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The many bits of positional information
Gas per Tkac ik1 and Thomas Gregor2,3,*

ABSTRACT
Half a century after Lewis Wolpert’s seminal conceptual advance on
how cellular fates distribute in space, we provide a brief historical
perspective on how the concept of positional information emerged and
influenced the field of developmental biology and beyond.We focus on
a modern interpretation of this concept in terms of information theory,
largely centered on its application to cell specification in the early
Drosophila embryo. We argue that a true physical variable (position)
is encoded in local concentrations of patterning molecules, that
this mapping is stochastic, and that the processes by which positions
and corresponding cell fates are determined based on these
concentrations need to take such stochasticity into account. With this
approach, we shift the focus from biological mechanisms, molecules,
genes and pathways to quantitative systems-level questions: where
does positional information reside, how it is transformed and accessed
during development, and what fundamental limits it is subject to?
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Introduction
How and when cells in a developing organism know what they are
and where they are, are questions that are almost synonymous with
the definition of developmental biology (Kirschner and Gerhart,
1997; Lawrence, 1992). In metazoans, different cells have to
perform different tasks. They therefore need to interpret cues that
steer them towards the correct fates (Ephrussi and St. Johnston,
2004). Evolution had the possibility to act on both the ‘cues’ and the
machinery that performs the ‘interpretation’ of these cues.
Wolpert’s concept of positional information (PI) elegantly
touches on both of these aspects.
The idea that cells adopt different fates by ‘sensing’ the presence or

absence of chemicals, so called fate-determining factors or
‘determinants’ (Conklin, 1905; Wilson, 1904), dates back to the
early 20th century. Experiments on sea urchin embryos suggested that
developmental patterns could be determined by opposing ‘gradients’
(Boveri, 1901a,b), while regeneration experiments on flat worms
postulated the existence of ‘formative substances’ that influence the
developmental plan of the embryo (Morgan, 1904, 1905). The notion
of chemical gradients acting at large distances to affect developmental
patterning has an even longer history (Lawrence, 2001), but it was not
until the middle of the 20th century that Turing postulated that
concentrations of specific chemicals, called ‘morphogens’, might
instruct cell fates and thus the emergence of shape and form in a
developing organism (Turing, 1952).

The next big idea was the inclusion of space and the notion that
spatial fields of chemicals could lead to developmental patterning
and cellular differentiation (Crick, 1970; Lawrence, 1970; Wolpert,
1969). Key to this idea is a predetermined initial symmetry-breaking
event, often triggered by asymmetrically localized factors. For
example, morphogens are produced in cells that are located in
spatially restricted regions and they diffuse along a central axis of an
egg or tissue, thereby establishing a gradient. Wolpert eloquently
postulated that cells could determine their fate by interpreting local
concentrations of these graded profiles, and he coined the abstract
notion that these profiles thus contain ‘positional information’
(Wolpert, 1969, 1971). This was one of the solutions he proposed
for the ‘French Flag Problem’ of patterning (Wolpert, 1969), which
later became colloquially known as the ‘French Flag’ model
(Sharpe, 2019). Here, adjacent groups of cells are delineated by a
concentration threshold, which defines a boundary. Fate
determination in this model is due to an additional step, in which
cells ‘interpret’ the concentration of the morphogen. ‘Information’
is thus contained in the nominal value of the concentration at a given
position, and in the molecular apparatus that transforms this value
into a cellular response. Thus, morphogen concentrations of two
orthogonal gradients could act as positional coordinates, defining a
two-dimensional spatial fate map. Individual cells measure and
interpret the local morphogen concentration and determine the
appropriate fate choice for that position, as manifested
experimentally by Spemann’s famous grafting experiments
(Spemann and Schotté, 1932) and by the arrangement of chick
wing digits (Saunders and Gasseling, 1968).

Conceptually, Wolpert’s postulate was indeed a big leap forward,
as evidenced by the significant gap before its experimental
manifestation and its subsequent molecular proof. The framework
of PI found immediate popularity and was put to use, e.g. by
Postlethwait to interpret his famous Antennapedia Drosophila
mutant, in which a pair of head antennae is converted into legs.
Postlethwait postulated ‘that perhaps all appendages may have the
same PI and that what makes one appendage different from another is
the response of cells with a different determination to the same set of
proximodistal, mediolateral positional cues’ (Postlethwait and
Schneiderman, 1971), which turned out to be the case for Hox
genes in all animals (Akam, 1989).

In 1974, the existence of cytoplasmic determinants was undoubtedly
proven by transplantation experiments in Drosophila (Illmensee and
Mahowald, 1974). Fifteen years later, the first morphogen molecule
was finally discovered, with the anterior determinant Bicoid in the
Drosophila embryo displaying all the characteristics of Wolpert’s
concept (Driever and Nüsslein-Volhard, 1988a,b; reviewed by
Lawrence, 1988; Wolpert, 1989). This discovery was immediately
followed by the demonstration that a frog growth factor determines
differential cell fates according to concentration thresholds (Green and
Smith, 1990; Green et al., 1990; reviewed by Green and Smith, 1991).
Subsequently, many more PI-carrying morphogens were discovered
(Neumann andCohen, 1997), including in vertebrates such as zebrafish
(Chen and Schier, 2001) and chick (McMahon et al., 2003).
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The concept of PI has since had enormous success in shaping our
understanding of spatial patterning in developing organisms
(Fasano and Kerridge, 1988; Lacalli and Harrison, 1991; Moses
and Rubin, 1991; Reinitz et al., 1995; Tomlinson et al., 1987;
Wolpert, 1969, 1971; see review by Wolpert, 1996). Given its
intuitively physical nature, the concept of PI also lent itself swiftly
to quantitative questions. For example, the number of different
thresholds that can be set reliably by a given concentration gradient
could be estimated using straightforward calculations (Lewis et al.,
1977). Moreover, the idea of PI has been applied to understand
precision and reproducibility in development. Specific
morphological features during early development have been
studied in great detail and have been shown to occur reproducibly
and precisely across wild-type embryos (Crauk and Dostatni, 2005;
Gregor et al., 2005; Houchmandzadeh et al., 2002; Jaeger and
Reinitz, 2006; Jaeger et al., 2008; Lecuit et al., 1996), while
perturbation experiments have revealed systematic shifts of these
features (Capovilla et al., 1992; Kraut and Levine, 1991; Rivera-
Pomar et al., 1995). These findings have thereby established a causal
– but not quantitative – link between the PI encoded in morphogens
and the resulting body plan.
To sharpen the use of PI and to elevate its usefulness as a

quantitative tool, we propose here a mathematical definition that is
based on the concepts of Shannon’s information theory (Box 1). We
first introduce the mathematical framework that allows us to
formalize the colloquial concept whereby ‘a cell determines its
position from noisy patterning cues in the form of low-concentration
molecular gradients’. We next highlight how the combination of
precise data and mathematically rigorous PI quantities helped us
revisit key biological questions. Finally, we end by formulating
several unsolved puzzles to motivate future research.

In search of a mathematical framework for PI
Initial efforts towards a quantitative interpretation of PI relied mainly
on indirect, system-specific quantities. Some of the measured
quantities were based on the necessity for precision and
reproducibility in the patterning process (Bollenbach et al., 2008;

Desponds et al., 2016; Gregor et al., 2007; He et al., 2010; Morishita
and Iwasa, 2009, 2011), whereas others were based on the idea that
special shapes of morphogen profiles, ‘sharp’ gene expression
boundaries, or a ‘stripe’ of gene expression, are intrinsically favored
for successful patterning and are thus selected for by evolution
(Briscoe and Small, 2015; Crauk and Dostatni, 2005; Erdmann et al.,
2009; Fujioka et al., 1995; Houchmandzadeh et al., 2002; Jaeger
et al., 2004; Meinhardt and Gierer, 1980; Sokolowski et al., 2012).
Interestingly, both intuitions contain a partial, yet incomplete,
characterization of PI. However, a unifying mathematical
framework that could consistently merge the two was missing.

Ideally, a mathematical formalization of PI should satisfy the
following properties: (1) PI should be independent of specific
biological mechanisms that establish or read out primary morphogen
gradients or patterns; (2) PI should be a numerical measure that can be
experimentally determined; (3) PI should be defined without a priori
assumptions about pattern shape, and thus should be applicable to
any arbitrarily complex spatial gene expression pattern; (4) PI should
be applicable and generalizable to multiple concentration fields of
patterning molecules; and (5) PI should allow for theoretical first
principle derivations, and lend itself to the establishment of a
predictive theory for biological patterning.

These five desired properties can all be fulfilled simultaneously
when information about the physical position (i.e. the coordinates)
of a cell within an organism is encoded in noisy spatiotemporal
concentration profiles of morphogen molecules. Here ‘encoding’
signifies the biological processes that establish spatially graded
molecular profiles (Fig. 1). The mechanistic implementation of this
encoding could be complex, consisting of a variety of biological
steps that are only partially known: maternal cues, gene regulatory
and signaling networks, cell-cell communication, diffusion, etc.
However, PI should only be a function of the resulting
spatiotemporal concentration profiles, regardless of the processes
that establish them, as these profiles are by definition the sole
quantities that determine subsequent morphological events. In
addition, PI should be equivalently applicable to both classical
graded profiles of signaling molecules (morphogen gradients) and
spatiotemporal expression patterns of developmental genes; for
simplicity, we therefore use the term ‘morphogen’ broadly to refer
to both of these cases.

Importantly, the issue of how PI is read out or decoded is separate
from the measure of how much information is present in the pattern.
Here ‘decoding’ stands for the biological processes that estimate the
physical location of a cell in a tissue or determine its discrete cell fate
based on readout or measurement of noisy local morphogen
concentration levels (i.e. the processes that ‘interpret the positional
cues’). Both, encoding and decoding are mechanism dependent
(Fig. 1). Building a general mathematical framework relies on the
possibility of separating these mechanisms from the actual
representation of PI, which depends solely on directly measurable
concentration profiles and is thus mechanism independent.

PI is not only ‘established’ (e.g. as a morphogen gradient) and then
‘read-out’ (e.g. via thresholds), but it can also be ‘recoded’ (Fig. 1).
Recoding means that the information present in the morphogen
gradient is reformatted or transformed into another internal cellular
representation (e.g. for downstream processing convenience). Gap
genes in Drosophila, for example, carry PI much like their primary
maternal morphogen regulators do. This information originates from
the primary morphogens and vanishes if they are removed (Petkova
et al., 2019). Typically, the process of ‘reading out’ implies applying
an operation on the morphogen gradient that loses PI. Yet gap genes
individually (and most likely as a group) encode at least as much

Box 1. An introduction to Shannon’s ‘information theory’
When a change in random variable, X, leads with some probability to a
change in another random variable, Y, we say that X ‘has information’
about Y. This informationwould allow us to infer (or predict) the value of Y if
we knew the value of X, and vice versa. ClaudeShannon identifiedmutual
information, I(X;Y), as the unique measure that mathematically captures
such a statistical dependence between X and Y, while satisfying various
intuitive expectations (e.g. independent bits of information add) and
remaining independent of system-specific assumptions (Shannon, 1948).

Mutual information is derived from a more basic quantity, the ‘entropy’
S(X)=-Σ P(X) log2 P(X), where the summation extends over all values of X
that happenwith probability P(X). Entropymeasures the dynamic range of
the distribution, and is conceptually related to its variance. Mutual
information is I(X;Y)=S(X)+S(Y) – S(X,Y), or the difference in entropy of
X and Y taken separately (as if they were statistically independent) and
jointly (which captures any correlation between them). Mutual information
generalizes the linear correlation coefficient (or regressionR2) to nonlinear
dependence between two random variables. Linear correlation can miss
statistical dependencies that information will detect. Information will be
zero only if X and Y are statistically independent, and thus no inference
about one variable is possible from the other. Despite its unusual notation,
I(X;Y) is not a function but a single non-negative number, the units of which
are ‘bits’ (see Box 4). Larger values imply stronger statistical dependence,
less noise and higher predictability between the two variables.
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information as their primary morphogen inputs, and provide a
complete ‘coordinate system’ allowing for precise positional
determination. It is thus more pertinent to speak of transforming or
recoding of PI that will be read out only at a later stage. Such
transformations could happen multiple times, and each successive
step should be tracked in a general mathematical framework. The
concept of recoding is conceptually loosely related to Wolpert’s
original idea of ‘positional value’ (Wolpert, 1989).
A theoretical framework for PI that maps spatiotemporal

concentration profiles to position must also consider stochasticity.
Although patterning precision and reproducibility can be achieved
over very short developmental time spans, using only a few handfuls
of genes (Bentovim et al., 2017; Bollenbach et al., 2008; Briscoe and
Small, 2015; Gregor et al., 2007; Houchmandzadeh et al., 2002; Patel
and Lall, 2002; Petkova et al., 2014; Reeves et al., 2012), the
processes underlying patterning are subject to molecular noise (Arias
and Hayward, 2006; England and Cardy, 2005; Houchmandzadeh
et al., 2005; Hu et al., 2010; Tkac  ik et al., 2008a; Tostevin et al., 2007;
Tsimring, 2014; van Kampen, 2007). Moreover, there is random
variability not only within a specimen, but also between specimens,

e.g. in the strength of themorphogen sources (Bollenbach et al., 2008;
Howard, 2012).

The necessity for a probabilistic approach is best exemplified when
considering an undifferentiated cell in a developing organism. The
cell experiences a single random realization of an otherwise variable
information-carrying profile. When fluctuations between specimens
or between adjacent cells of the same specimen are large, differences
between cells can no longer be distinguished and PI is lost. This
statement is true irrespective of the biological mechanism that reads
out the gradient. It is a theoretical statement about what is possible in
principle, which no biological (or engineered) system can evade.
Thinking about what individual cells can measure locally – as in
Wolpert’s original concept – sharply contrasts with the typical
approach to data analysis in biology, where one identifies ‘statistically
significant differences’ in the mean gradient profile from one cell to
the next, or where one disregards stochasticity by looking only at
aggregated (averaged) profiles. A theoretical framework appropriate
for Wolpert’s PI concept therefore must be phrased in terms of
probability distributions, not geometrically, as would be appropriate
when dealing with shapes and patterns in the absence of noise.

(1) Encoding
Mechanisms of Bcd
gradient establishment 

(2) PI in I(Bcd;x)

Establishment Interpretation
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T2

Representation

?

Positional Information

(6) Optimal
decoding 

(4) PI in I(Hb;x)(3) Recoding
Mechanisms of Hb
regulation by Bcd (can
involve multiple steps)

(5) Decoding
Positional fate
determination

Fig. 1. A framework for positional information. In Wolpert’s conception, ‘positional cues’ are provided by concentration fields of patterning chemicals, depicted
here as a singlemorphogen gradient (top left) extending along the linear x dimension. These positional cues are then ‘interpreted’ by thresholds T1 and T2 (top right)
that convey discrete cell identities (blue, white or red), resembling the famous French Flag model. We postulate an intermediate step in which the same
information that is present in the morphogen gradient is put into other forms of ‘representation’, of which there can be several layers. Thus, PI undergoes
multiple transformations, fromestablishment to recoding (potentially multiple times) to decoding. Steps that depend on biologicalmechanisms (‘encoding’, ‘recoding’
and ‘decoding’) can be separated from mechanism-independent abstractions (here, ‘PI’ and ‘optimal decoding’). As an example, we use the gene expression
cascade that patterns the anterior-posterior axis of theDrosophila embryo. During encoding (1), a gradient of Bicoid (green) is established frommaternally deposited
mRNA (red) at the anterior. Once established, it is possible to estimate the amount of PI in the Bcd gradient (2: top, Bcd-GFP-expressing embryo; bottom,
nuclear concentrationmeasured in individual nuclei along theAPaxis) in away that depends solely on themeasured gradient but not on themechanisms underlying
its establishment. Bcd then regulates expression of the gap geneHunchback (3:Hb, yellow: red, nuclei) and, as a result, information about position is transformed (or
‘recoded’) into the Hb profile. Once established, it is again possible to estimate the amount of PI in the Hb profile in a mechanism-independent way (4). Gap
gene expression profiles are then somehow ‘decoded’ (5) by cells to determine their positions or cell fates in away that depends on biological ‘decoding’mechanisms;
however, there is a single mathematically optimal way, which is mechanism independent (6: ‘optimal decoding’), to estimate position from the morphogen profiles.
Probability distributions (red) for three Hb concentration levels (gray arrows) determine where cells are located along the AP axis.
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Establishing a mathematical framework for PI
Information theory is the mathematical treatment of concepts,
parameters and rules governing efficient and reliable transmission
of messages through communication systems (see Box 1). It has been
applied to biological problems (Tkac ik and Bialek, 2016) but it was
not until the late 2000s that ideas about information transmission
appeared for biochemical networks (Bowsher and Swain, 2014; de
Ronde et al., 2011; Mugler et al., 2010; Tkac ik and Walczak, 2011;
Tkac ik et al., 2008c; Tostevin and TenWolde, 2009; Ziv et al., 2007),
specifically for the anterior-posterior (AP) patterning gene network of
the early Drosophila embryo (Tkac ik et al., 2008b). These initial
studies focused on computing how well fluctuations in some ‘input’
chemical signal (morphogen, transcription factor or ligand
concentration) are encoded in the resulting ‘output’ gene expression
levels, given that gene expression is necessarily subject to molecular
noise of well-understood biophysical origins (Gregor et al., 2007;
Tkac ik et al., 2008a). At that time, molecular signals were only
starting to be experimentally measurable at a single-cell level (Blake
et al., 2003; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al.,
2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005).
To introduce information theory in the context of genetic networks,

and as a vehicle for a mathematical framework for PI, we focus here on
the example of the early Drosophila embryo. The general framework
we develop can be generalized to other systems in a straightforward
manner, but depends on the specific circumstances and constraints
imposed by the different experimental setups. In the case of the
Drosophila embryo, we postulate that it has evolved to ‘send’ or
encode real physical coordinates x of cells or nuclei through a noisy
biochemical reaction network that at different x generates different
patterning molecule concentrations g. Here, g represents morphogen
concentrations, either primary gradients or subsequently expressed
developmental genes (such as gap or pair-rule genes) – the
mathematics remain the same. The concentrations g are denoted in
bold face to indicate that there can be multiple relevant concentrations,
and thus, formally, g is a vector at every position x. Because of noise, g
is not a deterministic function of x, but we have to use a probability
distributionP(g|x) that tells us the probability of finding a certain g at x.
Shannon’s original formulation of information theory revolved

around the concept of a noisy information channel (Shannon, 1948).
A ‘channel’ here represents an evolved biochemical reaction network.
It encodes different positions x into concentration levels g,
probabilistically, as described by P(g|x). Neither the concept of PI
nor the channel concept depends on underlying mechanisms, but only
on how input signals x are mathematically transformed into outputs g.
Biological mechanisms inside the channel are de facto treated as a
black box. Information theory then introduces a general and unique
measure of how well information can be sent through such noisy
channels, the mutual information I(g|x) (Cover and Thomas, 2006):

Iðg; xÞ ¼ h
ð
dg PðgjxÞ log2

PðgjxÞ
PgðgÞ ix: ðEqn 1Þ

Angular brackets indicate an average over all locations x,
assuming that cells or nuclei are uniformly distributed over the
coordinate x. (See Dubuis et al., 2013b and Tkac ik et al., 2015 for
straightforward generalizations.) Similarly, Pg(g)=〈P(g|x)〉x is the
average of the distribution of morphogen concentrations across all
positions x; it represents the probability that a particular
combination of concentrations, g, can be seen anywhere in the
embryo (Fig. 2).
Our key assertion can now be made precise: we claim that the

mutual information [a mathematical object of information theory

(Cover and Thomas, 2006)] linking position and morphogen
concentration, I(g;x), is the proper formalization of PI (a concept of
developmental biology). The distribution of morphogen
concentrations at a given position, P(g|x), can be estimated from
experimental data (see Box 2), giving access to empirical measures of
PI I(g;x), which is mathematically derived from P(g|x) by Eqn 1.
Although proper estimation from finite datasets requires care,
the technical procedures have been documented elsewhere
(Borst and Theunissen, 1999; de Polavieja, 2004; Strong et al.,
1998; Tkac ik et al., 2015). More pertinent for morphogenesis are the
following characteristics of PI (summarized below and expanded
in Boxes 3 and 4):
• PI is a unique measure of all statistical dependence between
morphogen concentrations and position with important
theoretical guarantees. It measures how well any variation of
morphogen profile with position (linear or not) can be used to
determine positional specification (Dubuis et al., 2013b).
Thereby, PI satisfies property 1 (Fig. 3).

• PI is a single number with interpretable units. Intuitively, I bits
of information (see Box 4) are necessary and sufficient to
distinguish 2I discrete alternatives with zero error (Hillenbrand
et al., 2016); if some degree of positional error is allowed, I bits
suffice to specify more alternatives (Tkac ik et al., 2015).
Thereby, PI satisfies property 2 (Fig. 4).

• PI is applicable to single or multiple morphogen gradients of
arbitrary shapes, independently of the biological system and
mechanistic detail. The framework does not single out
particular profile shapes, positional markers or special
positions. Thereby, PI satisfies properties 3 and 4 (Tkac ik
et al., 2015), also enabling a theoretical search through the
space of all possible morphogen profiles to predict ones that
maximize PI, thereby satisfying property 5 (Sokolowski and
Tkac ik, 2015; Tkac  ik and Walczak, 2011; Tkac  ik et al., 2009).

Within this theoretical framework, PI summarizes the fidelity by
which position is encoded in any number of morphogen gradients
of arbitrary shapes, independent of the system and biological
mechanisms. While such a formalism employing a single statistic
is undeniably attractive, its benefits come at a price (see also
Box 5): a single number might measure the overall limits of
patterning, but it cannot explain how and where these limits arise.
Specifically, PI cannot answer local questions or make testable
predictions about limits to patterning at individual positions within
an embryo. To this end, the PI framework must be appropriately
extended (see Box 6).

Decoding PI
An undifferentiated cell in a field of morphogen concentrations
needs to determine its location by ‘reading out’ the available PI. It
thus needs to perform local concentration measurements and
estimate, or infer, its position. Early demonstrations of
quantitative limits to this process (Gregor et al., 2007) were
followed by the development of a rigorous mathematical framework
for optimal decoding (Hironaka andMorishita, 2012; Morishita and
Iwasa, 2009, 2011), which has since been applied to data and
connected to information-theoretic concepts (Dubuis et al., 2013b;
Petkova et al., 2019; Tkac ik et al., 2015; Zagorski et al., 2017), as
summarized in Box 6.

Suppose that the distribution of morphogen concentrations given
position, P(g|x), is known. For example, an image collected in an
experiment provides absolute knowledge about position, and
multiple images can then deliver the probability of finding a
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx�jgÞ ¼ 1

Z
Pðgjx�ÞPxðx�Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X �ðgÞ ¼ Ð
dx� x� Pðx�jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx�jxÞ ¼ Pðx�jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi � giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkac ik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkac ik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.

P g
(g

)

x

g

P(g|x)

g*

x*

P(x|g*)

σx(x*)

After measuring g*:

Px(x)

x
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x

1

Px(x)

x*

σx(x*)
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Before measuring g*:

Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.
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(‘optimal decoding’) of PI. The decoding map can be visualized as a
matrix of implied versus true locations in the embryo (Fig. 6). A
precise positional code, corresponding to scenario A discussed
above, will result in Paðx�jxÞ, which is tightly localized around the
diagonal where x*=x. Here, positions implied by noisy morphogen
profiles are almost equal to the true, ideal positions known to the
experimenter. Scenario B, with high positional error, corresponds to
situations where at some location x, the decoding map has a single
but broad, or ‘diffuse’, range of locations x* that are consistent with
the measured morphogen profiles. Scenario C typically corresponds
to the situations where, at multiple locations, at least two separated
peaks of implied positions x* exist, and where cells cannot
unambiguously determine whether they reside in one or the other
peak (Fig. 7A).

The decoding map is a very powerful construction: it predicts the
ability of a cell to determine its position locally and specifically, at a
chosen real location x within a particular embryo α. By determining
how the best estimate of position, i.e. the peak X* of the map at
every position x, varies between embryos, it predicts how embryo-
to-embryo variability maps into uncertainty in specifying position
estimates. By averaging individual embryo decoding maps across all
embryos α of the same class, one can obtain an average decoding
map P(x*|x) that, for wild-type embryos in scenario A, defines the
positional error, σx(x), as a function of real position x:

s2
xðxÞ ¼

ð
dx�ðx� � X �ðxÞÞ2 Pðx�jxÞ; ðEqn 4Þ

where X �ðxÞ ¼ Ð
dx� x� Pðx�jxÞ. This positional error quantifies

how precisely positional markers can be localized in the embryo

Box 3. Primer on theoretical formalism of positional information
Positional information (PI) measures any kind of statistical dependence between position x and morphogen concentrations g. PI is zero only if there is no
systematic variation inmorphogenmean profile or any other statistic with position: in this case nomechanism exists to extract knowledge about position from
morphogen concentrations (Cover and Thomas, 2006). Otherwise, positional knowledge can be extracted using a properly constructed decoding
mechanism (which may, however, be biologically unrealistic). Even though linear gradients are often used as example cases, real gradients are not linear
(and sometimes not even monotonic, e.g. for patterning ‘stripes’); their variance typically changes with position (known in statistics as ‘heteroscedasticity’);
and their fluctuations may not be Gaussian, requiring a more powerful alternative to linear correlation.

As an example, the figure shows three gene expression profiles g(x), with variability σg (shaded area). A step function (A) carries (at most) one bit of PI by
perfectly distinguishing between ‘off’ (not induced, posterior) and ‘on’ (induced, anterior) states. A sigmoidal profile (B) has a wider boundary, but PI can be
>1 bit because the transition region itself is distinguishable from the on and off domains. A linear gradient (C) has no boundary but increases PI by being
equally sensitive at every value of x. In the absence of noise, B and C could theoretically reach arbitrarily high PI, as each concentration would correspond to
a unique position without ambiguity. In reality, such infinities are avoided because the mapping is noisy and positions are discrete (e.g. columns of nuclei
rather than physical coordinates with infinite precision).

σg σg
g

1

0

g

1

0

0 0.5

σx ~ 0

1 x 0 0.5 1 x
I(g;x) = 1 bit 1 < I(g;x) < log2 (1/σg) I(g;x) = log2 (1/σg)

σx = σg  .
dg
dx

–1

σg
g

1

0

0 0.5 1 x

σx = σg

A B C

Box 4. The meaning of ‘bits’
Information is measured in bits, which are meaningful units: 1 bit of PI in
the morphogen gradient suffices to make a reliable discrimination
between two sets of positions that are, in the absence of morphogen
readout, equally likely. For example, 1 bit of PI suffices to reliably
discriminate the front half of the embryo from the back; or odd columns of
cells from even columns. More generally, I bits of information are
necessary and sufficient to distinguish 2I discrete alternatives with zero
error. Thus, the patterning of an embryo with N columns of nuclei that
need to be uniquely distinguished with no possibility of error requires at
least I0=log2 N bits of PI. If some error in specification can be tolerated,
the required amount of PI is smaller than I0. More PI can be provided
(usually at a higher metabolic or time cost) to compensate for the
decoding processes that do not use the information optimally. If the
morphogens provide I<I0 bits of PI, a minimal error exists by which cells
can determine their positions: they can do worse (perhaps due to
biological limitations in their gradient readout) but not better.

PI and the associated bounds to positional error provide a powerful
and unbiased tool for asking biologically-relevant questions. How much
additional PI is provided by each morphogen gradient in systems with
multiple gradients?Are their individual PI contributions additive, redundant
or synergistic? How much information is there in non-monotonic profiles
(such as stripes) and how much information does each profile ‘feature’
contribute, especially when the features can be generated in silico, or
isolated in vivo through appropriate genetic modifications? PI can be
computed for various morphogen profiles (e.g. a sharp step, or a
linear or exponential ramp) and compared with data, to question
whether our expectations about ‘ideal’ shapes alignwith reality. Ultimately,
morphogen profiles can be computationally optimized to find those that
maximize PI, thus deriving the best morphogen patterns ab initio, and
comparing such first-principle theory predictions with data.
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(Fig. 7B). For example, if wild-type embryos are known to express a
positional marker at some position x based on morphogen readout,
this framework states that, except for some residual experimental
error, the positional accuracy of a marker across embryos is bounded
from below by the positional error, σx(x), at that position. σx(x) thus
quantifies the minimal uncertainty about the implied cellular location
due to the combined variability and intrinsic noise in the morphogen
profiles (Morishita and Iwasa, 2011; Tkac  ik et al., 2015).
Optimal decoding is particularly relevant in the context of

mutations that affect a patterning system. Here, the decoding map
P(x*|x) becomes a mathematical and quantitative formalization of
the classical concept of a fate map (Conklin, 1905; Gilbert, 2000;
Schüpbach and Wieschaus, 1986). Often, a mutation has
consequences for the entire morphogen system, causing a global
shift in the decoding map P(x*|x). In this case, the decoding map
predicts how physical locations in the mutant (x) map to cell fates
that are characteristic of the location in thewild type (x*). But within
a probabilistic framework there are other possible outcomes,
implying that the decoding map can accommodate a richer set of
possibilities than a traditional fate map. For example, there could be
multiple peaks in x* for some fixed position x in the mutants,
predicting large mutant-to-mutant variability, where the same wild-
type positional marker is placed at different, random positions x*
that correspond to the multiple peaks in the mutant.
The decoding map can thus make parameter-free predictions

derived solely from wild-type embryos about how patterning

mutants behave. Its only assumption is that a very good
approximation to optimal decoding of Eqn 2 has evolved in the
biological ‘hardware’. This is an information-rich, quantitative
and falsifiable prediction that can be viewed as the test of the
optimality assumption, which, to date, has been experimentally
verified with high fidelity in the Drosophila AP patterning system
(Petkova et al., 2019) and for the mammalian neural tube
(Zagorski et al., 2017).

Lessons for biology
By combining our mathematical framework for PI with applicable
quantitative measurements, we can gain novel biological insights
into patterning events, as summarized below.

Optimal patterning without sharp boundaries
Within the original paradigm for PI, morphogen profiles are ‘read
out’ by downstream genes to guide cell fate decisions. Is there a
notion of a best profile shape that supports reliable fate
determination? Theoretical work typically considers linear profiles;
in contrast, maternal morphogens often exhibit exponentially
decaying profiles that span a significant fraction of the length of an
embryo. Yet other patterning genes may show very sharp gene
expression boundaries (Fig. 5). The theory of PI can guide us on what
the best profile shape is for encoding a maximum amount of PI.
Perhaps surprisingly, the answer depends on how variability (i.e.
noise) changes with position. If variability is independent of position

I(Kr; hb) = 3.4 I(Kr, hb; x) = 3.5

I = 1.0 I = 0.3 I = 0.4
A

B C

C=0.0  I=0.0 C=0.9  I=1.0 C=0.0  I=0.3 C=0.0  I=0.4

x

Fig. 3. Information as a measure for statistical dependence. (A) Four examples in which points (x and y), depicted in the plane as blue dots, were drawn from
joint probability distributions, P(x,y), with varying types of statistical dependency between x and y. C (black) denotes linear (Pearson) correlation coefficient,
whereas I (red) denotesmutual information (in bits) between x and y for each of the cases. In the first panel, x and yare statistically fully independent. In the second
panel, x and y are linearly correlated. In the third panel, the conditional average of y at a given x is constant, but for small values of x, the variance in y is smaller
than for large values of x. Linear correlation fails to detect any kind of dependence, even if the number of samples is infinite; in contrast, mutual information is non-
zero. In the fourth panel, x and y lie on a circular manifold, with zero linear correlation and non-zero mutual information. (B) Depiction of the joint probability
distribution between measured expression levels of Kruppel (Kr) and Hunchback (hb) in Drosophila embryos; denser tiling represents higher probability weight.
Such joint dependence (reminiscent of the fourth panel in A) leads to a small linear correlation, but 3.4 bits of mutual information. (C) As anterior-posterior
position in the embryo, x, varies along the horizontal axis, two gap genes hb and Kr trace out a trajectory in the y, z coordinate space, as indicated in this 3D plot
(black line; the yellow and red lines show projections on the sides of the cube that represent the profiles of Kr and Hb, respectively, separately). This strongly
nonlinear joint dependence can be quantified by PI, showing that Kr and hb together encode I(Kr,hb;x)=3.5 bits about position; a linear measure such as a
correlation coefficient would clearly fail to properly capture all observed statistical dependencies.
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and is low compared with the maximum gene expression magnitude,
then the optimal profile is linear. In this case, a single profile can
encode more than one bit of PI.
In biochemical networks, however, the noise magnitude typically

changes with position. Intrinsic noise, e.g. fluctuations in
morphogen levels, depend on the mean morphogen concentration,
and thus on position. This is true empirically and is expected on
biophysical grounds, because, when morphogen concentrations are
low, noise at these concentrations is ultimately Poissonian and its

variance scales linearly with the mean. In this case, the optimal
shape can be computed from the noise profile, and is typically not a
linear one. Last, when noise is large, PI drops to below one bit,
where even a trivial discrimination of location, such as between the
front and back of the positional axis, can no longer be error free.
Generally, with noise being low enough, most of PI is encoded in
the smooth slopes of a (monotonic) profile; with high noise, slopes
cannot be read out precisely and PI is reduced to the binary
discrimination of being below or above an expression threshold
(Tkac ik et al., 2008b,c, 2015). This insight parallels the discussion
in neuroscience on the optimal shape of tuning curves of sensory
neurons (Butts and Goldman, 2006).

Patterning genes are more than binary ON/OFF switches
Hunchback (Hb), a gap gene involved inDrosophilaAP patterning,
primarily responds to a gradient of maternal Bicoid, resulting in an
expression profile that makes a seemingly sharp transition between
high expression (‘ON’ domain) in the anterior half of the embryo
and low expression (‘OFF’ domain) in the posterior half (Albert and
Othmer, 2003; Alberts et al., 2002; Meinhardt, 1986; Spirov and
Holloway, 2003). Hb has been the paradigm of a switch-like gene
whose threshold is positioned precisely and reproducibly across
embryos, roughly at the half-way point of the axis of the embryo
(Crauk and Dostatni, 2005; Gregor et al., 2007; Holloway et al.,
2006; Houchmandzadeh et al., 2002). Switches are expected to
encode, at most, one bit. Surprisingly, our model-free estimates of
PI reveal empirically that Hb encodes almost 2.2 bits of PI,
indicating that the switch-like approximation would miss more than
half of the available information, vastly underestimating the
capacity of this patterning system (Dubuis et al., 2013b; Tkac  ik
et al., 2015). The extra bit comes from the fact that Hb expression,
although steep, is not a step function; indeed, about one third of the
nuclei experience intermediate levels of expression, clearly
distinguishable from the ON or OFF states.

Similar values have been reported for other gap genes in the
early Drosophila embryo. Together, the four trunk gap genes
provide ∼4.2 bits of PI, enough to specify every nucleus in the
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Fig. 4. Positional error and PI. (A) Schematic representation of a row of nuclei (top), equally spaced d μm apart, that tile the length L of the embryo axis.
A positional error of σx at the location of a focal nucleus at x = 0 implies that, given the limited information contained in morphogen profiles, the focal (and its
neighboring) nucleus can only estimate its position as depicted by a solid (dashed) Gaussian curve. Whenever that estimate falls outside the gray band, the
identity of the focal nuclei will likely be mistaken for its neighbors; the probability of this happening, Perror, is represented in red and can be easily computed from
the Gaussian distribution. (B) Relationship between positional error (the width of the Gaussian curve in A), PI (left axis) and the probability of error (right axis).
In the limit when positional error vanishes, the information saturates at log2(N) bits, where N is the number of nuclei tiling the embryo axis and the probability
of error becomes zero: this is the error-free positional code. As positional error increases, PI must decrease and the probability of mistaken nuclear identity
rises. Blue arrow corresponds to the example depicted in A; green arrow to the estimated 1% positional error (and 4.3 bits of PI) reported by Dubuis et al. (2013b)
for the gap gene system in Drosophila.

Box 5. Limitations of the framework
Patterning dynamics
Although it is possible to mathematically extend the PI framework to
cases where PI is encoded in temporal trajectories of morphogen
concentrations, this has not been tried in practice. In the Drosophila
example considered here, information is stored in a single static
snapshot of gene expression patterns, which greatly simplifies the
technical analyses and their interpretation.
Positional coordinate
The theory is agnostic about how ‘position’ x should be represented to
compute PI, I(g;x). In the Drosophila example considered here, x is a
relative coordinate along the anterior-posterior axis of the embryo. This
choice relies on the finding that demonstrated spatial scaling of the
morphogenetic patterns in this system (Gregor et al., 2005;
Houchmandzadeh et al., 2002). An absolute coordinate x would thus be
less appropriate. Nevertheless, a relative coordinate is not the only possible
choice: x could also be a discrete nuclear column index. In contrast, it is
much less is clear how to choose a representation for position in a growing
or deforming tissue: should position be taken at a particular temporal
snapshot or perhaps relative to a constantly co-moving and growing
reference frame? Although the theory can be applied in either case, it does
not provide us with an answer about the positional coordinate system.
How much of the information is biologically relevant?
Information-theoretic definition for PI has many attractive mathematical
properties, but it does not tell us how many bits can actually be extracted
from singlemorphogen snapshots with biologically plausiblemechanisms.
One can imagine gene expression patterns that formally carry a lot of PI,
but the interpretation of whichwould likely require unrealistic computations.
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central 80% of the AP axis of the embryo with only ∼1%
positional error. This precision is completely inaccessible if each
gap gene provides at most one bit of PI (Fig. 8). Distinguishing

between the binary or analog character of these gene expression
profiles thus clearly necessitates a quantitative analysis
framework.

The role of spatiotemporal averaging during patterning
What can regulatory circuits do to mediate the impact of noise
intrinsic to chemical reactions taking place at low molecule
copy numbers? Cells can reduce the impact of such noise by
performing many noisy concentration measurements of
morphogen molecules and then averaging across them. This
averaging can happen either over time or across space. But
although these mechanisms are thought to play an essential role,
they are subject to biophysical limits. Temporal averaging is in
tradeoff with dynamics: regulatory circuits with long timescales
that can average their inputs imply a slowdown in response
dynamics (which may be undesirable) and require temporally
stable morphogen inputs. Spatial averaging is in tradeoff with
sharp spatial gradients: noise can be reduced if morphogen inputs
are nearly constant over the spatial averaging window, but if the
averaging window is larger, it will ‘flatten out’ information-
carrying morphogen gradients.

In Drosophila, PI carried by the Bicoid gradient [I(Bcd;x)∼1.6
bits] is roughly equal to the mutual information between Bicoid
and Hunchback [I(Bcd;Hb)∼1.5 bits], yet considerably lower than
the PI carried by the spatial profile of Hunchback alone [I(Hb;
x)∼2.3 bits], even though Hunchback is downstream of Bicoid
(Dubuis, 2012). However, according to a naïve application of the
Data Processing Inequality (DPI; Box 6), if concentration levels c
serve to locally regulate the expression of downstream genes g, the
PI in g should be less than in c, I(g; x)<I(c; x). How then can
empirical observations for Bicoid and Hunchback be reconciled
with the DPI?

One possibility is that Hunchback receives additional PI from
inputs other than Bicoid, although a strong and precise Hunchback
boundary is observed in mutants deficient in AP morphogens aside
from Bicoid (Petkova et al., 2019). Another possibility is that PI
carried by Hunchback is higher because of the spatiotemporal
averaging performed over Bicoid concentration by the Hunchback
readout mechanism (Gregor et al., 2007; Little et al., 2013; Zoller
et al., 2018). Hence, a local, instantaneous measurement of

Box 6. Positional information, positional error and
decoding maps
We have introduced the concepts of PI (Eqn 1), positional error (Eqn 4)
and the decoding map (Eqn 3) (Fig. 7). PI is entirely agnostic to encoding
and decoding mechanisms, and is a single number expressed in bits that
characterizes the global performance of the patterning system. Positional
error and the decoding map are local constructs that characterize the
performance of the patterning system location by location, but assume
statistically optimal readout of themorphogen profiles. The positional error
can be derived from the average decoding map in Eqn 4 and, under the
assumptions of scenario A (Fig. 5A), has a clear biological interpretation.

The precise relationship between PI and the two decoding-related
quantities is technically involved, but two generic statements hold
universally. First, from the fundamental theorem of information theory
known as the Data Processing Inequality (DPI) (Cover and Thomas,
2006), we can assert that, regardless of the chosen decoding algorithm
(e.g. Eqn 2), PI is always greater or equal to the mutual information
between the true locations and the best estimates of position (Brunel and
Nadal, 1998). In other words, PI is an upper bound to the information
between true and implied positions.

Second, when every encountered combination of morphogen
concentrations g at true location x decodes to a single peak in the
posterior X*, the width of which is given by positional error, σx(x)<<L, the
approximation holds:

Iðx; x�Þ � �hlog2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pe s2

xðxÞ=L2
q

ix ; ðEqn 5Þ

where L is the range of x over which the patterned cells are uniformly
distributed.As theDPI has general validity, Eqn 5will always boundPI from
below; but as the positional error shrinks and the posterior approaches a
Gaussian distribution (as in scenario A), Eqn 5 will also be a good
approximation for PI I(g;x). Indeed, for the case of Drosophila anterior-
posterior patterning, the direct estimate of the PI, I(g;x), and the decoding
estimate from positional error, I(x;x*), differ by only∼0.1 bit out of 4.3 bits, a
discrepancy of ∼2% (Dubuis et al., 2013b). This agreement is a
quantitative consistency check that the gap gene system of wild-type
Drosophila embryos indeed forms a precise, unambiguous positional code
in which positional error is small and nearly Gaussian almost everywhere.

x*x* x*

P(
x*

|g
) 

P(
x*

|g
) 

P(
x*

|g
) 

Scenario A Scenario B Scenario C

X* X1* X2*

σx

σx

Unambiguous map
g     X*,

small positional error σx

Unambiguous map,
large positional error σx

Ambiguous, g
maps to two positions

Fig. 5. Three possible decoding scenarios. Given the observed gene expression profiles g, the posterior over likely position in the embryo, x*, peaks sharply
around the particular value X* (scenario A). Sharp localization implies a small positional error, and it is possible to decode using a ‘dictionary’ or a ‘lookup table’,
g→X*. This is a hallmark of a good positional code if it can be performed for all values of gene expression g typically observed in the wild-type embryo.
A defect in precise positional code will be observed (scenario B) when the posterior over likely positions in the embryo does not sharply peak but is ‘diffuse’.
Although it is formally possible to identify a single location as the peak of the posterior, the large spread around the peak implies a high positional error. Another
type of defect in the code happens when the posterior over position does not even have a single peak given the gene expression profiles (scenario C). In this case,
essential ambiguity exists in the positional code, and the gene expression levels would map to two distinct locations, X*1 or X*2. Experimentally, this could predict a
bimodal population of embryos.
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Hunchback is in fact a function of the temporal and spatial history of
Bicoid. DPI applies when c and g correspond to complete
spatiotemporal patterns of Bicoid and Hunchback, but not
necessarily when they are local instantaneous values. Thus, the
biophysical mechanisms of spatial and temporal averaging increase
the local instantaneous PI in the Hunchback profile. Temporal
averaging is achieved through gene expression dynamics (Tkac ik
et al., 2008a) and spatial averaging through diffusion of the
regulated gene product (Erdmann et al., 2009; Gregor et al., 2007;
Little et al., 2013; Sokolowski and Tkac ik, 2015).

PI quantitatively predicts number of unique cell fates
The values of PI are not only comparative (i.e. between morphogen
profiles) but also have absolute meaning (Box 3). If unique
identities for N cells have to be conferred without error, log2(N ) bits
of PI are required. Typically, biological systems can tolerate some
positional error (e.g. cell width sets a limit to positional accuracy),
and thus a smaller number of bits of PI is required. For example,
during nuclear cycle 14, Drosophila embryos have about 60
columns of nuclei in the central 80% of the AP axis, implying that at
least log2(60) ∼5.9 bits of PI would be needed for error-free unique
specification of each column. However, if the tolerated positional
error is ∼1%, then ∼4.3 bits are sufficient (Fig. 4), which
corresponds precisely to the physical distance expressed in terms
of embryo length between two adjacent cells (Dubuis et al., 2013b).
Thus, interpreting absolute values of PI is a simple, yet powerful
concept, free from the arbitrariness of normalization procedures,
null-model formulations and aesthetic or philosophical decisions

about what constitutes ‘precise’ or ‘imprecise’ patterning. The cost
of extracting an absolute value, however, comes with the
requirement that the measurements themselves are precise, are
systematically unbiased and are in a regime in which intrinsic
biological noise – and not experimental or statistical noise – is
largely the dominant source of the measured variance (Box 5).

Threshold-free positional cues from multiple combined patterning
systems
Although conceptually simple, a threshold-dependent concentration
readout process is problematic (Houchmandzadeh et al., 2002;
Jaeger et al., 2004): the concentration of the signaling molecules is
often very low, resulting in very high concentration noise levels
(Gregor et al., 2007). These concentration fluctuations propagate to
downstream genes, and a reliable outcome of the morphogenic
process would be questionable if it is implemented via sharp
thresholding (Lacalli and Harrison, 1991).

Several hypotheses exist to explain how cells can integrate PI from
single morphogen gradients without thresholding or from multiple
morphogen gradients. For example, cells could sense the difference or
ratio of two opposing morphogen gradients (Houchmandzadeh et al.,
2005;McHale et al., 2006), compare concentration values at two nearby
spatial locations and thus estimate the local gradient (Mugler et al.,
2016), or respond to temporal dynamics of the morphogen (Bergmann
et al., 2007; Cepeda-Humerez et al., 2019). However, given the shapes
and variabilities of gradients, the only statistically optimal possibility is
the maximum a posteriori (MAP) decoding rule (Eqn 2). Recent
analyses of the Drosophila embryo (Petkova et al., 2019) and the
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Fig. 6. Step-by-step construction of a decodingmap. (A) Top: fluorescence image of a fixedDrosophila embryo at roughly 2.5 h of development. Fluorescence
represents gene expression levels of the morphogen Kruppel (Kr), revealed through antibody staining (blue). Scale bar: 100 μm. Bottom: fluorescence
intensity profile extracted from the top embryo (blue) and its probability of occurrence (gray shading) summarized as a distribution P(Kr|x), constructed from a set
of 37 similar embryos. The shaded probability weight intuitively accounts for the standard deviation of Kr expression at each position, x. The distribution of Kr
expression, integrated over thewhole embryo, is shown on the far left. (B) Bottom: the posterior of distributions over position at given levels of Kruppel expression,
following Eqn 2. Posterior positions at three Kr expression levels are shown at the top: at low Kr, the posterior over positions is both ambiguous and broad – low Kr
expression levels carry essentially no information about position (except that the likely position is not in the middle of the embryo); at medium Kr, the posterior is
localized into two sharp peaks, but still ambiguous, as Kr alone does not specify whether the encoded location is at the right or left flank of the Kr peak; at
high Kr, the posterior is sharply localized to the middle of the embryo and positional encoding here is good. (C) A decoding map, constructed by inserting Kr
expression levels from a specific single embryo is shown. For each true position x that the experimentalist can measure (horizontal axis), the decoding map
shows a posterior or a distribution over implied positions, x*, that would be consistent with the Kr expression observed at x. The decoding map is unambiguous
at the center (peak of Kr), ambiguous but precise at the flanks, and diffuse and ambiguous in the far anterior or posterior.
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vertebrate neural tube (Zagorski et al., 2017) have shown that biological
results are indeed consistent with a statistically optimal readout of PI
providedbymultiple patterningcues.Thus, themathematical framework
for PI generalizes naturally to patterning by multiple gradients.
While Wolpert’s prescription of applying thresholds to a single

gradient is intuitive, it is unclear how to extend it to multiple gradients.
In particular, an obvious generalization whereby cells apply
independent thresholds to each gradient suffers from three
fundamental problems. First, after applying multiple thresholds,
how can a readout decision be computed from the resulting set of
thresholded (binary) values (Fig. 8); second, how could such
computation be implemented in biophysical circuitry; and third,
whywould thresholding ofmultiple gradients be optimal? Statistically
optimal decoding of Eqn 2 is free of such a priori constraints, and
suggests that independent thresholds typically are not optimal. The
exact connection between the mathematical structure of optimal
decoding and the mechanisms that fulfill it remain to be determined.

Evolution can drive patterning systems towards theoretically optimal
performance
How far did evolution drive a real patterning system towards the
mathematically optimal patterns that maximize PI? The same
framework that allows us to estimate PI from real data also allows
us to formulate an optimization theory to search for optimal patterns
and to predict empirically observable signatures of optimal
patterning. One of the salient predictions of such a theory has been
the constancy of the positional error σx(x) across position for

uniformly distributed cells/nuclei (Dubuis et al., 2013b; Tkac  ik et al.,
2015). In the Drosophila embryo, this prediction is remarkably well
matched by the data (Fig. 7B). Similarly, the theory of optimal
information transmission quantitatively predicts the distribution of
Hb expression levels fromHb expression noise (Tkac  ik et al., 2008b),
which has been confirmed experimentally (Tkac ik et al., 2008a).
Optimal decoding – but not other schemes that map developmental
gene expression levels into estimates of position – correctly predicts
developmental consequences in Drosophila mutants for maternal
morphogens, based solely on wild-type data (Petkova et al., 2019).

Such evidence suggests that evolution can drive patterning
systems towards theoretically optimal performance. The question of
whether the biological systems are ‘at’ or ‘near’ optimality is an
interesting empirical question about the strength of evolutionary
pressure to use limited resources in an efficient manner in a given
population. Far away from optimality, where PI is small, biological
function can simply not be supported irrespective of the resource
availability, leading to malformation or death, as in some patterning
mutants. What remains to be seen is whether such an optimization
principle is powerful enough to quantitatively predict the entire set
of spatial patterning gene expression profiles ab initio, thus leading
to a potential design principle for the observed wild-type system
(Tkac ik and Walczak, 2011). The success of this approach depends
precisely on how close to optimality evolution has driven a
particular patterning system, and whether near-optimal solutions
can also be explored mathematically.

Open conceptual puzzles
Abstractions and graphical visualizations of regulatory networks
have been fundamental in allowing cross-species studies
(Davidson, 2002; Gerstein et al., 2012). In a similar manner, a
mathematical framework for PI should allow us to analyze and
quantitatively compare different patterning systems to find
evolutionary convergence or divergence in their function. How
many bits are provided by different patterning systems and how is
their decoding precision distributed across space? Does PI depend
on the number of specified cell types, on the number of system
components (e.g. genes or gradients), or perhaps some (more
qualitative) notion of patterning complexity? In parallel to these
direct applications, the framework also enables us to revisit several
fundamental questions that we highlight below.

Is PI encoded by temporal dynamics of developmental genes?
During AP patterning of theDrosophila embryo, PI can be encoded
in a single temporal snapshot of gene expression patterns: it has
been empirically shown that a single snapshot of gap gene
expression is sufficient to provide the PI required to quantitatively
decode the positions of striped patterns of pair-rule genes with the
precision that matches natural reproducibility (Petkova et al., 2019).
Nevertheless, the temporal dynamics leading up to this snapshot
are essential for bringing about this instantaneous state. Moreover,
information could be directly encoded in these transient dynamics
(Granados et al., 2018), e.g. in temporal trajectories of morphogen
concentrations, g(t), at different spatial locations (Heemskerk
et al., 2019; Rushlow and Shvartsman, 2012; Villoutreix et al.,
2017). A rise and subsequent fall in morphogen concentration
with time could designate a different position than a fall followed
by a rise, even though the average initial and final morphogen
concentrations were identical. The mathematical framework is
readily generalizable for such a case: optimal decoding would be
carried out using full temporal trajectories of morphogen
concentrations, g(t). Extension of the framework to intrinsically
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dynamic processes could be particularly relevant to vertebrate
somitogenesis, where system growth and patterning are
dynamically highly intertwined (Oates et al., 2012).
Dynamics open up new operating regimes for patterning circuits:

while in a static picture reading out more than one bit of PI would
imply the ability to precisely respond to graded morphogen
concentrations, in a dynamic picture the same amount of
information could be extracted by temporally varying
morphogens driving a simple binary switch through a sequence of
ON/OFF transitions. This picture is attractive as any single temporal
snapshot would only carry, at most, a single bit of information per
patterning gene, whereas temporal dynamics could encode
significantly more. An advantage of such a strategy is that
achieving gene expression precision corresponding to a single bit
is metabolically cheaper than scaling the information to two or more
bits in the static case (Tkac  ik et al., 2008a). Another possible
advantage would be for patterning in growing tissues, as binary
expression states can be made persistent and robust against external
perturbations using simple bistable genetic circuitry. On the other
hand, it is unclear how biological circuits would implement the
computations necessary to decode such temporal profiles.
Alternatively, PI could depend not only on the local

concentration, but also on some other relevant variable that is
set in the history of a cell (or its lineage). Mathematically, this
could be implemented by increasing the dimensionality of g to
incorporate recent history. In practice, however, estimating PI
from high-dimensional trajectories or internal cell states is
challenging (Cepeda-Humerez et al., 2019), and the number of
possibilities of what constitutes an unknown ‘internal state of the
cell’ is vast. What constitutes a relevant internal state is also
unclear. As such, we are far from fully understanding the range of
patterning possibilities that can emerge when cells not only read
out local morphogen values but also have memory and can act
and interpret morphogens based on their internal state.

Is PI ‘produced’ during development?
As discussed above, spatiotemporal averaging can increase the amount
of PI available from a single snapshot of downstream gene expression
patterns relative to a single snapshot of input morphogen profiles,
without violating the DPI. But how is the inequality consistent with the
establishment of the primary morphogen gradient? Is PI created from
nothing during this process? More generally, how should we think
about Turing patterning and mechanisms of lateral inhibition (Afek
et al., 2011), which establish spatial patterns de novo? For all of these
cases, PI seemingly emerges. But how?

Turing patterning can be reconciled with the PI framework (Green
and Sharpe, 2015). In essence, information about initial and boundary
conditions is transformed into PI in the bulk of the organism
(Hillenbrand et al., 2016). A key insight here is that establishing a
sharp pattern with clear boundaries is insufficient. Such patterns need
to be generated reproducibly from specimen to specimen. In the
Turning mechanism, which is deterministic, the locations of
boundaries depend on the exact geometry and on the initial ‘noise’
in the system that breaks the symmetry. For the same pattern to
emerge reproducibly, the initial noise and the geometry need to be
controlled precisely. Thus, PI in the final pattern of the dynamic
process arises from the bits that carefully specify the geometry and the
initial conditions. Nevertheless, much is yet to be understood, both
conceptually as well as mathematically, even in simple toy models of
gradient establishment, or models where cells are seen as proceeding
algorithmically through sequences of switch-like decisions to set up a
spatial pattern. These questions are especially pertinent when self-
organized patterning systems based on reaction-diffusion
mechanisms interact with global PI (Green and Sharpe, 2015).

What sources of variability constitute ‘biologically relevant’
variability?
In its information-theoretic formulation, PI fundamentally depends
on fluctuations in morphogen patterns and on the variability of
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morphogen profiles. Although experimental noise must clearly be
accounted for before PI can be computed, the other sources of
variability that should be considered are less clear. We stress that
this is not a mathematical or a technical issue, but a matter that
depends on the system and the biological objective or question.
Different choices of variability imply different interpretations for
the resulting PI. The fundamental question here is what constitutes
biologically relevant variability?
Is it simply single-embryo variability due to intrinsic stochasticity

of molecular biochemical reactions? This would be appropriate if
one assumes that molecular decoding mechanisms within individual
embryos can compensate for systematic embryo-to-embryo
variability, e.g. due to variation in the finite amount of deposited
maternal morphogen molecules. If this is unlikely, then we must
include such ‘extrinsic noise’ into the relevant variability in addition
to intrinsic noise, which in turn must decrease PI. It is even less clear
whether environmental noise should be included in biologically
relevant variability. For example, exposure of embryos to
temperature or chemical variations certainly occurs under natural
conditions (Kuntz and Eisen, 2014); but should such variability be
removed under laboratory conditions? The choice would again
depend on assumptions about potential compensation mechanisms
for such variability. For example, when we subtract variability due
to developmental timing, we assume that the system determines its
PI according to an internal timing mechanism. Thus, when the
internal timing is slowed due to, e.g. lower temperature conditions,
PI readout must be slowed accordingly.

How is PI related to robustness?
The advantage of a quantitative framework is that it circumvents
a priori choices about the relevance of biological variability. In fact,
it also allows concepts such as robustness of developmental
networks and canalization to be interrogated. PI can be measured in
differently conditioned ensembles of specimens, and its dependence
on various sources of variability can be determined. Such an
exercise provides a productive way to understand and
mathematically formalize the notion of robustness (Barkai and
Leibler, 1997; Goldman et al., 2001) under the hypothesis that a
patterning system is robust when PI is maintained under parameter
variation, both environmental (temperature, genetics and food) or
internal (embryo size) (Cheung et al., 2014; Gregor et al., 2005;
Houchmandzadeh et al., 2002; Miles et al., 2011). Selection for
robustness thus implies that we should observe small differences in
PI between wild-type embryo populations that are perfectly
environmentally controlled, and between the ones that also
include environmental variability. Making this link precise,
putting robustness on a firm mathematical footing that is inherited
from PI (Hillenbrand et al., 2016) and testing the above hypothesis
empirically are exciting future prospects.

Why is PI transformed and how are the different representations
related to developmental networks?
PI present in primary morphogen gradients is transformed, or
recoded, in a series of steps before cells commit to discrete fates.
Understanding the rationale for the emergence of these
transformations is still an unresolved issue. In part, recoding can
effectively implement spatiotemporal averaging, as explained
above, thereby increasing the amount of PI available at a single
point in space and time. This is the case for the transformation of
primary morphogens into gap gene expression profiles in
Drosophila. Alternatively, network interactions among gap genes
could increase robustness (Hillenbrand et al., 2016), i.e. stabilize the

representation of PI against external sources of variability, or ensure
that the representation of position is equally precise along the whole
body axis, a hallmark of optimality. In growing tissues, information
could also be read out from a primary morphogen gradient at an
early developmental timepoint and recoded stably into a new
representation with a time delay (Zagorski et al., 2017).

From an information-theoretic perspective, however, the necessity
for long developmental cascades is still largely unresolved. The
positional code of the gap genes, for example, contains sufficient PI
already at a local level (Petkova et al., 2019); why then recode it into
expression patterns of pair-rule and segment-polarity genes
(Lawrence, 1992)? One hypothesis is that these subsequent
transformations, while retaining PI, make it more explicit, allowing
cells to ultimately turn on or off individual fate-specifying genes in a
switch-like fashion to resolve and then permanently memorize a
particular cell fate. PI would thus be transformed from graded,
combinatorial representations carried by a small number of genes, into
more binary, and possibly less-combinatorial, representations
distributed over more genes (McGinnis and Krumlauf, 1992). Such
an architecture has analogies to signal processing in natural and
artificial neural networks, where inputs are transformed layer by layer
into robust, invariant and easily learnable representations, before being
acted on by a discrete ‘decision-making’ circuit that minimizes the
classification error (Kriegeskorte, 2015; Yamins and DiCarlo, 2016).

Can PI be related to cell fate and canalization?
The information-theoretical framework for PI describes how
information about position is represented biochemically, while
decoding prescribes how to extract that information optimally.
Cells, however, do not need to estimate a positional coordinate in the
embryo, but instead need to decide on a discrete cell fate. Although
similar, these two problems are mathematically not identical. First, a
coordinate is a continuous variable (making its decoding a regression
problem), whereas cell fate is typically thought of as discrete (making
its decoding a classification problem). Although the positional
coordinate in an organism can typically be discretized by cell
diameters, the issue remains of whether the task of the patterning
system is indeed to permit cells to learn about their absolute positions.
Second, even in a discrete cellular lattice, there is no one-to-one
mapping between different cell types and different cell positions; a
region of one type can, for example, stretch over more than one
position. Third, when making fate decisions, different ‘errors’ that
cells can make might not be equally deleterious; some errors, such as
mis-specifying one cell in a homogenous island of other cells, could
perhaps be locally corrected.

Yet the biggest challenge may be in the definition of ‘cell fate’
itself. What precisely constitutes cell fate or identity? In the French
Flag problem, fate is the unambiguous red/white/blue ‘color’ of the
cell denoting its discrete type, and this choice is concomitant with
applying a threshold on the primary morphogen gradient. But what
is the equivalent representation of fate in real cells? In Drosophila,
local combinations of four genes at 2-3 h of development suffice to
identify a specific position for a cell along the AP axis of the
embryo. However, specifying the position of a cell or its fate are
very different processes. In fact, it is unclear what exactly specifies
fate molecularly. Even though there is enough PI to establish a fate,
the actual molecular committal might only happen in subsequent
layers of the regulatory network.

To tackle this problem, PI theory needs to be extended to describe
how discrete fate decisions are taken optimally. It should be based on
the PI encoded in the morphogen profiles, and on minimization of
deleterious patterning errors. Bayesian decision making or rate-
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distortion theory could potentially address this issue formally
(Bowsher and Swain, 2014). Recent advances in single-cell
sequencing, in particular in conjunction with machine learning and
large dataset analyses (Van Der Maaten and Hinton, 2008), allow for
connections between developmental patterns and fates, and the
systems biology of gene expression (Baron and van Oudenaarden,
2019). Theoretical frameworks for PI and (putatively) cell-fate
determination should thus incorporate single-cell gene expression
data, but how to achieve that in away that is theoretically coherent and
computationally tractable remains an unresolved issue.
The powerful concept of canalization put forward by Waddington

in the 1940s (Waddington, 1942) provides an intuitive explanation of
how cells are reliably guided to their final fates through a series of
decision events on a ‘genetic landscape’ that resembles a potential
energy surface. Amajor outstanding issue is thereforewhether we can
elevate canalization (analogously to PI) from a biological concept to a
mathematical object within the information, rate-distortion and/or
decision-making theory (Cover and Thomas, 2006).

Conclusions
This Review is a biased historical appraisal of the PI paradigm, written
from our perspective on how the concepts of information theory can be
incorporated into developmental biology. Time will tell whether this
fusion of ideas will be productive and/or whether it will lead to novel
insights with predictions that would not be possible without this
rigorous formalization. In our view, the act of applying an exact
mathematical framework to a biological concept and actual data has
already helped sharpen ideas and concepts, and has led to the next
generation of precision experiments focusing on testing a theory. One
might wonder whether it has been worth the effort. In this context, it is
interesting to look back at Shannon’s opinion piece ‘The Bandwagon’,
which appeared 8 years after he published his seminal work on
information theory. Shannonwarned of hype and blind over-application
of information-theoretical concepts and words across the spectrum of
natural and social sciences, calling for restraint and meticulous work
(Shannon, 1956). Nevertheless, his vision is optimistic:

…many of the concepts of information theory will prove useful in these
other fields but the establishing of such applications is not a trivial matter
of translating words to a new domain, but rather the slow tedious process
of hypothesis and experimental verification.

Fifty years on from Wolpert’s seminal idea of PI, and 70 years
since Shannon’s work on information theory, we are truly beginning
to make a connection between these two ideas and encourage more
work to strengthen this connection in the future.
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