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Abstract

Motivation: Protein model quality estimation, in many ways, informs protein structure prediction. Despite their tight
coupling, existing model quality estimation methods do not leverage inter-residue distance information or the latest
technological breakthrough in deep learning that has recently revolutionized protein structure prediction.

Results: We present a new distance-based single-model quality estimation method called QDeep by harnessing the
power of stacked deep residual neural networks (ResNets). Our method first employs stacked deep ResNets to per-
form residue-level ensemble error classifications at multiple predefined error thresholds, and then combines the
predictions from the individual error classifiers for estimating the quality of a protein structural model. Experimental
results show that our method consistently outperforms existing state-of-the-art methods including ProQ2, ProQ3,
ProQ3D, ProQ4, 3DCNN, MESHI, and VoroMQA in multiple independent test datasets across a wide-range of accur-
acy measures; and that predicted distance information significantly contributes to the improved performance of
QDeep.

Availability and implementation: https://github.com/Bhattacharya-Lab/QDeep.

Contact: bhattacharyad@auburn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Estimating the quality of a computationally generated protein struc-
tural model serves as a key component of protein structure predic-
tion (Uziela et al., 2017; Won et al., 2019). Model quality
estimation assists in validating and evaluating predicted protein
models at multiple stages of a structure prediction pipeline, thus
greatly affecting its prediction accuracy (Cao et al., 2015; Kalman
and Ben-Tal, 2010). Methods for model quality estimation can be
broadly categorized into two major classes that include ‘single-
model’ methods and ‘consensus’ approaches. Single-model methods
estimate structural quality purely from the model itself (Derevyanko
et al., 2018; Karasikov et al., 2019; Olechnovi�c and Venclovas,
2017; Pagès et al., 2019; Ray et al., 2012; Sato and Ishida, 2019;
Uziela et al., 2016, 2017) whereas consensus approaches exploit in-
formation from other models in a pool of possible alternatives
(Alapati and Bhattacharya, 2018; Benkert et al., 2009; Cheng et al.,
2009; McGuffin and Roche, 2010). As such, performance of consen-
sus approaches can be tremendously affected by the size and diver-
sity of the model pool (Cao et al., 2016; Manavalan and Lee, 2017;
Won et al., 2019), sacrificing their generality and large-scale use in
standalone structure prediction systems. Single-model methods, on
the other hand, are free from such limitation and can be independ-
ently employed for scoring and model selection. As a result, single-
model quality estimation methods are gaining increasing attention

by the community in the recent editions of Critical Assessment of
techniques for protein Structure Prediction (CASP) experiments
(Cheng et al., 2019; Kryshtafovych et al., 2018; Won et al., 2019),
the universal standard for objectively evaluating the state-of-the-art
of protein structure prediction.

Single-model quality estimation methods use various combina-
tions of features and employ different machine-learning approaches
for estimating the quality of a protein model without any knowledge
of the experimental structure by learning a mapping from the fea-
tures to its quality. For instance, ModelEvaluator (Wang et al.,
2009) uses structural features to train support vector machine
(SVM), RFMQA (Manavalan et al., 2014) utilizes structural fea-
tures and potential energy terms for training random forest, ProQ2
(Ray et al., 2012) uses evolutionary sequence profile combined with
contacts and other structural features to train SVM. In addition to
these traditional machine-learning-based methods, a growing num-
ber of approaches are employing deep learning, some of which deliv-
ering top performance in the most recent CASP13 experiment
(Cheng et al., 2019; Won et al., 2019). For example, ProQ3D
(Uziela et al., 2017) and ProQ4 (Hurtado et al., 2018) exploit the
strengths of multi-layer perceptron and 1D fully convolutional neur-
al network (CNN), respectively. Other recent methods, such as
Ornate (Pagès et al., 2019) and 3DCNN (Derevyanko et al., 2018;
Sato and Ishida, 2019) take advantage of 3D CNNs, attaining state-
of-the-art performance.
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Despite their effectiveness, these approaches do not consider
some key factors that can significantly improve single-model quality
estimation performance. First, accurate prediction of inter-residue
distance information has dramatically improved the nature of pro-
tein model generation (Greener et al., 2019; Senior et al., 2020; Xu,
2019), but none of the quality estimation methods incorporate dis-
tance information. Second, very deep and fully convolutional re-
sidual neural network (ResNet) (He et al., 2016) has emerged as a
breakthrough deep learning technology that has revolutionized
many computer vision tasks and very recently protein contact or dis-
tance prediction (Li et al., 2019; Wang et al., 2017), but their power
has not yet been harnessed in estimating model quality. Third, most
of these machine-leaning-based approaches typically rely on a single
trained predictor for quality estimation either at the global or local
level. That is, they do not make use of ensemble learning.

In this article, we present a brand-new distance-based single-
model quality estimation method QDeep by training an ensemble of
stacked deep ResNets. Such architecture can perform residue-level en-
semble error classifications at multiple predefined error thresholds.
Here, we use 1, 2, 4, and 8Å as the error thresholds to model the
GDT-TS score (Zemla, 2003) by predicting the likelihood of the error
between the Ca atom of any residue of a model to be within rÅ from
the corresponding aligned residue in the experimental structure,
where r 2 f1, 2, 4, 8gÅ. Combined predictions from the individual
error classifiers can then be used to estimate the quality of a protein
structural model. We train QDeep using a redundancy-removed set of
proteins from CASP9 and CASP10, validate the performance of the
individual deep ResNet models on CASP11, and then evaluate its
quality estimation performance on CASP12 and CASP13 targets. Our
experimental results show that our method yields much better per-
formance than existing methods and also results in better discrimin-
ation between ‘good’ and ‘bad’ models. The improved performance
of QDeep is deeply driven by our effective integration of distance in-
formation for single-model quality estimation. QDeep is freely avail-
able at https://github.com/Bhattacharya-Lab/QDeep.

2 Materials and methods

The flowchart of QDeep is shown in Figure 1, which consists of four
steps: multiple sequence alignment generation, feature collection,
stacked deep ResNets training, and residue-level ensemble error
classifications and their combination for model quality estimation.

2.1 Multiple sequence alignment generation
We generate multiple sequence alignment (MSA) (Fig. 1A) using
HHblits (Remmert et al., 2012) with a query sequence coverage of

10% and pairwise sequence identity of 90% against whole-genome
sequence database Uniclust30 (Mirdita et al., 2017) for three itera-
tions with an E-value inclusion threshold of 10�3. We also experi-
ment the inclusion of other whole-genome sequence database
UniRef90 (Suzek et al., 2015) and metagenome database Metaclust
(Steinegger and Söding, 2018) using the DeepMSA (Zhang et al.,
2020) pipeline to generate more sensitive and diverse MSA with
improved coverage and alignment depth. The generated MSA serves
as the key input to inter-residue distance prediction as well as other
sequence-based features, such as secondary structure and solvent
accessibility.

2.2 Feature collection
As shown in Figure 1B, we generate a total of 23 features for
describing each residue of a model that includes distance-based
weighted histogram alignment, sequence versus structure consist-
ency and ROSETTA centroid energy terms. We briefly describe
them below.

2.2.1 Distance-based weighted histogram alignment

We predict inter-residue distance map of the target protein by feed-
ing the MSA to DMPfold (Greener et al., 2019) and obtain the ini-
tial distance prediction without any iterative refinement (i.e.,
rawdistpred.current files) containing 20 distance bins with associ-
ated likelihoods between the interacting residue pairs. The distance
map is then converted to 5 evenly distributed distance intervals: 6,
8, 10, 12, and 14Å by summing up likelihoods for distance bins
below specific distance thresholds and considering only the residue
pairs having likelihoods of at least 0.2 to reduce noise. We calculate
observed inter-residue distance histogram for each model in the
model pool at the same 5 distance intervals mentioned above to per-
form dynamic programing alignments of the predicted and observed
distance histograms through eigen-decomposition (Di Lena et al.,
2010). The 5 alignment scores, each of which ranges between 0 and
1, are used as 5 distance-based features after multiplying with empir-
ically selected weights of 0.10, 0.25, 0.30, 0.25, and 0.10 for align-
ment scores at distance bins 6, 8, 10, 12, and 14Å, respectively, to
allow higher emphasis of the distance intervals between 8 and 12Å.

2.2.2 Sequence versus structure consistency

Number of effective sequences: We use the normalized number of ef-
fective sequences (NEFF) (Zhang et al., 2020) as a feature. NEFF is
calculated as the reciprocated sum of the number of sequences in the
MSA with a sequence identity >80% to the nth sequence, divided by
the total number of sequences in the MSA.

Fig. 1. Flowchart of QDeep. (A) Multiple sequence alignment generation. (B) Distance-based, sequence versus structure consistency-based and ROSETTA centroid energy

terms-based features collection. (C) Architecture of stacked deep ResNet classifiers at 1, 2, 4, and 8Å error thresholds. (D) Residue-level ensemble error classifications and their

combination for model quality estimation
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Sequence profile conservation score: We generate sequence pro-
file by searching the NR database using PSI-BLAST v2.2.26 soft-
ware (Altschul et al., 1997) with an E-value of 0.001. The
information per position score from the resulting position specific
scoring matrix is then used as a feature after applying sigmoidal
transformation to scale the score between 0 and 1.

Secondary structure (SS) and solvent accessibility (SA): We pre-
dict SS and SA using SPIDER3 (Heffernan et al., 2017) and use
residue-specific binary agreement between predicted and observed
SS as well as the squared error between predicted and observed rela-
tive SA as features.

Angular root mean square deviation (RMSD): We use normal-
ized RMSD between the two backbone dihedral angles (/, w) pre-
dicted from the sequence using SPIDER3 and their observed values
computed from the models as two features, which are computed as:

Angular RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

ðminðx2i � x1i; 2p� jx2i � x1ijÞ2

s

(1)

Normalized Angular RMSD ¼ 1

1 þ Angular RMSD
p 4= Þ2

� (2)

where x1i is the vector of / or w angle sequence for n residues pre-
dicted from the amino acid sequence and x2i is the vector of the cor-
responding observed / or w angle sequence for n residues in the
model.

2.2.3 ROSETTA centroid energy terms

We use 12 ROSETTA (Leaver-Fay et al., 2011; Rohl et al., 2004)
centroid energy terms as features that include residue environment
(env), residue pair interactions (pair), cb density (cbeta), steric repul-
sion (vdw), radius of gyration (rg), packing (cenpack), contact order
(co), statistical potentials for SS formation (hs_pair, ss_pair, sheet,
rsigma), and centroid hydrogen bonding (cen_hb). We apply sig-
moidal transformations to scale the energy terms before using them
as features.

2.2.4 Sliding window

In order to capture the local interactions among residues, we employ
a sliding window of 21 around the central residue (i.e., 10 residues
on both sides) similar to Uziela et al. (2016). This results in a 483-di-
mensional feature vector for each residue. N- or C-terminal residues
having one or more missing neighbors on either side are padded
with additional 0’s to match the feature dimension.

2.3 Architecture of stacked deep ResNets
Figure 1C shows a high-level overview of the architecture of our
stacked deep ResNets. Each network consists of 13 residual blocks
with three 1-dimensional convolutional layers in each block. We
adopt the bottleneck design (He et al., 2016) for the residual mod-
ules with a kernel size of 1�1, 1�3, and 1�1, respectively, for
three convolutional layers in each residual block. Here, the 1�1
layers at the beginning and at the end of each residual block are
used to reduce and restore the dimensionality of the feature vector,
thus maintaining the consistency in the dimensionality of feature
maps throughout the network. We input L � 483�1 feature to a
convolutional layer with a kernel size of 1�7 and filter of 64�1.
Afterwards, the feature is transformed into 64-dimensional feature
vector using 1�1 convolutional layer of the first residual block
with a filter size of 64 �1. In each of the residual block, a ‘shortcut
connection’ between the input and the output layer, skipping the
intermediate layer is established. This connection works as identity
mapping and its outputs are added to the output from all previously
stacked layers and passed to the pre-activation phase of the final
layer of a residual block. As depicted in Figure 1C, the input x in the
ith layer is added to the input of the final layer of a residual block.

Therefore, the activation in the output layer for a specific residual
block is applied to the xi þ F (xiþ1). Formally, it is represented as:

y ¼ F xiþ1; Wiþ1f gð Þ þWsXi (3)

where F is the ReLU activation function, W is the weight vector in a
particular layer i, Ws is the additional parameter to the model, repre-
senting the linear projection by the shortcut connection, applied to
match the dimension, which is implemented by 1�1 convolution.

Our entire deep residual network is divided into three stages
with three residual blocks in the first stage, four in the second stage
and six in the last stage. In Figure 1C, n defines the output channels
for the residual block in each stage that are set to 128, 256, and
512, respectively. Therefore, in the first block of each stage, the fea-
ture map is halved and the filter size is increased by a factor of 2.
The dimensionality of the feature map remains the same in the con-
secutive blocks in a stage. We apply batch normalization on the in-
put features before passing to the convolutional layer in the first
stage of the residual network. The utilization of this setting, there-
fore, minimizes the internal covariate shift as well as the need for
the Dropout (Ioffe and Szegedy, 2015).

At the end of the residual blocks, we use an average pooling layer
with a pool size of 2 that reduces the number of parameters and
helps in faster computation. Finally, a flatten layer accepts the
pooled feature map to transform into a 1-dimensional vector and
passes to the fully connected (i.e., dense) layer.

2.4 Model training
We collect submitted models from CASP9 and CASP10 (Moult
et al., 2016, 2018) experiments for a total of 220 protein targets,
whose experimental structures are publicly available. On an aver-
age, there are 282 models per target. To remove redundancy, we
perform MUFOLD clustering (Zhang and Xu, 2013) and select the
centroid of the top 10 clusters. It should be noted that not all the tar-
gets have all 10 clusters and MUFOLD fails to execute for 5 targets,
resulting in a total of 2,130 redundancy-removed models having
303,675 residues for 215 CASP targets. We prepare four sets of fea-
tures at 1, 2, 4, and 8Å error thresholds with the same training data
by assigning a binary label to each one of the residues after calculat-
ing the errors between the Ca atoms of each of the residues in the
model and the corresponding aligned residue in the experimental
structure using the LGA program (Zemla, 2003). We assign a label
of 1 (positive class) to the feature set of each of the residues, if the
error is within rÅ (where r 2 f1, 2, 4, 8gÅ following GDT-TS), 0
(negative class) otherwise.

We train an ensemble of four independent ResNet models using
the four sets of features at 1, 2, 4, and 8Å error thresholds. As
Conv1D accepts an input shape of a 3D tensor with batch, steps and
channel, respectively, we reshape the feature vector into L �
483�1 prior to passing to the input layer. We train the networks
with the maximum number of epochs of 120 and an optimal batch
size of 64 that best fits the GPU limit. Also, to avoid overfitting, we
use EarlyStopping callback of Keras (Chollet, 2015) with a patience
value of 20. We optimize the model using the binary crossentropy
loss function and first-order gradient-based Adam optimizer
(Kingma and Ba, 2014).

2.5 Residue-level ensemble error classifications and

their combination for model quality estimation
Figure 1D shows the residue-level ensemble classifications and their
combination for model quality estimation. We consider each one of
the four deep ResNet models as an independent residue-specific
error classifier, while their ensemble collectively estimates the struc-
tural quality of a model. For each classifier, the output layer with
the sigmoid activation function predicts the likelihood of residue-
level errors at 1, 2, 4, and 8Å error thresholds. We set a likelihood
cutoff of 0.5 to convert the likelihood of a residue-level error to bin-
ary classification, where a likelihood value greater than the cutoff is
classified as 1, indicating the residue-specific error to be within rÅ
error level (r 2 f1, 2, 4, 8gÅ) and 0 otherwise. For a given error
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threshold at rÅ, we calculate the aggregated error for the whole
model by summing up the number of residues belonging to the posi-
tive class Nr. Analogous to GDT-TS score, we estimate the quality
of a model by combining the ensemble of residue-level classifiers as:

QDeep � score ¼ N1 þN2 þN4 þN8

4L
(4)

where N1, N2, N4, and N8 are the number of aligned residues with-
in 1, 2, 4, and 8Å error thresholds, respectively, and L is the length
of the target protein. Consequently, QDeep-score lies between [0, 1]
with a higher value indicating better quality.

2.6 Evaluation method and programs to compare
We validate the individual residue-level classifiers using the ‘stage 2’
model pool (150 models/target) for 82 CASP11 targets
(Kryshtafovych et al., 2016) with publicly available experimental
structures. For evaluating model quality estimation performance, we
use the stage 2 model pool for 40 and 20 targets from CASP12 and
CASP13, respectively (Cheng et al., 2019; Kryshtafovych et al.,
2016), with a total of 9,000 models for both datasets. The training
and test datasets are non-overlapping with an average pairwise se-
quence identity of 21%. We use three evaluation criteria to measure
the performance of model quality estimation: (i) ability to reproduce
the true model-native similarity scores, (ii) ability to find the best
model, and (iii) ability to distinguish between good and bad models.
For the first criterion, we use average per-target and global Pearson,
Spearman, and Kendall’s Tau correlations between the estimated
scores and the true GDT-TS accuracy considering all models in a
given dataset. Consequently, a higher correlation indicates better
performance. For the second criterion, we use average GDT-TS loss
that is the difference between the true GDT-TS of the top model
selected by the estimated score and that of the most accurate model
in the pool. A lower loss, therefore, indicates better performance.
For the third criterion, we preform receiver operating characteristics
(ROC) analysis using a cutoff of GDT-TS ¼ 0.4 to separate good
and bad models. Meanwhile, the area under ROC curves (AUC)
quantifies the ability of a method to distinguish good and bad
models.

We compare our new distance-based single-model method
QDeep with state-of-the-art single-model quality estimation meth-
ods that include ProQ2 (Ray et al., 2012), ProQ3 (Uziela et al.,
2016), ProQ3D (Uziela et al., 2017), ProQ4 (Cheng et al., 2019;
Hurtado et al., 2018), 3DCNN (Sato and Ishida, 2019), MESHI
(Kalisman et al., 2005), and VoroMQA (Olechnovi�c and Venclovas,
2017). For CASP12 targets, all tested methods are run locally with
parameters set according to their respective papers. For CASP13, we
directly obtain quality estimation predictions submitted by the
tested methods from the data archive of the CASP official website.

3 Results

3.1 Validation of individual residue-level classifiers
We validate the performance of our individual deep ResNet-based
classifiers on 82 CASP11 targets. Figure 2 shows the ROC curves
for each of the classifiers trained at error thresholds of 1, 2, 4, and
8Å, respectively. All individual classifiers achieve AUC values �0.8,
demonstrating their effectiveness at various error thresholds. Of
note, the AUC values steadily increase at higher values of error
thresholds. This is not surprising because at a lower error threshold,
the proportion of residues belonging to the positive class is very low.
That is, the number of positive and negative labels is extremely
unbalanced. For example, in the training dataset the ratios between
the positive and negative labels are 0.27 (88,36/331,318), 0.54
(147,194/273,084), 0.93 (202,373/217,927), and 1.57 (256,740/
163,566) for 1, 2, 4, and 8Å error thresholds, respectively. The
sparsity of positive labels at lower error thresholds may be the rea-
son behind their somewhat lower performance. Nonetheless, they
still deliver reasonable residue-level classification performance.
Binary classification performance metrics, such as F1, MCC,

Precision, and Recall for the individual classifiers at various error
thresholds are reported in Supplementary Table S1.

3.2 Performance evaluation on CASP datasets
Table 1 reports the performance of our new method QDeep and five
other top-performing single-model quality estimation methods on
CASP12 and CASP13 stage 2 datasets. QDeep consistently outper-
forms all other tested methods for both CASP12 and CASP13 sets
across almost all performance criteria. For instance, QDeep attains
the highest per-target average Pearson correlation of 0.740 in
CASP12, which is much better than the second-best ProQ3D
(0.688). Additionally, QDeep attains the lowest average GDT-TS
loss of 0.051, which is significantly lower than the second-best
ProQ3 (0.071). Furthermore, QDeep always delivers the highest glo-
bal correlations in CASP12. The same trend continues for CASP13
set, in which QDeep attains the highest per-target average Pearson
correlation of 0.752, better than the second-best ProQ4 (0.733). In
terms of GDT-TS loss in CASP13, however, MESHI attains the
lowest average GDT-TS loss (0.070) as it adopts an additional loss-
enrichment step in its pipeline. QDeep has an unusually high GDT-
TS loss of 0.455 for the CASP13 target T1008, which raises its
average GDT-TS loss. On further inspection, we find that the align-
ment depth of the MSA for T1008 is zero having no identifiable
homologous sequences. If T1008 is excluded, the average loss of
QDeep becomes 0.068. Considering all targets though, the average
GDT-TS loss of QDeep in CASP13 is still comparable to the other
tested methods. The global correlations attained by QDeep are al-
ways the highest in CASP13. Of note, ProQ4, the second-best per-
forming method in CASP13 after QDeep in terms of per-target
average correlations, consistently exhibits poor global correlations.
MESHI, the method attaining the best average GDT-TS loss in
CASP13, does not deliver top performance in terms of per-target
average correlations. That is, there are complementary aspects of
model quality estimation that can lead to performance trade-offs.
Our new method QDeep strikes an ideal balance to deliver top-
notch performance across various facets of model quality estimation
simultaneously.

To investigate the ability of QDeep to distinguish good and bad
models in comparison with the other tested methods, we perform
ROC analysis using all models for all targets in CASP12 and
CASP13. Figure 3 shows the ROC curves with AUC values. Once
again, QDeep consistently achieves the highest AUC values for both
CASP12 and CASP13. The AUC of QDeep is slightly higher than
the second-best ProQ3D in CASP12 and noticeably higher in
CASP13, demonstrating its better performance in separating good
and bad models compared to the others.

It is interesting to note that among the other tested methods,
deep learning-based approaches, such as ProQ4, ProQ3D, and
3DCNN routinely deliver better performance in both CASP12 and

Fig. 2. Accuracy of the individual residue-level classifiers at 1, 2, 4, and 8Å error

thresholds on the validation set of 82 CASP11 targets
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CASP13 datasets. Among the ProQ series of predictors, deep
learning-based methods, such as ProQ3D and ProQ4 perform better
than SVM-based approaches like ProQ2 and ProQ3. While these
methods themselves are intrinsically different making it difficult if
not impossible to firmly conclude the underlying cause of their

performance differences, the trend of superior performance of deep
learning-based methods may indicate the inherent advantage of
transitioning from traditional machine learning to deep learning-
based approaches for model quality estimation task. To investigate
the effect of various deep architectures on quality estimation per-
formance when everything else remains the same, we compare deep
ResNet with long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and CNN (Lee et al., 2009) by performing con-
trolled experiments. Equivalent to the ResNet model ensemble
employed in QDeep, we train ensembles of four independent LSTM
and CNN residue-specific error classifiers at 1, 2, 4, and 8Å error
thresholds using the same features sets and same training data used
in QDeep. The model architectures and training procedure for the
LSTMs and CNNs are described in Supplementary Methods.
Table 2 presents the head-to-head performance comparison between
ResNets, LSTMs, and CNNs on CASP12 and CASP13 stage 2 data-
sets. The results show that ResNet delivers the best performance
across all performance criteria, while LSTM consistently outper-
forms CNN. ResNet attains the highest per-target average correla-
tions and the lowest average GDT-TS losses in both CASP12 and
CASP13 sets. LSTM attains an average GDT-TS loss of 0.059,
which is lower than all tested methods in CASP12 and second only
to the ResNet architecture of QDeep. In CASP13, LSTM delivers
better per-target average Pearson (0.735) and Spearman (0.668) cor-
relations than all other methods except ResNet-based QDeep. The
results further emphasize the advantage of using sophisticated deep
architecture, such as LSTM for model quality estimation. Our new
method QDeep goes one step further by training an ensemble of
state-of-the-art stacked deep ResNets classifiers, delivering the best

Table 1. Performance of single-model quality estimation methods on CASP12 and CASP13 stage 2 datasets, sorted in decreasing order of

average per-target Pearson correlations

Dataset Method Avg. ra Avg. qb Avg. sc Avg. lossd Global re Global qf Global sg

CASP12 (stage 2) QDeep 0.740 0.657 0.492 0.051 0.863 0.871 0.678

ProQ3D 0.688 0.631 0.467 0.086 0.851 0.847 0.660

3DCNN 0.661 0.585 0.427 0.081 0.834 0.818 0.620

ProQ2 0.624 0.556 0.404 0.091 0.784 0.770 0.577

ProQ3 0.604 0.536 0.390 0.071 0.806 0.793 0.600

VoroMQA 0.560 0.502 0.362 0.105 0.604 0.603 0.444

CASP13 (stage 2) QDeep 0.752 0.692 0.512 0.088 0.866 0.868 0.678

ProQ4 0.733 0.667 0.507 0.089 0.667 0.642 0.491

MESHI 0.713 0.663 0.492 0.070 0.833 0.845 0.659

ProQ3D 0.671 0.619 0.457 0.084 0.849 0.811 0.626

VoroMQA-A 0.665 0.606 0.442 0.092 0.769 0.767 0.574

VoroMQA-B 0.651 0.592 0.429 0.072 0.754 0.750 0.554

Note: Values in bold represent the best performance.
a,b,cPer-target average Pearson, Spearman, and Kendall’s Tau correlation with respect to true GDT-TS score.
dPer-target average loss with respect to true GDT-TS score.
e,f,gGlobal Pearson, Spearman, and Kendall’s Tau correlation with respect to true GDT-TS score.

Fig. 3. The ability of single-model quality estimation methods to distinguish good

and bad models in (A) CASP12 and (B) CASP13 stage 2 datasets. A cutoff of GDT-

TS ¼ 0.4 is used to separate good and bad models

Table 2. Performance comparison of deep ResNet models used in

QDeep with other deep learning architectures on CASP12 and

CASP13 stage 2 datasets

CASP12 stage 2 CASP13 stage 2

Avg.

ra
Avg.

qb

Avg.

sc

Avg.

lossd

Avg.

ra
Avg.

qb

Avg.

sc

Avg.

lossd

ResNet 0.740 0.657 0.492 0.051 0.752 0.692 0.512 0.088

LSTM 0.716 0.596 0.452 0.059 0.735 0.668 0.500 0.116

CNN 0.657 0.581 0.433 0.097 0.735 0.660 0.487 0.116

Note: Values in bold represent the best performance.
a,b,cPer-target average Pearson, Spearman, and Kendall’s Tau correlation

with respect to true GDT-TS score.
dPer-target average loss with respect to true GDT-TS score.
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predictive performance. Meanwhile, the novel use of distance infor-
mation in QDeep substantially improves the performance, as dis-
cussed later. In summary, the advantage of QDeep in single-model
quality estimation over the others is manifold.

3.3 Impact of deeper sequence alignment
Since a large number of features used in QDeep is dependent on
MSA, which has been shown to significantly affect contact predic-
tion, SS prediction and threading (Zhang et al., 2020), we replace
our alignment generation component with DeepMSA (Zhang et al.,
2020) to generate deeper sequence alignments by integrating whole-
genome and metagenome sequence databases and retrain the ensem-
ble of four stacked deep ResNet models with the same architecture
and training procedure mentioned earlier (hereafter called
QDeepDeepMSA). To study the impact of deeper MSA in model qual-
ity estimation, we perform head-to-head performance comparison
between QDeep and QDeepDeepMSA. To make a fair comparison, we
use the same test datasets of CASP12 and CASP13 with the same
feature sets. As reported in Table 3, QDeepDeepMSA further improves
per-target average correlations in both datasets. The improvement is
particularly noticeable for CASP13, in which QDeepDeepMSA attains
average per-target Pearson, Spearman, and Kendall’s Tau correla-
tions of 0.777, 0.720, and 0.538, respectively, that are much higher
than QDeep trained on standard MSA. In terms of average GDT-TS
loss, QDeepDeepMSA results in slight improvement in CASP13 but
visible worsening in CASP12. In Supplementary Figure S1, we show
the performance of the individual classifiers at 1, 2, 4, and 8Å error
thresholds by performing ROC analysis on our validation set com-
prising of 82 CASP11 targets. Except 8Å error threshold, all other
deep ResNet classifiers trained on deeper alignments attain higher
AUC values compared to their counterparts using standard MSA.
That is, deeper sequence alignments can be advantageous to further
improve the performance of our new quality estimation method
QDeep, particularly by enhancing its ability to better reproduce true
model-native similarity scores. To understand whether it is possible
to further improve the performance by fine-tuning the hyperpara-
meters of the ResNet architecture to better leverage the deeper se-
quence alignments, we train shallower and deeper ResNet
architectures. For the shallower architecture, we stack 2 blocks in
each of the three stages, resulting in a total of 6 residual blocks for
each independent residue-level error classifier. The deeper architec-
ture consists of a total of 20 residual blocks for each independent
residue-level error classifier having 6, 7, and 7 blocks sequentially
for the three stages. As described in Supplementary Methods, these
two variants of our original 13-residual-blocks-QDeepDeepMSA are
trained using the same features with deep MSAs and same training
data. Head-to-head performance comparison reported in
Supplementary Table S2 reveals minor performance variations be-
tween the variants, with all architectures outperforming the other
tested methods for both CASP12 and CASP13 sets in majority of
performance criteria. The deeper architecture with 20 residual
blocks performs better than the shallower architecture with 6 re-
sidual blocks, particularly for CASP13. Our original ResNet archi-
tecture of QDeepDeepMSA consistently delivers the best performance

over the variants across all assessment metrics, validating its effect-
iveness for quality estimation.

3.4 Contribution of distance information
To evaluate the contribution of distance information in QDeep, we
retrain an extra set of the same ensemble classifiers at 1, 2, 4, and
8Å error thresholds after excluding distance-based features, while
still utilizing deep MSA for feature generation (hereafter called
QDeepNoDistance). Head-to-head performance comparisons on the
same test sets of CASP12 and CASP13 datasets reveal that
QDeepNoDistance performs much worse than the original distance-
based QDeep method, let alone its variant QDeepDeepMSA trained
using deep alignments and distance information. As shown in
Table 3, QDeepNoDistance substantially degrades per-target average
Pearson, Spearman, and Kendall’s Tau correlations in both CASP12
and CASP13 sets. There is also a noticeable increase in the average
GDT-TS loss. Clearly, the exclusion of distance information nega-
tively affects the estimation of model quality performance. The
results underscore the importance of incorporating distance infor-
mation in single-model quality estimation methods, such as QDeep.

4 Conclusion

This article presents QDeep, a new distance-based single-model pro-
tein quality estimation method based on residue-level ensemble error
classifications using stacked deep ResNets. Experimental results
show that QDeep works much better than existing approaches
across various accuracy measures of model quality estimation.
QDeep outperforms not only currently popular ProQ series of meth-
ods including its most recent editions ProQ3D and ProQ4 but also
top-ranked single-model quality estimation methods participating in
the most recent 13th edition of CASP. Among the competing meth-
ods, deep learning-based approaches show a general trend of super-
ior performance. Our new method QDeep takes a leap forward by
employing cutting-edge deep learning architecture to effectively inte-
grate predicted distance information with other sequential and
structural features, leading to improved performance.

Different from the other state-of-the-art methods, such as ProQ4
and MESHI that focus only on some aspects of quality estimation,
our method works well on a wide-range of accuracy metrics to de-
liver an overall well-rounded performance. Controlled experiment
on multiple datasets confirms that the improved performance of
QDeep is primarily attributed to our effective integration of distance
information that can be further improved in part by incorporating
deeper sequence alignments. This should make distance-based pro-
tein model quality estimation a promising new avenue for many
more single-model methods in the near future.
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