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A B S T R A C T   

Reservoir control policies provide a flexible option to adapt to the uncertain hydrologic impacts of climate 
change. This challenge requires robust policies capable of navigating scenarios that are wetter, drier, or more 
variable than anticipated. While a number of prior studies have trained robust policies using large scenario 
ensembles, there remains a need to understand how the properties of training scenarios impact policy robustness. 
Specifically, this study investigates scenario properties including annual runoff, snowpack, and baseline 
regret—the difference between baseline policy and perfect foresight performance in an individual scenario. 
Results indicate that policies trained to scenario subsets with high baseline regret outperform those generated 
with other training sets in both wetter and drier futures, largely by adopting an intra-annual hedging strategy. 
The approach highlights the potential to improve the efficiency and robustness of policy training by considering 
both the hydrologic properties and baseline regret of the training ensemble.   

1. Introduction 

Adaptation to the multi-scale impacts of climate change in water 
resources systems is challenged by substantial uncertainty in future 
hydrologic projections, particularly in flood and drought risks (Wilby 
and Dessai, 2010; Asadieh and Krakauer, 2017; Dottori et al., 2018). 
This hinders the ability to use traditional prediction-based planning 
methods and has resulted in the recent consensus toward robust plan
ning (Dessai and Hulme, 2004; Wilby and Dessai, 2010). Robust and 
adaptive planning have been widely considered for both expansion of 
water resources infrastructure (e.g. Haasnoot et al., 2013; Beh et al., 
2015; Zeff et al., 2016; Kwakkel et al., 2016; Maier et al., 2016; Trindade 
et al., 2017) as well as changes to reservoir control policies (e.g. Giuliani 
et al., 2014; Quinn et al., 2018; Herman and Giuliani, 2018). Of the two 
alternatives, control policies provide a more flexible “soft path” 
approach, as they can be reversed if the future unfolds differently than 
predicted (Gleick, 2002; Fletcher et al., 2017). In this case, the physical 
constraints of the existing system establish the range of uncertain sce
narios that can be adapted to before new infrastructure is needed (e.g. 
Culley et al., 2016). 

Robust planning of reservoir control policies generally consists of 
two phases that have been studied using a variety of different 

approaches: policy design and robustness analysis. A number of studies 
have focused on the robustness of current system operations to a range 
of future climate changes represented either by downscaled Global 
Circulation Model (GCM) scenarios (e.g., Brekke et al., 2009; Karamouz 
et al., 2013; Knowles et al., 2018) or synthetically generated scenarios 
based on perturbed statistics of hydrologic timeseries (e.g., Prudhomme 
et al., 2010; Brown et al., 2012; Weaver et al., 2013; Turner et al., 2014). 
Both approaches often serve as precursors to adaptation studies in which 
a discrete set of proposed management alternatives are tested to miti
gate vulnerabilities in future scenarios (e.g., Groves et al., 2013; 
Steinschneider et al., 2015a; Mateus and Tullos, 2017). In this case, the 
policies are not trained or optimized to a particular set of scenarios, but 
instead arise from stakeholder expertise and negotiations. 

An alternative approach is to generate candidate alternatives via 
optimization approaches (Kasprzyk et al., 2013). In this case, policy 
design and robustness analysis are analogous to the train-test termi
nology often used in machine learning (e.g., Russell and Norvig, 2002), 
and recently in the water resources field (e.g., Brodeur et al., 2020). 
Policy design (training) involves optimizing learned policy parameters 
to a specific set of input data (the training set). In robustness analysis 
(testing), a test set consisting of input data separate from the training set 
are used to assess the performance of an optimized policy. In the context 
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of reservoir control under climate change, the most relevant optimiza
tion approach is policy search, in which parameterized operating rules 
are optimized for system performance objectives under a set of training 
scenarios (Koutsoyiannis and Economou, 2003; Giuliani et al., 2015a, 
2017). This heuristic approach functions as both a 
simulation-optimization problem (Salazar et al., 2016) and an infor
mation selection problem for the policy inputs (Giuliani et al., 2015b; 
Nayak et al., 2018). While the training performance of a policy on an 
individual scenario represents a best-case outcome with perfect fore
sight, the key challenge is whether the policy can generalize to a 
different test set, which is also the case for any optimization method 
applied in the context of climate adaptation. Test sets often include 
additional stochastic realizations of the same uncertainties used in 
training, i.e., to obtain a thorough representation of sampling uncer
tainty (e.g., Quinn et al., 2017; Trindade et al., 2017). They may also 
include scenarios representing a different characterization of uncer
tainty altogether (Watson and Kasprzyk, 2017; Eker and Kwakkel, 
2018). 

The robustness of alternatives generated by policy search therefore 
strongly depends on the choice of scenarios used for training and testing, 
both in terms of coarse-scale statistics (wet vs. dry) and the realizations 
of natural variability that lead to extreme events (Herman et al., 2020). 
This includes the case where the training data represent a baseline or 
historical scenario (e.g., Kasprzyk et al., 2013; Giuliani and Castelletti, 
2016; Quinn et al., 2018). These studies evaluate resulting alternatives 
over test scenarios spanning a wide range of potential future hydrology, 
but without analyzing the influence of the training scenarios on 
robustness. Robust optimization studies overcome this by optimizing 
robustness metrics over many samples of uncertain scenarios (e.g., 
Hamarat et al., 2014; Kwakkel et al., 2015). While they optimize over a 
large range of training scenarios, studies using robust optimization 
generally have not considered how well solutions can generalize 
out-of-sample. Robustness measures will typically include either regret, 
which quantifies the cost of choosing an incorrect solution, or satisfic
ing, which calculates the fraction of scenarios in which a policy meets a 
set of performance criteria (Lempert and Collins, 2007; Herman et al., 
2015). While both of these methods are effective in evaluating the 
performance of individual solutions, there is also the consideration of 
the robustness of the Pareto set as a whole to quantify deviations in 
multi-objective performance. 

While the properties of the test scenarios have been the focus of 
many prior studies using scenario discovery and related methods, the 
properties of the training scenarios and their influence on policy 
robustness have received relatively less attention. However, several 
recent studies have begun to analyze the effect of the choice of training 
scenarios in optimization problems. For example, Watson and Kasprzyk 
(2017) extend many-objective robust decision making by optimizing to 
several different sets of scenarios with varying properties. They then 
re-evaluate solutions in out-of-sample scenarios, quantifying robustness 
for individual solutions using the satisficing metric. Eker and Kwakkel 
(2018) optimize to scenarios with maximum diversity and policy rele
vance and re-evaluate solutions under the same uncertainty character
ization used in training. Giudici et al. (2020) propose an algorithm to 
select the smallest subset of training scenarios which can be used to 
generate robust solutions when re-evaluated against the full set to 
minimize computational cost. These studies all effectively aim to find 
training scenarios (scenario selection) that lead to robust out of sample 
performance. However, studies to date have not attributed 
multi-objective policy robustness to the hydrologic properties of the 
training scenarios, which holds significant implications for the design of 
robust policies under climate uncertainty. 

This study proposes an experimental design to determine how the 
properties of forcing scenarios influence the robustness of multi- 
objective policy alternatives across several combinations of test sce
narios. This framework is generalizable to any environmental planning 
problem that includes a no action case, an optimization component, and 

an ensemble of forcing scenarios exhibiting uncertainty. For the initial 
application, we focus specifically on how the hydrologic properties of 
climate scenarios influence reservoir policy alternatives. One additional 
scenario property is the baseline regret, which quantifies the extent to 
which policy search can improve upon the status quo based on a perfect 
foresight optimization for an individual scenario. Scenarios are clustered 
into groups with similar hydrology via unsupervised learning, and split 
into different combinations of training and test sets. The robustness of 
the resulting policies is quantified relative to the perfect foresight and 
baseline solutions to ensure that, at a minimum, all solutions outperform 
the baseline no-action policy. This is done with a normalized hyper
volume metric to represent the robustness of the Pareto-set as a whole, 
which simultaneously quantifies the changes in the performance of the 
solutions as well as their diversity when re-evaluated on a given test set. 
Finally, we perform hypothesis tests on several iterations of the train-test 
split to identify the properties of training scenarios that lead to the most 
robust results for each test set, with a particular focus on training pol
icies to scenarios which have high baseline regret. We demonstrate this 
approach using a simulation model of the northern California reservoir 
system coupled with an ensemble of transient downscaled climate 
scenarios. 

2. Case study 

2.1. Northern California reservoir system 

To support urban and agricultural growth amid intense intra- and 
inter-annual variability in hydrology, California has built a complex 
system of water resources infrastructure. Reservoirs in the foothills of 
the Sierra Nevada range capture winter and spring flood season flows to 
be delivered for agriculture and municipal supply, particularly during 
summer months. The State Water Project (SWP) and federal Central 
Valley Project (CVP) consist of a number of reservoirs and aqueducts 
throughout the Sacramento-San Joaquin river basin. The terminal delta 
of this system is the site of pumped water exports from north to south, 
which support agriculture and municipal supply in the southern portion 
of the state. Critical environmental requirements related to the salinity 
of outflows from the Delta are a major constraint on these exports. Delta 
exports are a key metric for water supply reliability in the state and have 
been found vulnerable to climate change, due to both changes in pre
cipitation levels and seasonal runoff timing (Anderson et al., 2008; Ray 
et al., 2020). 

In the Sacramento River Basin, three of the largest Sierra foothill 
reservoirs by volume (Shasta, Oroville, and Folsom) combine to a total 
of 9 million acre-feet (11.1 km3) of storage in parallel. These reservoirs 
play a major role in balancing the state’s human and environmental 
water needs. Carryover storage in these reservoirs, measured at the end 
of the water year (September 30), is a strong indicator of overall system 
performance and potential economic vulnerabilities (Draper and Lund, 
2004). Uncertainty in changing inter-annual precipitation patterns and 
reduced snowpack levels has the potential to be detrimental to carryover 
storage levels and their economic benefits (Medellín-Azuara et al., 
2008). Under a variety of projected changes to the hydrologic regime, 
operational adaptations are needed to maintain carryover storage levels 
to support multiple environmental and water supply related objectives 
while continuing to provide adequate flood control functions (Cohen 
et al., 2020). 

2.2. Simulation model (ORCA) 

We use the open source model Operation of Reservoirs in California 
(ORCA) to simulate the northern California reservoir system (https 
://github.com/jscohen4/orca/tree/cohen-2021-properties-training-sc 
enarios). ORCA is a simulation model that runs on a daily timestep and 
accurately reproduces historical operations (Cohen et al., 2020). The 
operating rules that drive ORCA are used as the baseline policy in the 
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current study. The model simulates the major components of the Cali
fornia system north of the Delta, including the Shasta, Oroville, and 
Folsom Reservoirs, and Delta water supply exports via the Harvey O. 
Banks (SWP) and Tracy (CVP) pumping plants (Fig. 1a and b). While not 
as spatially comprehensive as several other statewide models, ORCA is a 
pure simulation model, which allows for flexible adjustments to oper
ating rules and straightforward evaluation of alternative hydrologic 
scenarios, as required by the proposed set of policy search experiments. 

ORCA is driven by a basic mass balance update for each reservoir. 
Based on timestep t, storage Sr

t in reservoir r is updated based on inflows 
Qt

r, evaporative losses Lr
t , and a release ur

t : 

Sr
t = Sr

t−1 + Qr
t − ur

t − Lr
t (1) 

A target release RTr
t is determined by the greatest of three minimum 

operating requirements that must be satisfied for each reservoir: 

RTr
t = max

(
ur

t,environment, ur
t,flood, ur

t,demand

)
× cr

t (2) 

The first is a minimum environmental flow requirement ur
t,environment 

that varies based on the time of year and water year type. The second is a 
flood control release target ur

t,flood. The flood control release depends on a 
dynamic flood control rule curve, which is determined by a flood control 
index based on the previous day’s precipitation, and current reservoir 
storage. Finally, the minimum demand release ur

t,demand consists of water 
supply demands north of the Delta, south of Delta demands to be 
delivered by Banks and Tracy pumping plants, and a Delta outflow de
mand for environmental benefits and salinity control. These water de
mands are also partially controlled by current and projected reservoir 
storage, creating a feedback between reservoir operations and down
stream Delta management. 

A snowpack-to-streamflow forecast enables projections of reservoir 
inflows throughout the irrigation season. This forecast also determines 
the water year type classification, which influences both environmental 
flow requirements and water supply demands along with other opera
tional parameters. The snowpack-to-streamflow forecast is altered by an 
exceedance level ZWYI for the water year type prediction and Zr

wyt for 
individual reservoir inflows. The exceedance represents the confidence 
in the forecast. A lower exceedance level indicates a more conservative 
forecast, resulting in lower inflow forecasts and drier water year type 
classifications, and likely hedged reservoir releases. The forecast is 

updated each day in the simulation via Equation (3): 

Qf r
t = βr

dwt
SWEr

t + αr
dwt

+ Zr
wytσr

dwt
(3)  

Where Qft is the forecasted inflow for the remainder of the water year at 
reservoir r, SWEt is the snow water equivalent at day t, βk

dwt 
and αk

dwt 
are 

regression coefficients for day of water year dwt based on historical 
streamflow records, and σk

dwt 
is the standard deviation of remaining 

streamflow on dwt , also based on the historical record. 
A curtailment multiplier cr

t can hedge releases in cases where the 
system is not projected to meet a carryover storage target Cr

wyt at the end 
of the water year. The forecasted flow and current reservoir storage are 
used to determine what curtailment multiplier would be necessary to 
meet the carryover target (Equation (4)). The curtailment multiplier is 
also constrained by a maximum curtailment allowance cr

max,wyt . A higher 
maximum curtailment will allow for lower releases to occur in the 
irrigation season to maintain the cold-pool carryover storage. The daily 
curtailment multiplier during between May and September (5 ≤ M ≤ 9) 
is determined at each timestep via Equation (4): 

cr
t,5≤M≤9 = min

(

1, max

{
Qf r

t + Sr
t−1 −

∑365
dwt

RTt

)

Cr
wyt

, cr
max,wyt

})

(4) 

The release for each reservoir is then equal to the target release RTk
t 

times the curtailment factor ck
t : 

ur
t = RTr

t × cr
t (5) 

Further details concerning operations modeled in ORCA are 
described in Cohen et al. (2020). 

2.3. Data sources 

Several hydroclimatic time series are used as inputs for the simula
tion model. These include daily streamflows, spatially gridded and site- 
specific precipitation, and air temperature, along with spatially aver
aged and site specific monthly spatial snow water equivalent (SWE). For 
simulating historical operations, these data are obtained from the Cali
fornia Data Exchange Center (CDEC, 2018). Downscaled CMIP5 Climate 
and Hydrology Projections are obtained from the United States Bureau 
of Reclamation (USBR) (Reclamation, 2013; Brekke et al., 2014). These 

Fig. 1. (a) Map of northern California reservoir system modeled in ORCA. (b) Model schematic showing primary storage and pumping infrastructure.  
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consist of 31 GCMs simulated for various emissions scenarios to generate 
97 scenarios of precipitation and temperature on a daily timestep 
through 2100 (see Section 1 in the Supplementary Material for a list of 
institutions providing GCM projections). In the USBR study, outputs 
from these GCM simulations were routed through the Variable Infiltra
tion Capacity (VIC) model (Liang et al., 1994) calibrated for each basin, 
yielding additional streamflow and SWE projections to serve as model 
inputs. The choice to use a GCM ensemble in this study reflects several 
considerations. First, it provides the best available representation of 
physically-based transient changes to hydrology, including extreme 
events, despite the known limitations of GCM projections (Herman et al., 
2020). Second, it provides an accurate link between hydrologic vari
ables across space and time, linking precipitation, streamflow, temper
ature, and snowpack in multiple basins. This is difficult to achieve with 
synthetic generators, though these are rapidly improving for this pur
pose (e.g., Steinschneider et al., 2019). 

This ensemble exhibits the high degree of uncertainty associated 
with future precipitation and, to a lesser extent, temperature. In Fig. 2a, 
the trajectories of annual streamflow show an end-of-century average 
annual flow ranging from −/+ 50% of historical values. This creates a 
challenge for how to best adapt operations to balance the tradeoff be
tween flood control and water supply (Herman and Giuliani, 2018; 
Nayak et al., 2018). All scenarios in the ensemble show a decline in 
snowpack, ranging from 20 to 90% of the historical average. This is one 
of the best predicted aspects of climate change, although uncertainties 
exist in the extent and severity of this thermodynamic-hydrologic 
change (Cayan et al., 2001; Klos et al., 2014). This can be particularly 
impactful in mountainous regions where snowpack has historically 
functioned as a natural reservoir (Rhoades et al., 2018). As a result, the 
primary impact of rising temperatures in the region is earlier spring 

snowmelt timing (Knowles et al., 2006; Kapnick and Hall, 2010). These 
intra-annual streamflow shifts are predicted throughout the CMIP5 
ensemble based on the water year centroid, a representation of the 
center of mass of the annual hydrograph (Fig. 2c). The ensemble also 
shows uncertainty in the extent of flood risk changes (Fig. 2d) based on 
both uncertain dynamic climate changes as well as the potential in
creases given a shift from snow to rain and more rain-on-snow events 
(McCabe et al., 2007; Surfleet and Tullos, 2013; Huang et al., 2018). 
Lastly, the ensemble shows severity in uncertainty related to changes in 
drought patterns (Fig. 1e). Neither changes in drought nor flood statis
tics show a reliable relationship to the overall changes in total annual 
streamflow. Overall, the downscaled projection ensemble exhibits the 
significant uncertainty typical of climate adaptation studies, requiring 
careful attention to the choice of scenarios under which reservoir control 
policies are trained and tested. 

3. Methods 

The proposed experiments aim to analyze reservoir policy perfor
mance on held-out climate projections by selecting different subsets of 
training scenarios based on their hydrologic properties and a baseline 
regret property. The experiments require several components (Fig. 3): 
(1) policy search, which is used at several steps throughout the experi
ment; (2) multi-objective baseline regret, which uses perfect foresight 
optimization to determine the upper bound of system performance in 
each scenario; (3) unsupervised clustering of the scenario ensemble, 
taking into account baseline regret as well as hydrologic properties to 
determine train-test splits; and (4) the robustness of policies trained to 
one set of scenarios when evaluated on another set. Finally, we analyze 
the decision variables and dynamics of several robust policies identified 

Fig. 2. 50-year moving averages of CMIP5 projections showing a wide range of uncertainty in future flood and drought risk. (a) Streamflow in the Sacramento River 
downstream of its three largest tributaries (the Feather, Yuba, and American Rivers), denoting the 4-river index. (b) snowpack in the northern Sierra Nevada. (c) 
water year centroid, defined as the day of the water year at which half of the total annual streamflow has been observed. (d) Log-Pearson Type III distribution (LP3) 
100-year flood estimate for the Sacramento River flow below the American River. (e) The driest 5-year period in the 4-river index. The scenarios shown in yellow 
(RCP 8.5) and orange (RCP 6.0) are examined later in the analysis (Section 4.3). See Section 1 in Supplementary Material for institutions providing climate models 
and model abbreviations. 
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using different training sets in the policy search. 

3.1. Policy search 

We employ multi-objective policy search throughout this study to 
identify operational adaptations by parameterizing the structure of 
existing rules. In this study, policy search aims to solve the optimization 
problem: 

θ∗ = argmaxθ

(
1
n

∑

S
J(θ, s)

)

(6)  

Where s ∈ S are the training scenarios over which the particular opti
mization occurs, and n is the number of scenarios in set S. θ is the vector 
of decision variables representing the parameters of the operating pol
icy, and J is the vector of objective functions. θ∗ is the set of policies 
which correspond to the Pareto-optimal solutions. Thus, the policy 
search attempts to maximize the expected value of objectives J in sce
narios s across set S. In the specific case of a perfect foresight optimi
zation, S includes only one training scenario. 

The alternatives represented by the decision variables include: a 
revised snowpack-to-streamflow forecasting method, updated release 
curtailment rules, and changes in the timing of a dynamic flood control 

Fig. 3. Flow diagram of methods.  
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curve. Specifically: 

θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZWYI

Zr
wyt ∀r, wyt

cr
max,wyt ∀r, wyt

FSr ∀r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)  

Where ZWYI is the forecast exceedance level to determine water year 
indices and Zr

wyt is the rest-of-year inflow forecast exceedance level for 
each reservoir r in each water year type wyt. cr

max,wyt is the maximum 
curtailment ratio, and FSr represents a shift of the reservoir flood-control 
refill period earlier in the water year. Given the nr = 3 reservoirs and 
nwyt = 5 water year types, this leads to a total of 1 + nr(1 +2nwyt) = 34 
decision variables for each optimization. In prior work these individual 
actions have been shown to improve system performance by enumera
tion as snowpack decline continues later in the century (Cohen et al., 
2020), but their effect in tandem has not yet been analyzed as a policy 
search problem. The decision variables are optimized using a normal
ized set, with 60 discrete values, in order for consistency with alterna
tives defined in Cohen et al. (2020). Values from the normalized set are 
transformed in the model to reflect the actual bounds for each variable 
from the previous study: ZWYI , Zr

wyt ∈ [ − 3.6, 3.6], cr
max,wyt ∈ [0, 1], and 

FSr ∈ [0, 60]. The choice of decision variables reflecting system param
eters rather than a universal approximator function, such as a neural 
network (e.g., Salazar et al., 2016; Giuliani et al., 2017), is intended to 
support the interpretability of the resulting policies, as well as their 
compatibility with already in-place system operations. However, there 
are currently efforts to formulate methods that improve the interpret
ability of neural network-based policies, for example via sensitivity 
analysis (Quinn et al., 2019). 

The objectives J contain five performance metrics, including flood 
control, reservoir carryover storage at the end of the water year, Delta 
outflow representing salinity control and environmental benefits, Delta 
exports for water supply, and hydropower generation. The expectation 
of each objective across a scenario set is to be maximized (Equation (6)). 
The objective values over each scenario are calculated according to: 

JFlood(θ) = −
∑T

t=1

∑3

r=1
max

(
ur

t − DQr , 0
)2 (8)  

JCarryover(θ) =
∑N

y=1

∑3

r=1
Crr

y (9)  

JOutflow(θ) =
∑T

t=1

[
Qin,t − (TRPt + HROt)

]
(10)  

JExports(θ) =
∑T

t=1
[TRPt + HROt] (11)  

JHydro(θ) =
∑T

t=1

∑3

r=1
HPr

t (12)  

Where T is the number of days t in the simulation period, while N is the 
number of water years y. In the flooding objective, DQr is the down
stream levee capacity of reservoir r. Note in Equation (8) we maximize 
negative flooding for consistency with maximization of the other ob
jectives. Crr

y is the carryover storage in reservoir r at the end of water 
year y. Qin,t is the Delta inflow on day t, while TRPt (Tracy pumping 
plant) and HRPt (Harvey O. Banks pumping plant) are exports from the 
Delta to the Central Valley Project and State Water Project, respectively. 
Lastly, HPr

t represents the hydropower production from reservoir r on 
day t. These objective functions are intended to capture the necessary 

balance between key aspects of system performance. 
The optimization is performed using the Non-Dominated Genetic 

Sorting Algorithm (NSGAIII) (Deb and Jain, 2013) via the open source 
Platypus library (Hadka, 2015). To support this choice, algorithm per
formance was tested over 70 scenarios with three random trials of 50, 
000 maximum number of function evaluations (NFE) each, obtaining 
similar results for each trial. The results were compared with alternative 
MOEAs, including ε-MOEA, NSGAII, and SPEA2, which showed no sig
nificant improvement over NSGAIII for this problem. In further in
stances where this problem is solved, 10,000 NFE are used when 
optimizing to a single scenario (perfect foresight), while all other opti
mizations with various train-test splits use 50,000 NFE. As the number of 
scenarios increases, the optimization is slower to converge visually 
based on hypervolume, influencing the choice of 10,000 vs 50,000 NFE. 
All optimization runs were performed on the HPC1 cluster at UC Davis, 
which includes 60 nodes with 16 cores each running at 2.4 GHz. 

3.2. Baseline regret 

Multi-objective baseline regret quantifies the maximum level to 
which system performance can be improved for a particular scenario, 
within the constraints imposed by the policy function and existing 
infrastructure. This property is scenario-specific: each time it is calcu
lated the baseline policy is held constant, while the scenario differs. This 
concept draws from the Expected Value of Perfect Information (EVPI) 
metric proposed by Giuliani et al. (2015b) for multi-objective problems. 
By incorporating the results of a perfect foresight optimization, it cou
ples the EVPI approach with a regret metric (Savage, 1951), which de
scribes the performance of a policy based on its distance from the best 
possible alternative. Traditional decision making under uncertainty 
problems often use the minimax regret approach, in which the goal is to 
choose the alternative that minimizes the maximum regret across all 
scenarios (e.g., Giuliani and Castelletti, 2016). The baseline regret 
metric differs from minimax regret because it applies only to the no 
action case of an individual scenario, rather than policy alternatives, 
reflecting the EVPI approach. It is based on the performance of both a 
baseline solution and perfect foresight solution set for each scenario, as 
the performance of any other effective policy solution is expected to be 
bounded by these two. As a result, the baseline regret partially depends 
on the suitability of the baseline policy for each climate scenario. 
However, this still reflects the ability of the system to adapt to future 
change, even if it is starting from a poor baseline. 

3.2.1. Baseline policy performance and perfect foresight optimization 
The baseline policy simulation uses parameters θB to best represent 

the dynamics of the system shown in historical observations. The 
resulting baseline policy solution performance is denoted as JB(s) =

J(θB, s), a one-dimensional vector containing a single value for each 
objective, rather than a full Pareto set. Under the baseline policy, this 
performance is not optimized; it should be viewed as a simplified rep
resentation of the several performance considerations of a real-world 
system operator. 

The upper bound performance is established by a perfect foresight 
optimization. In this case, the policy search is performed over each 
scenario individually to determine the objective values if the future were 
known exactly. We define the perfect foresight performance metric as 
JP(s) = JP(θ*, s), where the optimized parameters θ* are specific to the 
training set consisting of the single scenario s. 

3.2.2. Hypervolume metric 
We use a hypervolume metric to quantify the baseline regret of each 

scenario s in the ensemble. The hypervolume is defined as the volume in 
the objective space between the perfect foresight Pareto set JP(s) and the 
baseline policy performance JB, which is used as a reference point. While 
baseline regret is calculated in a five-dimensional objective space for this 
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application, the hypervolume concept is illustrated in two dimensions in 
the top row of Fig. 3. Solutions in the perfect foresight Pareto front JP(s)
are anticipated to dominate the baseline policy performance JB(s). The 
rare solutions for which this does not occur are not considered in the 
remainder of the calculations. In general, a larger hypervolume value 
indicates improvement over the baseline policy as well as a higher va
riety in alternatives among the Pareto set. 

Initially disregarding the baseline solution, we normalize all objec
tive values in JP(s) ∈ [0, 1] to reduce scaling issues between the objec
tives. The baseline policy performance is normalized accordingly to 
JB ∈ ( −∞, 0] to allow for consistent comparison of baseline regret across 
scenarios. We then calculate the baseline regret R(s) based on the 
hypervolume h(…) between the perfect foresight Pareto set and the 
baseline policy reference point, such that: 

R(s) = h(JP(s), JB(s)) (13) 

The baseline regret describes the performance of a perfect foresight 
optimization relative to the baseline for each climate scenario. Because 
the objective values are normalized, it provides an upper bound per
formance metric that can be directly compared across scenarios for a 
given policy. 

3.3. Scenario clustering 

Unsupervised clustering provides the basis for separating climate 
projections into training and test sets for the policy search. The clus
tering is based on three features: averaged annual streamflow, averaged 
peak annual snow-water equivalent, and the baseline regret metric 
described above. These features are calculated on the time horizon 
2070–2100, which is chosen as the period of analysis due to its large 
deviation from historical hydrologic conditions and thus high regret 
(Fig. 2 in the Supplementary Material). This time period also contains 
much more variability in hydrologic properties than do earlier periods in 
the projected time horizon (Fig. 2). 

The three features are calculated for each of the 97 scenarios in the 
ensemble and clustered using the K-means algorithm with K = 3, equal 
to the number of features. This allows for a minimally complex char
acterization of scenario properties based on cluster centroids. The 
resulting clusters are denoted as C1,C2, and C3. 

3.4. Training and test sets 

We first split each cluster Ci randomly into roughly equal training 
and test subsets, S and St , respectively. Various combinations of these 
training and test subsets make up the overall training and test sets, Si and 
Stj, respectively (Table 1). While the goal of this division is to ensure that 
test information is never used in training, we acknowledge the possi
bility for interdependence among the ensemble of climate scenarios, for 
example using the same model or emissions scenario, or different models 
relying on the same components (Steinschneider et al., 2015b). 

3.4.1. Training and testing 
Policy search runs separately for each training set to identify the 

Pareto set of policies θ∗
Si 

corresponding to each training set of scenarios 
Si: 

θ∗
Si

= argmaxθJ(θ, Si) (14) 

In order to increase the extent and continuity of the Pareto-optimal 
solutions, three trials of each optimization are run using varying 
random seeds. The use of baseline regret as a scenario property links the 
perfect foresight optimization to various combinations of training sce
narios without explicitly using perfect foresight to inform the choice of 
all training scenarios. 

We next re-evaluate the policies trained to set Si over each scenario 
in the test set Stj, resulting in a set of objectives JSi (s) for each test sce
nario: 

JSi (s) = J
(

θ∗
Si

, s
)

∀s ∈ Stj (15) 

We consider only solutions that also dominate the baseline policy for 
all scenarios in the test set. This is achieved via a filtering step which 
identifies the solutions that will at a minimum outperform the status quo 
in all re-evaluations. We identify these particular policies and solutions 
as policy set θi,j and solution set Ji,j. This process results in a total of 28 
pairwise combinations of training and test scenarios. 

3.4.2. Set diversity 
While the training and test sets are delineated via K-means clus

tering, the diversity of each set should also be considered for the anal
ysis. This can help determine if policy performance across train-test set 
combinations is influenced by the scenario diversity in each set. Di
versity is determined via Equations (16) and (17), adapted from Carlsen 
et al. (2016) and Eker and Kwakkel (2018). In Equation (16), DS rep
resents the diversity of set S. w, the weight assigned to the extent the 
mean distance, is 0.5 in this case. dl,k is the Euclidean distance based on 
the m = 3 features (FNF, SWE, baseline regret) for scenarios l and k. In 
Equation (17) fm,l and fm,k are the values for these features. To ensure 
equal weighting of all features, fm,l and fm,k are normalized from 0 to 1 
across all scenarios. 

DS = (1 − w)min
∀l,k∈S

{
dl,k

}
+ wmean

∀l,k∈S

{
dl,k

}
(16)  

dl,k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

m

(
fm,l − fm,k

√ )2
(17)  

3.5. Policy robustness 

We would like to evaluate the robustness of policies trained to set Si 
when re-evaluated over each scenario s in set Stj, for all combinations of 
(i, j). Because the performance is multi-objective across a range of hy
drologic scenarios, we use a hypervolume metric normalized by the 
baseline regret (Section 3.2) to represent the robustness of the policy set 
as a whole. 

Table 1 
Outline and properties of training and test sets.  

Training Sets Si  # of scenarios Diversity Test Sets Stj  # of scenarios Diversity 

S1 High-regret  13 0.241 St1 High-regret  12 0.206 
S2 Low-regret wet  17 0.199 St2 Low-regret wet  16 0.162 
S3 Low-regret dry  20 0.130 St3 Low-regret dry  19 0.131 
S4 High-regret/low-regret wet (S1 ∪S2) 30 0.233 St4 All test scenarios (St1 ∪St2 ∪St3) 47 0.202 
S5 High-regret/low-regret dry (S1 ∪S3) 33 0.230    
S6 Low-regret wet/dry (S2 ∪S3) 37 0.197    
S7 All training scenarios (S1 ∪S2 ∪S3) 50 0.233     
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3.5.1. Hypervolume robustness metric 
Robustness is represented by a normalized hypervolume metric for 

each solution set. The hypervolume for a solution set of train-test set 
combination (i, j) applied to scenario s is defined as that between the 
baseline reference point JB(s) and solution set Ji,j: h(Ji,j(s),JB(s)). This is 
normalized by the baseline regret R(s), giving the hypervolume 
robustnesss metric HRi,j(s): 

HRi,j(s) =
h
(
Ji,j(s), JB(s)

)

R(s)
(18) 

Thus the hypervolume robustness metric will always be a fraction of 
the baseline regret R(s), ensuring that it can be appropriately compared 
across train-test combinations (see fourth row in Fig. 3). A higher 
normalized hypervolume metric denotes a more robust policy set, with a 
value of 1 equaling the performance of perfect foresight policies. This 
ensures that the robustness of a policy set is not measured only by its 
ability to improve system performance relative to the baseline, but also 
the extent to which the policies are able to reach the maximum attain
able level of system performance. 

For each train test-combination, we can obtain a set of hypervolume 
robustness metric values HRTi,j, where: 

HRTi,j =
{

HRi,j(s1), HRi,j(s2), …, HRi,j(sn)
}

∀s ∈ Stj (19) 

In general, larger hypervolume robustness metrics will indicate two 
properties of the objective outputs. The first is that as hypervolumes 
increase, the distance between the baseline policy JB(s) and policy 
performance set Ji,j(s) will increase, indicating higher performance im
provements compared with the baseline policy. Additionally, a larger 
hypervolume indicates a higher diversity of solutions across the Pareto 
front. 

3.5.2. Rank-sum tests 
For each pair of train-test combinations with identical test sets, we 

perform a one-sided Mann-Whitney U test (Mann and Whitney, 1947) to 
determine if the hypervolume of a given training set exceeds that of a 
second training set when evaluated on the same test set. This test aims to 
determine if policies trained to a test set with particular properties are 

significantly more robust. With p ≤ 0.05, we reject the null hypothesis 
and conclude that the distribution of hypervolume across test scenarios 
Stj in sample HRT1,j is greater than that in sample HRT2,j with statistical 
significance. 

3.6. Policy analysis 

Finally, we analyze individual policies chosen from the most robust 
training sets by considering tradeoffs between the objective values. The 
decision variables of these policies are compared to the baseline policy 
to understand what combinations of adaptations to system operations 
could be promising under a range of future climates. We then compare 
the dynamics in terms of reservoir storage and water supply exports to 
those obtained by simulating the baseline policy on the same hydrologic 
inputs, and then relate key differences to the decision variables inter
preted in the context of the system. 

4. Results and discussion 

4.1. Scenario clusters 

Scenarios are divided into three clusters based on their streamflow, 
snowpack, and baseline regret, as shown in Fig. 4. Based on the cluster 
centroids, we define them as high-regret, low-regret wet, and low-regret 
dry. The high-regret scenarios contain a mix of streamflow and snow
pack values distributed throughout their respective ranges, indicating 
that baseline regret does not solely depend on annual hydrologic prop
erties. The clear separation between the high-regret and low-regret 
clusters suggests the possible utility of this metric in determining com
binations of training scenarios in policy search experiments. 

The low-regret scenarios occur in both wet and dry clusters. How
ever, the ranges of streamflow and snowpack values overlap across these 
two clusters. (Fig. 4a and b). Specifically, this occurs in two cases: first, 
some wetter scenarios may also show high levels of snowpack decline 
due to severely warmer temperatures; second, there exist dry scenarios 
with relatively higher snowpack values than other low-flow scenarios 
due to less warming. This overlap, along with the much clearer sepa
ration between high-regret and low-regret clusters, supports the choice 

Fig. 4. Scenario clusters in (a,b,c) two-dimensional projections and (d) all three properties: full natural flow (streamflow, FNF), snow-water equivalent (snowpack, 
SWE), and baseline regret. 
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of K = 3 clusters to minimize complexity. 

4.2. Training set robustness comparison 

The three clusters, each split randomly into training and test subsets, 
are combined to create different train-test splits. The overall proportion 
of training to test sets out of all available scenarios is 50:47 (Table 1). 
From all possible combinations combined to create different train-test 
splits created in this process, a total of seven training sets and four 
test sets are chosen to demonstrate the training-testing process. These 
are described in Table 1. 

These sets are used to determine the performance of policies opti
mized to each training set when re-evaluated in each test set, measured 
according to the hypervolume robustness metric. Fig. 5 shows the dis
tributions of the resulting hypervolume metric for each train-test split, 
plotted as cumulative distributions. 

Distributions shifted further right indicate higher robustness of the 
policy sets over the test set. While these distributions support the 
interpretation of the performance differences between policy sets 
trained on different scenarios, the rankings of policy sets must be shown 
to be statistically significant. These conclusions are made using the 

Mann-Whitney U test between each pair of train sets over each test set, 
with results shown in Fig. 6. 

For the high-regret test set (Fig. 6a), the most robust policies are 
those optimized to the high-regret and all-scenario training sets, where 
the latter contains the former. Neither of these significantly outperforms 
the other. This finding is not surprising, as the policies trained to sce
narios with similar properties demonstrate the best out-of-sample per
formance. However, this result does not always hold for the other test 
sets. For example, in the test set consisting of low-regret wet scenarios 
(Fig. 6b), the best-performing set of policies are those trained to a mix of 
high-regret and low-regret wet scenarios (S4), which ranks higher than 
every other training set. The training sets containing dry scenarios and 
lacking wet scenarios (S3 and S5) perform worst for the high-regret test 
set. Set S1, consisting of only high-regret scenarios, outperforms set S6, 
which consists of wet and dry low-regret scenarios. This indicates that 
training to only high-regret scenarios may be more effective than 
training to low-regret scenarios regardless of the variability in scenarios’ 
hydrologic properties. This result shows that adding high-regret sce
narios to the training set—whether they are wet or dry—improves the 
robustness of the optimized policies when tested in out-of-sample wet 
scenarios. Additionally, including low-regret dry scenarios in training 

Fig. 5. Cumulative distributions of the hypervolume metric evaluated on each test set (A–D). Each CDF represents the distribution of performance over all scenarios 
in the test set for the Pareto front of policies trained to the scenarios identified by the line style. 
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sets for policies tested on low-regret wet scenarios degrades policy 
performance. Similar results are shown for the low-regret dry test set 
(Fig. 6c), where the highest ranking training set is again not only the dry 
scenarios (S3), but also a mix of high-regret and low-regret dry (S5) 
scenarios. In addition, training sets including low-regret wet scenarios 
(S2 and S4) have the lowest ranking when their corresponding policies 
are simulated over the low-regret dry test set. Lastly, the high-regret 
training set continues to outperform the low-regret wet/dry training 
set for St4, further highlighting the good training value of high-regret 
scenarios. 

For the final test set St4, which includes all testing scenarios (Fig. 6d), 
the majority of Mann-Whitney U tests fail to reject the null hypothesis. 
However, results indicate that the high-regret training set (S1) out
performs the low-regret training sets (S2, S3, and S6), as does the all- 
scenarios training set (S7). Especially notable is that the high-regret 
training set S1 outperforms the combined wet-dry low regret training 
set S6 when testing to all scenarios. Since both of these training sets have 
wide ranges for the hydrologic properties, this further highlights the 
benefit of high-regret training scenarios over low-regret scenarios. 

The diversity of the training sets can be analyzed in tandem with 
these results. The high-regret (S1) and all training scenario (S7) sets are 
the most diverse (Table 1). Based on our specific quantification of set 
diversity, this is an artifact specifically of the high-regret values, which 
contain more outliers and a more skewed distribution across all sce
narios (Fig. 4a and b). The high mean distances that occur from this 
cause the diversity values to be larger whenever the high-regret sce
narios are included in a set. This leads to the fact that the three sets 
which do not contain the high-regret scenarios (S2, S3, and S6) are the 
least diverse of the sets. It could then be concluded that the larger di
versity of the high-regret set influences its good performance. However, 
since this value is skewed by just a few outliers, it should not be 
considered the only reason for the effective training value of the high- 
regret sets. 

Training sets S1 (high-regret only) and S6 (low-regret wet/dry) have 
similar ranges across both hydrologic properties. The lower diversity of 
set S6 is influenced by its small range in baseline regret values, as well as 
the fact that is has several scenarios in close proximity in terms of hy
drologic properties (Fig. 4c), leading to a skewed minimum distance 
value in the diversity calculation. Set S6 has almost three times the 
number of scenarios as set S1, which contributes to its low diversity 
calculation. Several close-proximity scenarios could be omitted to make 
set S6 more diverse. This would not improve the performance as the set 
would lose valuable training data and potential for overfitting would 

increase. Therefore, the high diversity of set S1 is not the only factor 
controlling the set’s good performance. Its high baseline regret values 
will enable the policy search to find solutions more robust to vulnerable 
conditions. Additionally, there may be many other scenario properties 
that are not examined in this study which contribute to set performance 
and scenario training value. These include hydroclimatic properties 
such as temperature rise, flood frequencies, flow timing, precipitation, 
drought patterns, soil moisture, and evapotranspiration. 

Because the high-regret training set performs no worse than training 
to all scenarios, the strategy of designing a training set around scenarios 
with high baseline regret may serve to reduce the computational cost of 
policy search for large-ensemble cases, and/or to reserve more scenarios 
for testing. To support this point, Table 2 compares the computational 
cost for different aspects of policy training in this study. Training to 
scenarios with high baseline regret (which includes the perfect foresight 
optimizations) required 9733 computing hours, roughly three times less 
than training to all scenarios. Training to scenarios with high baseline 
regret improves the efficiency of policy search without sacrificing 
robustness relative to the case of training to all scenarios. This denotes 
the benefit of analyzing the hydrology and baseline regret of scenarios 
before a train/test split is determined. 

Thus, it is also possible to determine the conditions under which a 
high baseline regret set will give computational benefits by generalizing 
the requirements outlined in Table 2. This condition is described as: 

fpρp + ηfrρ < fAρA (20)  

Where η represents fraction of overall scenarios which are in the high- 
regret set, fP, fR, and fA denote the number of function evaluations, 
and ρP, ρR, and ρA denote the number of random seeds for each of the 
perfect foresight, high-regret only, and all training scenario sets, 
respectively. This generalization can potentially be applied to other 
planning problems in which the baseline regret is determined a priori, 
and where there is a choice about how many high-regret solutions to 
include in the training set. 

This analysis has important implications for the generalizability of 
this approach. Several variables may be degrees of freedom, for instance 
numbers of random seeds ρ and function evaluations f necessary for 
convergence to diverse and near-optimal Pareto-solutions sets will vary 
across models. The fraction of high regret scenarios η may differ based 
on the number of clusters chosen. In some instances, if the level of 
baseline regret is not a significant source of variation among scenarios, it 
may not provide a way of separating different training sets using a 

Fig. 6. Results of pairwise Mann-Whitney U rank-sum tests. Each test has the null hypothesis that the hypervolume metric associated with the training set in each 
row is less than or equal to that associated with the column. The subplots correspond to the four test sets. A row where the null hypothesis is rejected (blue) for each 
cell denotes a robust policy set that ranks highest for the particular test set. 
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clustering approach. Furthermore, differences in performance among 
training sets may be due to confounding factors not reflected in the 
abstracted scenario properties, especially for hydrologic timeseries 
which can be summarized in a number of different ways. However, the 
proposed clustering and train/test methodology is still generalizable 
across environmental planning applications to pinpoint the most 
important scenario properties for policy training and out-of-sample 
performance, therefore discovering conditions for computational 
benefits. 

Furthermore, results presented in Figs. 5 and 6 must be interpreted in 
light of the fact that the future climate trajectory is uncertain. It is likely 
that more information about future hydrology will be collected over 
time, and this process could complement policy search methods in the 
context of dynamic planning (e.g., Hui et al., 2018; Fletcher et al., 2019). 

Therefore, in this study the methodology aims to identify a training 
strategy that leads to robust outcomes to both uncertain and clustered 
future climate, measured according to multi-objective performance 
bounded by the baseline policy and perfect foresight cases. We find that 
training to scenarios with high baseline regret is competitive with 
training to all scenarios across a range of future climates, and often leads 
to the best out-of-sample performance. This is likely due to higher 
inter-annual variability in these scenarios. Based on a higher diversity of 
extreme events across individual scenarios and potential poor baseline 
performance in the high-regret cluster, solutions will give both a wider 
variety of tradeoffs in objectives and improvements relative to baseline 
policy performance. These findings extend to both wet and dry futures, 
where the inclusion of high-regret scenarios in the training set out
performs using exclusively either wet or dry training scenarios. This 

Table 2 
Description of computing requirements for several optimizations included in this study. Note that less NFEs are required for a perfect foresight, as these optimizations 
are quicker to converge. Times per function evaluation and total computing hours are specific to the UC Davis HPC1 computing cluster.   

Max NFE per optimization Scenarios per 
optimization(n)

Time per function evaluation # of random seeds (ρ) Total computing hours 

Perfect foresight (P) 10,000 1 12s 97 (individual scenario trials) 3,233 h 
High-regret only (R) 50,000 13 156s 3 (random seed trials) 6,500 h 
All training scenarios (A) 50,000 49 588s 3 (random seed trials) 24,500 h  

Fig. 7. Parallel axis plots displaying various 
results of train-test combinations. (a,b,c) 
policies trained on sets S4, S1, and S6, 
respectively, tested on set St2. (e,f,g) policies 
trained on sets S5, S1, and S6, respectively, 
tested on set St3. Solutions highlighted by 
the yellow-green gradient represent solu
tions for which the expected value of solu
tions across the testing scenarios dominate 
the baseline policy solution. This gradient 
represents the solutions’ ranks for the flood 
objective in their particular Pareto set. Grey 
solutions dominate the baseline in terms of 
expected value, but do not dominate the 
baseline for each individual scenario in the 
testing set. The individual highlighted solu
tions denote four different compromise pol
icies (S4, S5, S1, and S6 policies) that are 
analyzed in detail. Subplots (d) and (h) show 
robust performance of the four compromise 
policies over an individual scenario in the 
corresponding test set. These particular sce
narios are also highlighted in Fig. 2.   
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result links to the importance of evaluating perfect foresight policies in 
individual scenarios when designing the training set to establish an 
upper bound for system performance. 

4.3. Policy analysis 

The final step of the analysis is to determine what specific adapta
tions are implemented by the robust policies. This analysis focuses on six 
specific train-test splits, chosen based on their high-ranking perfor
mance: (1) policies trained on set S4 and tested on set St2, (2) policies 
trained on the set S5 tested on set St3, (3,4) policies trained on set S1 
tested on sets St2 and St3, and (5,6) policies trained on set S6 tested on 
sets St2 and St3. The average performance measures across all scenarios 
for these sets are shown by the highlighted solutions on the parallel-axis 
plots in Fig. 7. While the expected value of all highlighted solutions 
dominates the baseline policy, there are still several significant tradeoffs 
between the objectives, indicated by their nonlinear correlations (see 
Section 3 in Supplementary Material). For the S4/St2 train-test combi
nation, these include statistically significant tradeoffs between hydro
power and flooding (ρ = 0.53) and water supply and Delta outflow (ρ =

0.97). The same tradeoffs exist in the dry test scenarios, which also 
exhibit tradeoffs between carryover storage and flooding (ρ = 0.49). In 
general, these relationships reflect the fact that higher storage levels 
benefit several of the proposed objectives, although they can be detri
mental to the flooding objective, which is to be minimized. While this 
high water elevation benefits the hydropower and carryover storage 
objectives, it can induce larger releases if large storms occur later in the 
spring. 

We have shown that training set S4 (high-regret/low-regret wet) will 
yield the best performing policies for the low-regret wet test set St2 
(Fig. 6b). Likewise, training set S5 (high-regret/low-regret dry) will 
yield the best performing policies for the low-regret wet test set St3 
(Fig. 6b). This is reflected in Fig. 7(a,b,c), (e,f,g) where the highlighted 
Pareto solutions for S4 and S5 are shifted higher than S1 and S6 over their 

particular test sets, as shown by the higher maximum percent of baseline 
values (for the flood objective lower minimum) in Fig. 7a, e. These 
ranges in Fig. 7(a,b), (e,f) also reflect the better performance of the high- 
regret training set S1 over the low-regret wet/dry training set S6 for both 
test sets. 

We next examine the four compromise policies that balance the 
tradeoffs in performance measures, denoted as the S4, S5, S1, and S6 
policies in Fig. 7. The S4 and S5 policies, coming from the most robust 
training sets for the respective test sets, also give the best performance 
on the individual scenarios (Fig. 7d,h). The alternatives that these pol
icies employ are shown in Fig. 8 along with a comparison to the decision 
variables of the baseline policy. Each column in the tables represents the 
decision variable which occurs for that specific water year type. 

In the S4 policy, Shasta and Folsom reservoirs have higher maximum 
allowable curtailments cr

max,wyt than in the baseline policy. These higher 
maximum curtailment levels will allow for increased hedging of re
leases. The curtailments for Oroville reservoir are higher in wet, above 
and below normal years, but lower in dry and critical years. All three 
reservoirs also have a flood pool shift of at least 10 days forward in the 
water year for the S4 policy. In wet and above normal years, Shasta and 
Oroville use low Zr

wyt values, indicating a very conservative forecast with 

a high exceedance level. In drier water year types, the Zr
wyt values are 

generally close to or greater than the baseline exceedance levels. For 
Folsom reservoir, these values vary much more across water year types. 
The differences between operational adaptations at each reservoir 
highlight the complexity of managing the multi-reservoir system, and 
the potential to design adaptations for system-wide benefit. 

Fig. 9 shows the system dynamics of the baseline policy compared to 
the compromise policies in a time series over one scenario from each 
corresponding test set: an RCP 8.5 scenario (CNRM-CM5) for low-regret 
wet, and an RCP 6.0 (MIROC5) scenario for low-regret dry. Under the 
baseline policy, reservoir storage levels are vulnerable to snowmelt loss 
regardless of water year type, evidenced by low storage levels in the 

Fig. 8. Policy tables showing decision variables for: the baseline policy, the S4 policy (high-regret/low-regret wet set), and the S5 policy (high-regret/low-regret dry 
set). The columns denote water year type classifications associated with each decision variable, corresponding to wet, above normal, below normal, dry, and critical. 
Policy tables for the S1 and S6 policies can be found in Section 4 of the Supplementary Material. 
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irrigation season even in wetter years. The S4 policy mitigates this 
vulnerability via an intra-annual hedging, resulting in higher reservoir 
storage during the early irrigation season (May–June); The S5 policy 
functions similarly. For both policies, this intra-annual hedging dynamic 
is supported by the adapted snowpack-to-streamflow forecasts, where 
underpredictions will cause some release curtailments to conserve for 
potential low inflows later in the season. However, curtailments can be 
partially avoided with higher carryover storage due to the flood pool 
shift. This seasonal shift is also reflected in the Delta exports (Fig. 9d,h), 
which maximize total volume by shifting throughout the year. The 
remaining S6 and S1 policies also exhibit the intra-annual hedging 
strategy (see Section 4 in Supplementary Material for these policies’ 
decision variables). However, given that reservoir storage becomes 
higher in the flood season and carryover storage drops lower when these 
policies are deployed, they are slightly less effective (Fig. 9b,c,f,g). 
Additionally, they often will have periods of low Delta exports (Fig. 9d, 
h). This highlights that a policy from the best performing training set for 
a particular test set may be more likely to give better performance for 
scenarios in that test set. 

There are two major differences between the S4 and S5 policies 
stemming from the hydrologic properties of their respective training 
scenarios. The first is that the S5 policy tends to curtail releases more 
during dry and critical years, reflected in its conservative forecasts and 
high maximum curtailment allowances. The S4 policy hedges less during 
dry and critical years, and instead relies on larger storage brought about 
by intra-annual hedging. This is further driven by the low maximum 
curtailment allowances for Oroville during these water year types. The 
second difference is that the S4 policy tends to hold less storage during 
the flood season than the baseline policy, while the S5 policy does not. 
For the S4 policy, this makes curtailment less necessary later in the mid- 
to late summer, and reduces flood vulnerabilities. The fact that policies 
exist that can improve upon both of these objectives via the same policy 
parameters is the main reason why flood control and carryover storage 
do not have a significant tradeoff in the wet test set. In summary, 
analysis of these two compromise policies shows how training to sce
narios with high baseline regret can yield policies with improved per
formance on out-of-sample hydrology to balance conflicting objectives. 

5. Conclusions 

This study advances the design and testing of robust control policies 
as an adaptation to uncertainty in environmental planning problems, 
contributing an experimental design to better understand the influence 
of the forcing scenario properties and baseline regret of training sce
narios on the robustness of resulting policies. We demonstrate this 
approach for the northern California reservoir system to determine how 
transient downscaled climate scenarios impact tradeoffs between water 
supply, flood control, environmental flows, and hydropower generation. 
Results indicate that policies trained to scenario sets with high baseline 
regret tend to outperform those generated with other training sets in 
both wetter and drier futures. Additionally, the policies adapted under 
these conditions develop an intra-annual hedging strategy to mitigate 
the effects of snowpack decline under rising temperatures. The approach 
highlights the general importance of considering the specific properties 
of training scenarios in the design of robust control policies. 

Beyond the pairwise comparison of train-test splits, this analysis also 
highlights the general difficulty of maintaining out-of-sample perfor
mance for reservoir control policies. This is driven primarily by extreme 
events that occur infrequently by definition and which may be the result 
of natural variability rather than anthropogenic change, creating a risk 
of overfitting to the training set. The baseline regret, based on perfect 
foresight optimization, provides a measure of regret to place this per
formance degradation in context. Unlike the traditional minimax regret 
strategy, where the alternative that minimizes the maximum regret 
across all scenarios is chosen, our approach uses a regret metric to 
choose training scenarios rather than optimal alternatives. We show that 
optimal policies benefit from training to sets of scenarios with a high 
regret for the baseline solution. Our methodology also provides a way to 
group ensembles of scenarios using an unsupervised learning approach, 
along with other hydrologic properties including streamflow and 
snowpack, to create an experiment which maps the relationship between 
training and test scenarios to the outcome of policy robustness consid
ering both the performance and diversity of solutions. The latter is 
particularly important given the concern with reversible adaptations to 
operations which can be changed over time (Herman et al., 2020). 

While this study considers uncertainty in hydrology due to climate 
change across downscaled model projections, it could further test the 

Fig. 9. Time series of system states and flows for baseline and adaptation policies in individual test scenarios. The left and right columns show results from the 
individual wet and dry scenarios, respectively. (a,e) Daily inflows to each reservoir with water year types highlighted; (b,c,f,g) Reservoir storage; (d,h) monthly Delta 
exports, primarily for agricultural and municipal water supply. 

J.S. Cohen et al.                                                                                                                                                                                                                                 



Environmental Modelling and Software 141 (2021) 105047

14

robustness of the resulting policies against more realizations of sampling 
variability from a synthetic generator, or supplement the training set 
with the same. Increasing the number of scenario realizations would 
allow for additional hydrologic variables to be included in clustering, 
such as changes in flood and drought frequencies and intra-annual 
streamflow shifts. Additionally, policy training might be improved 
with a more flexible policy structure beyond parameterizing the existing 
system, such as a neural network—though this may also increase the 
potential for overfitting due to increased degrees of freedom. Policy 
training can also be coupled with infrastructure design (e.g. Bertoni 
et al., 2020), which in many regions will be required to cope with the 
more extreme projections of hydrologic change. Lastly, while our 
approach is demonstrated with an exampled from the water resources 
management field, it can generalize to any environmental, natural re
sources, or infrastructure planning problem which includes a no action 
case, an optimization component, and a forcing scenario ensemble. 
Future work should explore the impacts of these additional experimental 
components in combination with the analysis of the training scenarios 
properties presented here to further improve robust policy search under 
uncertainty. 
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