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ABSTRACT

The DeepRefiner webserver, freely available at http:
//watson.cse.eng.auburn.edu/DeepRefiner/, is an in-
teractive and fully configurable online system for
high-accuracy protein structure refinement. Fuelled
by deep learning, DeepRefiner offers the ability to
leverage cutting-edge deep neural network architec-
tures which can be calibrated for on-demand se-
lection of adventurous or conservative refinement
modes targeted at degree or consistency of refine-
ment. The method has been extensively tested in
the Critical Assessment of Techniques for Protein
Structure Prediction (CASP) experiments under the
group name ‘Bhattacharya-Server’ and was officially
ranked as the No. 2 refinement server in CASP13
(second only to ‘Seok-server’ and outperforming
all other refinement servers) and No. 2 refinement
server in CASP14 (second only to ‘FEIG-S’ and out-
performing all other refinement servers including
‘Seok-server’). The DeepRefiner web interface offers
a number of convenient features, including (i) fully
customizable refinement job submission and valida-
tion; (ii) automated job status update, tracking, and
notifications; (ii) interactive and interpretable web-
based results retrieval with quantitative and visual
analysis and (iv) extensive help information on job
submission and results interpretation via web-based
tutorial and help tooltips.

GRAPHICAL ABSTRACT

INTRODUCTION

Deep learning has transformed protein structure predic-
tion. Recent editions of the Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP) experi-
ments have witnessed a major breakthrough in accurately
predicting the structure of a protein from sequence infor-
mation through the application of advanced deep neural
network architectures (1–3). However, a predicted struc-
ture can still deviate from the experimental structure in
terms of the accuracy of the backbone positioning or the
side-chain conformation or both (4). The goal of protein
structure refinement is to increase the accuracy of such
a moderately accurate starting structure by driving it to-
wards the experimental quality. Some of the most suc-
cessful approaches for structure refinement rely on large-
scale conformational search for low energy structures (5–
7), which are time-consuming and computationally expen-
sive. To make structure refinement both accurate and fast,
we proposed refineD (8), which employed deep neural net-
works to estimate residue-level errors from a starting struc-
ture and then minimized the cumulative error through in-
expensive energy-minimization-based restrained relaxation
for improved structure refinement. Due to the advantages
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associated with computationally efficient energy minimiza-
tion guided by deep learning over time-consuming confor-
mational search, several recent studies have sought to guide
refinement using deep learning (9,10); even though the full-
fledged versions of these methods are not yet publicly avail-
able. As such, a robust and publicly accessible webserver
that can perform high-accuracy structure refinement in a
computationally efficient manner guided by deep learning
has the potential for broad dissemination and a field-wide
impact. With rapid new developments in the field, however,
the residue-level error estimators used in our original re-
fineD method no longer represents the state of the art. In
particular, the recent CASP experiments (4) have witnessed
significant new progress in inter-residue distance prediction
through cutting-edge deep neural network training in con-
junction with metagenomic sequencing. Thus, integrating
distance information for improved residue-level error esti-
mation combined with the power of state-of-the-art deep
learning models is critically important to further improve
protein structure refinement. Moreover, the ability to lever-
age deep network architectures that can be calibrated for
on-demand selection of adventurous or conservative refine-
mentmodes targeted at degree or consistency of refinement,
can enhance the versatility of such amethod to a wide range
of use cases.
Here, we present DeepRefiner, an interactive and fully

configurable webserver for high-accuracy protein structure
refinement by deep network calibration. DeepRefiner first
estimates residue-level errors from a starting structure us-
ing an ensemble of advanced deep neural network archi-
tectures and subsequently minimizes the cumulative error
through energy-minimization-based restrained relaxation,
leading to five refined structures. The advanced error esti-
mation module in DeepRefiner employs a high-resolution
version of our successful application of very deep and fully
convolutional residual neural networks (11) for distance-
based protein model quality estimation (12) at finer-grained
error thresholds trained specifically for structure refine-
ment. DeepRefiner offers an interactive user interface that
takes a starting structure in PDB format as input and out-
puts five refined structures along with their global and lo-
cal quality estimations, comparison to the starting struc-
ture, and breakdown of residue-wise structural features.
The customizable DeepRefiner interface provides (i) choice
of cutting-edge deep neural network architectures for esti-
mating residue-level errors including deep conditional neu-
ral fields and deep residual neural networks; (ii) on-demand
selection of adventurous or conservative refinement mode
by calibrating the ensemble of deep networks; (iii) com-
prehensive post-refinement analysis using MolProbity (13),
GOAP (14), OPUS-PSP (15), DFIRE (16) and RWplus
(17); (iv) fully automated job status update, tracking and
notifications; (v) interactive and interpretable web-based re-
sults and (vi) extensive help information on job submission
and results interpretation via web-based tutorial and help
tooltips. Our method was rigorously tested in the most re-
cent CASP refinement experiments (18) under the group
name ‘Bhattacharya-Server’ andwas officially ranked as the
No. 2 refinement server in CASP13 (second only to ‘Seok-
server’ and outperforming all other refinement servers) and
No. 2 refinement server in CASP14 (second only to ‘FEIG-

S’ and outperforming all other refinement servers including
‘Seok-server’). DeepRefiner webserver is freely available at
http://watson.cse.eng.auburn.edu/DeepRefiner/.

MATERIALS AND METHOD

Overview of the DeepRefiner pipeline

Figure 1 shows the flowchart of the DeepRefiner pipeline
consisting of the webserver front- and back-end modules.
The front-end module offers an interactive web-based in-
terface that lets the user submit customizable refinement
jobs, readily processes and validates user inputs, dynami-
cally shows the job status and progress, presents statistics
of the processed job, and provides interactive quantitative
and visual analysis of the results; while the back-end mod-
ule executes the refinement jobs.Users can choose to protect
the privacy of their jobs by submitting a private refinement
job where the refinement results will only be accessible to
the submitter.

Front-end module. The front-end module of the webserver
provides a web-based job submission interface where the
user needs to provide only a starting structure in PDB for-
mat and a job name as mandatory inputs. The interface of-
fers a wide range of options for customizing a refinement
job including the ability to select deep network architec-
tures, calibrate the refinement modes for on-demand se-
lection of adventurous or conservative refinement targeted
at degree or consistency of refinement, perform compre-
hensive post-refinement analysis, and protect job privacy.
Two deep neural network architectures for residue-level er-
ror estimation are available, both independently supporting
on-demand selection of adventurous or conservative refine-
mentmodes by calibrating themodel ensemble. The submit-
ted refinement job is then dynamically validated for consis-
tency and passed on to the back-end via CommonGateway
Interface (CGI).

Back-end module. The back-end of the webserver con-
sists of three sequentially interdependent layers including
the webserver layer, queuing layer, and computing layer.
The webserver layer directly interacts with the front-end
and maintains job statistics and status using a MySQL
database. The queuing layer performs job scheduling by im-
plementing a first-in-first-out (FIFO) job queue. Addition-
ally, it continuously interacts with the webserver layer to
dynamically update job status and subsequently commu-
nicates with the front-end through CGI. Once the queu-
ing layer releases a job for execution, the job starts running
in the computing layer. The computing layer executes the
job based on the supplied job parameters by first employ-
ing the selected deep neural network architecture for esti-
mating the residue-level errors from the starting structure
and then performing either adventurous or conservative re-
finement through energy-minimization-based restrained re-
laxation by calibrating the chosen model ensemble to gen-
erate five refined structures. After completion of the re-
finement job, the webserver performs comprehensive post-
refinement analysis on the refined structures by estimating
their global and local qualities; evaluating and reporting the
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Figure 1. The flowchart of the DeepRefiner pipeline consisting of the webserver front-end module for submitting customizable refinement jobs and retriev-
ing the results through the interactive web interface, and the back-end module that processes the refinement jobs.

scores of several knowledge-based statistical potentials in-
cluding GOAP, OPUS-PSP, DFIRE, and RWPlus (14–17);
performingMolProbity (13) analysis for assessing the phys-
ical realism; and comparing to the staring structure in terms
of backbone and side-chain positioning as well as the con-
sistencies between structural properties such as secondary
structure and solvent accessibility. The results are returned
to the front-end module for interactive and interpretable
web-based quantitative and visual analytics (see Supple-
mentary Figure S1) with an email notification sent to the
user, if an email address is provided.

Deep network calibration

Architectures of the deep learning models. DeepRefiner of-
fers the choice of two deep neural network architectures for
estimating residue-level errors including deep conditional
neural fields (DeepCNF) (19,20) and deep residual neural
networks (ResNet) (11). DeepCNF architecture was em-
ployed in our original refineD method (8) to classify ev-
ery residue of the starting structure to be within four fine-
grained error thresholds of 0.5, 1, 2 and 4 Å by indepen-
dently training an ensemble of four DeepCNF classifiers.
Collectively, the set of four classifiers results in residue-
level ensemble error classifications. The featurization for
representing the residues in the starting structure includes
sequence profile, consistency between predicted and ob-
served structural properties (secondary structure and sol-
vent accessibility), and biophysical energy terms. Our newly
trained ResNet ensemble classifiers incorporate distance in-
formation as additional features to perform residue-level
ensemble error classifications at the same fine-grained error
thresholds of 0.5, 1, 2 and 4Å (see the detailed description
in Text S1 in the Supporting Information, SI). The ResNet
classifiers represent a high-resolution version of our suc-

cessful application of distance-based protein model quality
estimation (12), while specifically targeting finer-grained er-
ror thresholds for structure refinement (see Text S2).

Calibrating the model ensemble. The residue level ensem-
ble error estimates are then converted into multi-resolution
probabilistic restraints weighted by their associated likeli-
hood values and applied on the C� atom of the starting
structure in the form ofRosetta Coordinate Constraint with
FLAT HARMONIC function at 0.5, 1, 2 and 4Å thresh-
olds in conjunction with the REF15 scoring function of
Rosetta (21). Subsequently, energy-minimization-based re-
strained relaxation is iteratively employed for structure re-
finement (see Text S3). All restraints corresponding to the
four thresholds can be simultaneously applied in a cumu-
lative manner for conservative refinement mode aimed at
achieving consistently positive refinement. Alternatively, re-
straints can be applied in a non-cumulative manner inde-
pendent of each other for adventurous refinement mode
aimed at producing higher degree of structural changes. The
global and local qualities of the resulting refined models
can be estimated via probabilistic combination of the en-
semble classifiers (see Text S4). In summary, calibration of
the model ensemble controls the characteristics of the re-
strained relaxation, thus affecting the degree of conforma-
tional change that can be used for achieving on-demand
conservative or adventurous structure refinement.

RESULTS

Blind performance assessment in CASP

The refinement protocol employed in DeepRefiner has been
extensively tested in the refinement category of CASP13
and CASP14 in a strictly blind manner under the group
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Table 1. Performance comparisons of server groups participating in the
refinement category of CASP13 and CASP14. Groups are sorted by de-
scending sum of overall Z-scores

Group name Group #

Sum
overall
Z-score

Rank sum
overall
Z-score

CASP13 Seok-server 156 21.686 1
Bhattacharya-Server 102 13.125 2
YASARA 004 12.976 3
MUFold server 312 10.895 4
3DCNN 359 0.701 5

CASP14 FEIG-S 013 35.344 1
Bhattacharya-Server 149 21.822 2
Seok-server 070 18.404 3
MULTICOM-CLUSTER 075 12.312 4
MUFOLD 081 4.178 5

name ‘Bhattacharya-Server’ and was ranked highly among
all refinement servers. Table 1 shows the performance com-
parison of ‘Bhattacharya-Server’ with other participating
server groups based on top-ranked submission under the
refinement category of CASP13 and CASP14 in terms of
the sum of overall Z-scores calculated as the weighted sum
of Z-scores for GDT-HA (22), GDC-sc (23), RMSD (24),
SphereGrinder (25) and MolProbity (13), following the
same methodology adopted in prior CASP refinement as-
sessment (26) (see Text S5). ‘Bhattacharya-Server’ was of-
ficially ranked No. 2 among all other refinement server
groups in both CASP13 (second only to ‘Seok-server’ and
outperforming all other refinement servers) and CASP14
(second only to ‘FEIG-S’ and outperforming all other re-
finement servers including ‘Seok-server’).We report the per-
target Z-score in the supplementary information (see Sup-
plementary Tables S1 and S2 for per-target Z-scores bro-
ken down by each accuracy metric involved in the calcula-
tion of the overall Z-score). We further analyze the degree
of structural refinement attained by ‘Bhattacharya-Server’
for CASP13 and CASP14 refinement targets in terms of
various accuracy measures including GDT-HA, GDC-sc,
and MolProbity scores with respect to length and accu-
racy of the starting structures (in terms of GDT-HA) con-
sidering the best submission. The results demonstrate that
most promising refinement cases are generally observed for
smaller targets having length less than 100 residues and
those in the medium range of starting accuracies having
starting GDT-HA scores between 40 and 60 units (see Sup-
plementary Figures S2 and S3). The DeepCNF-based error
estimation module used in ‘Bhattacharya-Server’ for both
CASP13 and CASP14 shall further improve due to the in-
corporation of advancedResNet-based ensemble error clas-
sifiers, ultimately improving the refinement performance of
DeepRefiner.

Case study

In Figure 2, we present the refinement results for four rep-
resentative CASP targets including two targets R0957s2
and R1009 from CASP13; and two targets R1085-D1 and
R1065s2 from CASP14. DeepRefiner alternates between
adventurous or conservative refinement modes by deep net-
work calibration using either ResNet- or DeepCNF-based

error estimation. We also submit these four targets to sev-
eral popular refinement webservers including GalaxyRefine
(27), GalaxyRefine2 (28), 3Drefine (29), and ModRefiner
(30) for performance comparison. In all cases, DeepRe-
finer outperforms the other servers by consistently produc-
ing positive and better refinement. DeepRefiner’s adventur-
ous refinementmodes lead to noticeable structural improve-
ments with much higher degree of refinement compared to
the other methods, whereas the conservative modes yield
modest but positive refinementwith higher consistency even
when all other methods produce negative refinement.

WEB SERVER

Hardware and software

The server runs on a Linux cluster of 2.20-GHz Intel Xeon
E5-2698 v4 20-core processors. Theweb application uses the
PHP scripting language, JavaScript programming language
and MySQL database. WebGL-based molecular visualiza-
tion package 3Dmol.js (31) is used to visualize the protein
structures. The DeepRefiner pipeline is implemented using
Python. The webserver is compatible with most modern
web browsers including Mozilla Firefox, Google Chrome,
Safari, and Microsoft Edge.

Input and output

The mandatory inputs are a job name and a starting struc-
ture for refinement in PDB format. The customizable Deep-
Refiner interface provides users the ability to fully config-
ure various optional job parameters including deep learn-
ing model, refinement mode, post-refinement analysis, and
job privacy. An optional email address can also be pro-
vided for automated status update of the refinement job
via email. The number of residues in the starting structure
is limited to 500 for computational efficiency. The average
run time is several hours after the job enters the running
state. Five refined structures ranked based on the estimated
global qualities, MolProbity scores, and various statistical
potentials are visualized in the interactive web interface and
are downloadable in the PDB format. Information on struc-
tural comparison between the starting structure and the re-
fined structures is provided in terms of GDC-sc, GDT-HA,
GDT-TS andC�-RMSD. Structural agreement between the
starting structure and the refined structures in terms of sec-
ondary structure and solvent accessibility is shown in a vi-
sually interpretable manner. Estimated local quality con-
taining the residue-level error estimates are visualized in a
graphical format for the identification of potentially unre-
liable local regions. The full set of results, including the re-
fined structure and text files containing the refinement anal-
ysis, can be downloaded as a compressed zipped archive.

CONCLUSION

DeepRefiner presents a publicly available webserver for ac-
curate and efficient protein structure refinement. DeepRe-
finer leverages cutting-edge deep neural network architec-
tures that can be calibrated for on-demand selection of ad-
venturous or conservative refinement modes targeted at de-
gree or consistency of refinement. The method was suc-
cessful in blind refinement experiments in CASP13 and
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Figure 2. Representative refinement examples from four CASP refinement targets. DeepRefiner yields better refinement than other methods by deep net-
work calibration using either ResNet- (A) R0975s2 and (B) R1009; or DeepCNF-based error estimation (C) R1085-D1 and (D) R1065s2.
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CASP14. DeepRefiner offers an interactive and versatile
web interface for the submission, monitoring, results re-
trieval, and analysis of refinement jobs in order to drive a
moderately accurate starting structure towards the experi-
mental quality.Wemay further improve the accuracy of our
method in particular and structure refinement in general by
exploring newer deep learning models to guide refinement
that can be autonomously calibrated based on the quality
of the starting structure and by directly outputting Carte-
sian coordinates of the refined models without the need
for energy-minimization-based restrained relaxation. More
generally, integrated sampling and scoring from a unified
deep architecture shall further improve protein structure re-
finement.

DATA AVAILABILITY

DeepRefiner webserver is freely available at http://watson.
cse.eng.auburn.edu/DeepRefiner/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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