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Abstract

Recent advances in distance-based protein folding have led to a paradigm shift in protein

structure prediction. Through sufficiently precise estimation of the inter-residue distance

matrix for a protein sequence, it is now feasible to predict the correct folds for new proteins

much more accurately than ever before. Despite the exciting progress, a dedicated visuali-

zation system that can dynamically capture the distance-based folding process is still lack-

ing. Most molecular visualizers typically provide only a static view of a folded protein

conformation, but do not capture the folding process. Even among the selected few graphi-

cal interfaces that do adopt a dynamic perspective, none of them are distance-based. Here

we present PolyFold, an interactive visual simulator for dynamically capturing the distance-

based protein folding process through real-time rendering of a distance matrix and its com-

patible spatial conformation as it folds in an intuitive and easy-to-use interface. PolyFold

integrates highly convergent stochastic optimization algorithms with on-demand customiza-

tions and interactive manipulations to maximally satisfy the geometric constraints imposed

by a distance matrix. PolyFold is capable of simulating the complex process of protein fold-

ing even on modest personal computers, thus making it accessible to the general public for

fostering citizen science. Open source code of PolyFold is freely available for download at

https://github.com/Bhattacharya-Lab/PolyFold. It is implemented in cross-platform Java and

binary executables are available for macOS, Linux, and Windows.

Introduction

Computational protein structure prediction has witnessed remarkable progress in the recent

past due to advances in folding new proteins from scratch using sufficiently accurate estima-

tion of the inter-residue distance matrix [1–4]. A distance matrix encodes a protein’s three-

dimensional (3D) structure through inter-residue spatial proximity information that can be

converted to physical constraints in order to drive the ab initio folding process with minimal

conformational search [5,6]. Consequently, distance-based protein folding has gained a lot of

attention, fueling considerable research efforts [7–11]. However, the lack of a dedicated visuali-

zation system that can dynamically capture the distance-based folding process precludes the
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possibility of obtaining a visual understanding of its nature. Currently popular molecular visu-

alization tools like PyMol and UCSF Chimera [12,13] typically provide only a static view of a

folded protein conformation, but do not capture the folding process. Recent graphical inter-

faces such as the PyRosetta Toolkit [14] and InteractiveROSETTA [15] adopt dynamic per-

spectives, but they are built exclusively for the ROSETTA molecular modeling suite [16],

which primarily relies on a fragment-based approach for protein folding. InteractiveRO-

SETTA has many sophisticated ROSETTA-based features, including APIs to incorporate vari-

ous distance restraints. However, a standalone visualizer that provides insights to distance-

based folding for researchers is still lacking. Beyond the realm of expert-oriented visualization

tools, the interactive graphical interface Foldit Standalone [17] makes it possible for non-

experts to manipulate protein structures in the context of the popular scientific discovery

game Foldit [18], which itself is based on ROSETTA and thus not distance-based. A dedicated

distance-based visual folding simulator with a simple to use interface will not only provide a

central platform for researchers to delve deeper into the folding process and gain critical

insights, but will also make the latest technological advances in protein folding and molecular

modeling easily accessible to non-experts, while still being scientifically accurate.

We have developed a brand-new standalone GUI called PolyFold for visually simulating the

distance-based protein folding process. PolyFold provides several user-friendly controls for run-

ning powerful distance matrix optimization algorithms, including gradient descent [19] and

simulated annealing [20,21], with on-demand customization and interactive manipulations.

Through real-time rendering of a live interaction map with smooth color ramping to capture

the distance matrix alongside its compatible 3D conformation color-coded to highlight the sec-

ondary structural geometry, PolyFold makes it possible to dynamically view the folding process.

Additionally, an interactive movement panel provides the ability to structurally manipulate the

molecule. PolyFold does not require familiarity with protein biochemistry and provides an eas-

ily accessible platform for elucidating the distance-based protein folding process.

PolyFold features

As shown in Fig 1, the PolyFold GUI consists of three main panels: a live interaction map

panel for visualizing the target distance matrix (upper triangle) and the distance matrix cur-

rently realized (lower triangle) with real-time updates, a dynamic structural display panel ren-

dering the 3D conformation of the protein molecule compatible with the current distance

matrix, and a movement panel that permits users to interactively manipulate the molecule.

The core of PolyFold is implemented in Java, and the GUI controls make extensive use of the

JavaFX application library. The code is cross-platform and builds and runs on macOS, Linux,

and Windows. Pre-packaged binaries are also available for plug-and-play execution (see sec-

tion 2 in S1 Text).

PolyFold includes two optimizers for distance-based folding: gradient descent and simu-

lated annealing, the former operating in Cartesian space and the latter in angular space. Users

can launch interactive versions of both optimizers, which dynamically update the display as

they run and can be cancelled prior to completion. Cascaded runs which either alternate or

repeat optimizers, such as the repeated gradient descent used in AlphaFold [7], are also possi-

ble. The parameters of both optimizers are fully configurable (see section 3.3 in S1 Text). It is

worth mentioning that PolyFold’s optimization engine is designed for real-time and interac-

tive visualization of the distance-based optimization as opposed to physics-based Molecular

Dynamics (MD) simulations, which are often used for intermediate state or pathway analysis.

PolyFold’s custom interactive manipulations have been specifically implemented for real-

time manipulation of a molecule. Users are able to manipulate the molecular geometry in real-
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time with a simultaneous update to the live interaction map by selecting a residue and updat-

ing its pseudo planar and dihedral angles by dragging sliders. This feature can be particularly

useful for multi-domain proteins by folding the full-length structure via distance-based opti-

mization and subsequently adjusting the relative domain orientations by manipulating the

domain linkers. PolyFold also keeps track of a history of modified states for undoing, redoing,

saving, loading, and restoring the molecule to an unfolded extended state during various stages

of interactive manipulations or in-built optimizations. Structures can be translated, rotated,

scaled, and auto-zoomed as needed (see section 3.1 and 3.2 in S1 Text).

A PolyFold session can be started by supplying a distance matrix similar to the biannual

Critical Assessment of protein Structure Prediction (CASP) [22–25] experiments’ residue-resi-

due (RR) format along with secondary structures (see section 4.1 in S1 Text). Intermediate ses-

sion states can be saved to anonymous save states for quick recall or saved to named save states

for lengthier sessions. Further, structures can be saved in Protein Data Bank (PDB) [26] format

and restored in a later session. Prior to saving a structure, PolyFold performs secondary

Fig 1. A representative PolyFold distance-based folding session for the amino terminal domain of enzyme I from escherichia coli (PDB ID: 1zym), with real-time

display of the interaction map and its compatible 3D structure. Residue 37 is selected for manipulation.

https://doi.org/10.1371/journal.pone.0243331.g001
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structure-assisted geometric chirality checking using a heuristic cost function for identifying

the correct chirality as the sum over tetrapeptides in α-helices and β-sheets [27]. While Poly-

Fold can work for large proteins, reasonably sized structures (length < 500 residues) are cur-

rently supported for seamless rendering.

Case study

To examine the accuracy and robustness of PolyFold for distance-based folding, we study the

folding of a Ribosomal protein 1ctfA of length 68 residues [28] from near-native distance

matrices as well as noisy distance matrices. In all cases, we run PolyFold by employing a single

run of simulated annealing with a random seed of 0 followed by three repeated runs of gradi-

ent descent with PolyFold’s default parameters.

We first perform distance-based folding by feeding a near-native distance matrix into Poly-

Fold in CASP RR format after computing the floors and ceilings of the true inter-residue dis-

tances of the target protein 1ctfA. That is, the near-native distance matrix supplied to PolyFold

specifies the distances to be within 1Å of the true real-valued distances, thus simulating a

reconstruction scenario. As shown in Fig 2, PolyFold successfully reconstructs the structure of

the target protein with a very high TM-score [29] of 0.92, demonstrating the effectiveness of

PolyFold’s in-built optimizers.

Fig 2. PolyFold distance-based reconstruction for the target 1ctfA with a near-native distance matrix. The upper

diagonal shows the inter-residue distance matrix, and the lower diagonal shows the structural superimposition

between the PolyFold predicted model (in rainbow) and the experimental structure of the target (in gray).

https://doi.org/10.1371/journal.pone.0243331.g002
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Next, we investigate the effect of feeding noisy distance matrices [30,31] into PolyFold’s

structural optimization engine by systematically introducing zero-mean Gaussian noise having

standard deviations of σ = 1, 2, and 4Å into the true distance matrix of the target protein

1ctfA. This is accomplished by first calculating the inter-residue pair-wise distances from the

near-native PDB file. We then create a pool of residue pairs (i, j) where | i–j | > 6. Next, we

either uniform randomly select 50% of pairs or select 100% of pairs from the pool to be modi-

fied. We refer to this selection percentage as the “noise level.” The calculated near-native dis-

tances are then modified with zero-mean Gaussian noise with the specified standard deviation.

As shown in Fig 3, we observe that PolyFold’s optimizations are fairly noise-tolerant, predict-

ing the correct fold with a TM score > 0.5 [32] in all cases except in the most extreme case

with noise level 100% and a standard deviation of 4Å (S1–S6 Movies). When noisy distance

matrices with σ = 1Å are fed into PolyFold, it achieves TM-scores of 0.89 and 0.86 for 50% and

100% noise levels, respectively. By doubling the noise to σ = 2Å, PolyFold still predicts correct

folds with TM-scores � 0.6 for both 50% and 100% noise levels. Finally, PolyFold predicts the

correct fold with a TM-score of 0.5 using a quite noisy distance matrix with σ = 4Å and a noise

level of 50%, demonstrating its robustness in distance-based folding when using noisy distance

matrices.

Benchmarking

While PolyFold is primarily an interactive visual simulator for distance-based protein folding

as opposed to a structure prediction method, we assess PolyFold’s predictive modeling perfor-

mance using a benchmark set of six small proteins ranging in length from 43 to 76 residues

that have been the subject of previous studies [33,34]. For predictive modeling using PolyFold,

we predict secondary structures by running SPIDER3 [35] locally. We then feed the predicted

secondary structures together with distance matrices to PolyFold at varied resolutions ranging

from near-native to noisy and predicted maps. In all cases, we employ two cascaded runs of

PolyFold’s gradient descent optimization, both for 65,000 iterations, with the first run using a

step size of 0.005 and the second run using a step size of 0.0001. The optimized structural mod-

els are subsequently saved in PDB format for assessment. First, we feed near-native distance

matrices within 1Å of the true real-valued distances along with predicted secondary structures

into PolyFold and evaluate the accuracy of the predicted models. Next, we assess the predictive

performance of PolyFold using noisy distance matrices. We follow the same strategy of intro-

ducing zero-mean Gaussian noise as discussed before to generate noisy distance matrices for

the benchmark set. We feed the noisy distances matrices having standard deviations of σ = 1,

2, and 4Å at 50% and 100% noise levels together with the predicted secondary structures into

PolyFold and evaluate the folding performance. Finally, we investigate the predictive ability of

PolyFold when predicted distance matrices and predicted secondary structures are supplied as

input. For each protein target in the benchmark set, we predict inter-residue distance maps by

feeding the multiple sequence alignments (MSA) [36] of the target proteins into trRosetta [10]

and then supply the predicted distances maps together with the predicted secondary structures

into PolyFold to evaluate the accuracies of the predicted models. trRosetta [10] is a state-of-

the-art deep learning-based protein structure prediction method that predicts inter-residue

distances and orientation (dihedral and planer angles), which are subsequently transformed

into restraints to generate 3D structures using energy minimization. From the standpoint of

folding, both trRosetta and PolyFold rely on gradient-based optimization. However, trRosetta-

based folding utilizes both distance and orientation information, whereas PolyFold uses only

distance information. For a fair performance comparison with PolyFold, we, therefore, employ

trRosetta-based folding using only predicted distance maps but no orientation information.
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We run trRosetta-based distance-only folding locally by setting the parameter (‘—no-orient’)

that uses the same trRosetta-predicted distance maps supplied to PolyFold, albeit without ori-

entation. Additionally, we compare the predictive modeling performance of PolyFold with

two state-of-the-art protein structure prediction pipelines: I-TASSER [37,38] and Robetta [39].

We submit jobs to the I-TASSER server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/)

after excluding homologous templates with 30% sequence identity cutoff with the target

Fig 3. PolyFold distance-based folding for the target 1ctfA with noisy distance matrices. The upper diagonal shows

the noisy inter-residue distance matrix by introducing zero-mean Gaussian noise into the true distance matrix with

various standard deviations (σ) and noise levels. The lower diagonal shows the structural superimposition between the

PolyFold predicted model (in rainbow) and the native structure of the target (in gray). (A) Noise level of 50% and σ of

1Å, (B) Noise level of 100% and σ of 1Å. (C) Noise level of 50% and σ of 2Å, (D) Noise level of 100% and σ of 2Å. (E)

Noise level of 50% and σ of 4Å, (F) Noise level of 100% and σ of 4Å.

https://doi.org/10.1371/journal.pone.0243331.g003
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protein and collect the top predicted model for each target protein. We submit jobs to the

Robetta structure prediction server (https://robetta.bakerlab.org/) by selecting the ‘AB only’

option to use the Rosetta fragment assembly method for ab initio folding [16] and collect the

top predicted model for each target protein. Of note, unlike the head-to-head comparison

between the distance-based folding using PolyFold and trRosetta, a direct comparison between

PolyFold and I-TASSER or Robetta is not fair because I-TASSER and Robetta have clear

advantages in their use of template and/or fragment information as well as other structural fea-

tures such as solvent accessibility. Furthermore, both I-TASSER and Robetta servers employ a

full-fledged structure prediction pipeline by performing time-consuming conformational sam-

pling to generate a large pool of structural decoys followed by optimal decoy selection and all-

atom refinement. By contrast, PolyFold does not have such advantages since it employs com-

putationally inexpensive distance matrix optimization over a single session while operating on

a singular structure without having access to other structural features such as templates or frag-

ments and does not perform all-atom refinement. Nonetheless, the comparison between Poly-

Fold and I-TASSER or Robetta offers some interesting insights.

Table 1 reports the predictive modeling performance of PolyFold using distance matrices

at varied resolutions compared to I-TASSER and Robetta, as well as a head-to-head compari-

son between PolyFold and distance-only trRosetta, both using the same predicted distance

matrices. Using predicted secondary structures and near-native distance matrices, PolyFold

attains a mean TM-score of 0.73, which is higher than both I-TASSER and Robetta having

mean TM-scores of 0.72 and 0.67, respectively. Moreover, PolyFold’s accuracy range (maxi-

mum TM-score of 0.96, minimum TM-score of 0. 49) is better than that of I-TASSER (maxi-

mum TM-score 0.9, minimum TM-score 0.42), and Robetta (maximum TM-score 0.82,

minimum TM-score 0.42. That is, PolyFold-based predictive modeling using near-native dis-

tance matrices delivers better performance than I-TASSER and Robetta. When noisy distance

matrices (σ = 1Å, noise level = 50%) are fed into PolyFold, the mean TM-score becomes 0.67,

the same as the mean TM-score of Robetta. As we increase σ and noise levels of the input dis-

tance matrices, the mean TM-scores steadily decrease. This is expected, and it demonstrates

the robustness of the PolyFold’s optimization engine. When predicted secondary structures

and predicted distance matrices are fed into PolyFold, it attains a mean TM-score of 0.39,

which is better than the distance-only trRosetta having a mean TM-score of 0.35. The better

average performance of PolyFold compared to distance-only trRosetta underscores the

Table 1. Predictive modeling performance on the benchmark dataset using PolyFold with SPIDER3 predicted secondary structures and near-native, noisy, and pre-

dicted maps. I-TASSER and Robetta ab-initio modeling results, obtained by submitting jobs directly to their web servers, as well as distance-only trRosetta results,

obtained by running it locally with parameter settings (‘—no-orient’), are also reported. In all cases, the mean, maximum and minimum TM-scores of the top predicted

models are reported. Values in bold represents the best performance.

Methods Mean Maximum Minimum

PolyFold w/ near-native maps 0.73 0.96 0.49

I-TASSER 0.72 0.9 0.42

Robetta ab-initio 0.67 0.82 0.42

PolyFold w/ noisy maps (σ = 1Å, noise level = 50%) 0.67 0.87 0.49

PolyFold w/ noisy maps (σ = 1Å, noise level = 100%) 0.66 0.87 0.42

PolyFold w/ noisy maps (σ = 2Å, noise level = 50%) 0.56 0.78 0.41

PolyFold w/ noisy maps (σ = 2Å, noise level = 100%) 0.55 0.72 0.32

PolyFold w/ noisy maps (σ = 4Å, noise level = 50%) 0.33 0.44 0.24

PolyFold w/ noisy maps (σ = 4Å, noise level = 100%) 0.26 0.31 0.2

PolyFold w/ predicted maps 0.39 0.49 0.3

trRosetta (distance-only) 0.35 0.63 0.27

https://doi.org/10.1371/journal.pone.0243331.t001
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effectiveness of PolyFold’s gradient-based optimization. Interestingly, predicted distance

matrices lead to better average accuracy of the resulting structural models in PolyFold than the

noisy distance matrices with σ = 4Å with noise level 50% and 100%; whereas the use of noisy

distance matrices with σ = 2Å results in an average TM score > 0.5 for both 50% and 100%

noise levels, thus outperforming modeling with predicted distance matrices. That is, the qual-

ity of the predicted distance matrices possibly lies somewhere in between the qualities of the

noisy distance matrices at σ = 2Å and σ = 4Å. The results indicate that PolyFold’s optimization

engine is sensitive to subtle changes in the quality of the input distance matrix and therefore

may be suitable for studying the impact of noisy and predicted distance matrices in protein

modeling to investigate which parts of the protein are over or under-restrained. These regions

of the distance matrix could then be modified as appropriate in order to improve predictive

modeling performance. Furthermore, PolyFold’s fully customizable optimization engine

enables users to experiment how various optimization parameters such as the step size of gra-

dient descent might affect the resulting structural models in real time. This may help with

modeling flexible regions such as loops that may be under-restrained in a predicted distance

matrix. In summary, PolyFold is robust, versatile, and practically useful for predictive protein

modeling.

Conclusions

PolyFold offers a real-time visual simulator for capturing the optimization processes of dis-

tance-based protein folding in a dynamic and interactive interface. Being robust and resilient

to noise in distance matrices, PolyFold provides a versatile platform for visualizing distance-

based protein folding. In the future, PolyFold may be extended to incorporate more features

into the GUI for improved user experience such as multi-directional rotations of the structure

or to interactively manipulate and possibly de-noise predicted distance matrices. In conclu-

sion, PolyFold’s fully configurable, robust structural optimization and manipulation engine

coupled with its easy-to-use intuitive graphical interface make it accessible to both researchers

and non-experts, enabling scientists to gain new insights into protein folding and facilitating

broader participation.

Supporting information

S1 Text. A detailed PolyFold user manual.

(PDF)

S1 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by introducing zero-mean Gaussian noise into the true distance matrix, having a

standard deviation of 1Å and noise level of 50%.

(MOV)

S2 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by introducing zero-mean Gaussian noise into the true distance matrix, having a

standard deviation of 1Å and noise level of 100%.

(MOV)

S3 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by introducing zero-mean Gaussian noise into the true distance matrix, having a

standard deviation of 2Å and noise level of 50%.

(MOV)
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S4 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by injecting zero-mean Gaussian noise into the true distance matrix, having a stan-

dard deviation of 2Å and noise level of 100%.

(MOV)

S5 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by introducing zero-mean Gaussian noise into the true distance matrix, having a

standard deviation of 4Å and noise level of 50%.

(MOV)

S6 Movie. PolyFold protein folding simulation for the target 1ctfA using a noisy distance

matrix by introducing zero-mean Gaussian noise into the true distance matrix, having a

standard deviation of 4Å and noise level of 100%.

(MOV)
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