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Abstract: The information of building types is highly needed for urban planning and management,
especially in high resolution building modeling in which buildings are the basic spatial unit. However,
in many parts of the world, this information is still missing. In this paper, we proposed a framework
to derive the information of building type using geospatial data, including point-of-interest (POI)
data, building footprints, land use polygons, and roads, from Gaode and Baidu Maps. First, we used
natural language processing (NLP)-based approaches (i.e., text similarity measurement and topic
modeling) to automatically reclassify POI categories into which can be used to directly infer building
types. Second, based on the relationship between building footprints and POIs, we identified building
types using two indicators of type ratio and area ratio. The proposed framework was tested using
over 440,000 building footprints in Beijing, China. Our NLP-based approaches and building type
identification methods show overall accuracies of 89.0% and 78.2%, and kappa coefficient of 0.83 and
0.71, respectively. The proposed framework is transferrable to other China cities for deriving the
information of building types from web mapping platforms. The data products generated from this
study are of great use for quantitative urban studies at the building level.

Keywords: urban building type; point-of-interest data; POI; Beijing; natural language processing

1. Introduction

Buildings are a vital element in urban studies. As the fundamental structural element in the urban
physical space [1], buildings are the basic spatial unit to monitor urban structure development in the
horizontal and vertical dimensions. The product of urban 3D building structure, i.e., building footprint,
height, and volume, is a proxy for analyzing structural specifics within cities and revealing their
driving factors [2]. As the main venues of urban activities in the urban socioeconomic space, buildings
are the basic measurement unit to study the impact of human activities in the process of quantitative
urban modeling. The product of building type can be a proxy for analyzing urban socioeconomic
features dominated by human activities (e.g., living, working, and recreation), which are represented
by the building types. For example, in a bottom-up urban building energy use model developed by
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Li et al. [3], the information of building type is a key input for capturing spatial and temporal patterns
of energy consumption for different types of buildings.

Although building type is one of the key input variables in quantitative urban studies [4-6],
this information is largely available in the shared local governmental database (e.g., accessor’s parcel
geodatabase). In countries without accurate and up-to-date governmental geodatabase, time-consuming
and labor-intensive field surveys remain the main approach to obtain building type information [1].
To address this problem, recent studies have investigated the potential of remote sensing and social
sensing data to map building type. Remote sensing data can be used to retrieve building type
information (e.g., residential and commercial buildings) at large scales based on their physical features
(e.g., textural, spectral, and structural) derived from high-resolution optical images [7-9], stereo optical
images [10], and light detection and ranging (LiDAR) data [1]. However, their ability to identify
detailed building types with similar spatial forms (e.g., hospital, hotel, and restaurant) is limited.
In contrast, social sensing data (e.g., social media data and taxi trajectory data) can be used to derive
detailed building type information. This is because social sensing data were collected from individuals
and thus, they can capture different patterns of human activities at a fine scale [11]. By revealing the
relationship between building types and spatiotemporal features of human activities, social sensing
data were utilized to further identify building types with similar spatial forms. However, due to the
limited availability of data records, most studies using social sensing data were conducted at local and
regional scales, especially in big cities [12-14], where people are prone to take a taxi and use social
media more frequently compared to living in small cities [6].

Fortunately, geospatial data from the web mapping platform (e.g., OpenStreetMap, Baidu Maps (https:
//map.baidu.com/), and Gaode Maps (https://www.amap.com/)), including building footprints [15],
land use polygons, roads, and point-of-interest (POI) [16], offer an opportunity to map detailed building
types over a large scale. These data are sufficient for building types mapping with its copiousness,
large area coverage and reliability [17-19]. To meet the increasing demands for mobile navigation
service in human’s daily life, web mapping platforms frequently update geospatial data, even in small
cities. For instance, Baidu Maps has over 300 million active users and billions navigation service requests
in China each day on average [17]. By virtue of this property, many studies utilized building footprints
from web mapping platforms to map 3D building structure at a continental-scale [2] and utilized POI
data from web mapping platforms to map urban functional regions [20] and population density [21]
at a national-scale. POl is a specific point location that can be used to represent a venue (e.g., hotel
and restaurant) in the physical world, with various attributes, such as, the name, address, coordinates,
and category [22]. Among these attributes, the category attribute is cognized and conceptualized [8],
and there are a growing body of literatures, in which this attribute was linked to urban function types
for urban land use mapping [23-28]. Thus, in this study, the category attribute of POI data was used to
infer detailed building types surrounding POls.

However, the inconsistency between the POI categories defined by web mapping platforms and
categories required in urban studies limits the use of POI data. For instance, gates and building numbers
categories are defined by web mapping platforms to help users precisely find their desired locations
within large industrial/commercial/residential region. In this occasion, researchers cannot link these
POI categories to any human activities and therefore most of the POI data studies [21,23,29] always
discard this part of POIs when they manually link POI categories to the human activity categories that
they needed in urban studies. However, the human activity information of these POIs can be inferred
under the help of the name attribute. This attribute in POI data is described by the natural language,
so the human activities information can be extracted via natural language processing (NLP) techniques.

There are challenges in mapping building types. First, there are limitations to identify detailed
building types using remote sensing data, while there are challenges to map building types over
large areas using social sensing data. Second, POI categories may not be able to be linked directly to
human activities, and additional processes are needed to derive the information of building types
using POIs. In this study we aimed to address these challenges in two major areas. First, we developed
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NLP-based approaches to identify corresponding building types hidden in the name attribute of POlIs.
Second, we collected geospatial data from Gaode Maps and Baidu Maps and proposed new ratio-based
approaches to derive the urban building types in Beijing, China. The remainder of this paper describes
the study area and dataset used in this study (Section 2), the proposed POI categories reclassification
approach (Section 3.1) and building type identification approach (Section 3.2), results (Section 4),
discussion (Section 5), and concluding remarks (Section 6).

2. Study Area and Data

As the capital of China, Beijing is located in the north margin of the North China Plain (Figure 1).
Along with rapid urbanization, this megacity in 2018 (696.63 km?) increased by approximately 30 times
compared to the area in 1980 (23.53 km?) [30]. Meanwhile its ring road network gradually expanded to
6" Ring Road during the past 30 years. As the core area of economic development of Beijing, the area
within the 6" Ring Road has a high density of buildings and a diversity of building types. Therefore,
this city can serve as an ideal region for deriving building type information.
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Figure 1. The study area of Beijing, China.

The geospatial data used in this study include POlIs, building footprints, land use parcels, and road
networks. Baidu Maps and Gaode Maps are the two most popular web mapping platforms in China
for collecting geospatial data (Figure 2A,B) to provide navigation services. We used web crawlers
to collect POIs in Gaode Maps. A total of 1,455,461 POls in 2019 were acquired via the application
programming interface (API) provided by Gaode Maps, and these POIs can be grouped into the 23 big
categories (e.g., food and beverages, shopping, daily life service, sports and recreation, medical service,
accommodation service, tourist attraction, commercial house, governmental organization and social
group, science/culture and education service, place name and address, and pass facilities). Its initial
three-level category scheme can be found in its document (https://Ibs.amap.com/api/webservice/
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download) and the 23 Level I categories were further classified into 264 Level II categories and
870 Level III categories.

We used web crawlers to collect roads, building footprints, and land use parcels from Baidu Maps.
A total of 440,781 building footprints, 48,452 land use parcels (e.g., parks, companies, hotels, residential
districts, greenspaces, parking lots, and schools), and 32,563 roads were acquired from Baidu Maps in
2019. The land use parcels and roads have a code attribute (Figure 2C) to infer land use types and road
network levels, respectively.
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Figure 2. Examples of geospatial data from online web mapping platforms (A) and (B) and in shapefiles
after web crawlers processing (C) and (D).

3. Methodology

We developed a stepwise method to identify urban building types including residence, office,
school, retail, hotel, restaurant, and hospital in Beijing, China as shown in Figure 3. First, the initial POI
categories from Gaode Maps were reclassified to which can be used to directly infer building types by
using a lookup table (Figure 4C). Then, NLP-based approaches (i.e., text similarity measurement and
topic modeling) were developed to reclassify POI categories that cannot be reclassified by the lookup
table (Figure 4D). Second, land use parcels were used to identify buildings types within parcels. Then,
for buildings outside parcels, ratio-based approaches (i.e., type ratio and area ratio) were developed to
identify buildings types with/without POIs nearby. More details about each step are presented in the
following sections.

3.1. Reclassification of POI Categories

We built a lookup table (Table 1) to reclassify POI categories into corresponding building types.
The category of “Unrelated’, accounting about 9.7% of total POIs, means POIs with this category are
unrelated to buildings and were removed in our analysis. The category of ‘Unclassified’, accounting
about 15.8% of total POIs (Figure 4A, B), means POIs with this category are needed to be reclassified into
corresponding building types using the NLP-based approaches because ‘Unclassified” POIs include
those related to building numbers and gates and their initial categories cannot be used to directly infer
building types. Via the text similarity measurement and topic modeling for POl names, we can identify
their corresponding building types. In the rest of paper, we called POIs with corresponding building
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types in Table 1 as ‘Reclassified” POIs and called POIs without corresponding building types in Table 1
as “Unclassified” POls.

POI Categories from o .
Gaode Maps Building Footprints

":‘Within Landuse ;. YES

YES
Lookup Table Parcels
NO
NO
4\( _ )Wlth POIs nearby
Text Similarity i i
Measurement
YES NO

Topic Modeling Type Ratio Lirea/Ratig\J

—)[ Reclassified POI Categories } Append type with maximum ratio ‘ {Append land use type ]
Step 1 Step 2
Reclassify POI Categories from Gaode Maps Identify Building Type

Figure 3. The proposed framework for identifying building types.
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Figure 4. (A) The distribution of ‘Unclassified” and ‘Reclassified” point-of-interests (POls). (B) An
enlarged view of “Unclassified” and ‘Reclassified” POIs. (C) POIs reclassified by the lookup table.

(D) POlIs reclassified by NLP-based approaches.
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Table 1. The lookup table for reclassifying POI categories into corresponding building types.

Reclassified POI

POI Categories from Gaode Maps Category (Building Type)

Level I Level II Level III
Auto Service All Retail
Auto Dealers All Retail
Auto Repair All Retail
Motorcycle Service All Retail
Sports and Recreation All Retail
Daily Life Service All Retail
Shopping All Retail
Pharmacy All Retail
Medical Service Veterinary Hospital All Retail
Others All Hospital
Food and Beverages All Restaurant
Accommodation Service All Hotel
Science/Culture and School All School
Education Service Others All Office
Tourist Attraction All Office
Govemmeral Ogmiaion
Industrial Park All Office
Commercial House Industrial Building Office
Building Business Office Building Office
Others Residence
Airport Related All Office
Railway Station All Office
Port and Marina All Office
Transportation Service Coach Station All Office
Border Crossing All Office
Others All Unrelated
Road Furniture All Unrelated
Finance and Insurance ATM All Unrelated
Service Others All Office
Enterprises All Office
Address Sign Building Number Unclassified
Place Name and Address Others Unrelated
Others All Unrelated
Pass Facilities Gate of buildings All Unclassified
Gate of Street House All Unclassified
Virtual Gate All Unrelated
Public Facility All Unrelated
Incidents and Events All Unrelated

Indoor facilities All Unrelated
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3.1.1. Text Similarity Measurement

The text similarity measurement was used to identify the corresponding building types of
“Unclassified’ POIs. This new approach was designed based on a special naming rule of ‘Unclassified’
POIs from web mapping platforms. “Unclassified” POIs were collected by web mapping platforms to
help users find their desired locations within a large region. For example, there is a large industrial
district in Figure 5 with a POl named ‘Kangsheng Industrial District’. Two gates and eight buildings
POlIs are within this industrial district, and their names have same prefix of the name of industrial
district POL Their corresponding building types can be inferred by the reclassified category of industrial
district POL Three steps of the text similarity measurement using this rule are described in details

below (Figure 6).
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Figure 5. Examples of POlIs in a large industrial district.
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Figure 6. An example to show the workflow of the text similarity measurement.

First, a total of 45 analysis units were generated using roads with “31930” code (the main roads).
The region enclosed by roads tends to have relatively homogeneous socioeconomic functions [31] so
they can serve as an optimal search domain for text similarity measurement. Second, the Jaro-Winkler
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metric [32] in the Python package (https://pypi.org/project/pyjarowinkler/) was utilized to measure
the similarity of POl names within one analysis unit. This metric considers the length of the common
prefix of two texts and primarily for short texts [33]. Therefore, this metric is suitable to calculate
the degree of similarity between two POI names (i.e., ‘Unclassified” and ‘Reclassified”). Following
Chen et al., [5], the similarity threshold of 0.85 was used. If the similarity value of two POI names is
larger than 0.85, these two POI names were considered as ‘similar” POIs. Third, we appended the
corresponding building type of similar ‘Reclassified” POI to the ‘Unclassified” POI category.

3.1.2. Topic Modeling

The topic modeling was used to identify the corresponding building types of ‘Unclassified” POIs
without similar POIs within an analysis unit in four steps. We took the name of each POI as a sentence,
the collection of POIs with the same category as a document, and the category as a topic. First, we used
Jieba (https://github.com/fxsjy/jieba), a Python library for segmenting words in Chinese, to conduct
words segmentation for each ‘Reclassified” POI name. Each collection of words consists of words
segmented from each reclassified POI category. Second, we used the term frequency-inverse document
frequency (TF-IDF) calculated by Equation (1) in the in-house Python code to measure how relevant
a word is to a POI reclassified category. Considering that place names (i.e., streets, districts, cities,
or counties) and non-Chinese words in POl names cannot be used as theme words of the reclassified POI
category, we removed them before calculating TF-IDF. Third, we generated sets of theme words for each
reclassified POI category via sorting TF-IDF values. The larger the TE-IDF value of a word, the more
important this word was to distinguish its corresponding building types. We sorted the TE-IDF value of
words from high to low and extracted words with the TF-IDF value larger than turning points as theme
words (Figure 7). Here, we explained theme words selection by taking hospital as an example. The first
three words in the rank of hospital TF-IDF values were ‘Hospital” (0.029),” Stomatology department’
(0.023), and ‘Outpatient service (0.020) and they were used as theme words to identify hospital POIs
from ‘Unclassified” POIs. The TF-IDF values of ‘Community” (6.03 X 107%), “Health’ (5.79 x 107%),
and ‘Medicine’ (8.4 x 10~°) were smaller than 8.5 x 10~#, which means these words are not important
enough to identify hospital POIs from ‘Unclassified” POIs. Finally, we conducted the matching of
theme words (Equations (2) and (3)) to determine corresponding building types of ‘Unclassified” POIs.

T; N;
TF - IDF; = —* Xlog| — +1 1
where TF — IDF}; is the TF-IDF value of the word ¢ in the reclassified POI category i; T; is the number of
the word t in the reclassified POI category i; A; is the total number of words in the reclassified POI
category 7; N; is the total number of reclassified POI categories (N; = 7 in this study); and df; is the
number of reclassified POI categories with the word ¢.

wj = min(Nwetheme> (2)
Category | w; (ij = 1)
POI categoty: = Rarnky, cthome 3)
goty; Cateogry |m1n(ﬁ) (ij > 1)
ZU]'€ eme

where the POI categoty; is the corresponding building type of “Unclassified” POI i; Nycpeme is the
number of sets of theme words with the word w; w; is the word with the minimum Nyepene; ij is the
number of w; Ra”kw/-etheme is the TF-IDF value rank of w; in the corresponding set of theme words;
and Tijethm is the total number of words in the corresponding set of theme words.
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Figure 7. TF-IDF Log curves of seven reclassified POI categories.

3.2. Identification of Building Types

We identified building types based on land use parcels and reclassified POls. First, we interpreted
code of land use parcels based on the Google Earth images and online Baidu Maps (Table 2).
After performing overlay analysis, we appended land use types to building footprints within land use
parcels to obtain building types. Second, for building footprints outside land use parcels, considering
the uneven distribution of POI data shown in Figure 8A, we calculated the indicator of type ratio for
each building with POIs nearby and the indicator of area ratio for each building without POIs nearby

to obtain building types.

Table 2. The codes and corresponding building types of land use parcels.

Code Land Use Type Building Type
3192 Residential districts Residence
3197 Government, Industrial district, Company Office
3194 Hospital Hospital
3195 Primary/Secondary/High School, Kindergarten School
5640 University School
3193 Park Office
36126/36130 Shopping mall Retail
3201 Resort Hotel Hotel
3198 Airport Office
4125/5644 Parking lots Unrelated
31642/41124/41150/4128-4144/41472/6301 Subway station Unrelated
3185/5636-5638 Lake/waterway Unrelated
5645-5650/3177/3182 Sport ground Unrelated

3174/5642/5643 Greenspace Unrelated
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Figure 8. The density of POIs (A) and an example of mix-used building in Beijing (B).
3.2.1. Type Ratio

For buildings with POIs nearby, type ratio (TR) was used to determine the reclassified POI
category that can be appended to buildings. This ratio is calculated as the percentage of the reclassified
category of POIs among the total number of POls in the building’s buffer region (Equation (4)). Due to
the geographical deviation between POIs and building footprints, not all POIs are exactly located
within building footprints. Therefore, we generated the buffer for each building. The radius of the
building’s buffer is the half of the Euclidean distance between this building and its nearest building
because a POl is not likely to be shared by two buildings. In a mixed-use high-rise building (Figure 8),
restaurants, retails, and offices dominate the bottom floors and residence dominates the remaining
upper floors. The building type was determined by the major types (i.e., residence, school, and hospital)
that dominate most floors. TR was calculated for POIs with the major types in each building buffer.
The building type with the maximum type ratio was appended to the building footprint (Figure 9).

1

Nj

TR; = — x100% 4)
where 7; is the number of the reclassified POI category i; and Nj is the total number of POIs in the
building’s buffer region j.

3.2.2. Area Ratio

For buildings without POIs nearby, area ratio (AR) was used to determine the type of neighboring
buildings that can be appended to these buildings. This ratio is calculated as the percentage of the
building footprint that intersects with the Thiessen polygon of its neighboring buildings (Equation (5)).
The regions with the sparse POI data shown in Figure 8 are distributed in urban fringe districts and
mainly include old-fashioned dwellings and warehouses. Compared to the highly heterogeneous
building types in urban core areas, building types in urban fringe districts are more homogenous.
Therefore, in the regions with sparse POI data, the closer two buildings are to each other, the more
similar building types of them are. We generated Thiessen polygons using the centroid of building
footprints whose types have been identified by the indicator of TR, and appended building types to the
corresponding Thiessen polygons. The larger a building area was covered by the Thiessen polygon,
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the larger this building type was influenced by this Thiessen polygon. Thus, the type of Thiessen
polygon with the maximum area ratio was appended to the building footprint (Figure 9).

Al o
Thiessen polygonNbuildin,
AR; = Poys £ % 100% 5)
Abuilding

where Ap,jging is the total area of the building footprint; and AiTh‘ . is the area of
] iessen polygonNbuilding
building footprint covered by Thiessen polygon with type i.

Buildings with POIs nearby Type ratio calculation
- > il TRoffice = 4/6 X 100%
.
TRyetair = 2/6 % 100%

TyPepuitding = TYPCmax(TRosfice, TRrecai) = OF fice

..o Mixed-use high-rise building: building type is determined by
residence, school and hospital

TRresidence = 3/3 X 100%

TyPepuitaing = Residence
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Figure 9. An example of the type ratio and area ratio calculations.

3.3. Accuracy Assessment

We evaluated the reclassified ‘Unclassified” POIs and identified building types using the stratified
random sampling method. First, a total of 500 ‘Unclassified” POIs were used to assess the performance
of NLP-based approach. The numbers of sample POIs for seven building types (i.e., Hospital, Hotel,
Office, Residence, Restaurant, Retail, and School) are 20, 25, 95, 270, 20, 40, and 30, respectively. Second,
a total of 500 building footprints were used to assess the performance of two building identification
indicators. The numbers of sample buildings for seven building types are 20, 25, 165, 150, 35, 60, and 45,
respectively. These sample buildings were manually interpreted based on the street view and online
map of Baidu (https://map.baidu.com/). Confusion matrices, overall accuracy, producer’s accuracy
(PA), user’s accuracy (UA), and kappa coefficient were calculated in the accuracy assessment.

4. Results

4.1. Spatial Pattern of Identified Building Types

Seven building types show significantly different patterns across the study area (Figure 10).
Office and residence buildings accounted for the largest percentage of the total buildings. Compared to
office buildings, residence buildings were mostly in clusters. Restaurant, retail, and hotel buildings
were mainly inside the 2nd ring roads. School buildings were mainly clustered in the northwest
corner of the region between the 2nd and 5th ring road. In comparison, hospital buildings were more
homogeneously distributed in this study area. The patterns of retail and restaurant buildings are
very similar. In terms of size, restaurant and retail buildings tended to be smaller than school and
office buildings.
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Figure 10. The spatial patterns and statistics of identified building types in Beijing.
4.2. Performance of the NLP-Based Approach

The proposed NLP-based approach performed well in reclassifying ‘Unclassified” POIs. For most
“Unclassified” POIs (83.0%), similar names were found in ‘Reclassified” POIs, which proved the
universality of the web mapping service rule we proposed in Section 3.1.1. The 15.3% of ‘Unclassified’
POIs were reclassified using topic modeling. The type of remaining 1.7% of “Unclassified” POIs was
reclassified as residence. The overall accuracy was 89.0%, with a kappa coefficient of 0.83 (Table 3).
Specifically, identified hospital, residence, and school POIs showed the highest accuracy, and their
producer accuracy (PA) and user accuracy (UA) were all around 90%. In general, hotel and restaurant
POls showed a low UA of 60% because they could easily be misclassified as office and residence POls,

respectively. Compared to PA, the UA of office POIs was lower, because office POIs could be easily
misclassified as residence POls.
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Table 3. The confusion matrix of POI reclassification via natural language processing (NLP) techniques.

Hospital Hotel Office Residence  Restaurant Retail School Total UA (%)

Hospital 20 0 0 0 0 0 0 20 100.00
Hotel 0 15 6 4 0 0 0 25 60.00
Office 1 1 70 19 0 1 3 95 73.68

Residence 0 0 2 266 0 1 1 270 98.52
Restaurant 0 1 0 6 12 1 0 20 60.00
Retail 1 0 4 2 0 33 0 40 82.50
School 0 0 0 1 0 0 29 30 96.67
Total 22 17 82 298 12 36 33 500
PA (%) 90.91 88.24 85.37 89.26 100.00 91.67 87.88

4.3. Accuracy Assessment of Identified Building Types

The accuracy assessment indicates that our building type identification methods performed well
in identifying building types. The percentage of buildings identified based on land use parcels was
close to that based on the method of the area ratio (Figure 11). The overall accuracy was 78.2% with a
kappa coefficient of 0.71 (Table 4). The high UA (80%, 91.1%) and PA (100%, 93.2%) of hospital and
school buildings showed that our methods could identify hospital and school buildings well. The high
UA (96.7%) and low PA (66.8%) of residence buildings indicated their high omittance. The omitted
residence buildings were mostly misclassified as office buildings, leading to a low UA (69.1%) of office
buildings. Moreover, the high PA (>95%) of hotel and restaurant buildings indicate that they were not
easy to be omitted, but they could be misclassified as residence and office buildings. The UA and PA
of retail buildings were both low, indicating that this building type could not be identified well.

60 r
Count 50.7
50 - [ Area 44.5
41.5
40 r
£ 29.4
£30
=
Q
5 20 19.9
. 14.0
10 |
0 1 1 J
Type Ratio Area Ratio Landuse Parcels
Figure 11. The number and area percentage of identified from three methods.
Table 4. The confusion matrix of building type identification.
Hospital Hotel Office Residence  Restaurant Retail School Total UA (%)
Hospital 16 0 1 2 0 1 0 20 80.00
Hotel 0 11 5 9 0 0 0 25 44.00
Office 0 0 114 38 1 9 3 165 69.09
Residence 0 0 2 145 0 3 0 150 96.67
Restaurant 0 0 4 8 23 0 0 35 65.71
Retail 0 0 7 12 0 41 0 60 68.33
School 0 0 1 3 0 0 41 45 91.11
Total 16 11 134 217 24 54 44 500

PA (%) 100.00 100.00  85.07 66.82 95.83 75.93 93.18
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5. Discussion

5.1. Comparisons with Other Methods

Our framework shows a good performance for identifying over 440,000 classified building
footprints, especially for hospitals and schools. We summarized recent studies related to building type
mapping in Table 5. Compared to remote sensing-based studies and map-based studies, our framework
can identify more non-residential building types (e.g., school, hospital, hotel, restaurant and retail)
with a comparable overall accuracy of 78.2% and kappa coefficient of 0.71. To be specific, previous
studies typically required very high resolution (VHR) images (e.g., Quickbird and Worldview) to
extract detailed physical characteristics (e.g., spectrum, texture, and geometry) of buildings or utilized
building footprints data from topographic maps to extract geometry characteristics of buildings
directly. The limitations of these studies exist in two aspects. First, the high cost of data source
limited their applications over large areas. Second, although these studies utilized supervised or
unsupervised machine learning approaches to fuse characteristics extracted from multiple data
sources, socioeconomic characteristics related to human activities [11] were not considered in these
characteristics. As a result, their building type maps mainly included residential and non-residential
types because detailed buildings types (e.g., hospital and school) had similar physical characteristics
and needed additional socioeconomic characteristics to be differentiated. For example, when the remote
sensing-based study [16] included POI data, they identified two additional non-residential types
(i.e., theater and shopping mall) because they used additional socioeconomic features (i.e., land use)
from POI data. Compared to the social sensing-based methods, our framework is more transferrable to
other China cities and has lower uncertainties in terms of identifying detailed building types. Due to
the limitations of data availability, existing social sensing-based datasets (e.g., mobile phone data and
taxi trajectory data) are mostly accessible in big cities, but the POI data used in our framework are
available even in small cities [21]. Moreover, POI data can be used to infer building types more directly
compared to social sensing data because they have a specific category attribute that can be linked with
human activities. Social sensing-based methods identified building types via unsupervised clustering
temporal human activity curves, the low representativeness and density of social sensing data had
influence on the detection rate of building types such as schools, hotels, and hospitals. For example,
hospital and school had low use of Tecent software [13] or educational trips were seldom shown in taxi
trajectories [12], leading to the detection rate of school and hospital buildings being low. In contrast,
our framework can identify hospital and school buildings well with a high UA (80%, 91.1%) and PA
(100%, 93.2%).
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Table 5. The list of case studies related to building type identification.

15 of 18

Study Area/The

Case Category Number of Buildings Data Source Characteristics Method Building Types Accuracy
Supervised machine . . . . 5 o
1] RS-based ! Denver., USA/l510 LiDAR Geometry, learning approaches (SVM, Single-family hou.ses, rpultlp}e—famlly houses, OA >8 70%,
buildings landscape non-residential buildings Kappa® > 0.5
Random Forest, etc.)
Unsupervised machine o
[10] RS-based Yangon, Mya;1mar/64411 GeoEye/Landsat/NPP-VIIRS Geometry, leaning (Hierarchy Residential, commercial, industrial buildings OA =76%
km Spectrum e Kappa = 0.58
classification)
Supervised machine . . o . . . _ o
[7] RS-based A small area of Beijing, Quickbird/Worldview Geometry, texture  learning (Back Propagation ngh—rlse bulldmgs, multi-story resmlen’slal OA =91.5%
China . buildings, old-fashioned courtyard dwellings Kappa = 0.892
Neural Network Algorithm)
Low-story shantytowns, medium-story apartments,
8] RS-based A small area of Beijing, Quickbird Geometry, texture, Supervised machine high-rising apartments, administrative buildings, OA =79.54%
China/8831 buildings spectrum learning (Random Forest) commercial buildings, industrial buildings, Kappa =0.72
auxiliary buildings
Cologne, Dresden, IKONOS, Airborne laser UnsuPerVISed mach'me Non-residential/industrial, detached/semi-detached,
[9] RS-based - Geometry leaning (Fuzzy logic s P L NA
German scanning data e terraced, building blocks and high-rise buildings
classification)
Dresden, Halle Krefeld, Building footprint vector Supervised machine . . . .
) . . Single/two-family houses, multi-family houses, . o
[34] Map-based Stolpen, Saxony, data, topographic raster Geometry learning approaches (SVM, . . : . OA is about 90%
industrial/commercial, special purpose
German maps Random Forest, etc.)
City of Zurich, Building footprints \.Iector Sl%p ervised machine Industrial and commercial areas, inner city, dense OA =75%
[15] Map-based Switzerland data from topographic map Geometry learning approaches (SVM, buildings, disperse buildings, sinele buildin Kappa = 0.66
and MasterMap AdaBoost, etc.) g, dIsp g8, SIng & ppa =U.
Haizhu District, Taxi GPS trajectory Spatiotemporal Unsupervised machine Public facilities, multistore OA = 85.66%
[12] SS-based Guangzhou, data/Tencent user density distribution leaning (K-means Residential buildings, high-rise residential buildings, Ka ; - O 81; 4
China/20,928 buildings data characteristics clustering) business and service buildings, urban village ppa =1
Tianhe District, Taxi GPS trajectory Spatiotemporal Unsupervised machine Residential buildings. offices, Shopping centers
[13] SS-based Guangzhou, China data/Tencent user density distribution leaning (DBSCAN hotels hgo; itals ;ChO(I)DII; & ’ OA =72.22%
68,997 buildings data/POI database characteristics clustering) ’ P ’
Tianhe District, Taxi GPS trajectory Spatiotemporal Single function building, Multifunctional building
[14] SS-based Guangzhou, data/Tencent user densi distribution Probabilistic model (Recreation, office and residential building; OA =85%
g ty &
China/63,961 buildings data/POI database characteristics Recreation and residential building, etc.)
. GIS spatial analysis Residential (single house, townhouse), Commercial
[16] RS/SS-based Bangkok, Thailand/2 ALQOS/POI database Spectrum, functions and logical (single, townhouse), Industrial (factory, warehouse), OA > 75%

km?

geometry, land use

statements (if-then—else)

Theater, Shopping mall

1 RS-based: remote sensing-based building type identification studies. OA: Overall Accuracy, Kappa: Kappa Coefficient. SS-based: social sensing-based building type identification studies.
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5.2. Implications

The framework and product from this study have important implications for urban planning and
management. The automatic approach proposed in our framework can maximize the usage of POI data
in urban studies. When the category attribute of POlIs is not enough to infer human activities, the name
attribute is used to derive human activity information via the NLP-based approaches. As shown in
Figure 4c,d, we used NLP-based approaches to classify ‘Unclassified” POlIs so that POIs can be used to
infer the types of surrounding buildings. Moreover, the product of building type is one of the required
inputs in urban studies at fine spatial scales. For example, Li, et al. [3] utilized the city-wide building
type information obtained from the assessor’s database to estimate the building energy use at the
building level. In other countries such as China, due to the lack of building information, the building
energy use studies mainly used macro statics data over large scale [35,36] instead of using quantitative
modeling at fine spatial scales. In addition, our product of building type provides the possibility
to generate spatial datasets related to human activities. For example, human activities influence
waste generation patterns, disaster loss amount, or population density of surrounding buildings.
The information of building type can serve as an indicator to estimate waste construction [4], analyze
damage and vulnerability [5], and map population [6] at the city scale.

5.3. Future Work

Further research can be focused on supervised learning algorithms to reclassify ‘Unclassified’
POIs. The topic modeling proposed in this study is a simple algorithm for matching words segmented
from each POl name to theme words of the POI categories. In terms of reclassification of restaurant and
hotel POlIs, this algorithm performs not well with a UA of 60%. The classifier of supervised learning
algorithms can be trained with TF-IDF values of words segmented from different reclassified POI
categories, to automatically assign the most relevant reclassified POI category to each ‘Unclassified’
POI. Therefore, the TF-IDF extraction method coupled with a supervised learning algorithm could
improve the performance of reclassification of “Unclassified” POIs.

In addition, a further study is needed to improve the accuracy of identifying building types
in regions with sparse POI data. The types of buildings in historical residential regions cannot be
identified accurately because POISs of these buildings are not collected by the web mapping platform.
Some historical residence buildings are misclassified into hotel, restaurant, retail or office buildings,
leading to a low PA of residence buildings (66.8%) and low UAs of hotel (44.0%), restaurant (65.7%),
retail (68.3%), and office (69.09%) buildings. Buildings of these types are sparsely scattered in the
historical residential regions and their impacts on neighboring residence buildings can be considered
in future studies. Moreover, the size of these buildings can be considered in the future improvement to
mitigate their impacts because these small buildings are often used to provide service for residents.

6. Conclusions

Building type is of great use for analyzing urban socioeconomic features dominated by
human activities. The products of building types can help researchers in studying human activities
(e.g., population density mapping, building energy use modeling) at fine spatial scales. In this study,
we proposed a new framework to identify building types in the urban region. First, we employed
NLP-based approaches (i.e., text similarity measurement and topic modeling) to extract semantic
information hidden in POI names. The derived information was used to better infer surrounding
building types. Second, we proposed ratio-based approaches (i.e., type ratio and area ratio) to identify
building types. The proposed framework is capable of identifying building types over large areas
(e.g., the region within the 6th Ring Road of Beijing, China). The accuracy assessment indicates that
our framework is reliable to reclassify POI categories with an overall accuracy of 89.0% and kappa
coefficient of 0.83, and to identify building types with an overall accuracy of 78.2% and kappa coefficient
of 0.71. NLP-based approaches can maximize the usage of POI data in identifying building types.
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The resulting product of building types is of great use for urban planning and management because
building type information is one of the required inputs in quantitative urban studies. Future studies are
needed to improve the performance of identifying building types in regions with sparse POI data and
can be focused on potential techniques (e.g., supervised learning algorithm) to reclassify ‘Unclassified’
POlIs and transferability of the approach in other countries.
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