A semianalytic Fisher matrix for precessing binaries with a single significant spin
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Gravitational waves from a binary with a single dynamically significant spin, notably including
precessing black hole-neutron star (BH-NS) binaries, let us constrain that binary’s properties: the
two masses and the dominant black hole spin. Based on a straightforward fourier transform of
h(t) enabled by the corotating frame, we show the Fisher matrix for precessing binaries can be
well-approximated by an extremely simple semianalytic approximation. This approximation can be
easily understood as a weighted average of independent information channels, each associated with
one gravitational wave harmonic. Generalizing previous studies of nonprecessing binaries to include
critical symmetry-breaking precession effects required to understand plausible astrophysical sources,
our ansatz can be applied to address how well gravitational wave measurements can address a wide
range of astrophysical and fundamental questions. This Fisher matrix approach provides a simple
method to assess what parameters gravitational wave detectors can measure, how well, and why.

Our study is the first analytically-tractable Fisher matrix calculation for precessing binaries.

PACS numbers:

Introduction. — Ground-based instruments like LIGO [1]
and Virgo [2] will soon regularly identify and measure the
properties [3, 4, 4-17] of the relatively well-understood
gravitational wave (GW) signal from the nearly adia-
batic and quasicircular inspiral of the lowest-mass coa-
lescing compact binaries (CBCs) [18-29]: binaries con-
sisting of either black holes or neutron stars with total
masses M = mj +me < 16 Mg and intrinsic spins S1,Sq
that satisfy the Kerr limit |S;|/m? < 1. These mea-
surements’ accuracy determines the range of astrophysi-
cal and fundamental questions that can be addressed via
gravitational waves, including but not limited to identi-
fying how coalescing compact binaries form [30-36]; how
the universe expands [37]; how high-density nuclear mat-
ter behaves and responds [38-47]; and even how reliably
general relativity describes the inspiral, coalescence, and
gravitational radiation from each event [48]. In general,
astrophysical formation channels [36, 49-54] will popu-
late generic spin orientations, not just high-symmetry,
nonprecessing configurations with S;, Sy parallel to L.
For these most likely sources, spin-orbit and spin-spin
couplings cause the misaligned angular momenta to pre-
cess [65-57], breaking degeneracies present in the high-
symmetry case and thus enabling higher-precision mea-
surements [3, 7, 8, 17, 58-62]. While powerful analytic
techniques were developed to estimate the measurement
accuracy for nonprecessing binaries [63—-66], then broadly
applied [30-36][37][38-47][48], for precessing binaries a
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comparable theoretical tool has remained unavailable.
Instead, the measurement accuracy has been evaluated
on a case-by-case basis numerically, usually by Bayesian
methods that systematically compare the data with all
possible candidate signals [3, 4, 4-17].

The main result of this work is a generalization of the
classic analytic approach used to approximate measure-
ment accuracy [65] to the case of precessing binaries with
a single significant spin undergoing an extended adia-
batic, quasicircular inspiral. We restrict to a single signif-
icant spin both for convenience — this limit is well-studied
[65, 67, 68] — and without significant loss of generality —
the smaller body’s spin often has little dynamically signif-
icant impact on the angular momentum budget, orbit, or
precessional dynamics (|Sz| < m3 < [S1],|L|), allowing
a single-spin model to adequately reproduce the dynam-
ics and posterior [15]. To highlight the broad utility of
our approach, we defer concrete but arbitrary implemen-
tation details until we evaluate numerical results. Our
result is important because it provides the first powerful
analytic tool to assess what can be measured using grav-
itational waves and why, includes the critical symmetry-
breaking effects of spin precession.

Inference from GW. — Bayes theorem provides an un-
ambiguous expression for the posterior CBC parame-
ter distribution given instrumental data {d}; see, e.g,
Pankow et al. [69], henceforth denoted PBOO, for a
review using our notation. The signal and network re-
sponse to a quasicircular CBC inspiral is characterized
by eight intrinsic parameters A [= (mq,ma, S1, S2)] that
uniquely specify the binary’s dynamics and seven extrin-
sic parameters 6 [four spacetime coordinates and three



Euler angles| that specify where, when, and with what
orientation the coalescence occurred. Each detector, in-
dexed henceforth by k, responds to an imposed strain as
dr, = ni + ReFp(N)*h(t + N - x|\, 0), where x;, are
the detector positions, Fj are antenna response func-
tions, N is the line of sight to the source, (a member
of 0), h(t|A,0) is the strain derived from far-field solu-
tion to Einstein’s equations for the CBC; and ny is some
random realization of detector noise. The distribution
of stationary gaussian noise ny(t) in the kth detector
is completely characterized by its covariance or power
spectrum (i (f)" 7 (f)) = LSW(FDO(F — ). Let us

define inner products (:|-), on arbitrary complex func-

tions a,b as (alb), = 2 [7 df%. The log like-
lihood ratio L£(6,60) favoring one signal with parame-
ters A, 6 versus no signals is 2InL = >, (di|dk), —
(di — hi(0,\)|di, — hi(0,0)),. If the data is known
to contain a signal h(t|\g,6) with parameters Ag =
(Mo, 0p), we will denote the parameters by A = (A, 6)
and the likelihood by L(A|Ag,n). The signal amplitude
p is set by the expected value of the log likelihood (p? =
2In L(A|Ag,0)). Using 15-dimensional posterior distri-
bution ppost(A,0) = Lp(0)p(N)/ [ dAdOp(0)p(N)L(A,0),
the measurement accuracy in some parameter A; fol-
lows from the 90% confidence interval derived from
a one-dimensional marginal distribution ppost(A1) =
J dOdAs ... dAsppost (A, 0).

While straightforward but expensive numerical tech-
niques exist to estimate the marginal posterior distri-
bution and hence measurement accuracy for concrete
sources Ay and noise realizations ny [3, 4, 4-17], an
equally straightforward analytic approximation to the
(average) log likelihood exists at high signal amplitude,
the Fisher matrix [63-66, 70, 70, 71] I'yp. The Fisher
information matrix arises in a quadratic-order approxi-
mation to the log-likelihood [In £(A[A,) ~ —1Tg,(A —
A)a(A — AL)p + const, with A, the location of the noise-
realization-dependent maximum|; often depends weakly
on the specific noise realization used, particularly at high
amplitude; and can be evaluated by a simple expression
involving inner products of derivatives. For example, for
a source directly overhead a network with equal sensitiv-
ity to both polarizations [72], the Fisher matrix is

dh  dh

La» = <d)\a d/\b> (1)
The Fisher matrix can always be evaluated numerically
via direct differentiation [58, 59, 61], henceforth denoted
Fisher-D. For nonprecessing binaries, however, Poisson
and Will [65] introduced a powerful analytic technique,
denoted here as Fisher-SPA: express the signal using
a single dominant harmonic, with a necessarily-simple
form; evaluate the fourier transform h via a stationary
phase approximation; thereby evaluate the derivatives
Ouh analytically; and, by reorganizing the necessary in-
tegrals analytically, reduce the evaluation of Eq. (1) to
an analytic expression and a handful of tabulated inte-
grals. Despite its limitations, this method remains the

most powerful and widely-used theoretical tool to esti-
mate what can be measured and why. In the remainder
of this work, we will review and generalize Fisher-SPA to
precessing binaries.

As a matrix in at least 11 dimensions (15 with two
precessing spins), the Fisher matrix is both difficult
to interpret and highly prone to numerical instability.
For nonprecessing binaries, several studies have demon-
strated that the intrinsic and extrinsic posterior distri-
butions largely seperate [72, 73] and that the intrin-
sic distribution depends weakly if at all on the spe-
cific network geometry. Hence, to quantitatively as-
sess what can be measured and why for a nonprecess-
ing binary, it suffices to consider a source directly over-
head and optimally aligned with a fiducial detector net-
work [34, 72-74]. In the high-amplitude limit where
the likelihood is well-approximated by a gaussian, the
event time t. and polarization 1. can be marginal-
ized out analytically. Using this approximation, the
log likelihood is approximated using an “overlap” P
P(A,N) = maxyy (h(Alte, ¥e)[R(A]0,0)) /[[R(AN)[|[[R(X)]|
where ||h|| = +/(h|h), via Eq. (18) of [72]; the Fisher
matrix arises as a quadratic approximation to the over-
lap. This approach and its relatives, denoted here by
Fisher-O and in the literature by overlap, mismatch, or
ambiguity function methods, has been widely adopted
when analyzing numerical simulations [75-79] and cir-
cumvents the numerical challenges that plague brute-
force 11-dimensional calculations.

Even for precessing binaries, several studies have sug-
gested that the four spacetime coordinates decouple from
intrinsic parameters and the binary’s three Euler angles
[60, 80]. To simplify subsequent analytic calculations,
following prior work [72, 73] we will therefore adopt the
ansatz that the source can be assumed directly overhead
a network with equal sensitivity to both polarizations.
Stationary-phase approximation. — The outgoing GW
signal h(t,7,A) is modeled using a stationary phase ap-
proximation of the leading-order (corotating) quadrupole
emission, assuming a single significant spin. Specifically,
adopting the conventions of [67] and PBOO, we express
the strain for a source with intrinsic parameters A as a
spin-weighted spherical harmonic expansion h(t|A,0) =
By —ihy = €29 (M/dL) Yy, him(t — LAY 2 (8),
relative to a cartesian frame 2’ = J, %,y defined by
the total angular momentum J, where dy is the lumi-
nosity distance to the source, M is the binary mass, n
is the propagation direction away from the source, t. is
the coalescence time, and 1; is the angle of J on the
plane of the sky. Within the post-Newtonian approxi-
mation, both the amplitude and phase of these functions
him (t) and their (stationary-phase) fourier transforms are
slowy-varying and analytically-tractable functions [29].
For a nonprecessing binary, the sum is dominated by a
single pair of complex-conjugate terms hoy = h3 _, =
|haa|e2®, enabling efficient calculation of Eq. (1) [65]
for an optimally-aligned source directly overhead a single
detctor (Fisher-0).



A generic quasicircular binary will orbit, precess, and
inspiral on three well-seperated timescales 1/ forb, tprec,
and tinsp. For this reason, to a good approximation,
the gravitational radiation from a precessing, inspi-
ralling binary [81, 82] can be approximated as if from
an instantaneously nonprecessing binary: hy,(t|\) =
S O (£, )DL, (R(t)), where R(t) is a minimal ro-
tation transforming 2 into L [67, 68, 83], where hl(i)
are available in the literature [28, 81, 84] in terms of
the spins, the orbital phase ®,,;, and a post-Newtonian
expansion parameter v = (Md®,,;/dt)'/3. The quanti-
ties appearing in these expressions (L, S;, ®yrpors, v) are
determined by post-Newtonian approximations that pre-
scribe the evolution of both spins [0;S; = €; x S; and
the orbital phase [% = —’;f(%], [29, 85, 86], where M is
the rate at which the black holes’ mass changes [87, 88],
henceforth neglected; F(v) is the rate at which energy is
radiated to infinity; and F(v) is the energy of an instanta-
neously quasicircular orbit; all of which are provided in
the literature. At leading amplitude order, corotating-
frame strain satisfies hl(gl) (tA) = |him(t)| exp(—iPors),
where |l | is a slowly-varying function of v; substitut-
ing this form into the general expression implies

hum (¢[A) = Z e—ir’n(@m-b+'y)e—imadfnm (B)hum (V)] (2)

m

In this expression, we have expanded the rotation R(t)
using Euler angles, set by the orbital angular momen-
tum direction L expanded relative to the (assumed

J
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fixed) total angular momentum direction Jas L =
sin 81 cosa X' + sin By sinay.y’ + cos Byrd; the re-
maining Euler angle v = — [cosfB,rdayr. In this
work, we restrict to the leading-order gravitational-wave
quadrupole hégQ = —84/m/5nv? exp(Fi®or), so this
sum has only two terms.

For a binary with a single dynamically significant
spin, the spin-precession equations imply that the or-
bital angular momentum precesses simply around the
total angular momentum: [ changes slowly, on the in-
spiral timescale, while o and ~ evolve on the precessional
timescale [55, 67].

Because of seperation of timescales, because of the sim-
ple form of Eq. (2), and particularly because the phase
terms m(® + ) + ma are monotonic and well-behaved,
the stationary-phase approximation to the fourier trans-
form hyy(w) = [ dthyy, expiwt can be carried out term
by term [67]. For each term, the stationary-phase con-
dition defines an m, m-dependent time-frequency trajec-
tory Tmm(w) set by solving

w=m(Por, — decos Byr) + ma (3)

or, equivalently, v = (Mo )/3
1/3
. Using this time-frequency

[waﬁz'y(Tmﬁgfmd(Tmm)}
m

relationship to evaluate ¥, 7 = wt — M(Porp, + () — Mmar
and the slowly-varing coefficients in each term in Eq.
(2), the stationary-phase approximation is

B (w) = Z

0

This expression for the SPA had been previously de-
rived in the restricted PN approximation by precisely
this method [67], for simplicity neglecting the distinct
time-frequency trajectories implied by 7, .

Inner products via a time-frequency ansatz. — Most of
the terms in Eq. (2) are mutually orthogonal. For ex-
ample, the modes with m > 0 and m < 0 have different
helicity and have almost no overlap, indepdendent of the
precession state [72, 89-92]. Additionally, for binaries
with more than a few precession cycles in band (see, e.g.,
[93] for suitable conditions on |Sy|,m1,m2), each term in
Eq. (2) is associated with a unique time-frequency tra-
jectory and hence is orthogonal to all others. Using this
ansatz, the inner product (h(A)|h(A”)) for A ~ A’ can be
approximated using a sum over 10 terms: 5 for each of

mw > 0

\/i(m(<1>g’rb+§”)+ma”)/27r (4)

mw < 0

the [ = 2 modes m = —2,
one term for each helicity.

—1,...2 and, for each mode,

By contrast, to evaluate the overlap of terms that are
not orthogonal, the specific time-frequency trajectory
has relatively little impact. We therefore approximate
Tman = Tom henceforth.

Fisher matriz. — We now use the time-frequency ansatz
and the restricted PN approximation to evaluate a Fisher
matrix for a source directly overhead an idealized net-
work of two interferometers oriented to have equal sensi-
tivity to both polarizations [Eq. (1)]. Because of the
time-frequency ansatz, the overall Fisher matrix is a
weighted sum of 10 individual Fisher matricies, associ-
ated with each harmonic:



2
_ E : E : 2 MIms
ab — Pams! ab

m=2 s=+1
) 242
2 _ (-2 2 df 4(rM.”) —7/3
Pims = Wan” Osm)dr B | grs =35 (M) (6)
L
oo df —7/3
fims) _ b Sh() (TMcf)~"30, (lIJQ —2¢ — msa)8(¥a — 2¢ — msa) -
ab oo df —7/3
[
In this expression, ¥y = wt — 28, is the stationary- 0120 e (9 IIG?E_Q‘;)J a485M )
phase approximation derived via w = 2®,,;,. The weights 0115 F ]
Pme are associated with the relative contribution of each —E ]
model m and sign s to the detected amplitude, along this 0_110§
line of sight. The 10 individual Fisher matrices I'gp re- : ]
flect the Fisher matrix implied by a single harmonic, with ~ 0.105 a ]
a modified phase versus time to reflect that harmonic’s 0.100F ]
precession-induced secular phase change; each one re- B ]
duces trivially to the well-known nonprecessing Fisher 0.095F ]
matrix in the absence of precession. F ]
0.090F (11.06M _.1.316M ) 1
Because measurements often cannot tightly constrain . © © ]
all parameters, whether computed directly (Fisher-O) or 0.0 TS RS FS S S PSS
¥ ;) I =
via our approximation, the Fisher matrix is often degen- %980 2985 2990 2995 3000 3005 3010 3015
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when evaluating the Fisher matrix to produce our final . )
numerical results, we adopt a very weak (regularizing) FIG. 1: Sample comparison: Comparison between

prior to break degeneracy: I'finat = I' + K where K re-
flects a multivariate gaussian distribution with standard
deviation 27 in phase angles, 1M, in total mass, 1 sec-
ond in time, and 1/4 in mass ratio. These priors are
much wider than the extent of any plausible posterior
for our candidate sources, preventing potential unphys-
ical degeneracies in the Fisher matrix from propagating
into our results (e.g., 17 is bounded between 0 and 1/4; the
event time is determined within milliseconds; et cetera).

Implementation and results. — As described at greater
detail in our Appendix, almost all expressions needed
to evaluate our Fisher matrix are available in the litera-
ture. In this work, to minimize superfluous differences
associated with uncontrolled post-Newtonian remain-
ders, we evaluated the phase functions ¥s(v),v(v), a(v)
needed for our Fisher-SPA approximation numerically,
using precisely the same post-Newtonian evolution model
adopted in the other calculations shown [60] to evaluate
t(v) and ®o(t), a(t),(¢); see that work for the specific
post-Newtonian approximation used. Similar results fol-
low by using the explicit expressions for ¥5(v),v(v), a(v)
available the literature [67].

A detailed comparison between different Fisher matrix
approximations and full Bayesian inference is far beyond
the scope of this work. However, as an anecdote to il-
lustrate that our approximation is reasonable and con-
sistent with past work for plausible source parameters,
Figure 1 shows a comparison beteween our approxima-
tion; a Fisher-O approximation; and a full MCMC pos-

marginalized Fisher matrix in M., n for a precessing binary
evaluated using the ansatz in this paper (red solid curve:
Fisher-SPA); via full 15-dimensional MCMC (thin curves);
and via a quadratic approximation to the 7-dimensional over-
lap (Fisher-O). The latter two results, previously presented
O’Shaughnessy et al. [60], are used with permission. As de-
scribed in that work, the synthetic BH-NS source has masses
10Mg and 1.4Mg, with J and L misaligned by «/4, with J
inclined at angle #;n = 0.730 radians relative to the line of
sight. The thick solid black line shows a Fisher matrix eval-
uated by explicit differentiation of the mismatch; the thick
dashed black line shows a corresponding result, evaluated in-
cluding higher-order modes; the solid and dashed thin lines
correspond to full MCMC posteriors evaluated without and
with higher modes, respectively; and the thin lines’ color indi-
cates different noise realizations. The true source parameters
are indicated by a light green dot.

terior distribution. Despite not including the prior p(\)
and despite adopting highly simplifying assumptions, our
expression shows good agreement with the multidimen-
sional posterior and previous numerical estimates of the
marginalized Fisher-O matrix.

Discussion. — An analytically-tractable Fisher matrix
enables powerful, scalable insights into when and how
precession break degeneracies and improves parameter
measurement accuracy. Our Fisher matrix expression
consists of the sum of 10 terms f’g?s}, each pair arising

from information communicated through a single har-
monic and weighted in proportion to the strength ps,,



of that harmonic in the GW signal. First and foremost,
these weights identify which source geometries corre-
spond to observationally-significant precession. Because
each individual term resembles the contribution from a
nonprecessing binary, when the source geometry favors
only one significant harmonic, precession does not break
degeneracies. By contrast, the presence of several signifi-
cant contributions pa,,s suggests that precession-induced
modulations can produce an observationally-accessible
imprint. Second, the individual terms’ eigensystems de-
scribe the natural measurements enabled by each har-
monic. Due to the offsets msa in each phase derivative,
the different terms do not have coaligned eigensystems, so
their superposition generally breaks degeneracies present
in any individual term. Our expression shows how these
degeneracies are broken, and a path forward to calcu-
lating these degeneracy-breaking effects as a function of
binary parameters.

While our SPA approximation in Eq. (4) is very

general, the Fisher matrix approximation presented in
this work relies on the strong assumption that each
precession-induced sideband is orthogonal. Roughly
speaking, this approximation requires a change signifi-
cantly over the sensitive band of our instruments, which
requires significant spin and mass ratio. That said, noth-
ing in principle prevents an SPA-based Fisher matrix cal-
culation in full generality. Our approximation also as-
sumes simple precession (i.e., that g is nearly constant),
an excellent approximation for configurations dominated
by a single spin but less reliable for systems with two dy-
namically significant spins. Again, nothing in principle
prevents using recently-developed solutions to the two-
spin problem in a seperation-of-timescales-based SPA
waveform model in thus Fisher matrix.
Future directions. — While only approximating the re-
sults of detailed Bayesian parameter estimation [16, 94,
95|, Fisher-matrix calculations provide a powerful and
analytically-tractable tool to assess what can be mea-
sured and why. In general, the eigenvectors of the Fisher
matrix characterize what combinations of parameters are
strongly correlated, while the eigenvalues characterize
the measurement accuracy of each such combination. For
analytically-tractable Fisher matrix calculations, each
term 'y, can be understood analytically, giving substan-
tially improved understanding over degeneracies present
in the full and marginalized Fisher matrix; see, e.g., the
discussion in [65]. Extending the Fisher-SPA method to
include a single precessing spin will help rapidly interpret
of real gravitational wave data, via improved methods to
explore the model space and interpret the posterior; as-
sess the impact of systematic errors from the waveform
model; quantify the accuracy to which tidal effects and
modifications of general relativity can be detected; and
otherwise understand what can be measured and why.

Further investigation is needed to generalize our ap-
proach to account for a second significant spin, using
recently-developed analytic solutions [8, 56, 57]; and to
perform a large-scale comparison between our calcula-

tions and detailed Bayesian parameter estimates. Fi-
nally, to facilitate the immediate use of our approach and
enhance its similarity to prior work, we have adopted ex-
tremely simple assumptions (e.g., the neglect of Ty, m;
the neglect of all but 10 overlaps; and the restricted PN
expansion). These assumptions can easily be relaxed if
more detailed calculations are required, since the simple
form of Eq. (4) insures a theoretically-tractable analysis.
Acknowledgements. — ROS acknowledges support from
NSF PHY-1505629 and PHY-0970074.

APPENDIX A: EVALUATING OUR
EXPRESSION

Our model is assembled from well-understood ingre-
dients. For example, expressions for «, &, and [ are
available in the electronic supplementary material of [67],
while U is available as Eq. (3.18) of [29]. Only the de-
lay time 7., was not previously presented. For m = 2
and m = 0, this expression reduces to Mw = 2M®,
the same phase-frequency relation whose different meth-
ods of solution define the different Taylor approxima-
tions (T1, T2, T3, T4, ...) reviewed in [29]. In this
work, for simplicity and to avoid ambiguities assocaited
with series truncation, we eschew a true closed-form ex-
pression for 7,7 (v) which invokes additional approxima-
tions and instead perform the Legendre-transformation
inverse numerically, based on evaluating post-Newtonian
expressions for the right-hand side as a function of time.
Closed-form expressions can be produced by instead sub-
stituting and solving with power series. Just as different
strategies to relate time and phase lead to different Tay-
lor approximations, with different series truncation error,
different strategies to solve for 7,  will produce expres-
sions with marginally different results.

Because the precession rate is small compared to the
orbital frequency, we can usefully approximately solve
for 7, in terms of solutions 7(f) that arise for a non-
precessing binary when solving w = 2®/ () as t = 7(f).
Depending on the approximation scheme adopted, the
right-hand side is a familiar relationship ¢(w) for a non-
precessing binary; for this work, the relevant expres-
sion follows from TaylorF2. Equation 3 has the form
y = f(x) + eg(x), which can inverted to leading order by
= f"y) —eg(f~"(v)/f'(f*(y))- Replacing = — ¢
and f~! — 7, we find

i) =7 (02 ) = (= mcos i)

m

a(To.m
7,,( om)
2¢)orb(7—07’m)

(A1)

This expression has a clear geometric interpretation in
terms of the frequencies of the individual harmonics ver-
sus time.

The inverse can also be identified by power-series meth-
ods. Closed-form power series solutions analagous to
TaylorT/TaylorF can be generated by rewriting the ex-



pression explicitly in terms of post-Newtonian parame-
ters:

,_dadv_do

da_F(v) _da3

- = = M+..] (A2
= Qodt ~ dv_dBjde v 50 LTl (A2

(A3)

where F(v) is the instantaneous binding energy and F(v)
is the gravitational wave flux. With this substitution
(and the definition v3/M = ®,,;) we express wM as a
power series in v, which can be inverted term by term.
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