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Assessing and marginalizing over compact binary coalescence waveform systematics with RIFT
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As Einstein’s equations for binary compact object inspiral have only been approximately or intermittently
solved by analytic or numerical methods, the models used to infer parameters of gravitational wave (GW)
sources are subject to waveform modeling uncertainty. Using a simple scenario, we illustrate these differences,
then introduce a very efficient technique to marginalize over waveform uncertainties, relative to a pre-specified
sequence of waveform models. Being based on RIFT, a very efficient parameter inference engine, our tech-
nique can directly account for any available models, including very accurate but computationally costly wave-
forms. Our evidence- and likelihood-based method works robustly on a point-by-point basis, enabling accurate
marginalization for models with strongly disjoint posteriors while simultaneously increasing the re-usability and

efficiency of our intermediate calculations.

I. INTRODUCTION

Since the first gravitational wave detection GW150914 [1],
the Advanced Laser Interferometer Gravitational Wave Obser-
vatory (LIGO) [2] and Virgo [3, 4] detectors have continued
to discover gravitational waves (GW) from coalescing binary
black holes (BBHs) and neutron stars. The properties of each
source are inferred by comparing each observation to some
estimate(s) for the GW emitted when a BBH merge, com-
monly called an approximant. As illustrated most recently
by GW190521 [5, 6], GW190814 [7], GW190412 [8], and
the discussion in GWTC-2 [9], these approximations disagree
more than enough to produce noticable differences, consistent
with prior work [10-12]. Despite ongoing generation of new
waveforms with increased accuracy [13-18], these previous
investigations suggest that waveform model systematics can
remain a limiting factor in inferences about individual events
[10] and populations [12, 19].

Recently, Ashton and Khan [20] described and illustrated
marginalizing between a discrete set of waveform models
in a fully Bayesian way. In this procedure, the waveform-
marginalized posterior is the weighted average of the pos-
teriors py(60) derived from each waveform model % alone,
weighted by the evidence Zj, for (and prior py, for) each model
ki p(0) = [325 pr(0)peZi]/ 32, PqZq- This extremely sim-
ple procedure faces one obvious limitation: analysis must be
performed for every waveform model of interest. Unfortu-
nately, as many of the most accurate time-domain waveform
models incur exceptionally high evaluation costs, and as most
conventional parameter estimation (PE) engines like LALIn-
ference [21] or BILBY [22] are limited by this cost, the uni-
verse of possible waveforms must often omit the most ex-
pensive and accurate waveform models. As the RIFT pa-
rameter inference engine circumvents several issues associ-
ated with waveform evaluation cost [23, 24], despite retain-
ing the original waveform implementation (i.e., no surrogate
generation), in this work we examine novel extensions of
this waveform-marginalization technique which are uniquely
adapted to RIFT’s algorithm. Using a simple toy model, we
demonstrate the pernicious effects of model systematics, then
show how our technique efficiently mitigates them.

This paper is organized as follows. In Section II, we review

the use of RIFT for parameter inference; the two waveform
models used in this work; the use of probability-probability
(PP) plots to diagnose systematic error with noise; the use of
zero-noise PE to isolate the systematic uncertainty between
waveforms; and our waveform marginalization technique. In
Section III, we use two well-studied waveform models to
demonstrate the impact of contemporary model systematics,
then marginalize over them. We emphasize that all calcula-
tions in this section adopt signal amplitudes and masses con-
sistent with current observations. In Section V, we summarize
our results and discuss their potential applications to future
GW source and population inference.

II. METHODS
A. RIFT review

A coalescing compact binary in a quasicircular orbit can be
completely characterized by its intrinsic and extrinsic param-
eters. By intrinsic parameters we refer to the binary’s masses
m;, spins, and any quantities characterizing matter in the sys-
tem. For simplicity and reduced computational overhead, in
this work we assume all compact object spins are aligned with
the orbital angular momentum. By extrinsic parameters we re-
fer to the seven numbers needed to characterize its spacetime
location and orientation. We will express masses in solar mass
units and dimensionless nonprecessing spins in terms of carte-
sian components aligned with the orbital angular momentum
Xi,z- We will use A, 0 to refer to intrinsic and extrinsic param-
eters, respectively.

RIFT [23] consists of a two-stage iterative process to in-
terpret gravitational wave data d via comparison to predicted
gravitational wave signals h(), 0). In one stage, for each A,
from some proposed “grid” o = 1,2,... N of candidate pa-
rameters, RIFT computes a marginal likelihood

Lonarg = / LN 0)p(6)do (1)

from the likelihood L(\,0) of the gravitational wave sig-
nal in the multi-detector network, accounting for detector re-
sponse; see the RIFT paper for a more detailed specifica-



tion. In the second stage, RIFT performs two tasks. First,
it generates an approximation to £()) based on its accumu-
lated archived knowledge of marginal likleihood evaluations
(Aa, Lo). This approximation can be generated by gaussian
processes, random forests, or other suitable approximation
techniques. Second, using this approximation, it generates the
(detector-frame) posterior distribution

Lrnarg(A)p(A)

Ppost = f d)\ﬁmarg(A)p(A) . (2)

where prior p(A) is the prior on intrinsic parameters like mass
and spin. The posterior is produced by performing a Monte
Carlo integral: the evaluation points and weights in that in-
tegral are weighted posterior samples, which are fairly re-
sampled to generate conventional independent, identically-
distributed “posterior samples.” For further details on RIFT’s
technical underpinnings and performance, see [23-25].

B. Waveform models

In this work, we employ two well-studied models for non-
precessing binaries, whose differences are known to be sig-
nificant. We use SEOBNRvV4 [15], an effective-one-body
model for quasi-circular inspiral, and IMRPHENOMD [26,
27], a phenomenological frequency-domain inspiral-merger-
ringdown model.

The effective-one-body (EOB) approach models the inspi-
ral and spin dynamics of coalescing binaries via an ansatz for
the two-body Hamiltonian [28], whose corresponding equa-
tions of motion are numerically solved in the time domain.
For non-precessing binaries, outgoing gravitational radiation
during the inspiral phase is generated using an ansatz for re-
summing the post-Newtonian expressions for outgoing radia-
tion including non-quasicircular corrections, for the leading-
order ¢ = 2 subspace. For the merger phase of non-precessing
binaries, the gravitational radiation is generated via a resum-
mation of many quasinormal modes, with coefficients chosen
to ensure smoothness. The final BH’s mass and spin, as well
as some parameters in the non-precessing inspiral model, are
generated via calibration to numerical relativity simulations of

BBH mergers.
The IMRPHENOMD model is a part of an approach that
attempts to approximate the leading-order (/ = 2) gravi-

tational wave radiation using phenomenological fits to the
Fourier transform of the gravitational wave strain, computed
from numerical relativity simulations and post-newtonian cal-
culation [13, 29, 30]. Also using information about the final
BH state, this phenomenological frequency-domain approach
matches standard approximations for the post-Newtonian
gravitational wave phase to an approximate, theoretically-
motivated spectrum characterizing merger and ringdown.

C. Fiducial synthetic sources and PP tests

We will only explore the impact of systematics over a
limited fiducial population. Specifically, we consider a uni-
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FIG. 1: Cumulative SNR distribution for a synthetic population of
100 events drawn from the fiducial BBH population described in
Section II C. To avoid ambiguity, this figure shows the expected SNR
(i.e., the SNR evaluated using a zero-noise realization).

verse of synthetic signals for 3-detector networks, with masses
drawn uniformly in m; in the region bounded by M /Mg €
[30,60] and n € [0.2,0.25] and with extrinsic parameters
drawn uniformly in sky position and isotropically in Euler
angles, with source luminosity distances drawn proportional
to d? between 1.5Gpc and 4Gpe. These bounds are ex-
pressed in terms of M = (m1m2)%/%/(my +ms)/® and ) =
mymsa/(m1 + mz)?, and encompass the detector-frame pa-
rameters of many massive binary black holes seen in GWTC-
1 [31] and GWTC-2 [9]. All our sources have non-precessing
spins, with each component assumed to be uniform between
[-1,1]. (For complete reproducibility, we use SEOBNRv4
and IMRPHENOMD, starting the signal evolution at 18Hz
but the likelihood integration at 20Hz, performing all analy-
sis with 4096Hz timeseries in Gaussian noise with known ad-
vanced LIGO design PSDs [32]. For each synthetic event and
for each interferometer, the same noise realization is used for
both waveform approximations. Ensuring convergence of the
analyses, the differences between them therefore arise solely
due to waveform systematics. For context, Figure 1 shows the
cumulative SNR distribution of one specific synthetic popula-
tion generated from this distribution. Though a small fraction
have substantial signal amplitudes, most events are near or be-
low the level of typical detecton candidates. By using a very
modest-amplitude population to assess the impact of wave-
form systematics, we demonstrate their immediate impact on
the kinds of analyses currently being performed on real obser-
vations, let alone future studies.

One way to assess the performance of parameter inference
is a probability-probability plots (usually denoted PP plot)
[33]. Using RIFT on each source k, with true parameters g,
we estimate the fraction of the posterior distributions which is
below the true source value A o [Pk,a(< Ak,o )] for each in-
trinsic parameter o, again assuming all sources have zero spin.
After reindexing the sources so pk,a()\k,a) increases with k
for some fixed «, the top panel of Figure 3 shows a plot of
k/N versus Py(Ay.q) for all binary parameters. For the top
panel, both injections and inference are performed with the
same model, and the recovered probability distribution is con-



sistent with P(< p) = p, as expected.

D. Zero noise runs to assess systematic biases

Our synthetic data consists of expected detector responses
h(t) superimposed on detector noise realization n(¢). The
recovered posterior distribution’s properties and in particular
maximum-likelihood parameters depend on the specific noise
realization used. To disentangle the deterministic effects of
waveform systematics from the stochastic impact of different
noise realizations, we also repeat our analyses with the “zero
noise” realization: n(t) = 0.

E. Model-model mismatch

Several previous investigations (e.g., [34—40] and refer-
ences therein) have phenomenologically argued that the mag-
nitude of systematic biases are related to the model-model
mismatch, a simple inner-product-based estimate of waveform
similarity between two model predictions i () and ha(\) at
identical model parameters A:

| <h1 |6i(27rftc+¢c)h2> |

M(A) =1—max 3

) tesde |h1||ha] ©)

In this expression the inner product (alb), =
[22 2dfa(f)*b(f)/Shx(|f]) is implied by the k" detector’s

noise power spectrum Shk(f), which for the purposes of
waveform similarity is assumed to be the advanced LIGO
instrument, H1. In practice we adopt a low-frequency cutoff
fmin so all inner products are modified to

B a(F) B0
(al) ‘2/f|>f,m PGl

Figure 2 shows the distribution of mismatches for our syn-
thetic population, where h; is generated using SEOBNRv4
and hy with IMRPHENOMD. For simplicity, we regenerate
all signals at zero inclination, to avoid polarization-related ef-
fects associated with the precise emission direction. For our
fiducial compact binary population, the mismatches between
these two models are typically below 1072, consistent with
previous reports on systematic differences between these two
waveforms and with their similarity to even more accurate
models and simulations [12, 15, 41]

“4)

F. Marginalizing over waveform systematics

Suppose we have two models A and B for GW strain, and
use them to interpret a particular GW source. We have prior
probabilities p(A|\) and p(B|\), characterizing our relative
confidence in these two models for a source with parameters
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FIG. 2: Cumulative Mismatch Distribution for population: For
all the synthetic sources in our population, we evaluate the GW strain
along the z axis using SEOBNRV4 and IMRPHENOMD, then com-
pute the mismatch between them. This figure shows the cumulative
distr;bution of these mismatches, most of which are slightly less than
107~

A.!' Suppose we have produced a RIFT analysis with each
model for this event, and have marginal likelihood functions
L4(N) and L5()\) evaluated at a single point \. We can there-
fore construct the marginal likelihood for A by averaging over
both models:
Lav(N) = pANLAN) +pBNLEA) ()
For simplicity the calculations in this work always adopt
p(A|\) = p(BJ\) = 1/2. We can therefore transparently
integrate multi-model inference into RIFT as follows. We
assume we have a single grid of points A such that both
(A, La(A) and (A, L(Ax) can be interpolated to produce
reliable likelihoods and thus posterior distributions p 4 (A) and
pB()), respectively. At each point A, we therefore construct
L (\i) by the above procedure. We then interpolate to ap-
proximate ﬁ(A) versus the continuous parameters \.
Operationally speaking, we construct model-averaged
marginal likelihoods by the following procedure. First, we
construct a fiducial grid for models A and B, for example by
joining the grids used to independently analyze A and B. We
use ILE to evaluate £ 4 (\;) and £ () on this grid. We con-
struct L, (Ar) as above. We use the combinations (A, L)
with CIP, to construct a model-averaged posterior distribution.
Our procedure bears considerable resemblance to the ap-
proach suggested by Ashton and Khan, but we have organized
the calculation differently. In that approach, AK used the ev-
idences Z4 = [ Lap(N\)dX and Zg for the two waveform
models. While we can compute both quantities with very

! For simplicity I will assume there are no internal model hyperparameters,
but the method is easily generalized to include them.
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FIG. 3: PP-plot of events injected with SEOBNRV4 and recov-
ered with SEOBNRvV4 (top panel) and IMRPHENOMD (bottom
panel) waveform. The dashed line indicates the 90% credible interval
expected for a cumulative distribution drawn from 100 uniformly-
distributed samples.

high accuracy, we prefer to directly average between wave-
form models at the same choice of intrinsic parameters (i.e.,
via Eq. (5)) , to insure that marginalization over waveform
models is completely decoupled from the interpolation tech-
niques used to construct L from the sampled data.

III. RESULTS

Using our fiducial BBH population, we generated 100 syn-
thetic signals using IMRPHENOMD, and another 100 syn-
thetic signals with SEOBNRv4. For each signal, we per-
formed parameter inference with both IMRPHENOMD and
SEOBNRv4. These inferences allow us both to assess the
impact of waveform systematics in our fiducial population,
and mitigate them.

A. Demonstrating and quantifying waveform systematics

The PP plot provides the most compelling demonstration
of waveform systematics’ pernicious impact. Ideally, when
recovering a known model and a known population, we ex-
pect to recover the injected values as often as they occur, pro-
ducing a diagonal PP plot. The top panel of Figure 3 shows
precisely what we expect, when we inject and recover with

the same model (here, SEOBNRV4). By contrast, the bottom
panel shows a PP plot generated using inference from IMR-
PHENOMD on the same SEOBNRV4 injections. The PP plot
is considerably non-diagonal, reflecting frequent and substan-
tial parameter biases in our fiducial population.
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FIG. 4: Vector plot showing amplitude-scaled offsets between
SEOBNRvV4 and IMRPHENOMD for parameters M and ¢ (top
panel), M and x.g (middle panel) and ¢ and y.g (bottom panel)
as a function of the respective parameters with color map being the
value of the parameter mentioned on the color scale.

Parameter biases introduced by waveform systematics vary
in magnitude and direction over the parameter space. To illus-
trate these offsets for the parameters * = M, q, X, We've
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FIG. 5: Figure showing KL-divergences between the two waveform
models versus the log of the maximum likelihood for the combined
posteriors of M, g and xef.

evaluated the parameter shift Az between the mean inferred
with IMRPHENOMD and the mean inferred with SEOB-
NRv4, relative to op, which is a product of p (the signal-to-
noise ratio, a measure of the signal amplitude) and the statisti-
cal error (as measured by the standard deviation o of the pos-
terior of the parameter x in question). [The combination op
is approximately independent of signal amplitude, allowing
us to measure the effect of waveform systematics for a fidu-
cial amplitude.] Figure 4 shows a vector plot of these scaled
offsets Az/po, as a function of two of the parameters at a
time. The length of the arrow corresponds to the scaled shifts
in the parameters M, g and y.g, plotted against the injected
parameter values. The color scale shows the remaining pa-
rameter. The top two panels show that shifts in ¢ = mqy/my,
Xeft = (M1X1,2+mMaXz,.)/(m1+mg) are substantial. Param-
eter shifts for g generally increase with Xeg. Shifts in xg are
generally positive for positive X, negative for negative e,
and strongly dependent on mass ratio, with more substantial
shifts at either comparable mass or at very high mass ratio,
respectively. In both cases, chirp mass M has modest impact,
with somewhat larger shifts occurring at somewhat larger val-
ues of chirp mass. Most extreme waveform systematics seem
to be associated with large mass ratio.

Relative differences in mean value only imperfectly cap-
tures the differences between the two posteriors. As a sharper
diagnostic that includes parameter correlations, we use the
mean and covariance of each distribution in M, ¢, x.g to gen-
erate a local gaussian approximation for each posterior, and
then compute the KL divergence between these two gaussian
approximations [23]. We expect more substantial differences
and thus larger KL divergence for stronger signals, whose pos-
teriors are more sharply constrained. To corroborate our intu-
ition, Figure 5 shows a scatterplot, with these KL divergences
on the horizontal axis and the largest value of In £ on the ver-
tical axis. As expected, for the strongest signals, differences
between the two waveform models are the most pronounced.

One might expect that large parameter offsets are more
likely to occur when the data favors one model or another.
While conceivably true asymptotically, for our specific syn-
thetic population, we don’t find a strong correlation between
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FIG. 6: Figure showing Bayes factor (BF) for SEOBNRvV4 ver-
sus IMRPHENOMD plotted against differences between the SEOB-
NRv4 and IMRPHENOMD waveforms for parameters M, ¢ and

Xeff-

the Bayes factor (ZsgoBNRv4/ ZIMRPHENOMD) and any parame-
ter offsets. Figure 6 shows this Bayes factor (BF) plotted ver-
sus the scaled parameter offsets in M, q, .. Large offsets
can occur without the data more strongly favoring one model
or the other, and vice versa.

B. A PP plot test for marginalizing over waveform errors

We test our model-averaged waveform procedure using a
full synthetic PP plot procedure. Specifically, we use the ng =
100 synthetic source parameters. For each source, we pick one
waveform model A, B with probabilities p(A), p(B), and use
it to generate the signal. We then analyze the signal using the
model-averaged procedure described above.

As a concrete example, the top panel of Figure 7 shows our
analysis of one fiducial event in our synthetic sample. The
colored points show likelihood evaluations, with color scale
corresponding to the marginalized likelihood evaluated with
IMRPHENOMD. The blue and black contours show the 90%
credible intervals for SEOBNRvV4 and IMRPHENOMD, re-
spectively; the two posteriors differ substantially, illustrating
the impact of model systematics on parameter inference. The
green contour shows our model-marginalized posterior. For
comparison, the cross shows the injected source parameters,
and the model was IMRPHENOMD.

The bottom panel of Figure 7 shows one PP plot corre-
sponding to applying our model-marginalized procedure to a
population where each source is randomly selected from ei-
ther IMRPHENOMD or SEOBNRV4. The dotted line shows
a 90% frequentist interval for the largest of four random cu-
mulative distributions. This figure shows our PP plots are con-
sistent with the diagonal, as desired.
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FIG. 7: Top panel: example of a model averaged result. The blue
and black curves show the 1D marginal distributions and 2D 90%
credibles for SEOBNRV4 and IMRPHENOMD inferences, respec-
tively. The green curves show the corresponding model-averaged
result. Bottom panel: PP plot test for our model-marginalized proce-
dure.

IV. DISCUSSION

In this work, we performed simple tests which reproduce
significant differences between the models SEOBNRvV4 and
IMRPHENOMD, and can be extended to other available wave-
forms easily using RIFT, an efficient parameter estimation en-
gine. The probability-probability (PP) plot test, a commonly
used statistical test, can be used to confirm differences be-
tween waveform models and as shown in Fig. 3, parameter
estimation performed using a model different from the in-
jected model, gives a non-diagonal pp-plot for most param-
eters. We calculated the magnitude and direction of the off-
sets introduced due to using a waveform model different to the
injected model, and these differences are higher for extreme
case scenarios, as expected. A linear correlation between the
KL divergence computed for the two models and the log of the
maximum likelihood of the injected model, shows that high-

SNR signal will have larger differences in the inferred param-
eter from various models. Because the most informative sig-
nals exhibit the largest parameter biases, waveform systemat-
ics have the potential to strongly contaminate population in-
ference. Most importantly, we also demonstrated a method
to mitigate these waveform systematics by marginalizing over
the models used for parameter estimation analyses.

Our method requires as input some prior probabilities
p(Xg|A) for different waveform models X. One way these
prior probabilities could be selected is by waveform faithful-
ness studies between models and numerical relativity simu-
lations. These fidelity studies inevitably suggest waveform
models vary in reliability over their parameter space (e.g.
[42, 43]), suggesting p(Xj|A) will depend nontrivially on
A. Operationally, these model priors propagate into each
model’s posterior inferences as if parameter inferences for
model X are performed using a model-dependent prior
Dprior (A\)P(Xk|A), instead of a common prior for all models.
RIFT can seamlessly perform these calculations at minimal
added computational expense, while simultaneously return-
ing results for each model derived from the conventional prior
alone.

V.  CONCLUSIONS

Many waveform models exist currently that describe com-
pact binary coalescences. Even though these are derived by
solving Einstein’s equations, the various analytical or numer-
ical approximation considered bring in differences and affect
the parameter estimation process leading to biased interpre-
tation of results. Averaging over the waveform models can
mitigate these biases. Building on prior directly comparable
work [20], we have demonstrated an efficient method to per-
form such model marginalization.

Other techniques have been proposed to marginalize over
waveform model systematics. Notably, several groups have
proposed using the error estimates provided by their model
regressions (e.g., the gaussian process error) [44]. Relative
to regression-based methods, our method has two notable ad-
vantages. Our method can be immediately generalized to in-
clude multiple waveform models. Critically, we plan to intro-
duce parameter-dependent weighting of the likelihood from a
waveform, since different waveforms are accurate in differ-
ent regimes. No other model-marginalization technique can
presently provide this level of control.
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