
1.  Introduction
Increasingly, water resources models combine observed data and computational experiments to support 
the development of theory regarding system processes (Clark et al., 2015a, 2015b), particularly those for 
which existing theory may insufficiently explain available observations (Karpatne et  al.,  2017; Schlüter 
et al., 2019). One such process is human behavior, which represents a significant source of uncertainty in 
simulation models of water resources systems (Konar et al., 2019), as humans interact with and depend on 
water systems in numerous ways (Lund, 2015; Schill et al., 2019). Examples include urban and agricultural 
water demand (Chini et al., 2017; Marston & Konar, 2017), population displacement (Müller et al., 2016), 
and the nonstationary behavior of individuals and institutions across multiple sectors and scales (Mason 
et al., 2018; Monier et al., 2018; Muneepeerakul & Anderies, 2020). The increasing availability of multisec-
toral data describing these processes provides the opportunity to complement theory by inferring plausible 
models from data (Brunton et al., 2016; Montáns et al., 2019).

Many subfields of water resources have focused on the challenge of modeling human behavior, includ-
ing: dynamical systems models, as in socio-hydrology (Sivapalan et al., 2012) and social-ecological systems 
(Berkes & Folke, 1998); hydro-economic models (Harou et al., 2009); and agent-based modeling (An, 2012). 
Each offers differing perspectives on which system components should be treated as exogenous, controlled, 
or self-organized, and which behaviors can be adequately described by data versus theory (Anderies, 2015). 
However, all share the goal of accurately describing observed dynamics of the system while managing the 
complexity of the spatial and temporal representation (Baumberger et al., 2017; Höge et al., 2018). These 
approaches are not necessarily exclusive, and can be connected through a common experimental fram-
ing—for example, Müller and Levy (2019) review how economic theory can be coupled with data-driven 
sociohydrologic modeling to support and develop theories of human influence in water systems. Similarly, 
agent-based modeling studies have integrated data-driven and theory-driven approaches to investigate sys-

Abstract  Simulations of human behavior in water resources systems are challenged by uncertainty 
in model structure and parameters. The increasing availability of observations describing these systems 
provides the opportunity to infer a set of plausible model structures using data-driven approaches. 
This study develops a three-phase approach to the inference of model structures and parameterizations 
from data: problem definition, model generation, and model evaluation, illustrated on a case study of 
land use decisions in the Tulare Basin, California. We encode the generalized decision problem as an 
arbitrary mapping from a high-dimensional data space to the action of interest and use multiobjective 
genetic programming to search over a family of functions that perform this mapping for both regression 
and classification tasks. To facilitate the discovery of models that are both realistic and interpretable, 
the algorithm selects model structures based on multiobjective optimization of (1) their performance 
on a training set and (2) complexity, measured by the number of variables, constants, and operations 
composing the model. After training, optimal model structures are further evaluated according to their 
ability to generalize to held-out test data and clustered based on their performance, complexity, and 
generalization properties. Finally, we diagnose the causes of good and bad generalization by performing 
sensitivity analysis across model inputs and within model clusters. This study serves as a template to 
inform and automate the problem-dependent task of constructing robust data-driven model structures to 
describe human behavior in water resources systems.

EKBLAD AND HERMAN

© 2021. American Geophysical Union. 
All Rights Reserved.

Toward Data-Driven Generation and Evaluation of Model 
Structure for Integrated Representations of Human 
Behavior in Water Resources Systems
Liam Ekblad1 , and Jonathan D. Herman1 

1Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Key Points:
•	 �Automated generation of model 

structure from data to describe 
human behavior in water systems

•	 �Systematic model evaluation along 
performance-complexity tradeoff 
by clustering models with similar 
behavior

•	 �Diagnostic assessment of model 
generalization skill using global 
sensitivity analysis of features

Supporting Information:
•	 Supporting Information S1

Correspondence to:
L. Ekblad,
wdlynch@ucdavis.edu

Citation:
Ekblad, L., & Herman, J. D. (2021). 
Toward data-driven generation 
and evaluation of model structure 
for integrated representations of 
human behavior in water resources 
systems. Water Resources Research, 
57, e2020WR028148. https://doi.
org/10.1029/2020WR028148

Received 11 JUN 2020
Accepted 30 DEC 2020

10.1029/2020WR028148
RESEARCH ARTICLE

1 of 22

https://orcid.org/0000-0003-1287-5245
https://orcid.org/0000-0002-4081-3175
https://doi.org/10.1029/2020WR028148
https://doi.org/10.1029/2020WR028148
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020WR028148&domain=pdf&date_stamp=2021-02-12


Water Resources Research

tem processes (Gunaratne & Garibay, 2017; Schlüter et al., 2019; Vu et al., 2019). By extricating the processes 
driving emergent and interdependent behaviors in coupled systems, data-driven models can be used beyond 
the integration of observations to advance theory.

Several recent studies highlight the value and range of applications for data-driven approaches in water 
resources. For example, Giuliani et al. (2016) generate adaptive behavioral rules from historical climate and 
land use data by coordinating reservoir decisions with downstream cropping decisions from an economic 
model. Similarly, Quinn et al. (2018) employ policy emulation methods for coupled reservoir and irrigation 
decisions to reduce the computational cost of exploring a range of future hydroclimate scenarios. Wor-
land et al. (2019) combine heterogeneous attributes of stream gauge networks to reconstruct observed flow 
duration curves under human influence with high accuracy using multioutput neural networks. Finally, 
Zaniolo et al. (2018) use data-driven variable selection across hydroclimate indicators and observed state 
variables to automatically design Pareto-optimal drought indices (i.e., constructing a function) to balance 
tradeoffs between complexity and performance. These studies have underscored the significant potential 
for data-driven methods to advance model design in water systems, while also identifying key challenges 
related to structure and complexity.

Model accuracy alone does not engender trust (Baumberger et al., 2017), particularly in the case of “black-
box” models (Shen, 2018), though accuracy is often the primary metric by which model structure is validated 
(Eker et al., 2018). By starting from fixed model structures, many data-driven methods bypass the question 
of structural uncertainty (Walker et al., 2003). This complicates any eventual reconciliation with available 
theory or process knowledge to support interpretation and validation (Lipton, 2018; Knüsel et al., 2019; P. 
J. Schmidt et al., 2020). By contrast, data-driven methods for system identification are capable of search-
ing both model structures and parameters to find candidate representations (Ljung, 2017). Methods have 
been demonstrated for systems in which the target relationships are well-known, such as the double pen-
dulum (M. D. Schmidt & Lipson, 2009) and the Navier-Stokes equations (Rudy et al., 2017). In hydrology, 
data-driven system identification methods have been used to infer rainfall-runoff transfer functions (Klotz 
et al., 2017) and to automate the identification of rainfall-runoff model structures using global optimization 
(Spieler et al., 2020).

Generating model structures through data-driven system identification allows for the testing of multiple 
model structures and parameterizations as competing hypotheses (Beven, 2019), similar to how concep-
tual and theory-driven model components have been compared to reduce structural uncertainty (Clark 
et al., 2015a, 2015b; Knoben et al., 2020; Nearing & Gupta, 2015). Several specific challenges arise in the way 
candidate models are evaluated. First, data-driven system identification typically results in a tradeoff be-
tween model performance and complexity (Bastidas et al., 2006; Hogue et al., 2006; Pande et al., 2009). Sec-
ond, additional criteria may be required for model evaluation, such as interpretability and agreement with 
available theory (Khatami et al., 2019; Knüsel et al., 2019). Opportunities remain for data-driven methods 
to identify model structures of water resources system components for which theory is still being developed, 
such as varied human influences. There remains a need for a general approach capable of generating and 
evaluating models of human interactions within water systems, with the simultaneous goals of accuracy 
and interpretability across a broad spectrum of possible representations (Schill et al., 2019).

This work contributes an approach to model generation and evaluation for the general challenge of deriving 
process representation and understanding from observed data in water resources systems. We focus on the 
particular challenge of modeling human behavior, an influential system process which poses significant 
uncertainty in hydrologic systems (Herman et al., 2020; Konar et al., 2019; Schill et al., 2019). By generating 
many candidate models as competing hypotheses and simultaneously evaluating models for performance 
and complexity, we operationalize a preference for parsimonious model structures in combinatorial search 
spaces. The structures resulting from search in broadly defined model spaces are consolidated through sys-
tematic decomposition and diagnostic assessment of plausible model sets to determine driving structure. 
The approach is demonstrated for a case study of agricultural land use decisions in California, a complex 
spatially distributed process through which humans exert substantial influence on the system. This ap-
proach provides a foundation for future studies of model structural uncertainty, reconciliation with theory, 
and integrated systems modeling, particularly regarding the role of these challenges in planning and man-
agement for coupled human-water systems under uncertainty.
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2.  Methodological Background
We extend data-driven system identification approaches to generate and 
evaluate plausible model structures describing human behavior in wa-
ter resources systems (Figure 1). The experimental steps presented here 
share similarities with the problem of constructing emulators (surro-
gates) of environmental systems models (Castelletti et  al.,  2012; Kleij-
nen,  2015), though with the additional goal of generating models that 
support the development of candidate theory regarding system processes. 
This requires an evaluation phase in which the structures of generated 
models are examined directly. By searching over the space of model struc-
tures for a given problem definition, the uncertainty associated with se-
lecting any given model can be visualized as a function of complexity and 
accuracy on held-out data.

2.1.  Problem Definition

Problem definition for data-driven modeling includes the formulation of 
a question about the system, the collection and organization of available 
data at relevant spatial and temporal scales, and the specification of a 
family of models to answer the question. A data-driven system identifica-
tion approach to problem definition can avoid human-intuited priors in 
the form of model structure and feature engineering, in favor of discov-
ering useful constructions of both the data and the model simultaneous-
ly (Knüsel et al., 2019). First, the heterogeneous feature types common 
to integrated settings and observed human behavior can be considered 

across spatio-temporal scales. Feature engineering is then performed by transforming the observations, 
typically along with some form of dimension reduction such as eigenvalue decomposition (Giuliani & Her-
man, 2018). Variables at incongruent spatial and temporal scales and categorical variables can also be incor-
porated, for example, through encoding schemes (Cerda et al., 2018).

In formulating the question, the model ϕ must be identified to map predictor variables X (input samples) 
to the response variable y in a multivariate regression problem: 1: n   . For modeling dynamical sys-
tems, the problem might involve learning the next state or derivative of a state variable in time given the 
current and previous states. The goal is to automatically reverse-engineer structure in ϕ that enables novel 
insights of the system (Bongard & Lipson, 2007). Discovering the optimal ϕ without prespecifying the form 
of the function invokes exploration over both the structure and parameterization of ϕ. This generalized 
multivariate regression problem is an instance of supervised learning. However, it could alternatively be 
cast as a multivariate control problem, where rather than learning a model, a policy is learned based on 
rewards received by an agent after taking actions in an environment (Barto & Dietterich, 2004). The rela-
tionships between environmental observations and human decisions can also be framed in terms of causal 
inference, such as through instrumental variable and fixed effect experiments (Müller & Levy, 2019).

There are a number of model families from which functions could be drawn to perform this mapping, such 
as linear additive models or neural networks. Functions can be most generally encoded as trees or graphs, 
either of which can be used to represent a universal approximator (e.g., Breiman, 2001; Huang et al., 2006) 
of highly complex, nonlinear human behavior. A common approach for the automatic construction of mod-
els of arbitrary mathematical structure and complexity is to combine objects from a primitive set of basic 
functions (Quade et al., 2016). As an instance of a process influencing the natural system, human behavior 
is integrated in model computation graphs, the network representing model operations and numerical flux-
es (Gupta & Nearing, 2014; Khatami et al., 2019), by defining representational nodes and specifying links. 
Taken together, nodes and links in a model's graph form a natural measure of model integration (Claussen 
et al., 2002).
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2.2.  Model Generation

The model generation process involves inferring models from data. Within water resources, model inference 
has largely focused on parameter estimation for given model structures. This is a broad category, including 
deterministic data-driven models with trainable weights such as neural networks (e.g., Hsu et al., 1995), 
physically based model structures with probabilistic search procedures such as Markov Chain Monte Car-
lo (MCMC) (e.g., Vrugt & Beven, 2018), and general procedures for examining parametric uncertainty in 
conceptual linear and nonlinear model structures such as Generalized Likelihood Uncertainty Estimation 
(Beven & Binley, 1992). For example, Vrugt and Beven (2018) demonstrate the evolution and training of 
set-length Markov chains for different experiments, using differential evolution to explore a broadly de-
fined parameter space and maintaining a population of models in place of explicit structural search. These 
approaches are thus a combination of theory-driven structure and data-driven parameterization, which 
enables analysis of complexity and equifinality among parameter sets (discussed in Section 2.3).

Model structure can also be generated through a number of data-driven search methods that explicitly add 
or subtract elements—referred to as construction and pruning methods, respectively—which originate in 
the fields of machine learning and evolutionary algorithms. Construction methods include decision trees, 
which successively add linear decision rules to accurately classify samples (Quinlan, 1986), and genetic 
programming, the use of a genetic algorithm to build and search over graphical model structures composed 
of simple mathematical elements and inputs (Koza, 1992; Koza, 1995), among others. Broadly, global opti-
mization methods such as evolutionary algorithms have proven useful for this task (Reed et al., 2013), given 
the potentially nonconvex or discontinuous objective surface that results from optimizing both structure 
and parameters simultaneously. Though the target processes may be simple, basic implementations of these 
methods do not explicitly minimize model complexity. With increasing interest in model interpretability in 
machine learning (Lipton, 2018), pruning methods for the discovery of sparsely connected subnetworks 
have been introduced that reproduce or improve performance of fully connected neural networks after they 
have been trained (Frankle & Carbin, 2019). In contrast, multiple objectives can be used with construction 
methods to evaluate model structures simultaneously for error performance and structural complexity dur-
ing optimization, codifying a preference during search for simpler models that perform equally well.

Genetic programming is particularly useful for its ability to conduct global multiobjective search over model 
structures of arbitrary complexity, that is, symbolic regression (Quade et al., 2016). Symbolic regression uses 
linear and nonlinear operators as base functions, and can, for example, learn to compose nested functions 
and automate the process of feature engineering. Symbolic trees can also incorporate noise (M. D. Schmidt 
& Lipson, 2007), can be seeded with relations of interest during optimization (e.g., M. D. Schmidt & Lipson, 
2009; Chadalawada et al., 2020), and can be strongly typed to incorporate and handle heterogeneous data 
types or function outputs (Montana, 1995). Model evaluations of symbolic regression trees are generally 
faster than traditional feed-forward neural networks because each model evolves a sparse input representa-
tion based only on the inputs that improve performance. These factors make symbolic trees suited for itera-
tive and exploratory model generation when using a gradient-free optimization method. The primitive set of 
structures for building symbolic trees determines the size of the search space, which grows combinatorially 
with the number of primitives (Vanneschi et al., 2010). In applications where the target functions are not 
known, as in the modeling of complex and highly nonlinear human behavior, the space of possible model 
structures can be broadened to include a large number of possible functional relationships.

2.3.  Model Evaluation

Model evaluation consists of the examination of performance metrics and component-level behavior, and 
the identification of parametric and structural drivers. This section reviews different approaches and per-
spectives regarding model evaluation for data-driven system identification, recognizing that the implemen-
tation of this phase is problem-dependent, and that integrated systems models including human behavior 
may be difficult to validate against theoretical or conceptual results depending on their scale.

The minimization of one or more error metrics between the model and data defines its proximity to the 
“true” model (Haussler & Warmuth, 1993; Kearns et al., 1994; Valiant, 2013). The different methodological 
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and philosophical details of model evaluation in these settings are reviewed by Höge et al. (2018). Since 
the potential for a model to overfit to training data increases with complexity, the foremost issue regarding 
model evaluation is the test error, the indicator of a model's ability to generalize to unseen data by balancing 
model bias and variance (Friedman, 1997; Pande et al., 2009). Generalization to unseen data is also required 
to appropriately accommodate nonstationarity in data, a necessity when seeking to describe dynamic hu-
man behavior over long time periods (Höge et al., 2018). Finally, standard error metrics can be supplement-
ed by additional criteria such as the information content learned from a model (Nearing et al., 2020; Nearing 
& Gupta, 2015), or when functional relationships are known, the evaluation of structural error through 
tradeoffs between predictive and functional performance (Ruddell et al., 2019).

For data-driven model structures describing human behavior, several extensions arise that deserve 
consideration during the model evaluation phase. The first is model complexity, recognizing that additional 
components or parameters do not necessarily result in the ability to represent increasingly complex system 
behavior (Z. Sun et al., 2016). Instead, the goal is to find a parsimonious model, or the simplest model that still 
describes the data accurately. This has been identified as a challenge for heuristic approaches to data-driven 
system identification (Bongard & Lipson, 2007; M. D. Schmidt & Lipson, 2008; M. D. Schmidt & Lipson, 2009).

The second extension is model equifinality, or lack of uniqueness, which occurs when many model struc-
tures produce comparable predictions even after being tuned, trained, constrained, or optimized (Bev-
en, 1993). This can suggest possible redundancy or oversimplification in the model, meaning that the par-
simonious model may not have been found or the collected data is not diverse enough to fully represent 
the underlying process. For data-driven system identification this is especially challenging given the large 
space of possible model structures and conflicting performance metrics (Curry & Dagli, 2014). The concept 
of equifinality has been widely explored in hydrology and water resources (Khatami et al., 2019), as well 
as in agent-based models (Williams et al., 2020). However, with the exception of a recent example from the 
social sciences (Vu et al., 2019), the equifinality problem is rarely approached in integrated studies by global 
search over model structures that considers both performance and complexity during training.

Finally, when model generation results in a large number of plausible model structures, a range of diagnos-
tic tools can be applied to further assess the common structures and parameters driving model behavior. For 
example, Pruyt and Islam (2015) use clustering to partition exploratory model parameterizations based on 
their behavior as transfer functions mapping input to output. In the absence of well-characterized uncer-
tainty, sensitivity analysis can diagnose model prediction behavior and provide a metric by which to justify 
the inclusion of parameters (Gupta & Razavi, 2018; Pianosi et al., 2016; Wagener & Pianosi, 2019). Dobson 
et al. (2019) design a scenario resampling strategy to show the importance of contextual uncertainty in the 
performance of operational rules of water systems. These and similar approaches assist with the evaluation 
of models of human behavior in the abstract, through which key structural elements can be identified 
postoptimization.

3.  Experiment
Figure 2 outlines the computational steps for the three experimental phases: problem definition, model 
generation, and model evaluation. The Problem Definition phase includes the definition of prediction tasks, 
feature engineering, and the specification of function primitives. The Model Generation phase includes the 
selection of an encoding representation and search procedure, the definition of metrics to use for evaluating 
models during search, and the search over candidate model structures in a multiobjective space. The Model 
Evaluation phase for these experiments focuses on the collection and analysis of many plausible model sets 
across many random trials. Clustering and sensitivity analysis techniques are employed to determine driv-
ing structure and features in different regions of the performance space.

3.1.  Problem Definition

This approach is demonstrated on an application of agricultural land use change, one of the primary ways 
in which human decisions influence water resources systems, in addition to reservoir operations and urban 
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consumption. Land use change represents a complex test case in spatially distributed, heterogeneous deci-
sion-making (Groeneveld et al., 2017). Additionally, models of land use change depend on heterogeneous 
sources of information, such as water availability and socioeconomic factors (Jasechko & Perrone, 2020; 
Malek & Verburg,  2020; Nelson & Burchfield,  2017). This problem has been approached from multiple 
perspectives, including theoretical models based on economics and psychology (Schlüter et al., 2017), as 
well as statistical models (B. Sun & Robinson, 2018), which together suggest no clear agreement on process 
representation (Verburg et al., 2019). Economic models of land use change have been developed at the glob-
al scale (Prestele et al., 2017; Stehfest et al., 2019) and also at the regional scale (e.g., Howitt et al., 2012), 
and the integration of local and regional results into global models is currently being explored (Malek & 
Verburg, 2020; Melsen et al., 2018; Schlüter et al., 2019). In both cases, parameters are calibrated against his-
torical observations. However, it is also acknowledged that land use decisions, like other water resources de-
cisions, do not always follow the principle of full rationality (Groeneveld et al., 2017; Schlüter et al., 2017). 
By contrast, agent-based rules have also been developed for regional land use models, often ad hoc using 
expert judgment (Thober et al., 2017) informed by empirical studies (Robinson et al., 2007). There remains 
an opportunity to automate this process via model generation techniques, as has been explored elsewhere 
in the social sciences (e.g., Gunaratne & Garibay, 2017; Vu et al., 2019). While land use change presents a 
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challenging test case, the methods proposed here also generalize to other aspects of human behavior in 
water resources systems, contingent on the availability of scale-appropriate datasets.

3.1.1.  Case Study

This approach is applied to the problem of understanding dynamic agricultural land use patterns in the 
Tulare Basin region of California. In this case study, we use data-driven system identification to discover a 
mathematical function to predict the year-to-year change in tree crop acreage for all continuously planted 
square-mile sections of land in the Tulare Basin from 1974 to 2016. This is a human response variable that 
is of particular interest for water resources management because of a strong historical trend towards tree 
crops (Figure 3) that has exacerbated groundwater overdraft, especially in times of drought (Jasechko & 
Perrone, 2020).

3.1.2.  Problem Definition

The state of the system xt is defined as an n-tuple drawn from n  that includes the current and previous state 
of tree crops (at, at−1, …) and nontree crops, the lagged change of tree-crops (a′t−1, a′t−2, …) and nontree crops 
since the current change is being predicted, and other current and lagged information such as the current 
crop price, agricultural pumping, and surface water deliveries.

 1 1 1 1: , , , , , , , ,t t t t t t t tx a b c a a b c
     � (1)

where at = at−1 + a′t−1. Given the state of the system xt representing all current and previous information at 
a given spatial index, in learning the dynamics of the system we aim to predict the annual change in acre-
age at the same spatial index, a′t, as a function of previous changes, current and previous states, and other 
features (more information about these feature variables is given in Section 3.1.3):
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Figure 3.  Historical change in crop type in the Tulare Basin, California from 1974 to 2016. Each spatial location is 
1 mi2, and tree crops are defined as in Mall and Herman (2019). The gray lines indicate county boundaries within 
which crop prices are reported annually.
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 Δ:
Δ

t
x tt

xD F x
t

 � (2)

The notation xtD  is used to refer to the difference in tree crops a′t that would advance the tree crop state for-
ward in time, at+1 = at + a′t. xt includes lagged responses such as 1xtD  , the response of the previous state at 
the same index. The problem of learning model structure is therefore to determine the function F that maps 
a given set of features to the annual change in state. xt includes potentially high-dimensional information 
describing the current state and any number of previous states (Lusch et al., 2018). When the dynamics of F 
are unknown, general function forms are initialized randomly and trained to approximate system dynamics 
by learning from observed or measured data.

We explore two different prediction tasks related to this problem, regression and classification. In the regres-
sion formulation, models predict the magnitude and direction of the annual change in tree crop acreage. In 
the classification problem, models predict the direction of change only–positive, negative, or no change–as 
displayed under Prediction Task in Figure 2. Regression is generally considered a more difficult problem 
as functions must predict a continuous value, whereas this classification task requires predicting the most 
likely of three classes.

3.1.3.  Feature Engineering

Feature data describing land use, water availability, and economics were organized into samples to train 
and test candidate model structures. Land use data was taken from the California Pesticide Use Reports, 
available digitally beginning in 1974 and extracted by Mall and Herman  (2019). Annual crop type data 
are taken from 1974 to 2016 at the square-mile scale for over 3,000 spatial locations in the Tulare Basin, 
and the target data are partitioned into tree and nontree crops. Water availability data were taken from 
the C2VSim-IWFM groundwater model representing pumping and delivery estimates for the categories of 
urban, agricultural, rice crop, and refuge pumping and deliveries, further details for which are described in 
Kourakos et al. (2019). Finally, county-level crop prices were taken from the California County Agricultural 
Commissioner reports, beginning in 1980 across Tulare, Fresno, Kings, and Kern counties (USDA National 
Agricultural Statistics Service - California Field Office, 2019). Crop prices were adjusted for inflation using 
the producer price index for agriculture, based on the year 2016, published by the U.S. Bureau of Labor 
Statistics (U.S. Bureau of Labor Statistics, 2019). A summary of trends for this heterogeneous data set is 
presented in Figure 4.

Additional features were included to account for the space-time dependence of the problem. Samples were 
organized such that each spatial location was tagged with its data, the previous six years of data, and the same 
set of features from each of five neighboring locations in space, defined using the five smallest great-circle 
distances between locations. Models of crop change at a given location could thus use features reflecting re-
cent history and local decision-making. Since economic information is only available from 1980 onward and 
spatially distributed at the county scale, this space-time extension was only implemented for land and water 
data. Absolute data, such as the year and location, were excluded from the set of features to avoid overfit-
ting. The resulting dimensions of the data were on the order of 500 predictor variables and 130,000 samples. 
No explicit dimension reduction steps were implemented in order to maintain the interpretation of feature 
variables within the eventual model structures generated by this approach. Samples were split into 50% 
training and 50% test, and both the features and response variable were standardized to (0,1) . Other than 
the bias introduced by constructing variables representing temporal lags and spatial neighborhoods, no 
empirical or theoretical priors were provided to inform the search. This spatiotemporal construction process 
also adds redundancy into the feature set, and we rely on the model search (Section 3.2.2) to navigate this 
redundancy to identify the most informative features while retaining interpretability.
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3.1.4.  Model Structural Elements

In addition to the feature variables, the primitive set of functions composing the feasible model structures 
must also be specified. The primitive set includes the mathematical relationships detailed in Table 1.

To include relational and logical operators in addition to mathematical operators in the primitive set, the 
functions are strongly typed, meaning that intermediate variables must match data types for the input and 
output of each component function. Constants are also defined as either Boolean or floating point values 
as indicated in Table 1 and appear as terminal nodes in an expression, as do the model inputs (features). 

Constants are drawn from a distribution, though the resulting model 
is deterministic after the constants have been generated. However, the 
distributions themselves can be included in the primitive set, allow-
ing the automatic construction of stochastic models (M. D. Schmidt & 
Lipson,  2007). In addition, search over the model space can be biased 
by providing a specific set of operators, inputs, or constants as seeds 
(M. D. Schmidt & Lipson, 2009). By defining the primitive set and input 
space in this way, we ensure that search over the model space covers a 
broad general space of models, including linear and higher-order combi-
nations of inputs and discontinuous functions.

3.2.  Model Generation

3.2.1.  Search Objectives

For the regression problem, the performance objective used to train mod-
el structures is the mean squared error (MSE), a commonly used error 
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Figure 4.  Historical trends in heterogeneous feature data. (a) Tree crop acreage, nontree crop acreage, and total acreage planted; (b) Yearly total agricultural 
water deliveries and pumping; (c and d) Inflation-adjusted prices and total crop values for a selection of crops.

(a) (b)

(c)(d)

Functions

[float] = add([float],[float]) [float] = sin([float])

[float] = subtract([float],[float]) [float] = cos([float])

[float] = multiply([float],[float]) [float] = negative([float])

[float] = divide([float],[float]) [bool] = less_than([float],[float])

[float] = if_then_else([bool],[float],[float])

Constants

(1,[bool]) (RandInt(0,100)/10.,[float])

(0,[bool]) (RandInt(0,100)/1.,[float])

Note. The space of feasible models is constrained by strong typing. The 
function RandInt(a, b) generates a uniform random integer on (a, b).

Table 1 
The Primitive Set Functions and Constants, as Defined for Both Regression 
and Classification Experiments
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metric that emphasizes larger residuals. A baseline performance value for MSE on the response variable—
standardized to (0,1) —is 1.0, which results from using the average prediction (zero) for every sample. For 
a given regressor 1: nF   :

2: ˆ( )train x X x xt train t tMSE ave D D � (3)

In the classification experiment, the multiclass output is addressed via ensemble learning, a common meth-
od in genetic programming studies (Espejo et al., 2010). The performance objective is the percent of mis-
classified samples. This is equivalent to 1 − Accuracy, where accuracy is the percentage of classes predicted 
correctly. A baseline performance for misclassification percentage for this application is approximately 0.54, 
which results from predicting the most common class (no change) for every sample. The misclassification 
percentage can be calculated using the Hamming loss, ˆ( , ),l y y  which takes the value 1 for predictions that do 
not match the response and 0 otherwise. For a given classifier : { , , }nF Negative No Change Positive :

: ( , )ˆ
train x X x xt train t tMCP ave l D D� (4)

Though the three classes are relatively balanced in this experiment { 25%)Negative  , No Change ∼ 47%, 
( 28%}Positive  , this simple accuracy metric might promote models that perform well on only a subset 
of classes. This can be a problem particularly when classes are not equally represented in the training 
set (Provost & Fawcett, 2001). Multiclass metrics such as the macro/micro-averaged F1-measure (Lipton 
et al., 2014) and receiver operating characteristic (ROC) curve (Fawcett, 2006) can account for class imbal-
ance by weighting measures based on individual class accuracies. However, we find that for this problem, 
alternate metrics do not significantly change the rank order of models within each class (see supporting 
information). In regard to improving regression metrics, the water resources field has thoroughly consid-
ered how error metrics for natural process models can incorporate available process knowledge (e.g., Gupta 
et al., 2009; Khatami et al., 2019; Lamontagne et al., 2020). These approaches are also relevant in scenarios 
lacking process knowledge but with known statistical relationships in the error signals.

A second objective, model complexity, is formulated and optimized concurrently with the performance 
objectives above using multiobjective optimization. The complexity metric is taken to be the representation 
length, a commonly used surrogate for computational or algorithmic complexity of a model (Vanneschi 
et al., 2010), which in this case is the number of elements (nodes) in the ordered list representing the mod-
el. The complexity value is normalized by the maximum depth of recursive function calls in Python (90) to 
roughly match the scale and precision of the performance objectives.

3.2.2.  Search Algorithm

The search over candidate model structures and parameterizations employs a customized genetic program-
ming algorithm, an evolutionary approach that encodes mathematical expressions in a tree structure to sup-
port symbolic regression. Modular components of the algorithm were drawn from the package Distributed 
Evolutionary Algorithms in Python, or DEAP (De Rainville et al., 2012). As depicted in the Model Genera-
tion panel of Figure 2, mutation and crossover operators act on ordered representations of models, where 
each tree is flattened into an ordered list of elements, to generate new structures from promising candidates 
and explore the model space during optimization. The mutation operator adds a randomly initialized sub-
tree of depth 1–2, representing a random addition into the model element list. Single-point crossover ran-
domly selects a location along paired model element lists and exchanges the elements beyond this location 
to generate a new model, an example of which is depicted in Figure 5. Mutation explores the model space 
by introducing new model structures, and crossover exploits the attributes of current models by testing new 
combinations of existing model structures. The mutation and crossover operations can result in invalid 
models according to the strong typing criteria, where intermediate data types among tree operations do not 
match; these models are discarded before evaluation.

During training, the performance and complexity objectives are both minimized. This has two implications: 
(1) the minimum complexity (maximum interpretability) model is preferred among two models with the 
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same performance, (2) if the space of possible models is searched exhaustively, the resulting tradeoffs be-
tween models should be the minimum complexity model for a given level of performance. The algorithm 
follows a μ + λ evolution strategy, which allows parents to persist in the population. At each generation, a 
number of offspring μ are generated from λ parents in the population by applying mutation and crossover 
with a given probability. The population is updated by applying deterministic crowding selection analogous 
to NSGA-II (Deb et al., 2000) to the collection of individuals μ + λ, selecting λ individuals to be used as 
parents in the next generation. The use of deterministic crowding for selection is intended to promote di-
versity within populations by spacing out models along the Pareto front. This ensures that no single model 
dominates in all objectives and is therefore used to generate all new individuals in the next generation. 
Separately from the population, an archive of Pareto-approximate model structures is maintained and up-
dated through strict nondominated sorting of the archive and population together in each generation, with 
no crowding distance selection applied. This archive represents the best approximation of the Pareto front 
at each iteration of the optimization (including the final result), and allays degradation known to occur in 
populations when using deterministic crowding for selection.

Experiments were run using the UC Davis College of Engineering HPC1 Cluster with 96 processors, em-
ploying DEAP package support for distributed computing. Each population of models contains 96 individ-
uals, and each tree is initialized randomly with depth 1–3. Trials run for a maximum of 20,000 generations 
with a stagnation convergence criterion of 2,500 generations, which will stop the algorithm if performance 
improvements are not detected during this time. Performance improvements can be found throughout the 
optimization, but can become exceedingly small as models start to overfit. As in many high-dimensional 
sampling problems, it is not possible to prove that the global optimum has been reached. Though the algo-
rithm is likely to comprehensively sample low-complexity models, the size of the primitive set (number of 
inputs, constants, and functions) dictates that the sampling coverage of possible models decreases at least 
factorially with additional model primitives (Knuth, 2011). Combinatorial expansion reflects the curse of 
dimensionality, and complicates the search for medium- and high-complexity models, though more ef-
ficient algorithms are an active area of research (e.g., Conti et  al.,  2018; Hadka & Reed,  2013; Vrugt & 
Beven, 2018). This complexity increases the likelihood of optimization trials getting stuck in local minima 
as trees grow, and emphasizes the importance of appropriately defining the model space during problem 
definition. To account for this stochasticity in optimization, 21 randomized trials are performed, which in-
cludes the initialization of the train-test split. The code to reproduce this study can be found at https://doi.
org/10.5281/zenodo.3833186.

This algorithm configuration may generate spurious structure and/or redundant features within the same 
model. The supporting information includes more details about the feature variables and their correlation. 
However, the algorithm performs variable selection to some extent when feature variables that lead to im-
proved objective performance are introduced through mutation or crossover, suggesting an informative re-
lationship. Even with correlated features, we expect that over the course of many iterations of the mutation 
operator, and multiple random seeds, the most informative features will occur most often in the resulting 
sets of models. This stochasticity in model structural identification reinforces the need for multiple trials, 
ensemble averaging across optimization trials during model evaluation, and summary statistics describing 
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Figure 5.  Detailed view of crossover operations, expanded from Figure 2. Two models from the population are used 
to generate a new model by splitting and recombining the ordered list representations at a random location, a process 
repeated throughout the search. Mutation operates similarly by adding a random subtree at a random location in a 
single model.

https://doi.org/10.5281/zenodo.3887360
https://doi.org/10.5281/zenodo.3887360
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high-complexity regions of the model space, as any one model structure 
by itself may be subject to feature redundancy.

3.3.  Model Evaluation

Following the model training, candidate structures are evaluated in three 
ways: tradeoffs between performance objectives, model behavior in the 
metric space, and decomposition and sensitivity of the underlying struc-
ture and features. The approach to model evaluation taken during this 
phase depends on modeling decisions during problem definition and 
model generation. In these experiments, the feature data and primitive 
set together define a combinatorially large space of possible models, cre-
ating substantial uncertainty that must be acknowledged in the analysis 
that follows.

3.3.1.  Performance-Complexity Tradeoff

After evaluating performance on the test set, models are placed in a 
three-dimensional performance-complexity tradeoff, as illustrated under 
Model Evaluation in Figure 2. Along the Pareto front, training error with-
in a given trial will strictly decrease as complexity increases. However, as 
complexity of the model increases, test error can diverge from training 
error if the model overfits. If error performance changes relatively little 
across a broad range of model structures, this is an indicator of equifinali-
ty. To investigate this outcome further, candidate models can be clustered 
into groups with similar behavior. Specifically, k-means clustering is used 
to separate models according to training error, test error, and complexity.

3.3.2.  Model Decomposition and Sensitivity Analysis

The collection of Pareto-optimal sets of models constitutes a new high-di-
mensional data set of structured model components and their associated 
performance metrics. Among many network analysis tools for structur-
al and dynamic analysis of graphical models, model decomposition is a 
very simple initial step. The driving structural properties of each mod-
el—number of metrics, attributes, inputs, functions, and constants—are 

linked to their behavior cluster as described above. Each model is also tested for its sensitivity to individual 
features and their interactions using Sobol sensitivity analysis with the Python package SALib (Herman & 
Usher, 2017). The goal of this sensitivity analysis is to determine whether the different clusters of model 
behavior are influenced by different feature variables, for example, if certain features appear primarily in 
overfit models. To perform this step, each model is re-evaluated with 1,000 samples scaled by the cardinality 
of its unique feature set to ensure sufficient coverage of the sample space. For example, if a model has 5 
unique inputs, the model would be tested with 5,000 samples for each unique input to appropriately char-
acterize pairwise and total-order sensitivities in the Sobol method.

4.  Results
4.1.  Model Performance-Complexity Tradeoff

Figure 6 shows the tradeoff between model performance and complexity across the Pareto set of candidate 
model structures for both (a) regression and (b) classification experiments. Each point represents the per-
formance (MSE) on the test data, while the gold background shading shows the distribution of performance 
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Figure 6.  Tradeoff between performance (test error) and complexity for 
model structures across (a) all regression trials and (b) all classification 
trials. Light gold shading indicates the distribution of the same models 
evaluated on the training data. Models are clustered according to their 
behavior in this three-dimensional space (training error, test error, and 
complexity).
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for the same set of models on the training data. Figure 6 highlights four different regions: Parsimonious, 
Overfit, Equifinal, and Dominated model clusters. These designations are subjective, but separate the mod-
els for discussion according to their primary evaluation characteristics. During each trial, initial structure 
building occurs in the Parsimonious cluster in both Figures 6a and 6b. The Overfit clusters in Figure 6 are 
highlighted as the regions where models begin to rely on spurious structure discovered later in the trial. 
The Equifinal cluster in Figure 6a represents a region where multiple model structures exist at roughly the 
same level of performance. The Dominated cluster in Figure 6b represents models that are both relatively 
complex and do not generalize well to unseen data.

These results indicate several points. First, regression trials in Figure 6a exhibit better robustness to test 
data, with most models remaining within the region of the training error displayed in the gold background. 
Classification experiments show diminishing returns to increasing complexity much faster than regression 
experiments. The progress of the optimization trials is determined by the model structures developed in the 
Parsimonious clusters; insufficient exploration may explain why significant overfitting occurs in Figure 6b. 
Equifinal model structures are observed in both cases, as many models with increasing complexity demon-
strate similar performance.

The classification results in Figure 6b show model structures with a variety of macroscopic behavior that 
can be investigated further. We proceed with the classification results to determine the drivers of model 
behavior, and also to examine the structure of three models selected from the Parsimonious cluster that 
perform well on both training and test data in Figure 7. These three classification models depend on a vari-
ety of feature variables and structural elements. Figure 7a displays a histogram of standardized feature data 
represented in the models to understand any patterns shared among the distributions of feature variables 
selected by the algorithm for these three model structures. While the models occasionally rely on sparse, 
skewed feature distributions such as nonagricultural water use, they mainly rely on tree acreage changes. 
Specifically, all three models use the acreage change in the previous timestep (lag-1) and same location, in-
dicating that decision-making agents are informed by past decisions. Additionally, the tree acreage change 
feature tends to occur closer to the output of each model structure (Figures 7c–7e), and as a result is less 
modified than other features by the sequence of arithmetic operations in each model.

4.2.  Feature Occurrence and Sensitivity

Large differences among models regarding the selection of other feature variables indicate that some of 
these structural components may be spurious. The distribution of features chosen by the algorithm might 
be a result of their different spatiotemporal resolutions. For example, the lack of consensus on the use of 
economic data could be due to its coarser resolution in space and limited coverage in time, or the inability 
of the search method to find informative features beyond the lag-1 tree acreage change. To investigate this 
further, we aim to identify the structural drivers separating robust models in the Parsimonious and Overfit 
Clusters from models that do not generalize well (i.e., the Dominated cluster). First, we start by analyzing 
the occurrence of features and function primitives among models in each cluster, displayed in Figure 8.

Figure 8a shows the distribution of feature occurrence counts in each model cluster, where the features 
are grouped into categories (y-axis). The boxplots and ranges suggest several key points. All model clusters 
show a dependence on the group of inputs related to tree acreage data (all lagged and neighboring states and 
values for tree crops). The lag-1 tree acreage change in the same location (categorized under Tree Acreage) 
appear in every model across all clusters, indicated by the range of the whiskers at the top of Figure 8a. The 
Overfit cluster contains more instances of features from each category as compared to the Dominated and 
Parsimonious clusters, suggesting a higher level of feature complexity overall. Finally, the largest differ-
ences in feature usage between the Parsimonious cluster and the Overfit cluster is in the tree and nontree 
prices/values and water pumping feature categories.

Figure 8b shows the occurrence count of function primitives for models in each cluster; the primitives are 
not categorized into groups, so the values are a single count rather than a distribution. The Overfit cluster 
exhibits a more even distribution of function occurrence across primitives than the Parsimonious and Dom-
inated clusters, suggesting an increase in the diversity of function primitives relative to the Parsimonious 
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cluster. Both the Overfit cluster and Dominated cluster learn a dependence on the two conditional prim-
itives. Finally, models in the Dominated cluster contain more instances of nearly every function type, 
particularly deviating from the Overfit and Parsimonious clusters for single-input functions, suggesting a 
higher level of functional complexity and feature transformations than either the Overfit or Parsimonious 
clusters.

Figures 8a and 8b together indicate that robustness to test data may be extended for models in the Parsimo-
nious cluster by increasing reliance on feature complexity versus functional complexity. This contrast may 
also explain why additional complexity in two- and three-input functions for combining features is war-
ranted over single-input functions that merely transform individual features. However, feature occurrence 
alone does not explain which features drive model output. Model responses to feature variable changes are 
quantified using Sobol sensitivity analysis. Results for total sensitivity indices are presented in Figure 9 as 
empirical cumulative distributions. The sensitivities are presented for two categories of feature variables, 
tree acreage and nontree acreage, across the three clusters of classification models.
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Figure 7.  (a) Histograms of standardized feature data x 

 

 
 

 represented in the models; (b) Training and test error 

for models in the Parsimonious cluster; (c–e) selection of models from the Parsimonious cluster. Feature constructions 
are annotated as {State/Change | Neighbor 0–5 | Lag 1–5}. In (a), some of these distributions are asymmetric even after 
standardization; skewed features such as refuge deliveries and pumping occur more infrequently than the relatively 
balanced tree acreage changes. In (c–e), the arg max  operator returns the class {Negative, No Change, Positive} of 
maximum value for a given sample.
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Figure 9 shows that over 60% of the tree acreage features (including lagged and neighboring feature oc-
currences) in models from the Overfit cluster have a total-order sensitivity index near zero, meaning that 
these features have a negligible effect on the class prediction. Both the Overfit and Dominated models 
show lower sensitivity to both categories of features relative to the Parsimonious cluster, indicating that the 
best-performing models are driven by a wider range of features. In the case of tree acreage inputs, over 70% 
of features in the Overfit cluster show small sensitivities (ST < 0.2) compared to less than 50% for the model 
structures from the Dominated and Parsimonious clusters. However, at least 20% of tree acreage inputs to 
both the Overfit and Dominated models are high (ST > 0.8), illustrating a high reliance on fewer feature 
variables, which may reduce the ability of these models to generalize out-of-sample. Conversely, both the 
Overfit and Dominated models do not show the same high sensitivities to nontree acreage data that appear 
in the Parsimonious models.

EKBLAD AND HERMAN

10.1029/2020WR028148

15 of 22

Figure 8.  Occurrence of feature variables and function primitives among classification models. (a) Distribution of 
occurrence by feature category; (b) occurrence of functions. The former is a distribution because each feature category 
contains multiple feature variables, while the functions are not grouped.

Figure 9.  Empirical cumulative distribution of total-order sensitivity indices for two categories of feature variables: 
tree acreage and nontree acreage, separated by model cluster (color). Only the feature variables appearing in each 
model were included in the sensitivity analysis.
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This result confirms the conclusion from Figure 8 that previous tree acreage states and changes are a main 
driver for this problem. The results also indicate a partition in the information important to the decision 
problem; since crop switching requires respecializing and alternate scheduling, it is perhaps unexpected 
that over 60% of nontree crop features had negligibly small impacts on the class prediction. Similarly, there 
were very few features with sensitivity indices greater than 0.6 among the Overfit or Dominated models. 
Sensitivity testing was only applied to features selected during the generation of each model, so the dis-
tributions of sensitivity indices are not affected by the frequency with which a feature is included in each 
model cluster.

Finally, the average total-order sensitivity indices within each feature category and variable construction are 
displayed across model clusters in Figure 10. Parsimonious models demonstrate elevated sensitivities across 
many of the feature categories and constructions. Since Parsimonious models are less complex than either 
Overfit or Dominated models, that their predictions are highly affected by a wide range of input variables 
makes intuitive sense, as Parsimonious models explain a similar fraction of total variance with fewer fea-
tures. Parsimonious models are also particularly sensitive to tree acreage features from the previous year, as 
shown in prior figures. Though we might expect high bias in these Parsimonious models, bias seems to be 
minimized fairly quickly by selective inclusion of feature variables.

Models in the Dominated cluster share high average sensitivity for only some feature categories but not 
others, as do models from the Overfit cluster to a lesser degree. Models from the Overfit cluster exhibit rel-
atively equal sensitivities across all feature categories as compared to the range of sensitivities represented 
in the Parsimonious and Dominated clusters. This, combined with the function occurrence result from Fig-
ure 8b, suggests that the Overfit models avoid becoming overly sensitive to individual features from any one 
category by using increased complexity to construct combinations of features rather than using single-input 
functions to transform individual features, which leads to their improved generalization ability over the 
Dominated models. Even so, the superfluous structure of the Overfit models relative to the Parsimonious 
cluster would likely reduce their out-of-sample performance in general, beyond this particular test set. This 
result demonstrates how averaging sensitivity to certain categories of features within model clusters can 
reveal the extent to which models should be sensitive to feature data given target properties, such as model 
robustness to unseen data. However, averaging across the set of models may obscure the sensitivities of 
individual models, the distribution of which is better shown in Figure 9.

5.  Discussion
There is a distinct need for integrated systems models when descriptions of the physical system are incom-
plete without consideration of the human component (Herman et al., 2020; Konar et al., 2019). This must 
include representations (Schill et al., 2019) and feedbacks (Calvin & Bond-Lamberty, 2018) that may not 
be implemented in existing model structures. This study proposes methods to automate the exploration 
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Figure 10.  Average total-order sensitivity indices of feature variables across input categories for each cluster of model 
structures. In the feature grouping labels, “data” refers to the combination of state, change, temporal lags, and spatial 
neighbors for each type of feature.
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of model structure along the canonical tradeoff between performance and complexity to describe human 
behavior. In this illustrative case study focused on agricultural land use and water demand, enumerating 
the range of model performance with increasing model complexity by drawing structures from a general, 
unconstrained space provides context for any prior-informed solutions that might arise in the same context. 
The relative performance demonstrated here thus forms a basis for the analysis of model structural uncer-
tainty (Walker et al., 2003) by considering model structures as competing hypotheses (Beven, 2019), which 
could be compared alongside theory-based models.

Generating candidate model structures includes automatic feature selection and requires no prior knowl-
edge of the system's mechanics, constraints, or information requirements beyond the basic provision of 
feature data and primitives (Bongard & Lipson, 2007; M. D. Schmidt & Lipson, 2009), though informing 
and bounding search through process understanding and structural priors (Knüsel et al., 2019), constrained 
problem framings (e.g., Dobson et al., 2019; Müller & Levy, 2019), and structured generation schemes (e.g., 
Chadalawada et  al.,  2020; Spieler et  al.,  2020), and using advanced interpretation tools postsearch (e.g., 
Quinn et al., 2019; Worland et al., 2019) could uncover more specific emergent phenomena in the data and 
resulting models. However, framing model structural experimentation according to this generic framework 
enables a baseline contextualization of the complex integrated systems problem. In this way, a data-driven 
approach to generating and evaluating model structure can support the design of integrated system models 
such as agent-based or hydro-economic models.

The approach presented here generates models directly from data, and some of these models demonstrate 
skill in predicting decision-making at fine-scale spatial resolution, generalize well to unseen data, and do so 
with limited complexity. This illustrates how this approach could aid the design of individual system model 
components as well as broader model integration efforts, provided that these could be represented by the ex-
isting feature variables. However, this approach would struggle to explore structural changes to the system, 
such as those resulting from policy interventions or infrastructure expansion that were not observed histor-
ically, or not represented in the current set of features. Often, as in the water data in this case study, features 
are taken from the output of mechanistic models, which are more suited to exploring structural changes to 
the system such as policy interventions or infrastructure expansion. However, while beyond scope of the 
present study, a model generation approach could be designed with this in mind, using different features to 
represent structural alternatives. This could integrate the result of simultaneous policy interventions dis-
tributed across models from multiple sectors. A related paradigm that could unify mechanistic simulation 
of policy interventions with data-driven model generation is reinforcement learning, in which an agent's 
behavior is informed by observed data in a given time step, and its actions may modify the structure of its 
environment. As such, reinforcement learning is a promising approach to train data-driven functions that 
are robust to environmental dynamics or structural/behavioral feedbacks in the system, though validating 
beyond a limited observed record remains a challenge.

This case study was encumbered by two primary sources of difficulty: (1) algorithmic search in combined 
parametric-structural model spaces, and (2) heterogeneous feature data across multiple temporal and spa-
tial scales. First, the search space of candidate model structures grows combinatorially with the number of 
features and primitives, making it extremely unlikely to identify unique optimal solutions. In this study, 
the sudden failure to improve in performance past a given level of complexity in the classification experi-
ment (Figure 6b), a saturation often interpreted as convergence, could be driven by a structural boundary 
beyond which improvements could not easily be found. Since search effectiveness is partially determined 
by the size of the model space, available theory regarding target or related processes can be used to plausi-
bly constrain model generation, reinforcing the need for process knowledge alongside data in data-driven 
analysis (Karpatne et al., 2017; Knüsel et al., 2019). Additionally, studies have argued for an upper limit 
on the description length of a model (Vanneschi et al., 2010) as done in Chadalawada et al. (2020), though 
this limit is difficult to identify a priori. Hybrid methods, such as evolutionary strategies to approximate a 
gradient, are promising for tractable search in combined model-parameter spaces (Conti et al., 2018; Miik-
kulainen et al., 2019), as well as approaches that asynchronously tune parameters and structure (Frankle 
& Carbin, 2019). However, even when appropriately complex models can be identified, their often black-
box nature does not guarantee interpretability. The results presented here indicate how increasing equi-
finality as a function of complexity can inhibit interpretability. Diminishing returns to model accuracy 
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as complexity increases highlight the importance of parsimony as a key model evaluation and selection 
mechanism. More strategic analysis can be done to interpret the underlying logic behind model predictions, 
such as explaining the importance of features and structure in neural networks (e.g., Montavon et al., 2018; 
Worland et al., 2019), and using sensitivity analysis to explicate structural dependence in space and time 
(e.g., Quinn et al., 2019).

Second, the performance-complexity tradeoff of candidate model structures is tied to the choice of feature 
variables at the appropriate scale, and observed with the necessary accuracy, to generate acceptable test 
performance (Höge et al., 2018). This is also the case when the relations that would model such data do 
not exist or are not included in the primitive set (Kearns et al., 1994). This study incorporates land use and 
economic data across multiple decades and at a relatively fine spatial resolution to derive a single decision 
model, a task which may be better served by developing an ensemble of functions across the spatial region. 
Additionally, while the feature engineering applied to the data helps discern the importance of correla-
tions in space and time, it also obfuscates the resulting model structures by increasing the interdependence 
among features. This could be resolved in future work with dimension reduction techniques (Cominola 
et al., 2019; Giuliani & Herman, 2018), potentially at the cost of feature interpretability. The feature data it-
self may not provide the right signal to adequately model the underlying process in this setting, due to noise 
in measurement or observation error, or the choice of inadequate features. However, examining multiple 
problem formulations allows the comparison of relative performance, as in the regression and classification 
experiments in this study; while classification is the easier problem, it shows higher potential for over-
fitting and may be underrepresenting the complexity in the data. Many-class classification could provide 
a middle ground between these two tasks, as well as the incorporation of metrics that more realistically 
reflect model accuracy across classes, such as weighting by class prevalence (Lipton et al., 2014; Provost 
& Fawcett, 2001) or adding process-informed definitions of model error as objectives (Gupta et al., 2009; 
Lamontagne et al., 2020). Using heterogeneous data to identify the model structure of integrated systems is 
not simple or straightforward, but the explanation of decisions made by complex behavioral agents based on 
multiple sources of information is enabled by the methodological template presented here.

6.  Conclusion
This study develops an approach to the inference of model structures and parameterizations from data 
describing human behavior in water resources systems. Three phases are considered: problem definition, 
model generation, and model evaluation, demonstrated on a case study of land use decisions in the Tulare 
Basin, California. No priors are assumed on the model search space beyond the function primitives and 
feature data, including some feature engineering to build a high-dimensional dataset reflecting land use, 
water use, and crop prices. Results indicate a tradeoff between model performance and complexity, with 
substantial equifinality in model structures that require additional diagnostic analysis. To this end, mod-
el structures are clustered according to similar behavior, and driving structural features are diagnosed by 
considering function importance and input sensitivity. Specific challenges arise due to identifying spatially 
distributed decisions from heterogeneous, multisectoral data, generally preventing the identification of a 
single “best” model from the performance-complexity tradeoff. This provides a basis for analyzing struc-
tural uncertainty under broadly defined problem contexts, and a possible path forward for the generation 
of model components from observed data to support integrated representations of human actors in water 
systems.
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