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Theoretical investigations have provided proof-of-principle calculations suggesting measurements
of stellar or pulsar orbits near the Galactic Center could strongly constrain the properties of the
Galactic Center black hole, local matter, and even the theory of gravity itself. As in previous
studies, we use a Markov chain Monte Carlo to quantify what properties of the Galactic Center
environment measurements can constrain. In this work, however, we also develop an analytic model
(Fisher matrix) to understand what parameters are well-constrained and why. Using both tools, we
conclude that existing astrometric measurements cannot constrain the spin of the Galactic Center
black hole. Extrapolating to the precision and cadence of future experiments, we anticipate that the
black hole spin can be measured with the known star S2. Our calculations show that we can measure
the dimensionless black hole spin to an accuracy and a precision of ∼0.1 with weekly measurements
of the orbit of S2 for 40 years using the GRAVITY telescope’s best resolution at the Galactic Center,
i.e., an angular resolution of 10 micro-arcsecond and a radial velocity resolution of 500 m/s. We
derive an analytic expression for the measurement uncertainty of the black hole spin using Fisher
matrix in terms of observation strategy, star’s orbital parameters, and instrument resolution. We
conclude that highly eccentric orbit can provide better constraints on the spin, and an orbit with
a higher eccentricity is more favorable even when the orbital period is longer. Besides, if we can
find N stars that have similar orbits to S2, we can reduce the observation time by a factor of

√
N

while remaining the same measurement uncertainty of the black hole spin. If in addition future
measurements include discovery of a new, tighter stellar orbit, then future data could conceivably
enable tests of strong field gravity, by directly measuring the black hole quadrupole moment. Our
simulations show that with a stellar orbit similar to that of S2 but at one fifth the distance to the
Galactic Center and GRAVITY’s resolution limits on the Galactic Center, we can start to test the
no-hair theorem with 20 years of weekly orbital measurements.

I. INTRODUCTION

The supermassive black hole at the center of our galaxy
provides unique opportunities to investigate dynamics
near a strongly-gravitating source [1, 2]. Radio tele-
scopes have imaged the immediate vicinity of the black
hole [3, 4], allowing direct constraints on the strong grav-
itational field regime near the black hole via imaging ac-
cretion flows [5–9]. Stellar motions also constrain the
number and orbits of nearby perturbers [10]. At present,
however, the best opportunities to constrain the Galactic
Center come from long-term monitoring of known stars
[11–15]. These measurements can also identify effects
from the strong gravitational field [16–18] and the prop-
erties of the supermassive black hole [2, 11–13, 19–24].
Even stronger constraints would be possible with a well-
timed pulsar orbiting the Galactic Center [25–29], at sep-
arations comparable to a recently-discovered object [30].
High precision inference from stellar orbits ideally should
account for many nearby perturbers, including the local
stellar density of visible stars [31] and compact objects
[21].

Motivated by recent discoveries of new stars in close
orbits around the galactic center [32, 33], we assess how
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well existing and future measurements of stellar orbits
[2] can constrain the black hole properties: its mass and
particularly its spin. Specifically, we wrote a Markov
chain Monte Carlo (MCMC) code and use it to compare
real and synthetic astrometric and radial velocity data
with models for the stellar orbits and black hole mass,
accounting for differences in reference frame between dif-
ferent observational campaigns. Unlike previous investi-
gations, our model includes leading order post Newtonian
corrections to the orbit from the black hole’s mass, spin,
and quadrupole moment, as well as the impact of un-
known non-quadrupole internal and exterior potentials.
Our goal is to determine whether, despite the extremely
low orbital velocity v/c ' 0.02, future measurements can
significantly constrain strong-field features of the Galac-
tic Center black hole. We compare our MCMC results
against a detailed Fisher matrix analysis, both to validate
our results and allow the reader to easily extrapolate to
future measurement scenarios.

This paper is organized as follows. In Section II we
review the observations of stellar orbits near the Galac-
tic Center; review a simplified model for stellar dynam-
ics near supermassive black holes (justified at length in
Appendix A); introduce simplified and realistic models
for the process of measuring stellar orbits, including er-
rors. In Section III we describe two techniques to assess
how well measurements can constrain properties of stel-
lar orbits and the supermassive black hole. The first is a
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simplified, approximate Fisher matrix.

The second method uses detailed Markov chain Monte
Carlo simulations of synthetic data to determine how well
different parameters can be measured and why. After
validating our procedure using analytically tractable toy
models with a handful of parameters, we perform full-
scale simulations in Section IV to test several hypotheses
including no-hair theorem. Using plausible choices of pa-
rameters and future achievable measurement accuracy,
we discuss how the black hole spin and quadrupole mo-
ment can be constrained with the known star S2 of an
orbital period of about 16 years and future discoverable
closer stars with orbital periods as small as 1-2 years [34].
In Section V we summarize the conclusions we draw from
the studies. Throughout the paper we adopt the units
where G = c = 1.

II. STATEMENT OF THE PROBLEM

A. Existing Observations

There are observations of stellar orbits within 1 arcsec-
ond of the Galactic Center in infrared [12, 13, 15, 32]. In
this paper, we are analyzing two sets of long-duration ob-
servations reported in Ghez et al. [12] and Gillessen et al.
[13]. The motions of stars in the immediate vicinity of Sgr
A* have been observed in infrared bands by NTT/VLT
since 1992 and by Keck telescope since 1995. The two
data sets we use are the Keck data from 1995 to 2007
and the VLT data from 1992 to 2009. Massive young
stars are found closely orbiting the black hole at the cen-
ter of our Milky Way. The locations of the stars, i.e., the
astrometric positions, right ascensions (RA) and declina-
tions (DEC) are recorded at different epochs. Therefore,
the relative positions of stars to the radio source Sgr A*,
i.e., the offsets of RA and DEC are also measured. The
radial velocities, i.e., the line of sight components of the
velocities relative the the observers, of each star at dif-
ferent epochs are also measured. In this work, we use
the stellar orbits of star S2, because it is monitored for
the longest time, its orbit is only 16 years which is the
second shortest stellar orbital period known, and more
importantly its eccentricity is the highest among the few
closest orbits. The high eccentricity makes the star get
deeper in the gravitational potential of the black hole
and thus can provide more physics. We show in IV B
with concrete simulations why the orbit of S2 provides
better constraints than that of S102/S55 even though
the latter has a smaller orbital period (12 years) even if
they are observed the same way. There have been more
recent observations and measurements of the S2 stellar
orbit [35–37] as we prepared our paper, but the added
data does not affect our conclusions.

B. Simplified models of stellar orbits

The approximations involved in deriving and justify-
ing our equations of motion are provided in Appendix
A. Neglecting the black hole’s recoil or the effect of am-
bient material, each star’s position x evolves accord-
ing to leading-order post-Newtonian equations of motion
[20, 38, 39]

a = −Mx

r3
+
Mx

r3
(4
M

r
− v2) + 4

Mṙ

r2
v

−2J

r3
[2v × Ĵ− 3ṙn̂× Ĵ− 3n̂(L · Ĵ)/r]

+
3

2

Q2

r4
[5n̂(n̂ · Ĵ)2 − 2(n̂ · Ĵ)Ĵ− n̂], (1)

where x,v = ∂tx, a = ∂2
t x are the (harmonic) coordinate

position, velocity, and acceleration of the star; where
r = |x| is the coordinate distance of the star from the
black hole; where n̂ = x/r is a unit vector pointing to-
wards the star; where L = x × v is the orbital angular
momentum; where M,J, Q2 = −J2/M are the mass, spin
angular momentum, and quadrupole moment of the black
hole; and where the hat over a quantity denotes its unit
vector, such as Ĵ = J/J . Each star evolves according to
a post-Newtonian Hamiltonian in [40].

For the proof-of-concept analytic calculations, we sepa-
rate timescales by orbit-averaging rather than work with
the full Hamiltonian, following standard practice in ce-
lestial mechanics. For analytic simplicity, we will fur-
thermore treat all perturbations at leading order, there-
fore performing an orbit average using a Newtonian orbit;
for example, at leading order an equatorial orbit has the
form r(t) = p/(1 + e cos Φ(t)), where p = a(1 − e2) is a
semilatus rectum, a is the semimajor axis, e is the ec-
centricity of the orbit, and Φ(t) is the orbital phase in
terms of time t. Using standard methods of celestial me-
chanics [20, 41], we find the secular equations of motion
for the orbit average (〈X〉) of each star’s Newtonian or-
bital angular momentum LN ≡ µx × v and Newtonian
Runge-Lenz vector AN ≡ µ2[v × (x× v)−GM n̂]:

∂t 〈LN 〉 = ~Ω× 〈LN 〉 (2)

∂t 〈AN 〉 = ~Ω× 〈AN 〉 (3)

~Ω = ~ΩS + ~ΩJ + ~ΩQ (4)

~ΩS = L̂N
AS
P

= L̂N
3

p(a/M)
3
2

(5)

~ΩJ = [Ĵ− 3L̂(L̂ · Ĵ)]
AJ
P

= [Ĵ− 3L̂(L̂ · Ĵ)]
2J/M

(Mp3)
1
2 ( aM )

3
2

(6)

~ΩQ = −(Ĵ(Ĵ · L̂) +
1

2
L̂(1− 3(L̂ · Ĵ)2)

AQ
P

(7)

AQ =
3

2

Q2

p2(a/M)3/2
, (8)

where the expressions ~Ω, ~ΩS , ~ΩJ , ~ΩQ are the orbital pre-
cession, P is the orbital period, the expressions AS , AJ ,
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FIG. 1. Relative magnitude of characteristic rates of change
for stellar orbits around supermassive black holes versus semi-
latus rectum due to different effects. Solid curves show ana-
lytic results; dotted curves were derived from our time-domain
evolution code, as validations. The solid green, blue, an pur-
ple curves show AS , AJ , AQ that are derived in [20] and
implicitly defined in Eqs. (5), (6) and (7). The cyan curves
show the influence of an external quadrupolar potential from
ambient stars at a distance of 3 × 104 times the black hole
mass.

AQ were derived in [20] and are implicitly defined here;
see also [42]. The factors AS , AJ , and AQ are shown
in Figure 1. These orbit-averaged precession equations
imply a straightforward procedure for the (linear) per-
turbation due to Ω, starting from a Newtonian solution
~ro(t):

~r(t) ' R(t)~ro(t), (9)

where R(t) is the rotation generated by the (orbit-

averaged) ~Ω. Specifically, again working to first order
in the orbit-averaged perturbations, the secular rotation
R(t) on short timescales is determined by the generators
Lα of rotations:

R(t) ' 1− itLαΩα (10)

~r(t) ' ro(t)− itΩαLαro(t). (11)

C. Relationship between real observation and
theoretical model

In order to use real data to measure the parameters of
the whole system, we have to convert the measurements
in the theoretical model in the Cartesian coordinates that
originated at the black hole center to the real observed
data form, RA and DEC offsets that are relative to Sgr
A* in the Equatorial coordinate system which is centered
at the Earth.

We first generate the orbit of a star with our mixed
Python/Fortran code, and get the star’s orbital positions,
~rbhi = {xbhi , ybhi , zbhi }, in the black hole frame. Then we
transformed from a Cartesian coordinates that centered
at Sgr A* to the Equatorial RA and Dec, or in terms of
components

xi = xbhi + d cosαbh sin δbh (12)

yi = ybhi + d sinαbh sin δbh (13)

zi = zbhi + d cos δbh, (14)

where d is the distance from the Earth to the center of
black hole, αbh and δbh are the RA and DEC of the black
hole, x axis points to the First Point of Aries, and z axis
points to the same direction as that in the black hole
coordinates. The black hole Cartesian coordinates and
the Earth Cartesian coordinates are only a translation of

their origins described by ~d. Then we convert the posi-
tions of the star from the Cartesian coordinate system
that centers at the Earth to the Equatorial coordinate
system,

αi = arctan2(yi, xi) (15)

δi = sin−1 zi√
x2
i + y2

i + z2
i

, (16)

where αi is zero in the x-axis direction, and increases to
2π along the celestial equator counterclockwise as viewed
from the North pole, and δi is zero in the celestial equa-
tor, positive to the north and negative to the south of
the celestial equator. We subtract from {αi, δi} a ref-
erence position such as the astrometry position of Sgr
A*, {α0 = 17H 43M 02S = 4.6383, δ0 = −28.7944◦} [43],
and get the observed RA and DEC offsets relative to Sgr
A*, {∆αi,∆δi}, that are similar to those in the real data,
where ∆αi = αi − α0 and ∆δi = δi − δ0. Note that the
values of {α0, δ0} for which we used in this paper have
been fine-tuned over the years [44], but those values do
not affect our study results because the observables are
relative sky locations to {α0, δ0}, not absolute positions.
As long as the measurements are always relative to the
same object, it does not even matter whether we take Sgr
A* as the reference. Notice the position of Sgr A* does
not necessarily co-locate the center of the black hole. The
difference between them can be modeled as five param-
eters, including the relative position of the black hole to
the Sgr A*, ∆αbh and ∆δbh, and the uniform RA and
DEC velocities and radial velocity, {vαbh , vδbh , vr,bh}, of
the black hole relative to the Sgr A*. The radial veloc-
ities of the stellar orbit are evaluated as vr,i = ~vi · r̂i,
where r̂i = ~ri/ri are the unit vectors of line of sight.

Based on our model, the following parameters are
measured from the data: the six orbital parameters of
the star {a, e,Φ0, β, γ, ψ} (where a is semimajor axis, e
is eccentricity, Φ0 is the initial orbital phase at some
moment, and the other three are Euler angles follow-
ing a z-x-z definition), the three black hole spin com-
ponents J = {Jx, Jy, Jz} in Cartesian coordinates or
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J = {J, φJ , θJ} in Spherical coordinates as what we used
in the code, the mass of the black hole M , the position
of the black hole relative to the Sgr A* {d,∆αbh,∆δbh}
(where d is the distance from Sgr A* to us and the other
two indicate the black hole’s astronomical position). We
ignore the motion of the black hole relative to the Sgr
A* {vαbh , vδbh , vr,bh}. To test the no-hair theorem, we
also use two more parameters, the quadrupole term, Q2,
of black hole potential, and the quadrupole term, QX ,
due to the external potential of star clusters that ex-
tend between 40, 000M and 80, 000M to Sgr A*. Those
two parameters can be combined into one parameter, the
quadrupole term Q, where Q = Q2 + QX . Throughout
the paper everything is in the units of M∗ = 4.00×106M�
when we perform calculations.

III. MEASURING PARAMETERS

A. Bayesian formalism

According to the Bayesian paradigm, a prior distri-

bution p(~λ) is used to quantify our knowledge about a

set of unobservable parameters ~λ in a statistical model
when no data are available. We can update our prior
knowledge using the conditional distribution of parame-
ters, given observed data, via the Bayes theorem. Sup-
pose that the likelihood, or the distribution of the data
from an assumed model that depends on the parameter
~λ is denoted by p(D|~λ), Bayes theorem updates the prior
to the posterior by accounting for the data,

p(~λ|D) =
p(D|~λ)p(~λ)

p(D)
, (17)

where p(D) =
∫
p(D|~λ)p(~λ)d~λ is the evidence of the data

and also a normalizing constant.

To separate issues pertaining to measurements from
physics from simplified models of stellar orbits, we de-
scribe results using the real measurement scenario, where
only the angular offsets and radial velocity can be mea-
sured. [For comparison and to validate our MCMC
method, we also employ idealized theoretical measure-
ment scenarios in Appendix C.] This realistic measure-
ment model accounts for all of the parameters described
in Section II C. The probability distribution of the data

given parameters ~λ is

p(D|~λ) =

N∆α∏
k

(2πσ2
∆αk

)−1/2 exp− [∆α(tk|~λ)−∆αk]2

2σ2
∆αk

×
N∆δ∏
k

(2πσ2
∆δk

)−1/2 exp− [∆δ(tk~|λ)−∆δk]2

2σ2
∆δk

×
Nvr∏
k

(2πσ2
vr,k

)−1/2 exp− [vr(tk|~λ)− vr,k]2

2σ2
vr,k

, (18)

where ∆α(tk|~λ) and ∆αk are the theoretical prediction
of the RA offset and the real observation, respectively,
at epoch tk; the notations are similar for the other two
observables, i.e., DEC offset and radial velocity; σ∆αk ,
σ∆δk , and σvr,k are measurement uncertainties for the
observation at tk. The number of measurements for the
three observables are denoted as N∆α, N∆δ, Nvr , respec-
tively. In the equation above, we have assumed that each
measurement of each observable has a noise of Gaussian
distribution.

In order to determine the best-fit parameters and
their uncertainties we use a Markov chain Monte Carlo
analysis to sample the likelihood function in Eq. (18).
Specifically, we use an ensemble sampler for MCMC
named EMCEE [45, 46].

B. Fisher matrix

To better understand and validate our MCMC results,
and to make efficient projections about future hypotheti-
cal measurements, we perform a semi analytic calculation
that approximates the likelihood in Eq. (18) by a locally
quadratic approximation. The coefficient of the second-
order term is known as the Fisher matrix.

The illustration of the mechanics of a Fisher ma-
trix calculation is shown in Appendix C by employing
the idealized measurement model in Cartesian coordi-
nates. For real observations, we can do the same by
exploiting in the special case that the observed data
is exactly as predicted by some set of model parame-

ters ~λ′ [i.e., ∆αk = ∆α(tk|~λ′), ∆δk = ∆δ(tk|~λ′), and

vr,k = vr(tk|~λ′)]. Using a first-order Taylor series expan-

sion ∆α(tk|~λ)−∆α(tk|λ′) ' δλa∂∆α(tk)/∂λa for the RA

offset ∆α versus parameters ~λ (here λa are the elements

of ~λ and same index a means contraction) and similar for
the other two observables, we find that the conditional

probability of the data given ~λ can be approximated by

ln p(D|~λ) = const− 1

2
Γabδλaδλb (19)

with



5

Γab =
∑
k

[
Cλa,∆αkCλb,∆αk

σ2
∆αk

+
Cλa,∆δkCλb,∆δk

σ2
∆δk

+
Cλa,vr,kCλb,vr,k

σ2
vr,k

]
, (20)

where Γab is the Fisher matrix. For a parameter in ~λ
that has two values λa and λ′a, with δλa difference that
results in two orbits, the components in Eq. (20) for this
parameter are

Cλa,∆αk ≡
∂∆α(tk)

∂λa
=

∆α(tk|λa)−∆α(tk|λ′a)

δλa
(21)

Cλa,∆δk ≡
∂∆δ(tk)

∂λa
=

∆δ(tk|λa)−∆δ(tk|λ′a)

δλa
(22)

Cλa,vr,k ≡
∂vr(tk)

∂λa
=
vr(tk|λa)− vr(tk|λ′a)

δλa
. (23)

Having estimated the Fisher matrix and hence ap-

proximated p(D|~λ) by a Gaussian, we can further con-
struct marginalized distributions for subset variables λA
in ~λ = (λA, λa) by integrating out the variables λa. In
the gaussian limit, this integration implies the marginal-
ized distribution has a covariance matrix Γ̄AB given by

Γ̄AB = ΓAB − ΓAa[Γ−1]abΓbB . (24)

Because the second term is negative, the marginalized
distribution is always wider: adding additional uncertain
degrees of freedom leads to less accurate measurements.

The Fisher matrix is a cross check for the parameter
estimations obtained from MCMC. Drawing in the
best-fit parameters, the Fisher matrix can give the
estimates of the uncertainties of parameters in a few
seconds, whereas it takes MCMC several hours in our
problem. A Fisher matrix can also let us test how
sensitively the measurement accuracy and hypothesis
tests depend on stellar parameters. As an illustration of
the usefulness of the Fisher matrix, we show in IV B in a

concrete scenario the measurement accuracy of the spin
with both a synthetic stellar orbit similar to S2 orbit
and one similar to S102/S55.

C. Results on the real data

After testing the validity of our mixed Python/Fortran
code using a highly idealized measurement scenario (see
Appendix C 3), we use real data to measure the parame-
ters of Galactic Center orbit of S2 and the properties of
the black hole as reported elsewhere [12, 13]. Our results
agree with their work within systematic and statistical
errors. This shows that our code works well with real
observations and therefore the validity of using it is as-
sured to calculate several hypotheses in Section IV with
real data.

Keck S2 data [12] are used to estimate the parameters
assuming the black hole is not free to move relative to
us. The best-fit parameters and their 1σ uncertainties
are shown in Table I. VLT S2 data in [13] are also used
to estimate the parameters, see Table I. The best-fit
parameters are consistent with Ghez’s and Gillessen’s
analyses within 2σ and the uncertainties are consistent
too. We evaluate how good a model fit is with the
chi-square χ2

dof statistic. The reduced chi-square value
χ2

dof is the chi-square value divided by the number of
degree of freedom, which is the degree of freedom of
the data subtracted by the number of parameters of
the model. Notice that for two measurements that
were taken at the same time, the mean of the two
measurements of {∆αi,∆δi} is used as the measurement
that happened at that time and the larger error bars are
used as the error bars of the observables.

IV. TESTING VARIOUS HYPOTHESES

A. Bayesian hypothesis selection

We assume that the observed orbital data D to have
arisen under one of the two hypotheses H0 and H1 ac-
cording to probability density p(D|H0) or p(D|H1) and
for given prior probabilities p(H0) and p(H1) = 1−p(H0),

we obtain from Bayes’s theorem

p(Hi|D) =
p(D|Hi)p(Hi)

p(D|H0)p(H0) + p(D|H1)p(H1)
, (25)

(i = 0, 1)

and

p(H0|D)

p(H1|D)
=
p(D|H0)

p(D|H1)

p(H0)

p(H1)
, (26)
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TABLE I. Orbital parameters for S2 and the black hole properties with Keck data and VLT data

Parameter (Symbol) [Unit] Keck best-fit VLT best-fit VLT best-fit w/o 2002
Semimajor axis (a) [M∗] 2.45×104 ±440 2.636 ×104 ± 446 2.452×104 ± 594
Eccentricity (e) 0.9048 ±0.0038 0.8953±0.0040 0.9038 ±0.0060
Initial phase (Φ0) [radian] 3.178± 0.0029 3.031 ± 0.0032 3.038 ± 0.0040
Euler angle 1 (β) [radian] 0.268 ±0.008 0.186 ± 0.0076 0.227 ± 0.0136
Euler angle 2 (γ) [radian] 1.464 ± 0.013 1.490 ± 0.016 1.444 ± 0.0252
Euler angle 3 (ψ) [radian] 3.936 ±0.013 4.047 ± 0.012 4.030 ±0.0120
Distance (d) [kpc] 7.328 ± 0.17 8.422 ± 0.288 7.571 ±0.382
RA offset of BH (∆αbh) [radian] 1.4166 ×10−8 ±4.42 ×10−9 4.99×10−9 ± 3.15 ×10−9 9.86 ×10−9 ±3.34×10−9

DEC offset of BH (∆δbh) [radian] -4.2962 ×10−8 ± 6.543×10−9 -1.84×10−8 ± 7.41×10−9 -1.575×10−8 ±1.026×10−8

Mass (M) [106M�] 4.468 ± 0.236 4.492 ±0.244 3.624 ± 0.272
Spin (J) not measurable not measurable not measurable
Reduced chi-square χ2

dof [1] 1.4 1.0 1.0

The table shows the estimated modes and one-sigma errors of the six parameters of S2 orbits and seven parameters of the
Galactic Center black hole from Keck and VLT data using our MCMC code. The best-fit parameters are consistent with
Ghez’s [12] and Gillessen’s [13] analyses within 2σ. The second, third, and fourth rows are the best-fits of the parameters and
their uncertainties with Keck data, VLT data, and VLT data subtracted by its data in 2002 to compare with Keck data
because Keck does not contain observations in 2002, respectively. We point out the fact that the spin of the black hole is not
testable with the two data sets.

where we define the Bayes factor as

B01 =
p(D|H0)

p(D|H1)
. (27)

When the two hypotheses are equally probable, the Bayes
factor B01 is equal to the posterior odds in favor of H0.

If for H0 and H1 we choose models M0 and M1

parametrized by model parameter vectors θ0 and θ1, we
then have to select between the two models using the
Bayes factor,

B01 =
p(D|M0)

p(D|M1)
=

∫
p(θ0|M0)p(D|θ0,M0)dθ0∫
p(θ1|M1)p(D|θ1,M1)dθ1

,(28)

where p(θi|Mi) is the prior probability distribution func-
tion of parameter vector θi in Mi for i = 0, 1.

B. Does the Galactic Center black hole spin?

A measurement of the spin of the Galactic Center
black hole is of significant interest. Short of an ac-
curate measurement, one can assess the evidence of
the existence of any spin. Working in the frame-
work of General Relativity, we choose the same pa-
rameter vector, except the spin, for both the non-
spin model (M0) and the spin model (M1) that ad-
dress the S2 orbit around the Galactic Center black
hole, i.e., θ0 = {a, e,Φ0, β, γ, ψ, d,∆αbh,∆δbh,M} and
θ1 = {a, e,Φ0, β, γ, ψ, d,∆αbh,∆δbh,M,J}, and apply
Bayesian statistics to answer the question.

Our models M0 and M1 are nested, i.e., M1 reduces
toM0 when the spin J or dimensionless spin χ = J/M2

acquires 0. For a smooth, marginalized posterior proba-
bility distribution P (J,M1|D) of spin J for model M1

that is obtained from an MCMC sampling and has a
maximum, we define the 68.3% credible interval to be
χ ∈ [χL, χH ] such that

∫ χH
χL

P (χ,M1|D)dχ = 0.683 with

P (χL,M1|D) = P (χH ,M1|D). For Keck data of S2 or-
bit up to 2007 in Table 3 in [12] and VLT data up to 2009
in [13], respectively, we use our MCMC code to obtain
the posteriors for dimensionless spin χ under the non-
zero spin model M1, and both of the spin posteriors are
uniform distributions. It is uninformative about the spin
of the Galactic Center black hole with either data set. We
also evaluate the Bayes factor B01 for the selection of our
two models with the Keck data of S2 orbit. So param-
eter estimation is also done on the non-spin model M0.
The Bayes factor B01 in favor of the non-spin modelM0

than the spin model M1 is 1.2, which is calculated from
Eq. (28) with the posteriors from the MCMC samplings
with the Keck data for the two models that represent
the two hypotheses. As stated at the beginning of this
section, the parametrized parameters for the two mod-
els are the same except that there is no spin parameter
in the non-spin model M0 and there is the spin param-
eter J in the spin model M1. The value B01 = 1.2 is
interpreted as that the non-spin model M0 is slightly
(but barely worth mentioning) more strongly supported
by the data than the spin model M1. We find that this
does not contradict with the most recent results on the
Galactic Center black hole spin [24] where their estimate
is χ < 0.1 strictly.

What measurements of star S2 can allow us to con-
strain the black hole spin? We assume a set of fu-
ture achievable measurement accuracy {σ∆α = σ∆δ =
10 µas, σvr = 500 m/s}, which are the resolution lim-
its of GRAVITY instrument [47, 48], and use our code
to conduct fake/virtual observations of S2 around the
Galactic Center black hole and then estimate the model
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FIG. 2. The marginalized posteriors of dimensionless spin
χ = J/M2 for the fake observations of S2 in Scenario I (top
panel) and II (bottom panel) in Table II. The thin vertical
lines are injected values. The range of the spin J is [0,M2],
where M = 1.15M∗ and M∗ = 4.0× 106M�. The star has an
S2-ish orbit. It is observed once per week for 2080 weeks or
about 40 years for 2.5 full orbits for the top panel; and twice
per week for 1000 weeks or about 20 years for more than one
full orbit for the bottom panel. Notice that the inference
results of χ for Scenario II is much less informative than that
of Scenario I. The measurement uncertainties {σ∆α = σ∆δ =
10 µas, σvr = 500 m/s} are the limits of GRAVITY at a
distance of 8 kpc.

parameters including the spin. For each simulation we
inject a dimensionless spin value χinj = Jinj/M

2 to the
black hole and let the star evolve its orbit around this
spinning black hole under the equation of motion model
in Eq. (1). To mimic measurements with noise in it,
we add a Gaussian noise of the chosen measurement ac-
curacy (Table II) to the evolved stellar orbits for each
observable in each measurement/epoch, i.e., the three
observables which consist of two angular offsets and one
radial velocity. We then use our MCMC code to calculate

FIG. 3. The mode and two credible intervals of the dimen-
sionless spin χ of the Galactic Center black hole as a function
of injected dimensionless spin χinj for fake observation Sce-
nario I in Table II and from the top panel of Figure 2. Dots
show the maxima of posterior estimates of χ; bars indicate the
68.3% (1σ, thick with caps to the ends) and the 95.4% (2σ,
thin) credible intervals. The black thin line is when χ = χinj.

marginalized posterior distributions of the parameters,
including the black hole spin, given the fake observed or-
bital data Df . That is P (χ|Df ) ∝ P (χ)P (Df |χ). The
prior in χ is flat. The observations are called Scenario
I and summarized in Table II. The stellar orbit has a =
2.65×104 M∗, e = 0.8847,Φ0 = −0.1 (which corresponds
to Aug, 2017 for S2, and we assume that is when we start
the virtual observations) and three Euler angles that have
the values of an S2 orbit. The parameters for the black
hole are M = 4.6×106 M� = 1.15M∗ and its sky position
d = 8.0 kpc, RA = 265.75◦, and DEC = −28.79◦ which
are determined by the observed S2 orbit. The injected
dimensionless spin χinj values are {0.2, 0.5, 0.7, 0.9, 0.95}
and the spin direction is {φJ = π, cos θJ = 0.2} for any of
those five injected spin magnitudes. We get from MCMC
the marginalized posterior P (χ|Df ) for the fake observed
data with that injected spin value χinj. We do the same
for different injected black hole spin values. The fake ob-
servations are conducted once per week for 2080 weeks,
or 40 years, about two and a half complete orbits in
Scenario I. In Scenario II, we take the same number of
measurements but the measurement are arranged twice
frequently during half the observing time compared to
Scenario I. In Scenario III, we consider a star that orbits
around the black hole at half the size of the S2 orbit. We
observe it weekly for 800 weeks or about 2.5 full orbits.

The plots in Figure 2 show the marginalized posteriors
of χ for different injected values χinj for Scenario I (top
panel) and Scenario II (bottom panel). Even though they
have the same number of data points and the observa-
tion are done on the same star S2, the Scenario I has
better constraints on the spin than the Scenario II. The
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FIG. 4. The marginalized posteriors of dimensionless spin
χ for different injected values χinj ∈ [0, 1] in Scenario III in
Table II. The vertical thin lines are injected values. The star
has an S2-ish orbit except its orbit is half-sized. It is observed
once per week for 800 weeks.

minimum we should do to be able constrain the black
hole with S2 orbit during 40 years, or a person’s entire
academic career, is to observe it once per week to record
the three orbital observables. Observing less frequently
or for shorter amount of time will not enable us to con-
strain the black hole spin decisively. On the other hand,
if we can find a star that has an orbit half the size of that
of S2, then to achieve a similar measurement accuracy on
the spin as in Scenario I, we can take Scenario III where
we only need to observe it for less than half of the time
(from 40 years to 16 years) at the same measurement fre-
quency. Figure 4 shows the posteriors of χ for Scenario
III. Note that for all the cases in the Scenarios I through
V, the reduced least-square value χ2

dof ≈ 1 which means
the sampling is converged.

Now let us look at the parameter estimation posteriors
on the black hole spin in a recovered v.s. injected plot.
Figure 3 shows the credible intervals of the black hole spin
as a function of injected spin value for Scenario I. For each
injected value, we plot two error bars. The thick-lined
error bar with caps to the two ends is the 68.3% credible
interval and the thin-lined error bar without caps is the
95.4% credible interval of the marginalized posterior that
corresponds to its injected dimensionless spin χinj. The
big round dot of the same color in that bar is the value of
maximum posterior. Recall that the prior on χ is uniform
for χ ∈ [0, 1]. The uncertainty of the measured spin is
about 0.1 at the 68.3% credible interval for 40 years of
weekly measurement of S2 orbit with GRAVITY’s best
resolution at Galactic Center. The uncertainty comes
from the noise in the orbital data.

We also use Fisher matrix to compare the constraints
on the black hole spin with different orbits and different
observation strategies in general. From Eq. (B32), we can

FIG. 5. The marginalized posteriors of dimensionless spin
χ for injected value χinj = 0.90 for S2 (blue) in Scenario I in
Table II and S102/S55 (green) in Scenario VI in Table III. The
vertical thin lines is injected value. Both stars are observed
once per week for 2080 weeks or 40 years. The differences
of the two orbits are their eccentricities and the semimajor
axises, which are taken the values for S2 and S102/S55.

derive that the uncertainty in spin measurement σJ (or
σχ), i.e., the inverse of square root of ΓJaJb , is determined
by

σχ ∝ σJ ∝
a2σr√
NT

(1− e2)
3
2

(13e4 + 9e2 + 3)
1
4

, (29)

where a is the semimajor axis, e is the eccentricity, σr is
the stellar orbit measurement accuracy, T is the duration
of observation time, and N is the number of measure-
ments. We now use Fisher matrix to check against the
MCMC method, with stellar orbits similar to those of S2
and S102/S55 in fake observation Scenarios I and VI, see
Figure 5. In this scenario, both stars are observed with
the same number of measurements N , the same stellar
orbit measurement accuracy σr, and the same duration
of observation T . The dimensionless spin uncertainty
σχ, is then scaling only to the semimajor axis a and the
eccentricity e. The closer the orbit and the larger the ec-
centricity, the more accurate we can constrain the black
hole spin. Plugging into the values of those two quanti-
ties for the two stars respectively from Tables II and III,
we can obtain the dimensionless spin uncertainty ratio
constrained from the orbits of S2 to S102/S55 using the
analytic Fisher matrix for any black hole spin value. It is
0.34. This is consistent with Figure 5, where the uncer-
tainty ratio is 0.129/0.267 ≈ 0.48 based on 95.4% confi-
dence intervals (2-σ errors) for a specific case χinj = 0.9.

This example uses both the Fisher matrix and the
MCMC methods. In general, with Fisher matrix, we
know from Eq. (29) that orbits with smaller semimajor
axis and larger eccentricity provide better constraints on
the black hole spin. From Eq. (29), we know that with
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TABLE II. Scenario I: Fake Observation of S2
Parameter (Symbol) [Unit] Injected parameter value
Star S2
Semimajor axis (a) [M∗] 2.65× 104

Eccentricity (e) 0.8847
Initial phase (Φ0) [radian] -0.100 (Aug 2017)
Euler angle 1 (β) [radian] 0.169
Euler angle 2 (γ) [radian] 1.515
Euler angle 3 (ψ) [radian] 4.046
Dimensionless spin (χinj) {0.2, 0.5, 0.7, 0.9, 0.95}
Spin angle 1 (φJ) π
Spin angle 2 (cos θJ) 0.200
Quadrupole moment Q2 −J2

inj/M with Jinj = χinjM
2

Mass (M) [M�] 4.60× 106

Distance (d) [kpc] 8.00
RA of BH (αbh) [degree] 265.754795
DEC of BH (δbh) [degree] -28.794375
Measurement uncertainty in RA offset (σ∆α) [µas] 10
Measurement uncertainty in DEC offset (σ∆δ) [µas] 10
Measurement uncertainty in radial velocity (σvr ) [m/s] 500
Orbital period (T) [week] 823
Measurements 2080 weekly

The table lists the injected parameters and observation strategy for the fake observation of star S2 in Scenario I. The
posteriors from parameter estimation are shown in the top panel of Figure 2. Here M∗ = 4× 106M� is used as a scale of
black hole mass.

TABLE III. Summary of Fake Observation Scenarios on S2 and future stars

Scenario Star Semimajor axis [M∗] Injected spin χinj Period [week] Measurements
Scenario I S2 2.65× 104 {0.2, 0.5, 0.7, 0.9, 0.95} 823 2080, weekly
Scenario II S2 2.65× 104 {0.2, 0.5, 0.7, 0.9, 0.95} 823 1040× 2, semiweekly
Scenario III Star of half S2 orbit 1.325 × 104 {0.1, 0.2, ..., 0.8, 0.9, 0.95} 291 800, weekly
Scenario IV S2 2.65× 104 {0.7} 823 2080× 7, daily
Scenario V Star of one fifth S2 orbit 5.3 × 103 {0.2, 0.5, 0.7, 0.9, 0.95} 73.6 1040, weekly
Scenario VI S102/S55-ish 2.3× 104 {0.9} 665 2080, weekly

Summary of the differences among the four fake observation scenarios. For the parameters that are not specified for Scenarios
II, III, IV, V, and VI here, they take the same values as in Scenario I in Table II except that for Scenario VI the eccentricity
is e = 0.721. The estimated posteriors are shown in the top and the bottom panels of Figure 2 for Scenarios I and II, Figure 4
for Scenario III, Figure 6 for Scenario V, and Figure 5 for Scenario VI.

the same semimajor axis a, which translates to the same
orbital period P with Kepler’s third law, larger eccentric-
ity (highly eccentric orbits) can constrain the black hole
spin more precisely given the same observation strategy.
This is because with the same semimajor axis, the peri-
center of the more eccentric orbit is closer to the black
hole and thus more impacted by the black hole’s gravita-
tional wave potential. This is why S2 can provide better
constraints (as is the case in our simulation shown in Fig-
ure 5) on the black hole spin than what S102/S55 can do,
even though S102/S55 has a shorter period.

Similarly, from Eq. (29), we can see that if we can-
not observe S2 for 40 years weekly in order to determine
the black hole spin, which is most likely, the solution is
to find a closer or improve the instrument measurement
precision. It is worth pointing out that if we have N
stars whose orbits are similar to S2 and we observe each

of them equally frequently and for the same amount of
time duration, we are expected to see an improvement of
a factor of

√
N in the measurement uncertainty of black

hole spin.

C. Testing no-hair theorem

According to the black hole no-hair theorem, a black
hole is completely characterized by its mass M , angular
momentum (or spin) J , and charge q. For an astrophys-
ical black hole which is electrically neutral, it is fully de-
scribed by two quantities, M and J . As a consequence,
the quadrupole moment Q2 of its external spacetime is
given by Q2 = −J2/M . The quadrupole moment can
cause the stellar orbits around the black hole to precess,
and the precession rate is on the order of 1 µas. for
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a highly eccentric orbit around the Galactic Center su-
permassive black hole with orbital period of years. This
makes it possible to use the stellar orbit data from the
modern infrared telescopes to test the no-hair theorem.
In reality, there is perturbing external quadrupole mo-
ment QX (see Section II, V) due to the S star cluster,
dark matter, and intermediate-mass black holes that are
close to the Galactic Center. This should also be taken
into consideration. In this study, we employ the most
optimistic possible scenario, equivalent to perfect knowl-
edge of any external tidal potential.

In order to test the no-hair theorem, we apply our
MCMC code to the VLT orbital data of S2 we can ob-
tain the marginalized posterior probabilities of spin J and
quadrupole moment Q2, which are both flat. The exist-
ing data are not sufficient for us to draw a conclusion on
the no-hair theorem. This is not surprising because we
cannot even constrain spin yet.

What observation strategy on S2 will enable us to test
the no-hair theorem in the future? Applying the same
method that is used in Section IV B, we conduct fake ob-
servations of S2 again. Specifically, we first do Scenario
IV. The injected parameters and the observing strategy
can be found in Table III and its reference Table II. We
use our code to generate fake observed orbital data points
with noise in them for S2 star around our Galactic Center
for an injected black hole spin χinj = 0.7 and quadruple
moment Q2,inj = 0.648. This simulates the real observa-
tion scenario. We virtually observe the star once per day
for 2080 weeks, which is nearly 40 years and about 2.5 full
orbits. We then use MCMC to obtain the marginalized
posterior probability distribution of Q2 for the choice of
the χinj and the Q2,inj values. In the parameter esti-
mation, Q2 is treated as an independent parameter on
J and M , so it does not follow Q2 = J2/M . For this
set up, it is equivalent to see how well the quadrupole
term Q, including external quadrupole moment QX , can
be constrained. The posteriors p(Q2) for different in-
jected values are all flat. This means, we cannot con-
strain the quadrupole term or the no-hair theorem even
if we observe S2 daily for 40 years with the measurement
accuracy limits of GRAVITY telescope. This is mainly
because at a periapsis of about 120 AU or 2800 times the
mass of the black hole, the star is not close enough to the
supermassive black hole so as to be significantly affected
by the black hole’s quadrupole moment. In order to use
S2 to constrain Q2, we will have to improve our angular
measurement accuracy, compared to GRAVITY’s limits,
by at least two orders of magnitude and the radial veloc-
ity accuracy by one order of magnitude from our virtual
experiments. We point out that Fisher matrix is not used
in this case. With Fisher matrix we only worked in the
coordinates whose origin is at the center of black hole.
See the toy model in Appendix C 3. However, we used
the conclusion from Fisher matrix study that by observ-
ing N times as often, we can improve the measurement
error bars of spin by a factor of

√
N to guide our numer-

ical simulation in terms of observation strategy choices.

FIG. 6. Posteriors of Q2 and χ for Scenario V in Table
III. The thin vertical lines are injected values. The top panel
shows the marginalized posteriors of quadrupole Q2 for dif-
ferent injected values χinj and their corresponding injected
quadruple values Q2,inj = −χ2

injM
3. The bottom panel for

the posteriors of the dimensionless spin χ. The star has an
orbit that is one fifth the semimajor axis of S2. It is observed
twice per week for about seven full orbits.

Because S2 with even GRAVITY will not work, what
kind of stellar orbits and observation strategy do we need
to test the no-hair theorem then? The next generation of
extremely large telescopes will discover stars with orbital
periods as small as 1-2 years given their increased sensi-
tivity and angular resolution [34]. We assume that we are
lucky enough to find a star orbiting around the Galactic
Center with an orbit that has a quarter of the semimajor
axis of S2 (∼ 200 AU) and all the other orbital param-
eters the same as S2. This star has an orbital period of
73.6 weeks and we observe it once per week for 1040 weeks
(20 years and 14 full orbits) in our simulation Scenario V,
see Tables III and II. With this fake observation scenario,
we can start to measure the quadrupole moment Q2 for
different injected Q2inj. See the top panel of Figure 6 for
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the posteriors P (Q2). In this figure, also plotted is the
measurement of dimensionless spin χ for various injected
values in the bottom panel. We can see that while the Q2

can be measured to a visually distinguishable extent, the
black hole spin can be measured at a very high accuracy,
∼ 0.01. As an example, we show in Figure 7 the corner
plot of posteriors of all modeled parameters for a specific
case, χinj = 0.900 and Q2,inj = 1.232 in Scenario V.

V. CONCLUSIONS

We have introduced a Markov chain Monte Carlo
method to constrain the Galactic Center black hole prop-
erties with a model of the Galactic Center stellar or-
bits. We also use Fisher matrix method to check against
MCMC when the scenarios allow. Three main conclu-
sions come out of this work.

First, we conclude that we are not able to constrain
the black hole spin or test the no-hair theorem with the
existing data of S2 stellar orbit from Keck and/or VLT
measurements taken from 1995 to 2007 (2009 for VLT).

We also give strategies for future observations on how
to constrain the black hole spin with S2 orbit based
on simulated fake observation scenarios, assuming future
achievable measurement accuracy. With the best mea-
surement uncertainty by the GRAVITY telescope when
it observes at an angular accuracy of 10 µas (mircro-
arcsecond) and a radial velocity accuracy of 500 m/s,
we can constrain the black hole spin at 0.1 accuracy and
precision if S2 is observed once per week for 40 years as
shown in Figure 2 for Scenario I in Table II. If we can
find a closer star that is half the size of S2 orbit, then the
total observing time and frequency required to reach the
0.1 precision in the dimensionless spin will be reduced as
shown in Figure 4 for Scenario III in Table III. We also
derive an analytic expression to scale the uncertainty of
the spin measurement using Fisher matrix in terms of the
observation strategy, the star’s orbital parameters, and
the instrument precision, see Eq. (29).

On the black hole no-hair theorem, it is concluded that
with S2 orbit we are not able to test the theorem even
with 40 years daily measurements using GRAVITY’s
measurement limit of S2 orbit in Scenario IV in Table
III. In order to test the no-hair theorem with GRAVITY’s
best resolution, we need a closer star. It is expected to
find stars with orbital periods of 1-2 years by the next
generation large telescopes [34]. In our simulations we
use a star that is one fifth the distance to the Galactic
Center than S2 and has other orbital parameters similar
to that of S2 such that the orbit can be influenced more
by the spin and the quadrupole moment that character-
ize the black hole’s gravitational potential. With such
a star, we can start to measure the quadrupole moment
and test the black hole no-hair theorem with 20 years of
weekly observations as shown in Figure 6 for Scenario V
in Table III. It is necessary to understand the distribu-

tion of visible and dark matter outside the black hole to
better constrain the no-hair theorem; however, without
such knowledge, we can treat the quadrupole moment
as an independent parameter on the black hole spin and
a term that combines the quadrupole moment of both
the black hole and the external sources in the vicinity of
Sgr A*, and see how well we can measure it as shown in
Figure 6.

Several other scenarios can be further studied based
on our investigation. The epochs of the observations are
equally spaced in our simulations. If these measurements
are rearranged such that they are more frequently made
when the star is close to the periapsis of its orbit around
the black hole than the apoapsis, the parameter measure-
ment uncertainties in the model are expected to reduce.
One factor that can be changed in future scenarios is the
instrumental measurement accuracy. In this work it is
chosen to be the limits of GRAVITY telescope for all our
fake observations we present, but if the measurement ac-
curacy can be further improved, we can have improved
observation strategies with less observation time to test
the black hole no-hair theorem. Besides, if several more
closer stellar orbits are found then we can use them to
jointly constrain the black hole properties.

Another direction to explore is to use the radio images
of supermassive black holes. The Event Horizon Tele-
scope measurements are complementary to stellar proper
motions and therefore could break some degeneracies and
make constraints on the black hole nature of the central
remnant easier [4–9].

Existing observations do not provide enough infor-
mation to constrain the ambient density of perturbers,
which can impact our interpretation of these orbits. Dy-
namical processes have long been expected to produce a
high density of nearby massive objects, as yet inacces-
sible to direct electromagnetic observation [21, 49–54].
This dark density is most likely to be constrained indi-
rectly, via its gravitational effects (e.g., [54], though [55]).
Anisotropies in the ambient density can partially mimic
the effects of modified theories of gravity; for example, a
quadrupolar gravitational perturbation could be sourced
by the black hole or an external cluster density.
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FIG. 7. Corner plot for the posterior distributions of the parameters for the case of injected χinj = 0.900 and Q2,inj = 1.232 in
Scenario V in Table III.

Appendix A: Equations of motion

In this appendix, we point out that different properties of an ensemble of stellar orbits probe different physics.
For example, the orbit location probes different parts of the potential: distant orbits preferentially probe an external
potential while nearby orbits probe the black hole. Similarly, different symmetry-breaking effects only occur from
certain physical processes; for example, spherically symmetric potentials cannot cause the orbital plane to precess,
while quadrupolar Newtonian potentials and frame dragging cause an ensemble of orbits to evolve in distinctly
different ways. By isolating these symmetries and their impact on observations, we can easily model how a collection
of measurements of several stellar orbits can best constrain properties of the Galactic Center environment.
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In the text, we adopted simple approximations to general relativity at low post-Newtonian order, neglecting many
common factors like the mass ratio. Because orbital perturbations we hope to identify are small, influences from small
factors like mass ratio (' 10−6) can be of similar order to the minute effects we seek to identify at targeted separations.
For this reason, in this section we carefully review relevant post-Newtonian expressions, targeting typical separations
(i.e., 10 year orbits) and post-Newtonian accuracy ideally comparable to the targeted astrometric resolution of µas/yr
at 8 kpc (i.e., ' 0.26Myr, or ∆v/c ' 10−7).

Post-newtonian theory for binary and N-body motion is well-developed; see [38] for a review in the context of
stellar orbits around supermassive black holes; [56] for a discussion of orbit-averaged spin-precession; and [57], [39]
for technically sophisticated and highly detailed discussions in general and for binary motion, specifically.

1. Post-Newtonian Two-body equations of motion

Working to v2 (1PN) beyond Newtonian order in velocity and leading-order in spin-orbit coupling, the post-
Newtonian Lagrangian for two-body motion has the form [38]

L = ηM

[
1

2
v2 +

GM

r
+

1

8
(1− 3η)v4 +

GM

2r
(3 + η)v2 + ηṙ2 − GM

r

]
+ Lspin + Lquad, (A1)

using units with c = 1 for simplicity. Here Lspin and Lquad terms are due to the black hole spin and the quadrupole
moment. The Lagrangian corresponds to the Hamiltonian [58]

H = µ[HN +H1PN +HSO] (A2)

HN =
p2

2
− M

r
(A3)

H1PN =
1

8
(3η − 1)p4 − 1

2
[(3 + η)p2 + ηp2

r]
M

r
+
M2

2r2
(A4)

HSO = 2
LN/µ · J

r3
. (A5)

These approximations, plus the limit η → 0, reproduce the equations of motion adopted in the text. These Hamiltonian
expressions also enable straightforward derivation of the orbit-averaged precession equations. As a concrete example,
the contribution of black hole spin to the orbit-averaged precession equations for LN , AN follow from the Lie algebra

(∂tLa)SO = {La, HSO} =
2εabcJbLc

r3
(A6)

(∂tAa)SO = {(p× L−Mr̂)a, HSO}

=

{
(p× L−Mr̂)a,

1

r3

}
(2 ~J · ~L) + {(p× L−Mr̂)a, Ld}2Jd/r3

= −3
εabcrbLc

r5
(2 ~J · ~L) + εabc

2Jb
r3

Ac, (A7)

using {La, Vb} = εabcVc for any vector V rotating with L (here, ~L, ~p, ~r). Both orbit averages can be performed trivially,

substituting ~r = p(x̂ cos θ + ŷ sin θ)/(1 + e cos θ) and dt = dθL/r2 for the special case ~A = ex̂; we find〈
r−3
〉

=
2π

P

M

p3
(A8)〈

r cos θr−5
〉

=
2π

P

eM

p3
. (A9)

Critically, the second term does not orbit-average to zero. We therefore find

〈(∂tA)SO〉 =
2M

p3

[
~J − 3( ~J · L̂)L̂

]
×A. (A10)

Are these approximations adequate? First and foremost, as emphasized in the text, most post-Newtonian and mass
ratio effects do not break symmetry in a way that can be confused with the influence of precession: even if they did
matter quantitatively, they wouldn’t matter qualitatively. Second, for a single star, the back-reaction of the star on the
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BH’s orbit is small at typical high mass ratio (η ' 10−6); the leading-order effect is purely Newtonian, corresponding
to orbits around the center of mass; and higher-order PN effects are suppressed by O(v2) ' M/r ' 102 − 103.
For a single star, the finite mass ratio is a minute perturbation at separations where precession can be measured
astrometrically; see 1.

As emphasized in the text, however, this modification does not break symmetry and therefore does not significantly
influence the quantitative accuracy to which precession-induced modulations can be measured.

2. Post-Newtonian N-body equations of motion

When many bodies are included, we must carefully account for the often significant perturbations from neighboring
stars, as well as the collectively weakly significant reaction of the black hole to the ambient stellar potential.

Finally, the BH spin will precess to conserve total angular momentum as the stars precess [38] due to Lens-Thirring
effects, as well due to the ambient gravitational potential [59]. As the spin precesses, the leading-order spin-orbit
precession will be modulated, an effect that can be comparable to quadrupolar precession effects from the central
supermassive black hole.

Appendix B: Fisher matrix for Newtonian orbits

To constrain properties of the Galactic Center, we must first identify the Newtonian orbit. In this section we review
how to calculate the Fisher matrix for Newtonian orbital parameters using our toy-model likelihood equation for
special cases and in relative generality.

1. Fisher matrix for Keplerian orbits

In the discussion above, we adopted as coordinates the initial velocity and position. This choice of coordinates
is particularly compatible with our equations of motion and subsequent analytic calculations (e.g., including non-
Newtonian perturbations). While straightforward for brute-force calculations, the above approach is rarely analytically
tractable. Alternatively, the perturbed orbit ∆r can be reduced to (a) changes of a, e and the Newtonian orbital phase
Φ0 and (b) changes in the orientation of the orbit. Using the chain rule, we can build up the total perturbation as an
additive contributions from both factors, each individually simple and particularly tractable in suitable coordinates.

Specifically, using as coordinates the orientation of the orbital frame (3 parameters) as well as a, e,Φ0 (3 parameters),
we can express

∆~r(t) = ~Ca(t)∆a+ ~Ce∆e+ ~CΦ∆Φ0 + (−iLβ~r)∆Θβ , (B1)

where Cα,X for α = x, y, z are the Cartesian components of the vectors ~CX and where ∆Θβ is a small (constant)
rotation vector and Lα are the generators of rotations. As a concrete example, for circular orbits ~r = a[cos(ΩNT )x̂+
sin(ΩNT )ŷ], with T as the observation time and ΩN the rotation rate of the star

~Ca = r̂ +
∂ΩN
∂a

Tav̂ (B2)

~CΦ = av̂ (B3)

~Ce = 0.5a{[−3 + cos(2ΩNT )]x̂+ sin(2ΩNT )ŷ} (B4)

−iLx~r = [ŷẑ − ẑŷ]ab~rb = −aẑ(r̂ · ŷ) (B5)

−iLy~r = [−x̂ẑ + ẑx̂]ab~rb = aẑ(r̂ · x̂) (B6)

−iLz~r = [x̂ŷ − ŷx̂]ab~rb = ax̂(r̂ · ŷ)− aŷ(r̂ · x̂) = −av̂, (B7)

and rotations around z are degenerate with the change in orbital reference phase Φ0.
In terms of these coordinates, the Fisher matrix for the idealized measurements in Eq. (C1) can be expressed in

the particularly analytically tractable form

Γαβ = N
σ2
r


∫
dt
T

∑
b Cb,aCb,a

∫
dt
T

∑
b Cb,aCb,e

∫
dt
T

∑
b Cb,aCb,Φ

∫
dt
T

∑
b Cb,a[−iLβ~r]b∫

dt
T

∑
b Cb,eCb,a

∫
dt
T

∑
b Cb,eCb,e

∫
dt
T

∑
b Cb,eCb,Φ

∫
dt
T

∑
b Cb,e[−iLβ~r]b∫

dt
T

∑
b Cb,ΦCb,a

∫
dt
T

∑
b Cb,eCb,Φ

∫
dt
T

∑
b Cb,ΦCb,Φ

∫
dt
T

∑
b Cb,e[−iLβ~r]b∫

dt
T

∑
b Cb,a[−iLβ~r]b

∫
dt
T

∑
b Cb,e[−iLβ~r]b

∫
dt
T

∑
b Cb,Φ[−iLβ~r]b

∫
dt
T [Lα~r] · [Lβ~r]

 . (B8)
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We confirm this representation reproduces the results provided above. Being analytically tractable even for eccentric
orbits, this general form is particularly well-suited to marginalization via Eq. (24).

For circular orbits, the expressions involved can be approximately evaluated, using the following rules

〈r̂ar̂b〉 =
1

2
[δab − L̂aL̂b] (B9)

〈v̂av̂b〉 =
1

2
[δab − L̂aL̂b] (B10)

〈r̂av̂b〉 = 0, (B11)

and by applying these rules, we find the expressions for the Fisher matrix components:

Γaa =
N

σ2
r

∫
dt

T

∑
b

Cb,aCb,a =
N

σ2
r

∫
dt

T
(1 + t2a2(∂ΩN/∂a)2) (B12)

ΓΦΦ =
Na2

σ2
r

(B13)

Γee =
5Na2

2σ2
r

(B14)

Γae = 0 (B15)

ΓaΦ = ΓaΘz =
N

σ2
r

∫
dt

T
ta2(∂ΩN/∂a) (B16)

ΓeΦ = 0 (B17)

ΓΘxa = ΓΘya = ΓΘxe = ΓΘye = ΓΘxΦ = ΓΘyΦ = 0 (B18)

ΓΘxΘx = ΓΘyΘy =
Na2

2σ2
r

(B19)

ΓΘyΘy =
Na2

σ2
r

(B20)

ΓΦΘz = −Na
2

σ2
r

. (B21)

The terms in this circular-orbit Fisher matrix have qualitatively different behavior. On the one hand, changes in the
orbital period (a) lead to significant, increasing dephasing across multiple orbits; as a result, the orbital radius can
be measured with high accuracy, increasing rapidly as the measurement interval increases [Γaa ∝ (ωT )2N(a/σr)

2].
By contrast, all other changes in a circular orbit are geometrical, producing small or variable separations. While our
ability to measure these parameters also increases with the number of measurements (∝ N ∝ T ), the accuracy to
which these parameters can be measured is significantly smaller. Finally, the circular-orbit Fisher matrix decomposes
trivially into diagonal terms (almost all) plus one 2 × 2 block (ln a,Φ); this nearly-degenerate 2 × 2 block can be
trivially diagonalized

Γab =
Na2

σ2
r

[
1 + T 2

3 a(∂aΩ)2 T
2 a(∂aΩ)

T
2 a(∂aΩ) a2

]
=
Na2

σ2
r

[
1 + 3

4Φ2
orb − 9

8Φorb
− 9

8Φorb
9
4Φ2

orb

]
(B22)

using Ta∂aΩN = −3Φorb/2 for Φorb = ΩN t the orbital phase. The relative significance of the two terms depends on
how many orbital cycles have occurred.

2. Unknown black hole mass

Adding additional parameters, like the black hole mass, is straightforward:

∆~r(t) =
∑
A
~Cλ∆λ. (B23)

For circular orbits, the effect of a perturbed black hole mass is very similar to a perturbed orbital separation, producing
a significant dephasing with time without any (small) change in position:

~CM = ∂ΩN
∂M tav̂. (B24)
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Because the Newtonian orbital period only depends on
√
M/a3, these two parameters are nearly degenerate in the

Fisher matrix: we can only measure one combination (the orbital period!) reliably. Marginalizing out the unknown
orbital radius a, we find the Fisher matrix for black hole parameters does not depend as sensitively on the stellar mass.
For circular orbits specifically, all parameters except M,a,Φ separate, allowing us to marginalize only a 3-dimensional
matrix

ΓMM = Na2t2

3σ2
r

(
∂ΩN
∂M

)2
. (B25)

3. Unknown black hole spin

The black hole spin enters via ~Ω in a particularly simple way at leading order: ∂Ωα/∂Jβ = δαβZJ . For example, the
Fisher matrix over J components has the form

Γαβ =
N

σ2
r

∫
dt

T

∂Ωa

∂Jα
∂Ωb

∂Jβ
〈
t2[Laro] · [Lbro]

〉
' N

σ2
r

∂Ωa

∂Jα
∂Ωb

∂Jβ
T 2

3
Tr[LaILTb ]

' NZ2
JT

2

3σ2
r

∫ P

0

dt

P
Tr[LaILTb ]

=
NZ2

JT
2[a(1− e2)]4

3σ2
rPL

Tr[La(A1x̂x̂+ (A2 −A1)ŷŷ)LTb ], (B26)

where

A1 ≡
∫ 2π

0

dθ
cos2 θ

(1 + e cos θ)4
=

(1 + 4e2)π

(1− e2)7/2
(B27)

and

A2 ≡
∫ 2π

0

dθ
1

(1 + e cos θ)4
=

(2 + 3e2)π

(1− e2)7/2
. (B28)

Both integrals can be performed analytically when T/P is an integer; in this special case we find

A2 '
T

P

∫ 2π

0

dθ
1

(1 + e cos θ)4
= 2πT/P

(1 + 3
2e

2)

(1− e2)7/2
(B29)

A1 = πT/P
1 + 4e2

(1− e2)7/2
. (B30)

Using the explicit form of the generators L in this frame, we find the trace

Tr[La(A1x̂x̂+ (A2 −A1)ŷŷ)LTb ] =

 A2 −A1 0 0
0 A1 0
0 0 A2

 . (B31)
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The ΓJaJb components are then a coefficient times a matrix, and the other matrix components are expressed as
following

ΓJaJb =
2NT 2(1− e2)1/2

3πσ2
ra

4

 A2 −A1 0 0
0 A1 0
0 0 A2

 (B32)

ΓaJx =
4πNT 2

σ2
ra

5
Tr[(JxLx + JyL† + JzLz)[x̂x̂+ ŷŷ]LTx ] (B33)

ΓaJy =
4πNT 2

σ2
ra

5
Tr[(JxLx + JyL† + JzLz)[x̂x̂+ ŷŷ]LTy ] (B34)

ΓaJz =
−8πNT 2

σ2
ra

5
Tr[(JxLx + JyL† + JzLz)[x̂x̂+ ŷŷ]LTz ] (B35)

ΓeJx = ΓeJy = 0 (B36)

ΓeJz =
NT

σ2
ra

(B37)

ΓΦ0Jx = ΓΦ0Jy = ΓΦ0Jz = 0 (B38)

ΓΘxJx =
NT

2πσ2
ra
Tr[Lx[A1x̂x̂+ (A2 −A1)ŷŷ]LTx ] (B39)

ΓΘyJy =
NT

2πσ2
ra
Tr[Ly[A1x̂x̂+ (A2 −A1)ŷŷ]LTy ] (B40)

ΓΘzJz =
−NT
2πσ2

ra
Tr[Lz[A1x̂x̂+ (A2 −A1)ŷŷ]LTz ]. (B41)

Appendix C: Likelihood and MCMC

1. Bayesian formalism

To separate issues pertaining to measurement from physics from dynamics, we describe results using three mea-
surement scenarios: (a) an idealized measurement model, where the position or velocity of each star can be measured
at known times, as if via an array of local observers surrounding the black hole; (b) a plausible model, where only the
radial velocity and transverse angle can be measured, on known null rays; and (c) a model for pulsar timing.

Specifically, our first measurement model assumes each star’s position ~rα is measured to be ~xα,k on times tk with
measurement error σr. We will henceforth use Greek subscripts α to index stars or parameters; small roman subscripts
like k to index measurements; and large roman symbols to denote vector components. Since local measurements are
performed, the distance to the black hole (and astrometry) do not enter into the analysis. For this model, the
probability distribution of the data is

p(D|λ) = (2πσ2
r)−3N/2 exp−

∑
α,k

(~rα(tk|λ)− ~xk)2

2σ2
r

. (C1)

Because of its simplicity, we will use this analytically trivial model when illustrating how physics break the degeneracy.
A more realistic measurement model accounts for the unknown distance to the Galactic Center; the unknown mass

of the Galactic Center black hole; and the fact that only projected sky positions ~θk and radial velocities vr,k can be
measured. For this model, the probability distribution of the data are

p(D|λ) = (2πσ2
θ)−2N/2 exp−

∑
α,k

(P⊥~rα(tk|λ)− ~θkR)2

2σ2
θ

× (2πσ2
v)−N/2 exp−

∑
α,k

(N̂ · ∂t~rα(tk|λ)− vN )2

2σ2
v

, (C2)

combined with a prior for R, the distance to the Galactic Center. A more realistic model still accounts for light
propagation time across the stellar orbit [60]; light bending near the black hole note we are in harmonic coordinates;
higher order terms in the doppler equation [16, 17]
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Finally, the orbit of a pulsar around a black hole can be reconstructed by timing. Pulsar timing corresponds to
fitting a model to pulse arrival times, to insure they arrive in regular intervals in the source frame. Roughly speaking,
the model corresponds to fitting the proper time of the pulsar’s orbit, which can be measured to some accuracy.

2. Fisher matrix

To illustrate the mechanics of a Fisher matrix calculation, we employ the idealized measurement model of Eq. (C1) in
the special case that the observed data is exactly as predicted by some set of model parameters λ′ [i.e., ~xk = ~r(tk|λ′)].
Using a first-order Taylor series expansion ~r(tk|λ) − ~r(tk|λ′) ' δλb∂~r/∂λb for the position versus parameters λ, we
find the conditional probability of the data given λ can be approximated by

ln p(D|λ) = const− 1

2
Γabδλaδλb (C3)

Γab =
∑
α,k

1

σ2
r

∂~rα
∂λa

∂~rα
∂λb

. (C4)

This expression applies in general, no matter how the solution r(t) is solved or approximated. By using an approximate
analytic solution, the orbit-averaged secular solution in Eq. (11), we can estimate the accuracy to which parameters
can be measured using a simple orbit average over a Newtonian solution. For example, for parameters λ which do
not appear in the unperturbed Newtonian solution, like the black hole spin J or external potential, the Fisher matrix
takes the form

Γab =
∑
k

t2k
σ2
r

∂ΩA

∂λa

∂ΩB

∂λb
(−iLA~ro(tk))C(−iLB~ro(tk))C . (C5)

In fact, as a first approximation, these components of Fisher matrix can be approximated using the orbit’s moment
of inertia Iab,N = 〈ro,aro,b〉:

Γab ' t3

3N
∂ΩA

∂λa
∂ΩB

∂λb
Tr[(−iLA)I(−iLB)T ]. (C6)

Having estimated the Fisher matrix and hence approximated p({d}|λ) by a Gaussian, we can further construct
marginalized distributions for λA in λ = (λA, λa) by integrating out the variables λa.

3. Toy model: tests in ~r using MCMC

We show that MCMC agree with both the numerical and the analytic Fisher matrices via toy models: As a concrete
example, in the Cartesian coordinates with its origin at the black hole center and {xi, yi, zi} as the observables, we
model a Newtonian circular orbit with parameters {a,Φ0, β, γ, ψ} and measure its semimajor axis or radius in two
cases shown in the top panel of Figure 8, as well as an elliptical orbit with parameters {a, e,Φ0, β, γ, ψ, Jx, Jy, Jz}
and measure its spin magnitude in two cases shown in the bottom panel of Figure 8. For the measurement of
the radius (denoted with symbol a as it is semimajor axis with e = 0) of a circular orbit, the two cases are
treating only the semimajor axis as uncertain as shown in the black solid line and treating all orbital parameters
as uncertain as shown in the blue solid line. The dashed lines show the measurement uncertainty from the Fisher
matrix method where both the numerical Fisher matrix in Eq. (C4) and the analytic Fisher matrix component for
the radius in Eq. (B12) give the same value, with a = 2800M,N = 700, σr = 1.0M,T = 100 weeks,∆t = 1 day.
Comparing the corresponding solid and the dashed lines for the two cases respectively, we can see that MCMC
agree well with Fisher matrix for the measurement uncertainties in the radius of the orbits. Similar conclusion
can be drawn for the measurement of the magnitude of black spin. Note that the numerical Fisher matrix in
Eq. (C4) and the analytic Fisher matrix in Eq. (B32) are used and they are also the same. They are evaluated us-
ing the same initial parameters as the top panel, except that σr = 0.1M and e = 0.01 and evolved according to Eq. (1).
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(2017), arXiv:1705.07902 [astro-ph.GA].

[36] S. Jia, J. R. Lu, S. Sakai, A. K. Gautam, T. Do, J. Hosek, M. W., M. Service, A. M. Ghez, E. Gallego-Cano, R. Schödel,
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