure 1C, left)
Uy (r) = k(r—r,)?, (16)

where r, = 4.5 nm is the mean bond length, k=20ksT/r? is the bond stiffness, kg is the Boltzmann
constant, and T = 300 k is room temperature.

A
d=3nm
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Appendix 1—figure 1. Coarse-grained molecular-dynamics simulations of two-component multiva-
lent associative polymers. (A) Polymers are modeled as linear chains of spherical particles connected
by harmonic bonds. Depicted are Ag (blue) and Bg (yellow). (B) Snapshot of a dimer of Ag and Bg
formed in the strong-binding regime. (C) Neighboring stickers in a polymer are connected through a
harmonic potential (left). Stickers of the same type interact pairwisely through a repulsive potential
(middle). Stickers of different types interact pairwisely through an attractive potential (right). (D)
Interaction energy between three particles (one A and two B stickers) as a function of their
separation distances. Simultaneous binding of two B stickers to one A sticker is energetically highly
disfavored (lower left region) compared to one-to-one binding (dark blue regions).

Stickers of the same type interact through a softened, truncated Lennard-Jones potential (Appen-
dix 1—figure 1C, middle) "'See LAMMPS manual at https://lammps.sandia.gov/doc/Manual.html
for details about this potential.

Ur(r)4e/\{ {(1 —A)%(ﬁﬂ _2—[(1 —A)2+(£)6]_1}, r<re, (17)

where € =0.15kgT, A =0.68, o =3.5nm, and r. =5nm. These parameters effectively lead to a sticker
of diameter d ~3nm and a weak attractive tail of depth 0.06kgT. The weak attractive tail is employed
solely to promote a more compact dense condensate.

Stickers of different types interact through an attractive potential (Appendix 1—figure 1C, right)

U,(r) :—%UO(I—Q—COSW—), r<ry (18)

r
1o

where Uy = 14kgT is used in all simulations in the main text, except as indicated in Figure 3. The
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attraction cut-off distance is rp =2nm. Note that due to the strong repulsion between stickers of the
same type, simultaneous binding of two stickers of one type to a sticker of the other type is energet-
ically highly disfavored (Appendix 1—figure 1D). This ensures one-to-one binding of stickers of dif-
ferent types (Appendix 1—figure 1B). Across our simulations, on average the fraction of stickers
that have more than one partner is less than 0.001%.

Phase equilibration and data recording

Each system consists of ny and n, polymers of types A and B, respectively. The number of polymers
are determined by their valences/lengths (L; and L) and global A:B sticker stoichiometry (s) through

N.

n; =round (m) , (19
N

ny =round (147(1 n s)> . (20)

The round function is used as we can only simulate an integer number of polymers. For all simula-
tions except those in Figure 5 in the main text, we use N =2500, so the total number of stickers is
around 2500.

Simulations are equilibrated using a Langevin thermostat in the NVT ensemble at T = 300 K in a
box of size 250 nmx50 nmx50 nm with periodic boundary conditions, that is the system evolves
according to Langevin, 1908:

a*; dr; L 4
m—s :f'yEngU(rl,...,rN)Jrf. (21)

where 7 is the coordinate of particle i, m is its mass, vy is the friction coefficient,f is random thermal
noise, and the energy U(#,...,7y) contains all interactions between particles, including harmonic
bonds, nonspecific, and specific interactions (Equations (16-18)).

To promote phase equilibrium and ensure that only a single dense condensate is formed, we first
initialize the simulation by confining polymers in the region —50 nm<x<50nm. The attractive interac-
tion between A and B stickers (Equations (18)) is gradually switched on from Uy = 0 to 14 over 108
time steps. The Langevin thermostat is applied using a damping factor 7 = m/y = 125 ns, step size
dt =2.5ns, and mass of particle m=3534.3 ag during this time period. These parameters give the
particle the right diffusion coefficient D = kgT/(37md) for times longer than 7, where 7 is the water
viscosity 0.001 kg/m/s and d the diameter of the particle. This annealing procedure leads to the for-
mation of a dense phase close to its equilibrated concentration. The confinement is then removed,
and the system is equilibrated for 10% more time steps to allow the formation of dilute phase and
relaxation of the dense phase. After these procedures, we switch to smaller t=10 ns, dt=0.5 ns, and
m=282.7 ag for data recording (D remains the same). The system is relaxed for another 10° steps.
The relaxation time of the system depends on the sticker-sticker bond lifetime; to ensure that the
dilute and dense phases are in equilibrium, the above choice of relaxation time before recording cor-
responds to ~2000 bond lifetimes. We then recorded the positions of all particles every 10° steps for
400 recordings. For each choice of valence and stoichiometry, we performed 10 simulation replicates
with different random seeds. We also checked whether there are systematic deviations between the
first and second halves of the recorded simulations, and found consistent results between the two
halves.

To test the effect of finite size on the phase boundaries, simulations in Figure 5 in the main text
are performed with N = 5000 and a box of size 315 nmx63 nmx63 nm, that is both total number of
stickers and box volume are doubled while the total global sticker concentration remains the same
(6.64 mM). Procedures for equilibration and data recording are the same (including the initial con-
finement region) except systems are relaxed for 5 x 10® steps at df = 0.5ns before recording, as the
larger system requires a longer relaxation time.
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Determining the phase boundaries

To determine the phase boundaries, we need to obtain the concentrations in the dilute and dense
phases. The data we recorded for each system contains 4000 snapshots of polymer configurations
(10 replicates and 400 time points each). To measure concentrations, we first group polymers into
clusters in each snapshot. Connected stickers are grouped into one cluster: two stickers of the same
type are connected if they are neighbors in the same polymer, and two stickers of different types
are connected if they are within the attraction distance ro = 2 nm. In most of our simulations, in each
snapshot, we observe one large cluster which contains most of polymers, and a few to tens of very
small clusters (Appendix 1—figure 2). There is a clear gap between the sizes of these large and
small clusters. We define the large cluster as the dense phase, and the smaller clusters as constitu-
ents of the dilute phase. In cases where the separation between the dense and dilute phases is
unclear, we discard the data set. Appendix 1—figure 2 shows the size distribution of clusters
pooled over all snapshots. Appendix 1—table 1 lists all the dilute-phase components and their total
sticker percentages in the Aq4:Bq4 system at global sticker stoichiometry 1.21.
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Appendix 1—figure 2. Histograms of cluster size in stickers in (A-L) A14:Bs_.14 systems at equal
global sticker stoichiometry. Parameters: specific binding strength U, = 14kgT and total global
sticker concentration 6.64 mM. Red dots indicate the dominant oligomer in the dilute phase.

Appendix 1—table 1. List of all dilute-phase components and sticker percentages for Aq4:B14
system at global sticker stoichiometry 1.21.

Comp 1Ay 1A1g#1B1s  2A14+1B1s  2A10#2Bys  3A4+2B1s  4A14+3Bys  5Aq4+3Bis
frac  010%  37.0%  7.67%  038%  191%  166%  038%

comp  5Awt4Bra  6A14t4Brs  GAw+SBra  TA1g45Bis 8Awt6Bra 10Aw+7Bra  17Aws+13B1s
frac 10.8% 0.85% 0.42% 0.80% 3.45% 0.48% 1.99%

To find the dilute- and dense-phase concentrations, we calculate the center of mass of the dense
cluster for each snapshot, and recenter the simulation box to this center of mass. We then compute
the sticker concentration histogram along the x axis with a bin size 1/50 of box length. The resulting
concentration profile has high values in the middle corresponding to the dense-phase concentration,
and low values on the two sides corresponding to the dilute-phase concentration. The dilute- and
dense-phase concentrations are calculated by averaging the concentration profile over the regions
(x < —=100nm or x > 100nm) and (—10nm < x < 10nm), respectively.
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Testing the effect of finite simulation size on the phase boundaries

To test the effect of finite size on the phase boundaries, we compare the dilute- and dense-phase
concentrations of systems with N = 2500 to systems with N = 5000 (Appendix 1—table 2). The sys-
tems being compared have the same valence, stoichiometry, and total sticker concentration. Simula-
tions with different total numbers of particles show consistent results, suggesting the effect of finite
size is minor.

Appendix 1—table 2. Comparison of dilute- and dense-phase concentrations for systems with
different total numbers of particles.

Valence (Stoichiometry) A14:B1g (14:14) Aq4:B13 (14:14) Aq4:By3 (14:13)
cai (mM) for N = 2500 0.50 + 0.06 0.08 + 0.02 0.39 + 0.02

cai (mM) for N = 5000 0.45 + 0.03 0.12 £ 0.02 0.34 + 0.03

cai (mM) for N = 2500 28.0+0.2 27.76 +0.09 25.80 + 0.08
Caen (MM) for N = 5000 27.930.05 27.82+0.06 25.82+0.06

Determining the percolation threshold

Phase transitions in associative polymeric systems can be thought as phase separation aided percola-
tion, that is, the dense phase of an associative polymer system is a percolating network
Semenov and Rubinstein, 1998; Harmon et al., 2017; Choi et al., 2020a. What would be the per-
colation threshold in our associative polymer system if the density remained homogeneous? To
answer this question, we determined the percolation threshold of an Ag:Bg system at a weak binding
strength Uy = 8kgT, which avoids phase separation. Briefly, for a given sticker concentration (ca,cg),
we perform one simulation at Uy = 8kgT and analyze the size of clusters for all snapshots recorded
after the system equilibrates. We judge whether polymers are in a sol- or gel-state based on the fol-
lowing gelation criterions: First, for each snapshot if the largest cluster contains more than 70% of
the stickers and the second largest cluster contains less than 10% of the stickers in the system, we
label this snapshot as having a percolating cluster. Second, for a given system if more than 50% of
snapshots have a percolating cluster, we label this (ca,cg) point as a ‘gel’ state. The systems do not
meet the gelation criterions are labeled as a ‘sol’ state (Appendix 1T—figure 3). It is clear that the
dilute/dense phases of the Ag:Bg system formed at a strong binding strength Uy = 14kgT are in a
sol-/gel-state. By inspection, the same clear dichotomy applies to the other systems we simulated.

[ ] Two-phase region

8 RS [ 1 One-phase region
Y./ 1| e Phase boundaries
A S Sol state
"""""""""" ¢ Gel state

----- Percolation threshold

|/

1 2 4 8
Sticker A concentration (mM)

Sticker B concentration (mM)

Appendix 1—figure 3. Phase diagram and percolation threshold of Ag:Bg system. Phase boundaries
(red dots) are measured from MD simulations at Uy = 14kgT. The complete two-phase region
(green) and one-phase region (white) are extrapolated based on the phase boundaries from
simulations. Sol- (gray dots) and gel- (black dots) states from simulations at Uy = 8kgT where the
system remains homogeneous are identified based on the gelation criterions. Percolation threshold
(dashed line) is interpolated from the labeled sol- and gel-states.
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Measuring the dissociation constants

The phase boundaries of associative polymers from theory are very sensitive to model parameters.
Here, we extract the dimer and sticker dissociation constants K4 and K}, from simulations. These val-
ues are then utilized in the dimer-gel theory to obtain the free-energy density landscape and predict
the phase boundaries. Our simulations are performed in the strong binding regime. At our chosen
binding strength of Uy = 14kg7, the long lifetime of each bond means that dimers of valence >4
never dissociate in our simulations. This prevents us from directly extracting the dimer dissociation
constants for long polymers. We therefore use a reweighting method Frenkel and Smit, 2001 to
obtain the dissociation constant for these dimers.

Briefly, we perform simulations with 1 polymer of type A and 1 polymer of type B of valences L,
and L, in a cubic box of side 20L; nm with periodic boundary conditions. The systems are equili-
brated using a Langevin thermostat in the NVT ensemble, all the parameters are the same as the
ones used for recording the data, except here we use Uy = 7kgT which is half of the original value, in
order to allow dimers to dissociate.

Theoretically, the dissociation constant of a dimer is defined as:

,BU AT ~A) BU _____ +B *BU. A A B 7B —A =B B
1 Ju<0€ ATy BV Tly) g PUNR( T2 )d cdR iy dF
Kd - BUA(F 7)) —BUR(E,. 7)) = A - ) (22)
f e PO ) gTREB Y Ty dr{*...drﬁdr?...,drg
where 8= 1/kgT, and (F,. rL ) and (77,...,7}) are the coordinates of stickers in polymers A and

B. Ua(Ugp) contain all interactions within the polymer A(B), including bond potentials U, (Equa-
tions (16)) and nonspecific interactions U, (Equations (17)). Uap contains all the specific interactions
between polymers A and B, that is the sum of U,s (Equations (18)). Integration is over the entire vol-
ume V. In the numerator, the integration is further confined to the region where Uxp<0. Note that
for a dissociated dimer Uy = 0.

To link the simulation with the definition of K, we define three variables in the simulation:

wi =Py =1 w3 =e PP if Eyp<0; (23)
W1:W2:W3:07 ifEAB:O7
where Exp = Uap(#, ... ,?f‘l,?’f‘, ,70)- We then have,
1 (Uo=0kpT) = //wle BUse=BUn e BUs gpt  dFd diy ... dFp = C{wi), (24)
Ky'(Up=TksT) = / / wye PUre BUse BUM gk | d7) dFy ... diy = Clws), (25)
1 (Up =14kpT) = //W3e BUx g=BUn =BUss g .d?ﬁd?']lg.,.,d?'i =C(ws), (26)

where (wy), (w2), and (ws3) are the mean values of wy, wy, and w3 obtained by averaging over a simu-
lation with Uy = 7kgT. C and C are constants and are the same in all three equations. Therefore,

Kd(Uo = OkBT) <W1> =Kd(UO = 7k]3T)<W2> :Kd(U() = 14kBT) <W3>. (27)

On the other hand, it can be shown that the binding probability (w,) for Uy =T7kgT is

ffwze BUx g=BUs g~ EU*Bd .d?Ad?B.. dr 1
(W) = L L . (28)
[[ e BUre~BUse~BUss g7t ...d?ﬁd??.. A 1+ Ka(Uo=T7)(V—K;'(Uy=0))
Combining Equations (27) and (28), we have
14 (wi) — (w2)
K. =0kpT) =————~————~~ 29
a(Uo = 0kgT) W)V , 29
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L+ (wi) = (w2)

Kq(Uy =TkgT) = wa)V ,

(30)

L+ (wy) — <W2>4

K4(Uo = 14ksT) = Y

31

Appendix 1—table 3 shows a list of dissociation constants from simulations. The reweighting
method provides very accurate sticker-sticker and dimer-dimer dissociation constants, as confirmed
by comparing with theory and direct simulations for stickers and polymers of length L =2. The disso-

ciation constants obtained by the reweighting method are used in the dimer-gel theory to predict
the phase boundaries (Appendix 2).

Appendix 1—table 3. List of dissociation constants from simulations.

Aq:Bq (1) A4:Bq (d) Aq:Bq (r) A2:B; (d) A2:B; (r)
Ka(Up = 0kgT) (mM) 49.6 * 48.9 * 12.4
Ka(Up = TkgT) (mM) 1.88 * 1.90 * 0.31
Ka(Up = 14kgT) (mM) 57e-3 5.9e-3 5.8e-3 7.7e-6 7.1e-6
As:B3 (r) As:By4 () As:Bs (1) Ag:Bg (r)
Ka(Up = OkgT) (mM) 4.32 3.29 1.81 1.52
Ka(Up = TkgT) (mM) 4.5e-2 2.2e-2 4.3e-3 2.2e-3
Ka(Uy = 14kpT) (mM) 3.77e-9 1.38e-11 6.95e-15 3.00e-17
Ag:Bg (r) Ag:B7 (1) Ag:Bg (1) Ag:Bo (1) Ag:Big (1)
Ka(Up = 0kgT) (mM) 1.15 1.01 0.90 0.79 0.73
Ka(Up = TkgT) (mM) 9.0e-4 4.5e-4 2.5e-4 1.5e-4 1.0e-4
Ka(Uy = 14kgT) (mM) 4.22e-18 1.26e-20 7.07e-23 1.77e-23 7.59e-24
Aq4:Bio (1) Aq4:Bi3 () Aq4:Bia () A14:B1s () A14:Big ()
Ka(Up = 0kpT) (mM) 0.37 0.32 0.30 0.32 0.27
Ka(Up = TkgT) (mM) 1.4e-6 6.7e-7 3.8e-7 2.6e-7 1.5e-7
Ka(Up = 14kpT) (mM) 2.74e-35 1.08e-37 8.85e-40 1.80e-40 5.16e-41

*footnotetext: () theoretical value, (9 direct simulation, and ®) reweighting method.

Effects of nonspecific interactions and linker length

In the main text, we focused on the effects of binding strength, sticker stoichiometry, and polymer
valences on the phase boundaries of two-component systems. Here, we explore the effects of non-
specific interactions and linker length. Increasing the nonspecific attraction between stickers of same
type leads to decreased/increased dilute-/dense-phase concentrations (Appendix 1—figure 4). The
additional attractive interaction is modeled by a cosine-squared potential

—€, r<o,
U(r) =4 —ccos(20=2)", o< r< (32)
€Cos\ 305y ) » T ST<Ie,
0, r>r..
A B
0.8 +€=0kgT 35 A14:Bis
_ +€=0.07kgT s
=
£ 0.6 £330
2] o
§ 0.4 é 25
2 2
N NANTEE
a a
0
6:8 7:8 88 87 8:6 6:8 78 88 87 8:6
A:B sticker conc. ratio A:B sticker conc. ratio

Appendix 1—figure 4. Strength of nonspecific attractive interactions strongly influences simulated
Appendix 1—figure 4 continued on next page
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Appendix 1—figure 4 continued

dilute-phase boundary. Total sticker concentrations in (A) dilute and (B) dense phases for A;4:B4
system at different global sticker stoichiometries with the additional attractive interaction strength
€ = 0kgT (blue) and ¢ = 0.07kgT (red) (¢ = 3.5nm and r. = 5nm in Equation (32)). Parameters:
specific interaction strength Uy = 14kgT, total global sticker concentration 6.64 mM.

The cosine-squared potential is applied together with the softened, truncated Lennard-Jones poten-
tial (Equation (17)). Similarly, reducing the range of repulsion between stickers of the same type
leads to decreased/increased dilute-/dense-phase concentrations (Appendix 1—figure 5). Here, the
repulsive interaction potential between same type of stickers is replaced by the standard repulsive
Lennard-Jones potential
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Appendix 1—figure 5. Range of nonspecific repulsive interactions strongly influences phase bound-
aries in simulations. Sticker concentrations in (A) dilute and (B) dense phases and (C) volume fraction
of polymers in dense phase for Ag:Bg system at different global sticker stoichiometries with standard
repulsive Lennard-Jones potential (Equation (33)) 6 = 2.9 nm (blue) and 6 = 2.5 nm (red).
Parameters: repulsive interaction strength ¢ = 1kgT, specific interaction strength Uy = 12kgT with
cut-off distance ro = 1.5 nm, and total global sticker concentration is 6.64 mM. Note that the
overlapping volume between two bound stickers is counted once in the volume fraction calculation,
that is, two perfectly overlapping stickers only occupy a volume of one sticker.

The phase boundaries are also sensitive to the linker length. Here, we model the repulsive inter-

actions between same type stickers by Equation (33), the bond between stickers by an expanded
FENE potential

1
Uy(r) = fiKRé In

2
1— <’_") } r<o+Ry, (34)
Ry

and attraction between different types of stickers by Equation (18). Increasing of mean bond length
from 4.7 to 5.9 nm leads to a decrease of the dilute-phase concentration by more than a factor of 10
(Appendix 1—figure 6).
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Appendix 1—figure é continued on next page
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Appendix 1—figure é continued

Appendix 1—figure 6. Linker length strongly influences phase boundaries in simulations. Sticker
concentrations in (A) dilute and (B) dense phases for Ag:Bg system at different global sticker
stoichiometries with linkers modeled by a FENE potential (Equation (34)) with K = 0.3k3T and

Ro = 7 nm (mean linker length 4.7 nm, blue) and K = 0.15kgT and Ry = 14 nm (mean linker length 5.9
nm, red). Parameters: repulsive interaction strength e = 1kgT and length scale o = 3 nm, specific
interaction strength Uy = 12kgT with cut-off distance ro = 1.5 nm, and total global sticker
concentration 6.64 mM.
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Appendix 2

Derivation of free-energy density for nonspecific interactions

The free-energy density due to nonspecific interactions can be written as a power expansion in the
concentrations Semenov and Rubinstein, 1998; De Gennes, 1979,

Fos 1 1
an; = EZV,‘jC,‘Cj +6;wijkcicjck, (35)
y g

where the sum is over all the species in the system, including free polymers/stickers, dimers and
independent bonds, and v; and wy are two- and three-body interaction parameters.

In the strong-binding regime where the magic-ratio effect is observed, bound stickers strongly
overlap, so the size of a bound pair is almost that of a free sticker. For simplicity, we therefore
assume the interactions between dimers to be the same as between free polymers of the same type
(denoted as vq and wg), and the interactions between independent bonds to be the same as
between free stickers of the same type (denoted as v, and wy,). When independent bonds are pre-
ferred (i.e. when pq=0), the free-energy density for nonspecific interactions is

ind
F ns __

Vb

=5 (c1 —ep)? + (c2 —ep)? +2(c1 — ev)en +2(ca — ey + c%} +
(36)

Wh 3

o [(61 —ap)’ +(c2—eu)’ +3(cr —ev)’en +3(c1 —ev)ep +3(c2 —ev)’en +3(c2 — cv)ep + cf,} ;

where ¢, cp, and ¢, are the total concentrations of polymer A, B, and independent bonds in sticker

units. ¢; —cp, and ¢; — ¢, are therefore the concentrations of free sticker A and B. Note that in our

simulations, there is no nonspecific interaction between free polymers of different types. Therefore,

all v and w terms involving different free species are 0. Equation (36) simplifies to

R V] w

0 (G rd )+ 2 (G + ) @
Similarly, when dimers are preferred (i.e. when ¢,=0), the free-energy density for nonspecific

interactions is

Fdim

s _Ydeo o o
kpT 2 (P] +P2 pd) +

wdq

o (Pl +0 =), (38)

where p;, py, and pq are the total concentrations of polymer A, B, and dimers in polymeric units.
As nonspecific interactions are only important at high concentrations, we simply set F,, = Fid.
Further, in the strong-binding regime, ¢, = min(cy, ¢;), so
Fns Vb

kBT:EmaX(C]’Cz)Z +%max(cl,cz)3. (39)

Determining model parameters

The developed dimer-gel theory has only four parameters for a given system A 1:B|,: the dissocia-
tion constants of dimers and independent bonds K4 and Kj,, and the nonspecific interaction parame-
ters v, and wy. The four parameters together determine the competitiveness of the dilute dimer-
phase with the dense gel-phase.

We have extracted the values of K4 from simulations (Appendix 1—table 3). Physically, we
expect K;, to be close to the sticker-sticker dissociation constant 5.7uM (Appendix 1—table 3). It is
not exactly the same because the bonds in the condensate are tethered by the backbones of the
polymers. We expect the nonspecific interaction parameters to be approximately v, = 2B, and
wy, = 3Bz, where B, and Bz are the second and third virial coefficients Katsura, 1959: v, =
6.8 x 1072mM ! and w}, = 2.2 x 10>mM 2 for hard spheres of diameter 3 nm (the size of a sticker in
the simulations), respectively.
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The predicted phase boundaries are sensitive to these parameters. We thus tune Kj, v,, and wy,
around their estimated values to match the dilute- and dense-phase concentrations of the Ag:Bg sys-
tem from simulation. Specifically, we vyield K, =3.8x 107°mM, v, =9 x102mM~!, and
wy, =7 x 107>mM~2. These parameters are used for Ag:Bs.10 systems. Further discussions on how
model parameters affect phase boundaries can be found in later sections.

Derivation of the transition concentration c,

In the strong-binding regime, the free-energy density contributions from specific interactions in the
dimer-dominated and independent bond-dominated limit are, respectively,
.
F: m

‘ pi—p- p
T =p_-InK4+ (ps —p,)anrT—puln%, (40)

ind

k];T =c_InK,+ (cy —c_)In

Cy —

- —cy lnc—Jr7 (41)
e

where p; =max(ci/Li,c2/Ly), p— =min(c1/Li,c2/Lz), ci =max(cy,c;), and c¢_ =min(cy,c;). Equa-
tions (40) and (41) are the same as Equations (14) and (15).

At given (c1,¢p), whether the system will form dimers or independent bonds depends on their rel-
ative free energies. For equal valence polymers L, = L, = L, letting ¢, = sc_, Equations (40) and
(41) become

dim _1y-]
FS —p_ 1n (S 1) eKd ’ (42)
kgT sSp_

F;“di | (s—l)sileKb

T c_In o (43)

Comparing the two expressions, dimers are favored at low concentrations (F;ﬁ"‘<F;“d), and inde-
pendent bonds are favored at high concentrations (F"<Fdm). The transition occurs when
Fdim — pind je at the concentrations c_(s)=cy(s—1)""'s™* and correspondingly c; (s) = cos(s —
1)"'s™ where ¢, :e(Kﬁ/(KdL))l/(L_”. The boundary between dimer- and independent bond-domi-
nated regions is described by (¢ (s),c_(s)) and (c_(s),c+(s)), respectively, in the lower and upper
halves of the (c1,¢;) plane (Appendix 2—figure 1A, white curve).

Solving reaction Equations (7) and (8)

The high powers in Equation (7) and the small value of Ky make it difficult to find numerical solu-
tions of ¢q and ¢}, accurately. To overcome this difficulty, we define a variable A = ¢; — ¢q1 — ¢;, when
p1<pr and A =c, —cq2 —c, wWhen p;>p,, and rewrite Equations (7) and (8) in terms of A.
Specifically,

e =A(coly — ¢1Ly +ALo) [KyLy +A(Ly —Ly)] ",
cq1=cC1 —A =y, (44)
KaLp(cr — e, =) (14+AK D)2 A 4 ep)" ' = Kpepalt !

for py < p2, and

¢ =A(c1La — caLy +ALy) [KyLy +A (L — Ly)]
Ca2=0Cr—A —cp, (45)
KdLl (62 —Cp — A)(l +)\K}:1)Ll ! (/\ + Cb)L271 = Kbcb/\bZ71

for p1>p,. We then solve Equations (44) and (45) using the MatLab function vpasolve with the con-
straints 0<A<c; and 0<A<c,, respectively. vpasolve provides all solutions within the specified range.
When multiple solutions coexist, we take the one with the lowest F;. Numerical solutions of pq and
¢y, for Ag:Bg and Ag:B; systems are shown in Appendix 2-figure 1, where the fraction of stickers in
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dimers is defined as pq/min(p;,p2) and fraction of stickers in independent bonds is defined as
¢p/min(cy, ¢a).
Fraction of stickers in dimers Fraction of stickers in indep. bonds

1 B 1
[l AsBs 10 AVH=H

¢z (mM)
c (MM)

1

¢z (mM)
¢z (mM)

10

5
¢y (mM)

5
¢y (mM)

Appendix 2—figure 1. Fraction of stickers in dimers (A) and in independent bonds (B) for Ag:Bg sys-
tem. White curve in (A) is the transition boundary between dimer- and independent bonds-
dominated regions predicted by ¢y (s) and ¢_(s). Fraction of stickers in dimers (C) and in
independent bonds (D) for Ag:B; system. Dashed white line denotes equal polymer stoichiometry.

Determining phase boundaries and tie lines

We obtain the free-energy landscape by substituting the numerical solutions of pq and ¢, into Equa-
tion (13) (Appendix 2-figure 2). We locate the phase boundaries by applying convex-hull analysis
to this free-energy landscape using the MatLab function convhull (Figure 6A and B).

B

4 10

4
3

3
2 5

2
1 / 1
o o al,

0 5 10
¢4 (mM)

Appendix 2—figure 2. Free-energy density as a function of global sticker concentrations (¢, ¢;) for
(A) Ag:Bg and (B) Ag:B; systems. White curves highlight the basins in the dilute dimer-dominated and
dense gel-dominated regions.

o

cz (mM)

To find the tie line going through a given initial concentration point (cl, ¢}*), we adopt a modified
vector method Marcilla Gomis, 2011. We first draw a line though this point along a direction
defined by an angle «, and then find the crossing points between this line and the phase boundaries,
that is (c{, cf) and (cfe8, cden). The ‘true’ « is the one that minimizes the free-energy density of mix-
ing pF (¢t i) + (1 — p)F(cd®, cd°m), where p = rde® /(3! 4 r41) is the volume fraction of dilute phase
and 1 — p is the volume fraction of dense phase, and 4! and " are the distances between the point
(¢, ) and the two points (¢, cd) and (¢, c§°r), respectively.

In order to compare with the simulated dilute- and dense-phase concentrations, we use the initial
concentrations from simulations for the specified system at given stoichiometry s: ¢; = ¢is/(1 + )
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and ¢; = ¢;/(1 + s5), where the total sticker concentration is ¢; = 6.64 mM. We then find the tie line
going through this initial concentration point and the corresponding (¢, c) and (cd®, cder). For
simplicity, we show the total dilute- and dense-phase concentrations ¢!l = ¢! + ¢! and i =
cfen + ¢den in Figure 6C and D.

A simple approximation for the free-energy density F

Finding the numerical solutions of Equations (7) and (8) becomes difficult with increasing valence.
From the full solutions of ¢y and ¢, (Appendix 2-figure 1), we see that in the dimer-dominated
region ¢y, is almost 0, and in the independent bond-dominated region ¢4 is almost 0. Therefore, we
can approximate the free-energy density as the lower value of the two limiting cases

F = Fy +min(Fi™ ) 4 p (46)
where
dim _ —
ks :pdand-i‘Ple@-F(pl —Pd)lnpl pd+(ﬁ2 —Pd)lnu—Pz ln&—Pl IH&, (47)
B e e e e e
F i“d ch c1—c¢h C)—Ch Cy 2
=, InKy, +epIn—+(c; —cp)In +(c2—cp)ln —ciln——cln—, (48)
kgT e e e
and
1 2
pa=75 p1+pz+Kd—\/(P1+Pz+Kd) —4p1p2|, (49)
1 2
=3 C1+02+Kb*\/(C1+C2+Kb) —dcica|, (50)

are solutions of Equations (9) and (10). Equation (46) provides a very good approximation to the
full expression for F (Equation (13)). The phase diagrams derived from Equation (13) and (46) are
almost identical for Aq4:B14 (Appendix 2-figure 3). Results in Appendix 2-figure 4 are obtained
with this approximation (Equations (46-50)) as there are difficulties solving Equations (7) and (8)
numerically for A;4:B12.14 systems due to their high valences.

A4:Byy A14:Byg

¢, (mM)
cy (MM)

Eq.(13) 4| Ea.(13)
0 —Eq.(46) 107F —Eq.(46)
0 5 10 15 103 10" 10"
¢4 (mM) ¢4 (mM)

Appendix 2—figure 3. Comparison of phase diagrams derived from the full expression for F (Equa-
tion (13)) and the approximate expression (Equation (46)) shown on a (A) linear and (B) log scale for
A14:B14 system.
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Appendix 2—figure 4. A dimer-gel theory predicts the magic-ratio effect. Phase diagrams of (A)
A14:B14 and (B) A14:B13 systems: one-phase region white, two-phase region green. The dilute- and
dense-phase concentrations are connected by representative tie lines. The tie line along the
direction of equal polymer stoichiometry is denoted with a black dot. Inset: enlarged dilute-phase
boundaries. Sticker concentrations in (C) dilute and (D) dense phases for systems A14:B12.14 at global
sticker stoichiometries 14:12-16 and total sticker concentration 6.64 mM. Parameters:

v, =7 x 1072mM™!, wy, =5 x 1073 mM~2, K, = 3.8 x 10~>mM, and K in Appendix 1—table 3.

Correlated binding in the dense phase

In the dimer-gel theory, we assume that stickers of different types can associate independently in
the dense phase. However, as stickers belonging to the same polymer are tethered together, neigh-
boring stickers in one polymer are more likely to bind to neighboring stickers in another polymer,
that is there are correlations in binding. To quantify this correlation, we first identify consecutive seg-
ments in a polymer that bind to consecutive segments in another polymer. (For example, if in poly-
mer 1 of type A, stickers 1, 2, 3, and 4 bind to stickers 2, 4, 3, and 5 of one polymer of type B,
sticker 5 binds to sticker 8 of a second polymer of type B, and stickers 6, 7, and 8 bind to stickers 1,
2, and 3 of a third polymer of type B, then there are three individual segments in polymer 1 of type
A with lengths 4, 1, and 3.) Clearly, what should be considered to be ‘independent’ are not individ-
ual stickers but rather these consecutively bound segments. To quantify the length of these seg-
ments, we measure the probability p(I) that a bound sticker is in a segment of length I
Appendix 2—figure 5 shows the probability distribution p(I) for simulated Ag:Bg and A14:B14 sys-
tems at equal stoichiometry. The mean length of ‘independent’ segments is 1.8 for both cases.
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Appendix 2—figure 5. Binding between stickers of different types in the dense phase is correlated.
Probability distribution p(/) for finding a bound sticker to be in a consecutively bound segment of
length /in the dense phase of Ag:Bg and A14:Bq4 systems at equal stoichiometry.

Effects of model parameters on phase boundaries

The dimer-gel theory has only a handful of parameters: the valences Ly and L, of polymers A and B,
the dissociation constants K4 and Kj, of dimers and independent bonds, and the nonspecific interac-
tion parameters v, and wy,. These parameters together determine the competitiveness of the dilute
dimer-phase with the dense gel-phase. We first fix K, = 3.8 x 107>mM, v, = 9 x 10~ >mM ™!, and w}, =
7 x 103mM~? (see previous section Determining Model Parameters for how these parameters are
derived, and note that the values of K, are taken directly from simulations [Appendix 1—table 3)),
and explore the dependence of phase boundaries on the valences L;, L, and on the stoichiometry.

Appendix 2-figure 6A and B show phase diagrams and dilute-phase concentrations for A4:B, to
Aq4:Bqy systems. For these equal valence systems, the dilute-/dense-phase concentrations
decreases/increases with increasing valence, and the magic-ratio effect with respect to stoichiometry
is enhanced with increasing valence in terms of dilute-phase peak-to-valley ratio. Appendix 2—figure
6C and D show phase diagrams and dilute-phase concentrations for A4:B3 to A;4:B43 systems. Note
that the shape of the dilute phase boundary transitions from a shoulder to a peak with increasing
valence. All these features are consistent with the simulation results in Figure 4. Appendix 2-figure
7B shows the dilute-phase concentrations for Ag:B,.1o systems at equal sticker stoichiometry. The
dilute-phase concentration is sharply peaked at Ag:Bg, consistent with the simulation results in
Figure 3.
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Appendix 2—figure 6. Effects of model parameters on the phase boundaries in the strong-binding
regime. (A) Phase diagrams and (B) dilute-phase concentrations at different global stoichiometries
for A4:B4 to Aq4:B14 systems. (C) Phase diagrams and (D) dilute-phase concentrations at different
global stoichiometries for A4:B3 to Aq4:Bq3 systems. Black dots indicate equal polymer
stoichiometries. Parameters: K;, = 3.8 x 1073mM, values of K, in Appendix 1—table 3 for binding
strength Uy = 14kgT, v, = 9 x 107 2mM~! and wy, = 7 x 10->*mM~2 for all systems except for A;4:B14+
and A14:B13+ where v, = 7 x 107 2mM ™! and wy, = 5 x 107> mM~2. Total global sticker concentration

6.64 mM.
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Appendix 2—figure 7. The magic-ratio effect disappears in the weak-binding regime. (A) Phase
diagrams for Ag:Bg system with different binding strengths Uy = 7kgT (gray) and Uy = 14kgT (black).
(B) Dilute-phase concentrations for Ag:B,.19 systems at equal global sticker stoichiometry with
different binding strengths Uy = 7ksT (gray) and Uy = 14kgT (black). Parameters: K;, = 1.88 mM for
Up = TkgT, Ky, = 3.8 x 1073mM for Uy = 14kgT, values of K, in Appendix 1—table 3,

vy, =9 x 10~2mM~!, and wy, = 7 x 107> mM 2. Total global sticker concentration 6.64 mM.

However, the dilute-phase concentration of A14:B14 does not quantitatively agree with simulation
results (Appendix 2-figure 6B vs. Figure 4A). Also, the dilute-phase concentrations for unequal
valence systems do not decrease with increasing valence (Appendix 2-figure 6D vs. Figure 4C).
What is the origin of these discrepancies? Intuitively, the dense phase properties are determined by
Ky, vu, and, wy,. Using the same values of these parameters for systems with different valences means
that we are treating the dense phases of these systems as exactly equivalent. However, there are
more polymer backbone bonds in higher valence systems. These backbone bonds, from a mean-field
point of view, act like attractive potentials between stickers, which effectively reduces the
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nonspecific repulsion between stickers. Therefore, the dense phases of higher valence systems are
energetically favored, and we expect correspondingly lower values of v, and w, for valence 14 sys-
tems compared to valence 8 systems. Indeed, we find that somewhat smaller nonspecific interaction
parameters, v, =7 x 1072mM~! and w, =5 x 1073mM 2, lead to quantitative agreement of the
dilute- and dense-phase boundaries for A14:B14 and A4:Bq3 systems with the simulation results
(Appendix 2-figure 6B and D, curves labeled with *, compared to Figure 4A and C). We thus use
these parameters for A14:B12.14 systems in Appendix 2-figure 4.

Finally, the dimer-gel theory also predicts that the magic-ratio effect disappears in the weak-bind-
ing regime (Appendix 2-figure 7A and B, gray curves), consistent with the simulation results
(Figure 3A).
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