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Reservoir control policies provide a flexible option to adapt to the uncertain hydrologic impacts of climate
change. This challenge requires robust policies capable of navigating scenarios that are wetter, drier, or more
variable than anticipated. While a number of prior studies have trained robust policies using large scenario
ensembles, there remains a need to understand how the properties of training scenarios impact policy robustness.
Specifically, this study investigates scenario properties including annual runoff, snowpack, and baseline

regret—the difference between baseline policy and perfect foresight performance in an individual scenario.
Results indicate that policies trained to scenario subsets with high baseline regret outperform those generated
with other training sets in both wetter and drier futures, largely by adopting an intra-annual hedging strategy.
The approach highlights the potential to improve the efficiency and robustness of policy training by considering
both the hydrologic properties and baseline regret of the training ensemble.

1. Introduction

Adaptation to the multi-scale impacts of climate change in water
resources systems is challenged by substantial uncertainty in future
hydrologic projections, particularly in flood and drought risks (Wilby
and Dessai, 2010; Asadieh and Krakauer, 2017; Dottori et al., 2018).
This hinders the ability to use traditional prediction-based planning
methods and has resulted in the recent consensus toward robust plan-
ning (Dessai and Hulme, 2004; Wilby and Dessai, 2010). Robust and
adaptive planning have been widely considered for both expansion of
water resources infrastructure (e.g. Haasnoot et al., 2013; Beh et al.,
2015; Zeff et al., 2016; Kwakkel et al., 2016; Maier et al., 2016; Trindade
etal., 2017) as well as changes to reservoir control policies (e.g. Giuliani
et al., 2014; Quinn et al., 2018; Herman and Giuliani, 2018). Of the two
alternatives, control policies provide a more flexible “soft path”
approach, as they can be reversed if the future unfolds differently than
predicted (Gleick, 2002; Fletcher et al., 2017). In this case, the physical
constraints of the existing system establish the range of uncertain sce-
narios that can be adapted to before new infrastructure is needed (e.g.
Culley et al., 2016).

Robust planning of reservoir control policies generally consists of
two phases that have been studied using a variety of different

* Corresponding author.
E-mail address: joncohen@ucdavis.edu (J.S. Cohen).

https://doi.org/10.1016/j.envsoft.2021.105047
Accepted 25 March 2021

Available online 2 April 2021

1364-8152/© 2021 Elsevier Ltd. All rights reserved.

approaches: policy design and robustness analysis. A number of studies
have focused on the robustness of current system operations to a range
of future climate changes represented either by downscaled Global
Circulation Model (GCM) scenarios (e.g., Brekke et al., 2009; Karamouz
et al., 2013; Knowles et al., 2018) or synthetically generated scenarios
based on perturbed statistics of hydrologic timeseries (e.g., Prudhomme
etal., 2010; Brown et al., 2012; Weaver et al., 2013; Turner et al., 2014).
Both approaches often serve as precursors to adaptation studies in which
a discrete set of proposed management alternatives are tested to miti-
gate vulnerabilities in future scenarios (e.g., Groves et al., 2013;
Steinschneider et al., 2015a; Mateus and Tullos, 2017). In this case, the
policies are not trained or optimized to a particular set of scenarios, but
instead arise from stakeholder expertise and negotiations.

An alternative approach is to generate candidate alternatives via
optimization approaches (Kasprzyk et al., 2013). In this case, policy
design and robustness analysis are analogous to the train-test termi-
nology often used in machine learning (e.g., Russell and Norvig, 2002),
and recently in the water resources field (e.g., Brodeur et al., 2020).
Policy design (training) involves optimizing learned policy parameters
to a specific set of input data (the training set). In robustness analysis
(testing), a test set consisting of input data separate from the training set
are used to assess the performance of an optimized policy. In the context
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of reservoir control under climate change, the most relevant optimiza-
tion approach is policy search, in which parameterized operating rules
are optimized for system performance objectives under a set of training
scenarios (Koutsoyiannis and Economou, 2003; Giuliani et al., 2015a,
2017).  This  heuristic — approach functions as both a
simulation-optimization problem (Salazar et al., 2016) and an infor-
mation selection problem for the policy inputs (Giuliani et al., 2015b;
Nayak et al., 2018). While the training performance of a policy on an
individual scenario represents a best-case outcome with perfect fore-
sight, the key challenge is whether the policy can generalize to a
different test set, which is also the case for any optimization method
applied in the context of climate adaptation. Test sets often include
additional stochastic realizations of the same uncertainties used in
training, i.e., to obtain a thorough representation of sampling uncer-
tainty (e.g., Quinn et al., 2017; Trindade et al., 2017). They may also
include scenarios representing a different characterization of uncer-
tainty altogether (Watson and Kasprzyk, 2017; Eker and Kwakkel,
2018).

The robustness of alternatives generated by policy search therefore
strongly depends on the choice of scenarios used for training and testing,
both in terms of coarse-scale statistics (wet vs. dry) and the realizations
of natural variability that lead to extreme events (Herman et al., 2020).
This includes the case where the training data represent a baseline or
historical scenario (e.g., Kasprzyk et al., 2013; Giuliani and Castelletti,
2016; Quinn et al., 2018). These studies evaluate resulting alternatives
over test scenarios spanning a wide range of potential future hydrology,
but without analyzing the influence of the training scenarios on
robustness. Robust optimization studies overcome this by optimizing
robustness metrics over many samples of uncertain scenarios (e.g.,
Hamarat et al., 2014; Kwakkel et al., 2015). While they optimize over a
large range of training scenarios, studies using robust optimization
generally have not considered how well solutions can generalize
out-of-sample. Robustness measures will typically include either regret,
which quantifies the cost of choosing an incorrect solution, or satisfic-
ing, which calculates the fraction of scenarios in which a policy meets a
set of performance criteria (Lempert and Collins, 2007; Herman et al.,
2015). While both of these methods are effective in evaluating the
performance of individual solutions, there is also the consideration of
the robustness of the Pareto set as a whole to quantify deviations in
multi-objective performance.

While the properties of the test scenarios have been the focus of
many prior studies using scenario discovery and related methods, the
properties of the training scenarios and their influence on policy
robustness have received relatively less attention. However, several
recent studies have begun to analyze the effect of the choice of training
scenarios in optimization problems. For example, Watson and Kasprzyk
(2017) extend many-objective robust decision making by optimizing to
several different sets of scenarios with varying properties. They then
re-evaluate solutions in out-of-sample scenarios, quantifying robustness
for individual solutions using the satisficing metric. Eker and Kwakkel
(2018) optimize to scenarios with maximum diversity and policy rele-
vance and re-evaluate solutions under the same uncertainty character-
ization used in training. Giudici et al. (2020) propose an algorithm to
select the smallest subset of training scenarios which can be used to
generate robust solutions when re-evaluated against the full set to
minimize computational cost. These studies all effectively aim to find
training scenarios (scenario selection) that lead to robust out of sample
performance. However, studies to date have not attributed
multi-objective policy robustness to the hydrologic properties of the
training scenarios, which holds significant implications for the design of
robust policies under climate uncertainty.

This study proposes an experimental design to determine how the
properties of forcing scenarios influence the robustness of multi-
objective policy alternatives across several combinations of test sce-
narios. This framework is generalizable to any environmental planning
problem that includes a no action case, an optimization component, and

Environmental Modelling and Software 141 (2021) 105047

an ensemble of forcing scenarios exhibiting uncertainty. For the initial
application, we focus specifically on how the hydrologic properties of
climate scenarios influence reservoir policy alternatives. One additional
scenario property is the baseline regret, which quantifies the extent to
which policy search can improve upon the status quo based on a perfect
foresight optimization for an individual scenario. Scenarios are clustered
into groups with similar hydrology via unsupervised learning, and split
into different combinations of training and test sets. The robustness of
the resulting policies is quantified relative to the perfect foresight and
baseline solutions to ensure that, at a minimum, all solutions outperform
the baseline no-action policy. This is done with a normalized hyper-
volume metric to represent the robustness of the Pareto-set as a whole,
which simultaneously quantifies the changes in the performance of the
solutions as well as their diversity when re-evaluated on a given test set.
Finally, we perform hypothesis tests on several iterations of the train-test
split to identify the properties of training scenarios that lead to the most
robust results for each test set, with a particular focus on training pol-
icies to scenarios which have high baseline regret. We demonstrate this
approach using a simulation model of the northern California reservoir
system coupled with an ensemble of transient downscaled climate
scenarios.

2. Case study
2.1. Northern California reservoir system

To support urban and agricultural growth amid intense intra- and
inter-annual variability in hydrology, California has built a complex
system of water resources infrastructure. Reservoirs in the foothills of
the Sierra Nevada range capture winter and spring flood season flows to
be delivered for agriculture and municipal supply, particularly during
summer months. The State Water Project (SWP) and federal Central
Valley Project (CVP) consist of a number of reservoirs and aqueducts
throughout the Sacramento-San Joaquin river basin. The terminal delta
of this system is the site of pumped water exports from north to south,
which support agriculture and municipal supply in the southern portion
of the state. Critical environmental requirements related to the salinity
of outflows from the Delta are a major constraint on these exports. Delta
exports are a key metric for water supply reliability in the state and have
been found vulnerable to climate change, due to both changes in pre-
cipitation levels and seasonal runoff timing (Anderson et al., 2008; Ray
et al., 2020).

In the Sacramento River Basin, three of the largest Sierra foothill
reservoirs by volume (Shasta, Oroville, and Folsom) combine to a total
of 9 million acre-feet (11.1 km®) of storage in parallel. These reservoirs
play a major role in balancing the state’s human and environmental
water needs. Carryover storage in these reservoirs, measured at the end
of the water year (September 30), is a strong indicator of overall system
performance and potential economic vulnerabilities (Draper and Lund,
2004). Uncertainty in changing inter-annual precipitation patterns and
reduced snowpack levels has the potential to be detrimental to carryover
storage levels and their economic benefits (Medellin-Azuara et al.,
2008). Under a variety of projected changes to the hydrologic regime,
operational adaptations are needed to maintain carryover storage levels
to support multiple environmental and water supply related objectives
while continuing to provide adequate flood control functions (Cohen
et al., 2020).

2.2. Simulation model (ORCA)

We use the open source model Operation of Reservoirs in California
(ORCA) to simulate the northern California reservoir system (https
://github.com/jscohen4/orca/tree/cohen-2021-properties-training-sc
enarios). ORCA is a simulation model that runs on a daily timestep and
accurately reproduces historical operations (Cohen et al., 2020). The
operating rules that drive ORCA are used as the baseline policy in the
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current study. The model simulates the major components of the Cali-
fornia system north of the Delta, including the Shasta, Oroville, and
Folsom Reservoirs, and Delta water supply exports via the Harvey O.
Banks (SWP) and Tracy (CVP) pumping plants (Fig. 1a and b). While not
as spatially comprehensive as several other statewide models, ORCA is a
pure simulation model, which allows for flexible adjustments to oper-
ating rules and straightforward evaluation of alternative hydrologic
scenarios, as required by the proposed set of policy search experiments.

ORCA is driven by a basic mass balance update for each reservoir.
Based on timestep t, storage S} in reservoir r is updated based on inflows

!, evaporative losses L], and a release u}:

S =8_,+0 —u —L] (@))

A target release RT] is determined by the greatest of three minimum
operating requirements that must be satisfied for each reservoir:

r_ r r r r
RTt =max (ur.envimnmem7 ut‘ﬂood7 undemand) X € (2)

The first is a minimum environmental flow requirement uf . ;. o.mcoe
that varies based on the time of year and water year type. The second is a
flood control release target u ;.4 The flood control release depends on a
dynamic flood control rule curve, which is determined by a flood control
index based on the previous day’s precipitation, and current reservoir
storage. Finally, the minimum demand release uf ;.4 consists of water
supply demands north of the Delta, south of Delta demands to be
delivered by Banks and Tracy pumping plants, and a Delta outflow de-
mand for environmental benefits and salinity control. These water de-
mands are also partially controlled by current and projected reservoir
storage, creating a feedback between reservoir operations and down-
stream Delta management.

A snowpack-to-streamflow forecast enables projections of reservoir
inflows throughout the irrigation season. This forecast also determines
the water year type classification, which influences both environmental
flow requirements and water supply demands along with other opera-
tional parameters. The snowpack-to-streamflow forecast is altered by an
exceedance level Zyy; for the water year type prediction and Zwt for
individual reservoir inflows. The exceedance represents the confidence
in the forecast. A lower exceedance level indicates a more conservative
forecast, resulting in lower inflow forecasts and drier water year type
classifications, and likely hedged reservoir releases. The forecast is
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updated each day in the simulation via Equation (3):

dwy

Of; =P, SWE; + @y, +Z,,,0,,, ®

Where Qf; is the forecasted inflow for the remainder of the water year at

reservoir r, SWE; is the snow water equivalent at day t, ﬁﬁwt

regression coefficients for day of water year dw, based on historical

k
and o i, ATe

streamflow records, and o’jwt is the standard deviation of remaining
streamflow on dw,, also based on the historical record.

A curtailment multiplier ¢[ can hedge releases in cases where the
system is not projected to meet a carryover storage target Cy,,, at the end
of the water year. The forecasted flow and current reservoir storage are
used to determine what curtailment multiplier would be necessary to
meet the carryover target (Equation (4)). The curtailment multiplier is
also constrained by a maximum curtailment allowance c{,, ... A higher
maximum curtailment will allow for lower releases to occur in the
irrigation season to maintain the cold-pool carryover storage. The daily
curtailment multiplier during between May and September (5 < M < 9)
is determined at each timestep via Equation (4):

) _ Of + 5., ~ IRT,)
CI.SSMSQ = min 17 max ) Cmax.wyf (4)

Cvrvyt
The release for each reservoir is then equal to the target release RT*
times the curtailment factor ck:

W = RT! x ¢! )

Further details concerning operations modeled in ORCA are
described in Cohen et al. (2020).

2.3. Data sources

Several hydroclimatic time series are used as inputs for the simula-
tion model. These include daily streamflows, spatially gridded and site-
specific precipitation, and air temperature, along with spatially aver-
aged and site specific monthly spatial snow water equivalent (SWE). For
simulating historical operations, these data are obtained from the Cali-
fornia Data Exchange Center (CDEC, 2018). Downscaled CMIP5 Climate
and Hydrology Projections are obtained from the United States Bureau
of Reclamation (USBR) (Reclamation, 2013; Brekke et al., 2014). These
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Fig. 1. (a) Map of northern California reservoir system modeled in ORCA. (b) Model schematic showing primary storage and pumping infrastructure.
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consist of 31 GCMs simulated for various emissions scenarios to generate
97 scenarios of precipitation and temperature on a daily timestep
through 2100 (see Section 1 in the Supplementary Material for a list of
institutions providing GCM projections). In the USBR study, outputs
from these GCM simulations were routed through the Variable Infiltra-
tion Capacity (VIC) model (Liang et al., 1994) calibrated for each basin,
yielding additional streamflow and SWE projections to serve as model
inputs. The choice to use a GCM ensemble in this study reflects several
considerations. First, it provides the best available representation of
physically-based transient changes to hydrology, including extreme
events, despite the known limitations of GCM projections (Herman et al.,
2020). Second, it provides an accurate link between hydrologic vari-
ables across space and time, linking precipitation, streamflow, temper-
ature, and snowpack in multiple basins. This is difficult to achieve with
synthetic generators, though these are rapidly improving for this pur-
pose (e.g., Steinschneider et al., 2019).

This ensemble exhibits the high degree of uncertainty associated
with future precipitation and, to a lesser extent, temperature. In Fig. 2a,
the trajectories of annual streamflow show an end-of-century average
annual flow ranging from —/+ 50% of historical values. This creates a
challenge for how to best adapt operations to balance the tradeoff be-
tween flood control and water supply (Herman and Giuliani, 2018;
Nayak et al., 2018). All scenarios in the ensemble show a decline in
snowpack, ranging from 20 to 90% of the historical average. This is one
of the best predicted aspects of climate change, although uncertainties
exist in the extent and severity of this thermodynamic-hydrologic
change (Cayan et al., 2001; Klos et al., 2014). This can be particularly
impactful in mountainous regions where snowpack has historically
functioned as a natural reservoir (Rhoades et al., 2018). As a result, the
primary impact of rising temperatures in the region is earlier spring
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snowmelt timing (Knowles et al., 2006; Kapnick and Hall, 2010). These
intra-annual streamflow shifts are predicted throughout the CMIP5
ensemble based on the water year centroid, a representation of the
center of mass of the annual hydrograph (Fig. 2¢). The ensemble also
shows uncertainty in the extent of flood risk changes (Fig. 2d) based on
both uncertain dynamic climate changes as well as the potential in-
creases given a shift from snow to rain and more rain-on-snow events
(McCabe et al., 2007; Surfleet and Tullos, 2013; Huang et al., 2018).
Lastly, the ensemble shows severity in uncertainty related to changes in
drought patterns (Fig. 1e). Neither changes in drought nor flood statis-
tics show a reliable relationship to the overall changes in total annual
streamflow. Overall, the downscaled projection ensemble exhibits the
significant uncertainty typical of climate adaptation studies, requiring
careful attention to the choice of scenarios under which reservoir control
policies are trained and tested.

3. Methods

The proposed experiments aim to analyze reservoir policy perfor-
mance on held-out climate projections by selecting different subsets of
training scenarios based on their hydrologic properties and a baseline
regret property. The experiments require several components (Fig. 3):
(1) policy search, which is used at several steps throughout the experi-
ment; (2) multi-objective baseline regret, which uses perfect foresight
optimization to determine the upper bound of system performance in
each scenario; (3) unsupervised clustering of the scenario ensemble,
taking into account baseline regret as well as hydrologic properties to
determine train-test splits; and (4) the robustness of policies trained to
one set of scenarios when evaluated on another set. Finally, we analyze
the decision variables and dynamics of several robust policies identified
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Fig. 2. 50-year moving averages of CMIP5 projections showing a wide range of uncertainty in future flood and drought risk. (a) Streamflow in the Sacramento River
downstream of its three largest tributaries (the Feather, Yuba, and American Rivers), denoting the 4-river index. (b) snowpack in the northern Sierra Nevada. (c)
water year centroid, defined as the day of the water year at which half of the total annual streamflow has been observed. (d) Log-Pearson Type III distribution (LP3)
100-year flood estimate for the Sacramento River flow below the American River. (e) The driest 5-year period in the 4-river index. The scenarios shown in yellow
(RCP 8.5) and orange (RCP 6.0) are examined later in the analysis (Section 4.3). See Section 1 in Supplementary Material for institutions providing climate models

and model abbreviations.
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using different training sets in the policy search.

3.1. Policy search

We employ multi-objective policy search throughout this study to
identify operational adaptations by parameterizing the structure of
existing rules. In this study, policy search aims to solve the optimization
problem:

0" =argmax, <% X:J(é’7 s))
g

(6)

Where s € S are the training scenarios over which the particular opti-
mization occurs, and n is the number of scenarios in set S. 0 is the vector
of decision variables representing the parameters of the operating pol-
icy, and J is the vector of objective functions. 8" is the set of policies
which correspond to the Pareto-optimal solutions. Thus, the policy
search attempts to maximize the expected value of objectives J in sce-
narios s across set S. In the specific case of a perfect foresight optimi-
zation, S includes only one training scenario.

The alternatives represented by the decision variables include: a
revised snowpack-to-streamflow forecasting method, updated release
curtailment rules, and changes in the timing of a dynamic flood control
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curve. Specifically:

ZWYI

0 ZW Yr, wyt o)
Cmnx.wyl er Wyt
FS" Vr

Where Zyy; is the forecast exceedance level to determine water year
indices and ery[ is the rest-of-year inflow forecast exceedance level for

each reservoir r in each water year type wyt. cfnax‘wy

curtailment ratio, and FS" represents a shift of the reservoir flood-control
refill period earlier in the water year. Given the n, = 3 reservoirs and
nwy: = 5 water year types, this leads to a total of 1 + n.(1 +2nyy,;) = 34
decision variables for each optimization. In prior work these individual
actions have been shown to improve system performance by enumera-
tion as snowpack decline continues later in the century (Cohen et al.,
2020), but their effect in tandem has not yet been analyzed as a policy
search problem. The decision variables are optimized using a normal-
ized set, with 60 discrete values, in order for consistency with alterna-
tives defined in Cohen et al. (2020). Values from the normalized set are
transformed in the model to reflect the actual bounds for each variable
0,1], and
FS" € [0,60]. The choice of decision variables reflecting system param-
eters rather than a universal approximator function, such as a neural
network (e.g., Salazar et al., 2016; Giuliani et al., 2017), is intended to
support the interpretability of the resulting policies, as well as their
compatibility with already in-place system operations. However, there
are currently efforts to formulate methods that improve the interpret-
ability of neural network-based policies, for example via sensitivity
analysis (Quinn et al., 2019).

The objectives J contain five performance metrics, including flood
control, reservoir carryover storage at the end of the water year, Delta
outflow representing salinity control and environmental benefits, Delta
exports for water supply, and hydropower generation. The expectation
of each objective across a scenario set is to be maximized (Equation (6)).
The objective values over each scenario are calculated according to:

. is the maximum

from the previous study: an,Z’wyt €[~ 3.6,3.6], Chhaxuy: € |

Jr00a(0) = — Z Zmax(ul’ — DQ’,O)2 (8)
=1 r=I1
3
JCa!Tyovcr(g) = Z Z Cr: ()
=1 =1
T
JOutﬂnw (9) = Z [Qin.r - (TRP)‘ + HROr)} (10)
=1
T
JExpons (0) = Z[TRP[ +HRO,] (1 1)
=1
Tugao(0) =Y Y HP; (12)

=1 r=1

Where T is the number of days t in the simulation period, while N is the
number of water years y. In the flooding objective, DQ" is the down-
stream levee capacity of reservoir r. Note in Equation (8) we maximize
negative flooding for consistency with maximization of the other ob-
jectives. Cry, is the carryover storage in reservoir r at the end of water
year y. Qi is the Delta inflow on day t, while TRP, (Tracy pumping
plant) and HRP, (Harvey O. Banks pumping plant) are exports from the
Delta to the Central Valley Project and State Water Project, respectively.
Lastly, HP] represents the hydropower production from reservoir r on
day t. These objective functions are intended to capture the necessary
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balance between key aspects of system performance.

The optimization is performed using the Non-Dominated Genetic
Sorting Algorithm (NSGAIII) (Deb and Jain, 2013) via the open source
Platypus library (Hadka, 2015). To support this choice, algorithm per-
formance was tested over 70 scenarios with three random trials of 50,
000 maximum number of function evaluations (NFE) each, obtaining
similar results for each trial. The results were compared with alternative
MOEAs, including e-MOEA, NSGAII, and SPEA2, which showed no sig-
nificant improvement over NSGAIII for this problem. In further in-
stances where this problem is solved, 10,000 NFE are used when
optimizing to a single scenario (perfect foresight), while all other opti-
mizations with various train-test splits use 50,000 NFE. As the number of
scenarios increases, the optimization is slower to converge visually
based on hypervolume, influencing the choice of 10,000 vs 50,000 NFE.
All optimization runs were performed on the HPC1 cluster at UC Davis,
which includes 60 nodes with 16 cores each running at 2.4 GHz.

3.2. Baseline regret

Multi-objective baseline regret quantifies the maximum level to
which system performance can be improved for a particular scenario,
within the constraints imposed by the policy function and existing
infrastructure. This property is scenario-specific: each time it is calcu-
lated the baseline policy is held constant, while the scenario differs. This
concept draws from the Expected Value of Perfect Information (EVPI)
metric proposed by Giuliani et al. (2015b) for multi-objective problems.
By incorporating the results of a perfect foresight optimization, it cou-
ples the EVPI approach with a regret metric (Savage, 1951), which de-
scribes the performance of a policy based on its distance from the best
possible alternative. Traditional decision making under uncertainty
problems often use the minimax regret approach, in which the goal is to
choose the alternative that minimizes the maximum regret across all
scenarios (e.g., Giuliani and Castelletti, 2016). The baseline regret
metric differs from minimax regret because it applies only to the no
action case of an individual scenario, rather than policy alternatives,
reflecting the EVPI approach. It is based on the performance of both a
baseline solution and perfect foresight solution set for each scenario, as
the performance of any other effective policy solution is expected to be
bounded by these two. As a result, the baseline regret partially depends
on the suitability of the baseline policy for each climate scenario.
However, this still reflects the ability of the system to adapt to future
change, even if it is starting from a poor baseline.

3.2.1. Baseline policy performance and perfect foresight optimization

The baseline policy simulation uses parameters g to best represent
the dynamics of the system shown in historical observations. The
resulting baseline policy solution performance is denoted as Jg(s) =
J(6g, s), a one-dimensional vector containing a single value for each
objective, rather than a full Pareto set. Under the baseline policy, this
performance is not optimized; it should be viewed as a simplified rep-
resentation of the several performance considerations of a real-world
system operator.

The upper bound performance is established by a perfect foresight
optimization. In this case, the policy search is performed over each
scenario individually to determine the objective values if the future were
known exactly. We define the perfect foresight performance metric as
Jp(s) = Jp(0,s), where the optimized parameters 6 are specific to the
training set consisting of the single scenario s.

3.2.2. Hypervolume metric

We use a hypervolume metric to quantify the baseline regret of each
scenario s in the ensemble. The hypervolume is defined as the volume in
the objective space between the perfect foresight Pareto set Jp(s) and the
baseline policy performance Jp, which is used as a reference point. While
baseline regret is calculated in a five-dimensional objective space for this
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application, the hypervolume concept is illustrated in two dimensions in
the top row of Fig. 3. Solutions in the perfect foresight Pareto front Jp(s)
are anticipated to dominate the baseline policy performance Jg(s). The
rare solutions for which this does not occur are not considered in the
remainder of the calculations. In general, a larger hypervolume value
indicates improvement over the baseline policy as well as a higher va-
riety in alternatives among the Pareto set.

Initially disregarding the baseline solution, we normalize all objec-
tive values in Jp(s) € [0,1] to reduce scaling issues between the objec-
tives. The baseline policy performance is normalized accordingly to
Jp € (—o0, 0] to allow for consistent comparison of baseline regret across
scenarios. We then calculate the baseline regret R(s) based on the
hypervolume h(...) between the perfect foresight Pareto set and the
baseline policy reference point, such that:

R(s)=h(Jp(s),Jz(s)) 13

The baseline regret describes the performance of a perfect foresight
optimization relative to the baseline for each climate scenario. Because
the objective values are normalized, it provides an upper bound per-
formance metric that can be directly compared across scenarios for a
given policy.

3.3. Scenario clustering

Unsupervised clustering provides the basis for separating climate
projections into training and test sets for the policy search. The clus-
tering is based on three features: averaged annual streamflow, averaged
peak annual snow-water equivalent, and the baseline regret metric
described above. These features are calculated on the time horizon
2070-2100, which is chosen as the period of analysis due to its large
deviation from historical hydrologic conditions and thus high regret
(Fig. 2 in the Supplementary Material). This time period also contains
much more variability in hydrologic properties than do earlier periods in
the projected time horizon (Fig. 2).

The three features are calculated for each of the 97 scenarios in the
ensemble and clustered using the K-means algorithm with K = 3, equal
to the number of features. This allows for a minimally complex char-
acterization of scenario properties based on cluster centroids. The
resulting clusters are denoted as C1,C», and Cs.

3.4. Training and test sets

We first split each cluster C; randomly into roughly equal training
and test subsets, S and S;, respectively. Various combinations of these
training and test subsets make up the overall training and test sets, S; and
S, respectively (Table 1). While the goal of this division is to ensure that
test information is never used in training, we acknowledge the possi-
bility for interdependence among the ensemble of climate scenarios, for
example using the same model or emissions scenario, or different models
relying on the same components (Steinschneider et al., 2015b).

3.4.1. Training and testing
Policy search runs separately for each training set to identify the
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Pareto set of policies & corresponding to each training set of scenarios
SiZ

0, =argmax,J (6, S;) a4

In order to increase the extent and continuity of the Pareto-optimal
solutions, three trials of each optimization are run using varying
random seeds. The use of baseline regret as a scenario property links the
perfect foresight optimization to various combinations of training sce-
narios without explicitly using perfect foresight to inform the choice of
all training scenarios.

We next re-evaluate the policies trained to set S; over each scenario
in the test set Sy, resulting in a set of objectives Jg,(s) for each test sce-
nario:

Js(s) = J(G;,J) Vs € Sy 15)

We consider only solutions that also dominate the baseline policy for
all scenarios in the test set. This is achieved via a filtering step which
identifies the solutions that will at a minimum outperform the status quo
in all re-evaluations. We identify these particular policies and solutions
as policy set 6;; and solution set J;;. This process results in a total of 28
pairwise combinations of training and test scenarios.

3.4.2. Set diversity

While the training and test sets are delineated via K-means clus-
tering, the diversity of each set should also be considered for the anal-
ysis. This can help determine if policy performance across train-test set
combinations is influenced by the scenario diversity in each set. Di-
versity is determined via Equations (16) and (17), adapted from Carlsen
et al. (2016) and Eker and Kwakkel (2018). In Equation (16), Ds rep-
resents the diversity of set S. w, the weight assigned to the extent the
mean distance, is 0.5 in this case. d;x is the Euclidean distance based on
the m = 3 features (FNF, SWE, baseline regret) for scenarios | and k. In

Equation (17) f,,; and fyx are the values for these features. To ensure

equal weighting of all features, f,,; and f,,x are normalized from 0 to 1
across all scenarios.

Ds=(1- w)\%ieré{d,,k} + wr\g}gg?{d,_k} (16)

du= [ S (i~ Fus)’ a7

3.5. Policy robustness

We would like to evaluate the robustness of policies trained to set S;
when re-evaluated over each scenario s in set S;;, for all combinations of
(i,j). Because the performance is multi-objective across a range of hy-
drologic scenarios, we use a hypervolume metric normalized by the
baseline regret (Section 3.2) to represent the robustness of the policy set
as a whole.

Table 1
Outline and properties of training and test sets.
Training Sets S; # of scenarios Diversity Test Sets S;; # of scenarios Diversity
S, High-regret 13 0.241 Sn High-regret 12 0.206
S, Low-regret wet 17 0.199 S Low-regret wet 16 0.162
S3 Low-regret dry 20 0.130 Stz Low-regret dry 19 0.131
S, High-regret/low-regret wet (S; US3) 30 0.233 Sea All test scenarios (Sg USg USi3) 47 0.202
Ss High-regret/low-regret dry (S; US3) 33 0.230
Se Low-regret wet/dry (Sa US3) 37 0.197

S7 All training scenarios (S; USz US3) 50 0.233
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3.5.1. Hypervolume robustness metric

Robustness is represented by a normalized hypervolume metric for
each solution set. The hypervolume for a solution set of train-test set
combination (i,j) applied to scenario s is defined as that between the
baseline reference point Jz(s) and solution set J;;: h(J;;(s),Jg(s)). This is
normalized by the baseline regret R(s), giving the hypervolume
robustnesss metric HR;;(s):
HR;(s) :w (18)

Thus the hypervolume robustness metric will always be a fraction of
the baseline regret R(s), ensuring that it can be appropriately compared
across train-test combinations (see fourth row in Fig. 3). A higher
normalized hypervolume metric denotes a more robust policy set, with a
value of 1 equaling the performance of perfect foresight policies. This
ensures that the robustness of a policy set is not measured only by its
ability to improve system performance relative to the baseline, but also
the extent to which the policies are able to reach the maximum attain-
able level of system performance.

For each train test-combination, we can obtain a set of hypervolume
robustness metric values HRT;;, where:

HRT,‘, ES {HR,'J(S]),HR,’J(SQ), ...,HR,“,‘(SW) } Vs € S,j (19)

In general, larger hypervolume robustness metrics will indicate two
properties of the objective outputs. The first is that as hypervolumes
increase, the distance between the baseline policy Jz(s) and policy
performance set J;;(s) will increase, indicating higher performance im-
provements compared with the baseline policy. Additionally, a larger
hypervolume indicates a higher diversity of solutions across the Pareto
front.

3.5.2. Rank-sum tests

For each pair of train-test combinations with identical test sets, we
perform a one-sided Mann-Whitney U test (Mann and Whitney, 1947) to
determine if the hypervolume of a given training set exceeds that of a
second training set when evaluated on the same test set. This test aims to
determine if policies trained to a test set with particular properties are
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significantly more robust. With p < 0.05, we reject the null hypothesis
and conclude that the distribution of hypervolume across test scenarios
S, in sample HRT; is greater than that in sample HRT,; with statistical
significance.

3.6. Policy analysis

Finally, we analyze individual policies chosen from the most robust
training sets by considering tradeoffs between the objective values. The
decision variables of these policies are compared to the baseline policy
to understand what combinations of adaptations to system operations
could be promising under a range of future climates. We then compare
the dynamics in terms of reservoir storage and water supply exports to
those obtained by simulating the baseline policy on the same hydrologic
inputs, and then relate key differences to the decision variables inter-
preted in the context of the system.

4. Results and discussion
4.1. Scenario clusters

Scenarios are divided into three clusters based on their streamflow,
snowpack, and baseline regret, as shown in Fig. 4. Based on the cluster
centroids, we define them as high-regret, low-regret wet, and low-regret
dry. The high-regret scenarios contain a mix of streamflow and snow-
pack values distributed throughout their respective ranges, indicating
that baseline regret does not solely depend on annual hydrologic prop-
erties. The clear separation between the high-regret and low-regret
clusters suggests the possible utility of this metric in determining com-
binations of training scenarios in policy search experiments.

The low-regret scenarios occur in both wet and dry clusters. How-
ever, the ranges of streamflow and snowpack values overlap across these
two clusters. (Fig. 4a and b). Specifically, this occurs in two cases: first,
some wetter scenarios may also show high levels of snowpack decline
due to severely warmer temperatures; second, there exist dry scenarios
with relatively higher snowpack values than other low-flow scenarios
due to less warming. This overlap, along with the much clearer sepa-
ration between high-regret and low-regret clusters, supports the choice
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Fig. 4. Scenario clusters in (a,b,c) two-dimensional projections and (d) all three properties: full natural flow (streamflow, FNF), snow-water equivalent (snowpack,

SWE), and baseline regret.
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of K = 3 clusters to minimize complexity.

4.2. Training set robustness comparison

The three clusters, each split randomly into training and test subsets,
are combined to create different train-test splits. The overall proportion
of training to test sets out of all available scenarios is 50:47 (Table 1).
From all possible combinations combined to create different train-test
splits created in this process, a total of seven training sets and four
test sets are chosen to demonstrate the training-testing process. These
are described in Table 1.

These sets are used to determine the performance of policies opti-
mized to each training set when re-evaluated in each test set, measured
according to the hypervolume robustness metric. Fig. 5 shows the dis-
tributions of the resulting hypervolume metric for each train-test split,
plotted as cumulative distributions.

Distributions shifted further right indicate higher robustness of the
policy sets over the test set. While these distributions support the
interpretation of the performance differences between policy sets
trained on different scenarios, the rankings of policy sets must be shown
to be statistically significant. These conclusions are made using the

(a) High-regret test set
Se,

1-0 ”
kh

E

]
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Mann-Whitney U test between each pair of train sets over each test set,
with results shown in Fig. 6.

For the high-regret test set (Fig. 6a), the most robust policies are
those optimized to the high-regret and all-scenario training sets, where
the latter contains the former. Neither of these significantly outperforms
the other. This finding is not surprising, as the policies trained to sce-
narios with similar properties demonstrate the best out-of-sample per-
formance. However, this result does not always hold for the other test
sets. For example, in the test set consisting of low-regret wet scenarios
(Fig. 6b), the best-performing set of policies are those trained to a mix of
high-regret and low-regret wet scenarios (S4), which ranks higher than
every other training set. The training sets containing dry scenarios and
lacking wet scenarios (S3 and Ss) perform worst for the high-regret test
set. Set S;, consisting of only high-regret scenarios, outperforms set S,
which consists of wet and dry low-regret scenarios. This indicates that
training to only high-regret scenarios may be more effective than
training to low-regret scenarios regardless of the variability in scenarios’
hydrologic properties. This result shows that adding high-regret sce-
narios to the training set—whether they are wet or dry—improves the
robustness of the optimized policies when tested in out-of-sample wet
scenarios. Additionally, including low-regret dry scenarios in training

(b) Low-regret wet test set

0.0 0.2

(d) All test sets
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Hypervolume
robustness metric

0.6

Training scenarios:

u 0.6 —
=)
©oa
0.2
0.0 "
0.0 0.2 0.4 0.6
(c) Low-regret dry test set
1.0
0.8
u 0.6
=)
©oa
0.2
0.0
0.0 0.2 0.4 0.6
Hypervolume
robustness metric
—— High-regret

—— Al training scenarios
Low-regret wet
——- High-regret and low-regret wet

—— Low-regret dry
——- High-regret and low-regret dry
—— Low-regret wet and dry

Fig. 5. Cumulative distributions of the hypervolume metric evaluated on each test set (A-D). Each CDF represents the distribution of performance over all scenarios
in the test set for the Pareto front of policies trained to the scenarios identified by the line style.
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(a) High-regret test set (S¢,)
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(b) Low-regret wet test set (Sg,)

(c) Low-regret dry test set (St,)

- Reject null (row > column)

I Fait to reject (row # column)

Fig. 6. Results of pairwise Mann-Whitney U rank-sum tests. Each test has the null hypothesis that the hypervolume metric associated with the training set in each
row is less than or equal to that associated with the column. The subplots correspond to the four test sets. A row where the null hypothesis is rejected (blue) for each

cell denotes a robust policy set that ranks highest for the particular test set.

sets for policies tested on low-regret wet scenarios degrades policy
performance. Similar results are shown for the low-regret dry test set
(Fig. 6¢), where the highest ranking training set is again not only the dry
scenarios (S3), but also a mix of high-regret and low-regret dry (Ss)
scenarios. In addition, training sets including low-regret wet scenarios
(S2 and S4) have the lowest ranking when their corresponding policies
are simulated over the low-regret dry test set. Lastly, the high-regret
training set continues to outperform the low-regret wet/dry training
set for Sy, further highlighting the good training value of high-regret
scenarios.

For the final test set Sy4, which includes all testing scenarios (Fig. 6d),
the majority of Mann-Whitney U tests fail to reject the null hypothesis.
However, results indicate that the high-regret training set (S;) out-
performs the low-regret training sets (S;, S3, and Sg), as does the all-
scenarios training set (Sy). Especially notable is that the high-regret
training set S; outperforms the combined wet-dry low regret training
set S when testing to all scenarios. Since both of these training sets have
wide ranges for the hydrologic properties, this further highlights the
benefit of high-regret training scenarios over low-regret scenarios.

The diversity of the training sets can be analyzed in tandem with
these results. The high-regret (S;) and all training scenario (S;) sets are
the most diverse (Table 1). Based on our specific quantification of set
diversity, this is an artifact specifically of the high-regret values, which
contain more outliers and a more skewed distribution across all sce-
narios (Fig. 4a and b). The high mean distances that occur from this
cause the diversity values to be larger whenever the high-regret sce-
narios are included in a set. This leads to the fact that the three sets
which do not contain the high-regret scenarios (Sz, S3, and Sg) are the
least diverse of the sets. It could then be concluded that the larger di-
versity of the high-regret set influences its good performance. However,
since this value is skewed by just a few outliers, it should not be
considered the only reason for the effective training value of the high-
regret sets.

Training sets S; (high-regret only) and S¢ (low-regret wet/dry) have
similar ranges across both hydrologic properties. The lower diversity of
set S¢ is influenced by its small range in baseline regret values, as well as
the fact that is has several scenarios in close proximity in terms of hy-
drologic properties (Fig. 4c), leading to a skewed minimum distance
value in the diversity calculation. Set Sg has almost three times the
number of scenarios as set S;, which contributes to its low diversity
calculation. Several close-proximity scenarios could be omitted to make
set S¢ more diverse. This would not improve the performance as the set
would lose valuable training data and potential for overfitting would

10

increase. Therefore, the high diversity of set S; is not the only factor
controlling the set’s good performance. Its high baseline regret values
will enable the policy search to find solutions more robust to vulnerable
conditions. Additionally, there may be many other scenario properties
that are not examined in this study which contribute to set performance
and scenario training value. These include hydroclimatic properties
such as temperature rise, flood frequencies, flow timing, precipitation,
drought patterns, soil moisture, and evapotranspiration.

Because the high-regret training set performs no worse than training
to all scenarios, the strategy of designing a training set around scenarios
with high baseline regret may serve to reduce the computational cost of
policy search for large-ensemble cases, and/or to reserve more scenarios
for testing. To support this point, Table 2 compares the computational
cost for different aspects of policy training in this study. Training to
scenarios with high baseline regret (which includes the perfect foresight
optimizations) required 9733 computing hours, roughly three times less
than training to all scenarios. Training to scenarios with high baseline
regret improves the efficiency of policy search without sacrificing
robustness relative to the case of training to all scenarios. This denotes
the benefit of analyzing the hydrology and baseline regret of scenarios
before a train/test split is determined.

Thus, it is also possible to determine the conditions under which a
high baseline regret set will give computational benefits by generalizing
the requirements outlined in Table 2. This condition is described as:

ToPy 1P <faps (20
Where n represents fraction of overall scenarios which are in the high-
regret set, fp, fr, and f4 denote the number of function evaluations,
and pp, pg, and p, denote the number of random seeds for each of the
perfect foresight, high-regret only, and all training scenario sets,
respectively. This generalization can potentially be applied to other
planning problems in which the baseline regret is determined a priori,
and where there is a choice about how many high-regret solutions to
include in the training set.

This analysis has important implications for the generalizability of
this approach. Several variables may be degrees of freedom, for instance
numbers of random seeds p and function evaluations f necessary for
convergence to diverse and near-optimal Pareto-solutions sets will vary
across models. The fraction of high regret scenarios n may differ based
on the number of clusters chosen. In some instances, if the level of
baseline regret is not a significant source of variation among scenarios, it
may not provide a way of separating different training sets using a
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Table 2
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Description of computing requirements for several optimizations included in this study. Note that less NFEs are required for a perfect foresight, as these optimizations
are quicker to converge. Times per function evaluation and total computing hours are specific to the UC Davis HPC1 computing cluster.

Max NFE per optimization ~ Scenarios per

Time per function evaluation

# of random seeds (p) Total computing hours

optimization(n)
Perfect foresight (P) 10,000 1 12s 97 (individual scenario trials) 3,233 h
High-regret only (R) 50,000 13 156s 3 (random seed trials) 6,500 h
All training scenarios (A) 50,000 49 588s 3 (random seed trials) 24,500 h

clustering approach. Furthermore, differences in performance among
training sets may be due to confounding factors not reflected in the
abstracted scenario properties, especially for hydrologic timeseries
which can be summarized in a number of different ways. However, the
proposed clustering and train/test methodology is still generalizable
across environmental planning applications to pinpoint the most
important scenario properties for policy training and out-of-sample
performance, therefore discovering conditions for computational
benefits.

Furthermore, results presented in Figs. 5 and 6 must be interpreted in
light of the fact that the future climate trajectory is uncertain. It is likely
that more information about future hydrology will be collected over
time, and this process could complement policy search methods in the
context of dynamic planning (e.g., Hui et al., 2018; Fletcher et al., 2019).

Si> Low-regret wet test set

(a) S; High-regret/low-regret wet

S¢3 Low-regret dry test set

(e) S5 High-regret/low-regret dry

Therefore, in this study the methodology aims to identify a training
strategy that leads to robust outcomes to both uncertain and clustered
future climate, measured according to multi-objective performance
bounded by the baseline policy and perfect foresight cases. We find that
training to scenarios with high baseline regret is competitive with
training to all scenarios across a range of future climates, and often leads
to the best out-of-sample performance. This is likely due to higher
inter-annual variability in these scenarios. Based on a higher diversity of
extreme events across individual scenarios and potential poor baseline
performance in the high-regret cluster, solutions will give both a wider
variety of tradeoffs in objectives and improvements relative to baseline
policy performance. These findings extend to both wet and dry futures,
where the inclusion of high-regret scenarios in the training set out-
performs using exclusively either wet or dry training scenarios. This

Fig. 7. Parallel axis plots displaying various
results of train-test combinations. (a,b,c)
policies trained on sets S4, S;, and S,
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result links to the importance of evaluating perfect foresight policies in
individual scenarios when designing the training set to establish an
upper bound for system performance.

4.3. Policy analysis

The final step of the analysis is to determine what specific adapta-
tions are implemented by the robust policies. This analysis focuses on six
specific train-test splits, chosen based on their high-ranking perfor-
mance: (1) policies trained on set S4 and tested on set Sy, (2) policies
trained on the set Ss tested on set S;3, (3,4) policies trained on set S;
tested on sets S;2 and S, and (5,6) policies trained on set Sg tested on
sets Sz and S;3. The average performance measures across all scenarios
for these sets are shown by the highlighted solutions on the parallel-axis
plots in Fig. 7. While the expected value of all highlighted solutions
dominates the baseline policy, there are still several significant tradeoffs
between the objectives, indicated by their nonlinear correlations (see
Section 3 in Supplementary Material). For the S4/Si train-test combi-
nation, these include statistically significant tradeoffs between hydro-
power and flooding (p = 0.53) and water supply and Delta outflow (p =
0.97). The same tradeoffs exist in the dry test scenarios, which also
exhibit tradeoffs between carryover storage and flooding (p = 0.49). In
general, these relationships reflect the fact that higher storage levels
benefit several of the proposed objectives, although they can be detri-
mental to the flooding objective, which is to be minimized. While this
high water elevation benefits the hydropower and carryover storage
objectives, it can induce larger releases if large storms occur later in the
spring.

We have shown that training set S4 (high-regret/low-regret wet) will
yield the best performing policies for the low-regret wet test set Sy
(Fig. 6b). Likewise, training set Ss (high-regret/low-regret dry) will
yield the best performing policies for the low-regret wet test set Si3
(Fig. 6b). This is reflected in Fig. 7(a,b,c), (e,f,g) where the highlighted
Pareto solutions for S4 and Ss are shifted higher than S; and Sg over their
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particular test sets, as shown by the higher maximum percent of baseline
values (for the flood objective lower minimum) in Fig. 7a, e. These
ranges in Fig. 7(a,b), (e,f) also reflect the better performance of the high-
regret training set S; over the low-regret wet/dry training set S¢ for both
test sets.

We next examine the four compromise policies that balance the
tradeoffs in performance measures, denoted as the S4, Ss, S1, and Sg
policies in Fig. 7. The S4 and Ss policies, coming from the most robust
training sets for the respective test sets, also give the best performance
on the individual scenarios (Fig. 7d,h). The alternatives that these pol-
icies employ are shown in Fig. 8 along with a comparison to the decision
variables of the baseline policy. Each column in the tables represents the
decision variable which occurs for that specific water year type.

In the S4 policy, Shasta and Folsom reservoirs have higher maximum
allowable curtailments cf,,, . than in the baseline policy. These higher
maximum curtailment levels will allow for increased hedging of re-
leases. The curtailments for Oroville reservoir are higher in wet, above
and below normal years, but lower in dry and critical years. All three
reservoirs also have a flood pool shift of at least 10 days forward in the
water year for the S4 policy. In wet and above normal years, Shasta and
Oroville use low eryt values, indicating a very conservative forecast with
a high exceedance level. In drier water year types, the 7wyt values are
generally close to or greater than the baseline exceedance levels. For
Folsom reservoir, these values vary much more across water year types.
The differences between operational adaptations at each reservoir
highlight the complexity of managing the multi-reservoir system, and
the potential to design adaptations for system-wide benefit.

Fig. 9 shows the system dynamics of the baseline policy compared to
the compromise policies in a time series over one scenario from each
corresponding test set: an RCP 8.5 scenario (CNRM-CM5) for low-regret
wet, and an RCP 6.0 (MIROCS5) scenario for low-regret dry. Under the
baseline policy, reservoir storage levels are vulnerable to snowmelt loss
regardless of water year type, evidenced by low storage levels in the

Baseline policy S, policy S5 policy
w AN BN D C w AN BN D w AN BN D Cc
Water year forecast -0.125 -0.842 -1.282
confidence Zyy;
Shasta Max curtalme"™ | 0.000 0.000 0.400 - 0.433 0.067 | 0.617 0.533 . 0.567 -
max, wyt
Shasta inflow forecast
. > -1.035 -1.035 -1.035 -1.035 -1.035 -1.860 -2.820 -0.300 -1.080 -2.040 -0.780 -2.100 -2.040 -2.820
confidence Z3/¢
Shasta f;:?f‘:pns?lIA 0 24 15
Oroville 22, .| 0.000 0.000 0.300 0.317 0.450 0.417 0.250 0.133 0.583 0.000 0.150 0.433
Oroville z'z’y‘:’ -1.035 -1.035 -1.035 -1.035 -1.035 -1.980 -3.240 -1.140 . -0.960 . -2.520 -1.860 -2.640
Oroville h9R° [ 18 8
Folsom cf2 , .| 0.000 0.000 0.000 0.200 0.300 0.567 0.567
Folsom z'r_,gg- -0.525 -1.035 -1.280 -3.300 -2.400 -1.080 -1.920 -1.980
Folsom hFot ] 7

Max curtailment

0.0 01 02 03 04 05 06 07 08 09 103.6-3.0 20 -L0

0.0

3.0 36 0 10 20 30 40 50 60

1.0

2.0

Fig. 8. Policy tables showing decision variables for: the baseline policy, the S4 policy (high-regret/low-regret wet set), and the Ss policy (high-regret/low-regret dry
set). The columns denote water year type classifications associated with each decision variable, corresponding to wet, above normal, below normal, dry, and critical.
Policy tables for the S; and Se policies can be found in Section 4 of the Supplementary Material.
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*TAF = thousand acre-feet
(a) CNRM CM5 RCP 8.5 (wet scenario)
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Fig. 9. Time series of system states and flows for baseline and adaptation policies in individual test scenarios. The left and right columns show results from the
individual wet and dry scenarios, respectively. (a,e) Daily inflows to each reservoir with water year types highlighted; (b,c,f,g) Reservoir storage; (d,h) monthly Delta

exports, primarily for agricultural and municipal water supply.

irrigation season even in wetter years. The S4 policy mitigates this
vulnerability via an intra-annual hedging, resulting in higher reservoir
storage during the early irrigation season (May-June); The Ss policy
functions similarly. For both policies, this intra-annual hedging dynamic
is supported by the adapted snowpack-to-streamflow forecasts, where
underpredictions will cause some release curtailments to conserve for
potential low inflows later in the season. However, curtailments can be
partially avoided with higher carryover storage due to the flood pool
shift. This seasonal shift is also reflected in the Delta exports (Fig. 9d,h),
which maximize total volume by shifting throughout the year. The
remaining S¢ and S; policies also exhibit the intra-annual hedging
strategy (see Section 4 in Supplementary Material for these policies’
decision variables). However, given that reservoir storage becomes
higher in the flood season and carryover storage drops lower when these
policies are deployed, they are slightly less effective (Fig. 9b,c,f,g).
Additionally, they often will have periods of low Delta exports (Fig. 9d,
h). This highlights that a policy from the best performing training set for
a particular test set may be more likely to give better performance for
scenarios in that test set.

There are two major differences between the S; and Ss policies
stemming from the hydrologic properties of their respective training
scenarios. The first is that the Ss policy tends to curtail releases more
during dry and critical years, reflected in its conservative forecasts and
high maximum curtailment allowances. The S4 policy hedges less during
dry and critical years, and instead relies on larger storage brought about
by intra-annual hedging. This is further driven by the low maximum
curtailment allowances for Oroville during these water year types. The
second difference is that the S4 policy tends to hold less storage during
the flood season than the baseline policy, while the S5 policy does not.
For the S4 policy, this makes curtailment less necessary later in the mid-
to late summer, and reduces flood vulnerabilities. The fact that policies
exist that can improve upon both of these objectives via the same policy
parameters is the main reason why flood control and carryover storage
do not have a significant tradeoff in the wet test set. In summary,
analysis of these two compromise policies shows how training to sce-
narios with high baseline regret can yield policies with improved per-
formance on out-of-sample hydrology to balance conflicting objectives.
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5. Conclusions

This study advances the design and testing of robust control policies
as an adaptation to uncertainty in environmental planning problems,
contributing an experimental design to better understand the influence
of the forcing scenario properties and baseline regret of training sce-
narios on the robustness of resulting policies. We demonstrate this
approach for the northern California reservoir system to determine how
transient downscaled climate scenarios impact tradeoffs between water
supply, flood control, environmental flows, and hydropower generation.
Results indicate that policies trained to scenario sets with high baseline
regret tend to outperform those generated with other training sets in
both wetter and drier futures. Additionally, the policies adapted under
these conditions develop an intra-annual hedging strategy to mitigate
the effects of snowpack decline under rising temperatures. The approach
highlights the general importance of considering the specific properties
of training scenarios in the design of robust control policies.

Beyond the pairwise comparison of train-test splits, this analysis also
highlights the general difficulty of maintaining out-of-sample perfor-
mance for reservoir control policies. This is driven primarily by extreme
events that occur infrequently by definition and which may be the result
of natural variability rather than anthropogenic change, creating a risk
of overfitting to the training set. The baseline regret, based on perfect
foresight optimization, provides a measure of regret to place this per-
formance degradation in context. Unlike the traditional minimax regret
strategy, where the alternative that minimizes the maximum regret
across all scenarios is chosen, our approach uses a regret metric to
choose training scenarios rather than optimal alternatives. We show that
optimal policies benefit from training to sets of scenarios with a high
regret for the baseline solution. Our methodology also provides a way to
group ensembles of scenarios using an unsupervised learning approach,
along with other hydrologic properties including streamflow and
snowpack, to create an experiment which maps the relationship between
training and test scenarios to the outcome of policy robustness consid-
ering both the performance and diversity of solutions. The latter is
particularly important given the concern with reversible adaptations to
operations which can be changed over time (Herman et al., 2020).

While this study considers uncertainty in hydrology due to climate
change across downscaled model projections, it could further test the
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robustness of the resulting policies against more realizations of sampling
variability from a synthetic generator, or supplement the training set
with the same. Increasing the number of scenario realizations would
allow for additional hydrologic variables to be included in clustering,
such as changes in flood and drought frequencies and intra-annual
streamflow shifts. Additionally, policy training might be improved
with a more flexible policy structure beyond parameterizing the existing
system, such as a neural network—though this may also increase the
potential for overfitting due to increased degrees of freedom. Policy
training can also be coupled with infrastructure design (e.g. Bertoni
et al., 2020), which in many regions will be required to cope with the
more extreme projections of hydrologic change. Lastly, while our
approach is demonstrated with an exampled from the water resources
management field, it can generalize to any environmental, natural re-
sources, or infrastructure planning problem which includes a no action
case, an optimization component, and a forcing scenario ensemble.
Future work should explore the impacts of these additional experimental
components in combination with the analysis of the training scenarios
properties presented here to further improve robust policy search under
uncertainty.

Software availability

Code for Operations of Reservoir in California (ORCA), a python
simulation model, is available at https://github.com/jscohen4/orca
Simulation code, data analysis and figure scripts for this manuscripts
are available at: https://github.com/jscohen4/orca/tree/cohen-2021-
properties-training-scenarios.

Processed CMIP5 climate projection data files used in this study are
available at https://github.com/jscohen4/orca_cmip5_inputs.
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