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Abstract

This paper investigates quantitative estimates in the homogenization of second-
order elliptic systems with periodic coefficients that oscillate on multiple separated
scales. We establish large-scale interior and boundary Lipschitz estimates down to
the finest microscopic scale via iteration and rescaling arguments. We also obtain a
convergence rate in the L? space by the reiterated homogenization method.
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1 Introduction

In this paper we investigate quantitative estimates in the homogenization of elliptic systems
with periodic coefficients that oscillate on multiple separated scales. More precisely, consider
the m x m elliptic system in divergence form,

in a bounded domain Q C R (d > 2), where
L. =—div(A*(2)V) = —div(A(z, z/e1, x/ea, ..., x/2,) V), (1.2)

and {0 < e, <e,_1 <---<eg; <1} represents a set of n ordered lengthscales, all depending
on a single parameter . We assume that the coefficient tensor A = A(z,y1,vy2,...,Yn) iS
real, bounded measurable, and satisfies the ellipticity condition,

1
Al poo x4y < u and  plél* < (AE,€) (1.3)
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for any & € R™*?, where p > 0, and the periodicity condition
A(Qf,y1+2'1,"‘,yn+2’n):A(l',yl,"‘,yn) for any (Zlv"' 7Zn) Gden' (14)

We also impose the Holder continuity condition on A: there exist constants L > 0 and
0 < # <1 such that

n—1 0
|A(l‘,y1, te '>yn—17yn) - A(aﬁl,y17 T '7y;z—17yn)| < L{|$ - iL‘/| + Z |y€ - yﬂ} (15)
(=1

for x, 2", y1, ..., Yn, Y5, -, ¥,_; € R Note that no continuity condition is needed for the
last variable ,,.

Homogenization problems with multiscale structures were first considered in the 1930s
by Bruggeman [9]. In the case where g, = &* for 1 < k < n, the qualitative homogenization
theory for £, in (1.2) was established in the 1970s by Bensoussan, Lions, and Papanicolaou
[8]. Let u. be a weak solution of the Dirichlet problem,

Lo(u:) = inQ? and w.=f on . (1.6)

Assume that A satisfies (1.3)-(1.4) and some continuity condition. It is known that wu.
converges weakly in H1(2) to the solution uq of the homogenized problem,

Lo(ug) = inQ and wy=f on 090, (1.7)

where £y = —div (fAl(:E)V) is a second-order elliptic operator. The effective tensor //l\(x) is
obtained by homogenizing separately and successively the different scales, starting from the
finest one ¢, as follows. One fixes (z,y1,...,yn—1) and homogenizes the last variable y, =
x/e, in A, = A(z,v1,...,Yn) to obtain A, _1(z,y1,...,Yn—1). Repeat the same procedure
on A,_; to obtain A, », and continue until one arrives at Ag(z), which is A(z). This
process, in which at each step the standard homogenization is performed on an operator
with a parameter, is referred in [8] as reiterated homogenization. For more recent work in
the reiterated homogenization theory and its applications, we refer the reader to [6, 1, 14,
15, 17, 18, 22, 16, 20, 21] and their references. In particular, using the method of multiscale
convergence, Allaire and Briane [1] obtained qualitative results for £, in a general case under
the condition of separation of scales,

e1—>0 and epi/ep—0 forl1<k<n-—1, ase — 0. (1.8)

This paper is devoted to the quantitative homogenization theory for the operator £, and
concerns problems of convergence rates and large-scale regularity estimates. We point out
that in the case n = 1, where A°(x) = A(x/e) or A(z, x/e), major progress has been made in
quantitative homogenization in recent years. We refer the reader to [7, 26, 12, 13, 4, 23, 19, 24]
and their references for the periodic case, and to [10, 5, 3, 11, 2] and their references for
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quantitative homogenization in the stochastic setting. The primary purpose of this paper is
to extend quantitative estimates in periodic homogenization for n = 1 to the case n > 1,
where the operator L. is used to model a composite medium with several microscopic scales.

Our main results are given in the following two theorems. We establish the large-scale
interior and boundary Lipschitz estimates down to the finest scale ¢,, assuming that the
scales 0 < e, < g,_1 < --- < &1 < gy = 1 are well-separated in the sense that there exists a
positive integer N such that

N
(%) <* forl1<k<n-—1. (1.9)
€k Ek—1

In particular, this includes the case where e, = e with A\g =0 < A\ < g < -+ < A\, < 00
and 0 < ¢ < 1, but excludes the case (g1,¢2) = (g,&(]loge| + 1)7!). We point out that the
condition (1.9) is equivalent to the following condition introduced in [1]: there exists N > 1
such that

1 /¢ N
hm—(ﬂ> —0 forl<k<n-—1.

Theorem 1.1. Suppose that A satisfies conditions (1.3), (1.4), and (1.5) for some 0 < 6§ < 1.
Also assume that 0 < &, < g,_1 < -+ < &1 < gy = 1 and (1.9) holds. For Br = B(xq, R)
with 0 < &, < R < 1, let u. € H'(Bg;R™) be a weak solution of L.(u.) = F in Bg, where
F € LP(Bg;R™) for some p > d. Then for 0 <e, <r <R,

(][ |Vue|2> 1/2 <C { (]{33 IVuJQ)l/2 YR (ﬁR IFV’) Up} | (1.10)

where C' depends at most on d, n, m, u, p, (0, L) in (1.5), and N in (1.9).

Let © be a bounded domain in R?. Define D, = D(xq,7) = B(xg,7) N Q and A, =
A(zg, 1) = B(xo,7) NN, where zg € 002 and 0 < r < diam(2).

Theorem 1.2. Assume that A and (€1, €3, ...,&,) satisfy the same conditions as in Theorem
1.1. Let Q be a bounded CY domain in R? for some a > 0. Let u, € H(Dg;R™) be a weak
solution to L.(u:) = F in Dg and u. = f on Ag, where ¢, < R <1, F € LP(Dg;R™) for
some p > d, and f € CY(Ag;R™) for some 0 < v < «a. Then for 0 <e, <r < R,

1/2 1/2 1/p
(f 1wur) sc{(][ vort) +n(f i) +R-1||f||01,u<AR>}, (1.11)
r DR DR

where C' depends at most on d, m, n, u, p, v, (0,L) in (1.5), N in (1.9), and Q.

Remark 1.1. Under the additional assumption that A = A(z,y1,...,y,) is also Holder con-
tinuous in y,,, estimates (1.10) and (1.11) imply the uniform pointwise interior and boundary
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Lipschitz estimates for u., respectively. To see this, one introduces a dummy variable y,,,1
and considers the tensor A(z,y1, ..., Yn, Yns1) = A(x,y1,...,yn). Since £,,1 may be arbi-
trarily small, it follows that the inequalities (1.10) and (1.11) hold for any 0 < r < R < 1.
By letting r — 0 we see that |Vu.(xg)| is bounded by the right-hand sides of the inequalities.

Remark 1.2. In the case A°(x) = A(z/e), Theorems 1.1 and 1.2 were proved by Avellaneda
and Lin in a seminal paper [7] by using a compactness method. The boundary Lipschitz
estimate in Theorem 1.2 was extended in [12] to solutions with Neumann conditions. Also
see [4] for operators with almost-periodic coefficients and [5, 3] for large-scale Lipschitz
estimates in stochastic homogenization. Our results for n > 1 are new even in the case

Af(z) = Az /e, x/€?).

We now describe our approach to the proof of Theorem 1.1; the same approach works
equally well for Theorem 1.2. The proof is divided into two steps. In the first step we
prove the estimate (1.10) for the case e < r < R < 1. To do this, we use a general
approach developed in [5] by Armstrong and Smart (also see [4, 3]), which reduces the
large-scale Lipschitz estimates to a problem of approximating solutions of L.(u.) = F by
solutions of Lo(ug) = F in the L? norm. Given u., to find a good approximation wug, we
use the idea of reiterated homogenization and introduce a (finite) sequence of approxima-
tions as follows. Omne first approximates u. by solutions of —diV(Afl_l(:v)Vuayn_l) = F,
where A5_|(x) = Apa(x,x/er,...,x/en—1) and A,_1(x,y1,...,yn—1) is the effective ten-
sor for A, = A(z,y1,- -, Yn-1,Yn), With (,41,...,y,_1) fixed as parameters. The function
Uc -1 is then approximated by a solution of —div(AS_,(2)Vue,—2) = F, where A5 ,(z) =
A, o(z,x/er, ... ,x/en—o) and A, _o(x,y1, ..., Yn—2) is the effective tensor for
An (g1, o Yne2, Yn—1), With (z,y1, ..., yn_o) fixed. Continue the process until one reaches
the tensor Ag(z) = A(z). By an induction argument on n, to carry out the process above, it
suffices to consider the special case where n = 1 and A*(z) = A(z,z/e). Moreover, by using
a convolution in the z variable, one may assume that A = A(z,y) is Lipschitz continuous
in z € RY. We point out that even though the case A°(x) = A(x/e) has been well studied,
new techniques are needed for the case A°(x) = A(z,x/e) to derive estimates with sharp
bounding constants depending explicitly on ||V, Al|~. For otherwise, the results would not
be useful in the induction argument.

In the second step, a rescaling argument, together with another induction argument, is
used to reach the finest scale ,. We mention that the condition (1.9) of well-separation is
only used in the first step. Without this condition, our argument yields estimates (1.10) and
(1.11) for

€1+(82/51+-~+5n/€n,1)N§r<R§ 1, (1.12)

where N > 1, with bounding constants C' depending on N. See Remark 6.1. Although we do
not know whether the condition (1.9) is necessary for Theorems 1.1 and 1.2, we believe that
some well-separation condition stronger than (1.8) is required for the large-scale Lipschitz
estimate down to the finest scale ¢,,.



As a byproduct of the first step described above, we show that if A°(x) = A(x,z/¢), then

lue — wollz2(@) < Ce {1 + | VaAllw + e VoAl } (1Flz20) + 1 1 m3/2000) (1.13)

for 0 < e < 1, where C' depends only on d, m, u, and Q (see Lemma 4.1). Estimate (1.13)
improves a similar estimate in [28], where a general case A°(x) = A(z, p(z)/e) was considered
by the first and third authors. It also leads to the following theorem on the L? convergence
rate for the operator £.. Note that in Theorem 1.3, we assume A satisfies (1.5) with 6 = 1,
which, among other things, ensures that /T(a:) is Lipschitz continuous.

Theorem 1.3. Let Q2 be a bounded C*' domain in RY. Assume that A satisfies (1.3), (1.4),
and (1.5) with 0 = 1. Let L. be given by (1.2) with 0 < &, < g,1 < -+- < g1 < 1. For
F € L*(;R™) and f € H3?(04R™), let u. € H(Q;R™) be the solution of (1.6) and ug
the solution of the homogenized problem (1.7). Then

e — wol|r2() < C{er +ea/er + -+ + en/en1 }|wol a2 (), (1.14)
where C' depends at most on d, m, n, u, L, and €.

In the case A° = A(x/e, /), the estimate (1.14) was proved in [20] (also see [22, 21]).
As indicated in [21], one may extend the proof to the general case considered in Theorem
1.3. However, the error estimates of the multiscale expansions for the case n = 2 in [20] are
already quite involved, and their extension to the case n > 2 is not so obvious. Our proof of
(1.14), which is based on the idea of reiterated homogenization, seems to be natural and is
much simpler conceptually. Note that if 1 = ¢* and €9 = ¢, where 0 < a < 1, the estimate
(1.14) gives an O(e* + £'7%) convergence rate in L?(2). The rate is sharp, at least in the
case d = 1 by considering the example where

Ail(yh y2) =2 + ]{jil\s)% (627”;(]691*?0)) ’

with £ € N.
The paper is organized as follows. In Section 2 we give the definition of the effective
tensor A(x) as well as the tensors Ag(x,y1,...,yx) for 1 <k < n, mentioned earlier. We also

introduce a smoothing operator and prove two estimates needed in the following sections.
The proof of (1.13) is given in Section 3 and that of Theorem 1.3 in Section 4. In Section 5
we establish an approximation theorem, using the results in Section 3. Sections 6 and 7 are
devoted to the proofs of Theorems 1.1 and 1.2, respectively.

For notational simplicity we will assume m = 1 in the rest of the paper. However, no
particular fact pertain to the scalar case is ever used. All results and proofs extend readily
to the case m > 1 - the case of elliptic systems. We will use fE u to denote the L' average
of u over the set E; ie. f u= ﬁ [ u. A function is said to be 1-periodic in y;, € R? if it

is periodic in g with respect to Z%. Finally, the summation convention is used throughout.



2 Preliminaries

2.1 Effective coefficients

Suppose A = A(x,y,...,y,) satisfies conditions (1.3) and (1.4). To define the effective
matrix A = A(x) in the homogenized operator £y = —div (A(x)V), we introduce a sequence

of d x d matrices,
AZZAf(xayla"wyZ) fOI'OSESTL, (2]‘)

which are 1-periodic in (yi,...,y,) € R™* and satisfy the ellipticity condition,

[ Ag|l poogaxcervy < g and  pl€]* < (A, ) (2.2)

for ¢ € R where u; > 0 depends only on d, n and u. To this end, we let A, (z,y1,- -+ ,Yn) =
A(x,91,.-.,Yn). Suppose A, has been given for some 1 < ¢ < n. For a.e. (x,y1,...,yr1) €
R fixed, we solve the elliptic cell problem,

- divy (AE('I7 Yis -5 Ye—-1, y)va%) = diVy(Ag(I, Yis -5 Ye—1, y)vyy]) in Td7
X% = X%(xa Y1y 5 Ye—1, y) is 1—periodic in Y, (23)

/ X%(x7y17"'7yl—17y)dy:0
Td

for 1 < j < d, where 3/ denotes the jth component of y € R%. Since A, is 1-periodic in
(y1,---,¥e), so is the corrector x,(z,y1, .-, Ye1,%) = (Xt,"+ , X?). We now define

Ag,l(ﬂj, Y1, - - 73/[*1) = ][d <Ag($, Y1y 7yé> + Af(wa Y1, - - 7y€)vy€XZ)dye' (24)
T

Clearly, A,y is l-periodic in (yi,...,ye—1). It is also well known that A, ; satisfies the
ellipticity condition (2.2) [8]. As aresult, by induction, we obtain the matrix A, for 0 < ¢ < n.

In particular, A(z) = Ag(x) is the effective matrix for the operator L. in (1.2).

Theorem 2.1. Suppose A satisfies conditions (1.3) and (1.4). Also assume that as a func-
tion of (x,y1,. .., yn_1), A € C(R¥™; L>=(RY)). Let Q be a bounded Lipschitz domain in R
Let u. be a weak solution of the Dirichlet problem (1.6), with F € H™*(Q) and f € H/?(09).
Then, ife — 0 and (g1, €9, - . ., €,) satisfies the condition (1.8), u. converges weakly in H'(Q)
to the solution ug of the homogenized problem (1.7).

Theorem 2.1, whose proof may be found in [8, 1], is not used in this paper. In fact,
by approximating the coefficients, our quantitative result in Theorem 1.3, provides another
proof of Theorem 2.1.

It follows by the energy estimate as well as Poincaré’s inequality that

fd IVoyxe(z, 1, Yo1, ye)|* dye + ][d Ixe(z, Y1, Y1, ye) P dye < C (2.5)
T T
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for a.e. (z,y1,...,y0-1) € R where 1 < ¢ < n and C depends only on d, n and u. The
next lemma gives the Holder estimates for y, and A, under the Holder continuity condition
on A.

Lemma 2.1. Suppose A satisfies conditions (1.3), (1.4), and (1.5) for some 6 € (0,1] and
L>0. Then
HX@(x>y17 <oy Yo—1, ) - Xg(fﬂl,yi, < 7y2—17 ')HHl(Td)
0
< CL(lz = |+ [y — il + -+ lye—s — veal)
[ A1 (@, 915 Y1) — A (@91, )|
0
< CL(lw = 2|+ [y =l + -+ g1 — 9o ])

(2.6)

for 1 < 0 < n, where C depends only on d, n, 6 and . In particular, |A(z) — A(z')| <
Clo — 2’|, where C depends only on d, n, u, 6 and L.

Proof. 1t suffices to prove (2.6) for £ = n. The rest follows by induction. Note that for
(@91, Un1), (T, 00,y ) € R fixed,
- diVy (A(l’, Y1y -5 Yn—1, y)vy(X%('xv Y1, - Yn-1, y) - X%(x/a y17 s 7?/;1—17 y)))

= divy((A(xayla s >yn71>y) - A(l’l,yi, cee 7y7/7,—17y))vy(yj + XZL(:B/?Z/D cee 73/7/1—171/)))'

The estimate for the correct y,, in (2.6) follows readily from the usual energy estimate and
(1.5). In view of (2.4) we may deduce the estimate for A,,_; in (2.6) by using (1.5) and the
estimate of x, in (2.6). O

2.2 An e-smoothing operator
Fix a function ¢ € C§°(B(0,1/2)) such that ¢ > 0 and [, ¢dz = 1. For functions of form
g°(x) = g(x,z/e), we introduce a smoothing operator S, defined by

SA6)@) = [ gleafehpula =i 2.7

where p.(2) = e %p(z/¢). Note that the smoothing is only done to the slow variable z.

Lemma 2.2. Let 1 < p < oco. Suppose that h = h(x,y) is 1-periodic in y and h €
L>(RE; LP(TS)). Then for any f € LP(R?),

1/p
15208 e < Clellscen s, (f, WGP an) 29
Td

rER4

where hf(x) = h(z,x/e) and C depends only on d and p.
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Proof. Tt follows by Holder’s inequality and the assumption fRd ¢ =1 that

[Se(h"f) (@) < /Rd h(z,2/)P|f(2)Ppe(x — 2) dz.

This, together with Fubini’s Theorem, gives
[isepra< [ @l [ o= lba/o ded:
R4 R4 R4
< st [ = 2,/ d

2€R4

< C\|f||Lp gy SUD ][( ) |h(z,x/¢)|P dx.
z,e/2

zGRd B

Using the periodicity of h(x,y) in the second variable, it is easy to see that

sup f h(z,2/e)Pde < Csup 4 |h(z, )P dy,
(2,6/2)

2€R? J B x€R4 JTd
which finishes the proof. O

Lemma 2.3. Let 1 < p < oo. Suppose that h = h(x,y) € L®(R? x RY) and V,h €
L®(R? x RY). Then for any f € WHP(RY),

14 F = Se(h )l < C{ IV ahlloll Fllvety + IRl V floogeny ). (29)

where hf(x) = h(z,x/e) and C depends only on d and p.
Proof. Write

he(x) f(z) — Se(h°f)(z) = /Rd (h(z,x/e) f(x) = h(z,2/e) f(2)) p=(x — 2) dz,
which leads to

|h*(x) f(2) = Se(hf)(x)] < C]i( o [, w/e) f(x) = h(z,2/e) f(2)] d=.

We now apply the inequality,

][ lu(z) — u(z)|dz < C / Wul@l (2.10)
B(z/2) B(x,e/2) |z — |

where C' depends only on d. This gives
|h* (@) f(x) = Se(h® f)(x)|
<ovale [ MO aicp. [ LD

B(z,c/2) |z — x4t B(z,/2) |z — x4t
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It follows that

o (e [f ()] F ()]
/R B = SR PIIF| de < C[ Vb / d ( / o o dz) dz
V- f(2)]F(2)]
+ CHhHoo/Rd (/3(175/2) ‘Z — $|d71 dz) dx.

Finally, we note that the operator defined by

Tg(m):/B( &dz

x,e/2) |Z - x|d71

(2.11)

is bounded on LP(R?) and ||T'g||p»rae) < Cellg|lrora) for 1 < p < oo. Thus, if 1 < p < o0
and g = p/,

[ = S0 PIIFLdo < CelFlagen { IVl g + IBllll Vs

from which the inequality (2.9) follows by duality. O

3 Convergence rate (n = 1)

In this section we consider a simple case, where n = 1 and
L. = —div(A(z,z/e)V). (3.1)

The matrix A = A(z,y) satisfies the ellipticity condition (1.3) and is 1-periodic in y € R
We also assume that
IVaAlloe = [[Va Al Lo rgxmrg) < 00 (3.2)

Recall that
Aw) = £, (AG9) + Alw) V(o))

where the corrector x(z,y) = (x'(x,9),...,x%x,y)) is given by the cell problem (2.3) with
¢ =n = 1. Note that by (2.6),

V24l < ClIVoAl s, (3.3)
and
(99 + 9w 0) P)dy < C9. AL, (3.4)
Td
where C' depends only on d and p.
Define R
B(z,y) = A(z,y) + A(z,y)Vyx(@,y) — Az). (3.5)
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The d x d matrix B(x,y) = (b;;(z,y)) is 1-periodic in y and
g |B(z,y)|* dy < C, (3.6)
where C' depends only on d and p. In view of (3.3)-(3.4) we obtain
g Vo B(a,y)* dy < C|IVL Al (3.7)
By the definitions of A(z) and y(z,y), it follows that

/ bij(z,y)dy =0 and ibij(x,y) =0 (3.8)
’]I‘d 8yZ

for each x € R? (the index i is summed from 1 to d), where we have used the notation
y=(y',y") eR"

Lemma 3.1. There exist functions ¢(x,y) = (prij(z,y)) with 1 < k,i,57 < d such that ¢ is
1-periodic in y,

0
¢kij = _(bikj and bz](;l},y) = a_yk(bkw (.T, y) (39)

Moreover, [, ¢(x,y)dy =0, and

][ V0, )| dy + f ()P dy < C,
e & (3.10)

V0w )Py + f Vel dy < CIVLALL,
T T
where C' depends only on d and p.

Proof. Using (3.8), the flux correctors ¢y;; are constructed in the same manner as in the case
A= A(y) (see e.g. [24]). Indeed, for each z fixed, one solves the cell problem

Ayfij(xa y) = bij<x> y) in Tda
fij(z,y) is 1-periodic in y,

and sets

0 0
brij(z,y) = a_ykfij<x>y) - a_yifkj(xuy>-

The first inequality in (3.10) follows by using the L? estimate and (3.6). To see the second
one uses (3.7). 0
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Let u. be a weak solution of the Dirichlet problem (1.6) and wg the solution of the
homogenized problem (1.7). Let

We = ue — ug — £S:(M-x"Vuyp), (3.11)

where x°(z) = x(z,z/¢) and the operator S. is defined by (2.7). The cut-off function 7. in
(3.11) is chosen so that n. € C§°(2), 0 < n. <1,

n.(z) =1 if 2 € Q and dist(z, 0Q) > 4e,
ne(z) =0 if dist(x,00Q) < 3¢,

and |Vn.| < Ce!. Define
Q={zeQ: dist(z,00) <t}. (3.12)

The following lemma was proved in [25] for the case A° = A(x/e). The case A° =
A(x, p(x)/e) for stratified structures was considered in [28] by the first and third authors.
Also see [27] for the nonlinear case. The estimate (3.13) is sharper than the similar estimates
in [28, 27].

Lemma 3.2. Let Q be a bounded Lipschitz domain in R?. Let w. be defined by (3.11). Then
for any v € H} (),

‘ / AV, - wdx(
Q

< Ce[| Vel { IV Alloo Vo 20y + V20 220004 |
+ OV 205,

(3.13)

VU0||L2(Q4E),
where A® = A(x,z/e) and C depends only on d, p, and S.
Proof. Using L.(u.) = Loy(up), we obtain
L.(w.) = div[(A® — /Al)Vuo] + div[A®S. (n:(Vyx) V)|
+ e div[A°S. ((Vn-)x"Vug) | + e div[A®S. (n:(Vux) V)] (3.14)
+ ediv [A%’g (%X.evzu())] )

The last three terms in the right-hand side of (3.14) are easy to handle. Let B(z,y) be given
by (3.5). To deal with the first two terms, we write the sum of them as

Iy + I + div [S. (n.B*Vuy)], (3.15)
where B¢ = B(z,z/¢), and

I = div[(A° — A)Vuy — S.((A° — A)n. V)],

3.16
I = div[A®S. (n-(Vyx)*Vug) — S:(n-A*(V,x) V)] . (3.16)
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It follows from (3.14)-(3.16) that
‘ / AV, - wd:p)
Q
< / (A% — A)Vug — S.((A° — A)n.Vue) ||V da
Q
+ /ﬂ |A°S. (n-(VyX)*Vug) — Se(n-A°(V,yX) Vo) || V| da

+ ’ /Q Se(neB Vo) - Vi) dx‘ (8:17)

+C’5/ ’55((VT]E)X€VU0)||VIMCZJI
Q
+Cz [ 15.(0.(9207 V) [ V0] d
0
+C€/ ]SE(nEXEVQUO)HVde
Q
=Ji+-+J,

for any ¢ € Hg(2). We estimate J;, i = 1,...,6 separately.
To bound Jy, we use the Cauchy inequality and (2.8) to obtain

Ji < Cel|Sc((Vne)x*Vuo) |2 | VY| 12050
< Cel|(Vne)Vuo| 2@ | VY[ 12(0s.) (3.18)
< Ol Vuol|z2(@u) VY| 2(0s.),

where we have used the estimate for x(z,y) in (2.5). In view of the estimate for V,x(x,y)
in (3.4), the same argument also shows that

Js+ Js < OVl { IV Al Vuol 2@ + Vo). (3.19)

Next, to bound Js, we use the flux correctors ¢y;; given by Lemma 3.1. Note that by

12



using the second equation in (3.9),

ne(x — 2)bij(z — z,x/a)%(x —z)
= enele — 2) oo L dusla — 2, 0/0) oz )

—ene(z — 2) ;?;k] (x—z,x/s)a—;(x—z)

= 6%{775(55 — 2)pij (v — = x/s)gzg (x — z)}

0 0
e {0 = 2) b (@ — 2,0/0) g (@ = 2)
0 ij 0
—enlr — ) g — 2, /) o 2)
62’&0

—ene(z — 2)Prij(xr — z,x/s)m(x —2).

It follows that

0
J3_5‘/ Ok (Us@bkwa J> azd _/QSE((VHE)&VUO)V@Z)CZ:E

(3.20)
_ / S (1(Vad) Vo) - Ve dr — / Ss(n€<b€V2uo)~V1pda:‘.
Q Q

By using the skew-symmetry property of ¢y;; in (3.9) and integration by parts we may show
that the first term in the right-hand side of (3.20) is zero, if ¢ € C§°(§2). The same is true
for any ¢» € H}(Q2) by a simple density argument. The remaining terms in the right-hand

side of (3.20) may be handled as in the case of Jy, but using estimates of ¢ and V,¢ in
(3.10). As a result, we obtain

Js < ClIVY|| 2050 | Vuo || 2040

N (3.21)
+ CEHV@DHL%Q){||Va:A||oo||VU0||L2(Q) + IV U0||L2(Q\Qaa)}-
It remains to estimate J; and Js. Note that
Ji < C/ (Vuol|1 — ne||[ VY| da —i—/ (A° — A)n.Vug — S. ((A° - E)UEVUOM (V| dx
= Ju + Jia.
(3.22)
By the Cauchy inequality,

Ju < OVl 200 Vuollz2ay.)- (3.23)

13



To bound Jy2, we use (2.11) to obtain

Tz < CuvgcA|yoo/Q|v¢(x)|/B( )M

+C/ va(:c)l/ Vel Veo(2)l + 1 Vol g,
Q B(z,e)

|z — x|d-T

As in the proof of Lemma 2.3, this yields that

Ji2 < Cel| VoAl ool VY| 200 [[ Vo L2y + ClI VY| L2(05.)
+ Cel|[ VY| 120 | Vo | 20040 -

Finally, to bound J,, we observe that
RC [ £ JAwa/e) - AVl /) Vi)V @) dads
Q J B(z,e)
<oVl | £ IV 2/ IVl V )
B(x,e

< Ce||VaAlloo [V 2@ ]{9( )IVyX(Zviv/f)lﬁa(Z)IVUo(Z)ldZIIL2(sz>

1/2
< CeVallVellil] (£, 19 e/ n T uRa:) |

(z, LQ(Q)’

where we have used the Cauchy inequality for the last two inequalities. By using Fubini’s
Theorem and (2.5) we see that

[(f,. 1wt o P vra:) 1.

S CHVUOHLQ(Q)-
()

This gives
Jo S Ce|| Ve Al IV L2(0) [ Vuol| 20,

and completes the proof. n

The next theorem provides an error estimate in H'((Q).

Theorem 3.1. Let Q be a bounded Lipschitz domain in R?. Assume that A satisfies the
same conditions as in Lemma 3.2. Let w. be defined by (3.11). Then
1/2 1/2
[we [l 1) < 051/2”u0||H(2(Q)||VUOHL/2(Q) + Celluollm2e) + Cel| Vo A| ol Vol 22 (3.25)

for 0 < e <1, where C depends only on d, p and 2.
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Proof. Note that w. € Hy(Q) and |w.| g ) < C||Vw:||r2@). By taking ¢ = w, in (3.13)
and using the ellipticity condition of A, we obtain

we|l ) < Ce{|I VAol Vol 220y + | VU0l L2040 } + Cll Vol 22(04 - (3.26)

This, together with the inequality

2 1/2
o]l 220 < CE2 (0]l gy 0] 7 0 (3.27)
for t > 0 and v € H'(Q), where Q; is defined by (3.12), gives (3.25). O

Remark 3.1. Let 2 be a bounded Lipschitz domain. Let u., ug and w, be the same as in
Theorem 3.1. Observe that

e — ol 20y < [lwellz2@) + €llS (1ex"Vuo) | 2(0)
< C||w5||H1 + Cel|[Vugl| 2 (0,

where we have used (2.8). This, together with (3.26), yields

e — ol r2(0) < Ce(||Vadlloo + 1) Vol r2) + Cel| Vuol| 20040

3.28
+CHVU0HL2 () ( )

where C' depends only on d,  and 2. Estimate (3.28) is not sharp, but will be useful in the
proof of Theorems 1.1 and 1.2.

Remark 3.2. Let Q be a bounded C*' domain in R%. Let w. be defined by (3.11), where
us and ug have the same data F and f. Then

[well @) < 051/2{1 +[IVL Al L2 + 81/2||V9c14||o<>} (IEF N2 + 1 fllasrzon)) - (3:29)
where C' depends only on d, i and Q. This follows from (3.25), the energy estimate

luollzrr ey < € (1Fllz2@) + I lmrzon)) -

and the H? estimate for £,
luoll 20y < CUIVaAlloo + 1) (I1F 2@ + 1 fl 212000 (3.30)

where C' depends only on d, p and (2.
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4 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on an approach of homogenization with a parameter. We
start with the case n = 1 and A® = A(z,x/e), considered in the last section.

Lemma 4.1. Let Q be a bounded CY' domain in R  Assume that A = A(x,y) is 1-
periodic in y and satisfies conditions (1.3) and (3.2). Let u. be a weak solution of (1.6),
with £. = —div(A(z,z/e)V), and uy the solution of (1.7) with the same data F € L*(Q)
and f € H3?(0Q). Then

Jue = vollixy < Ce{1+ VAl + I TaAIL } (1Pl + I loomy) (&)
for 0 < e < 1, where C depends only on d, n, i and €.
Proof. Let w, be given by (3.11). It follows from (2.8) that
1S (n=X"Vuo) || 122y < C||Vuo|l 2

Thus it suffices to show that ||w.||r2(q) is bounded by the right-hand side of (4.1). This is done
by using (3.13) and a duality argument, as in [26]. Let A*(x,y) denote the adjoint of A(z,y).
Note that A*(x,y) satisfies the same conditions as A(z,y). We denote the corresponding
correctors and flux correctors by X*(z,y) and * (:B y), respectively. Its matrix of effective

coefficients is given by A* = (A) the adjoint of A.
For G € C*(Q), let v. be the weak solution of the following Dirichlet problem,

—div (A*(z,z/e)Vu.(z)) =G in ,
ve =0 on 01,

and vy the homogenized solution. Define
iDtS(x) =V, — vy — €5 (ﬁa(X*)avvo),
where (x*)° = x*(z,z/e) and 7. € C§°(12) is a cut-off function such that 0 < 7. <1,
Ne(z) =1in Q\ Qqoe,  7-(z) = 0 in Qg,,
and |V7.| < Ce!. Note that
‘/w8 . de‘ = ‘ /Aa(x)ng . vada:’
Q Q
< ‘ / A (2) V. - Vi, dx‘ + ‘ / A (2) V. - Vg dx‘
Q Q

] /Q A (2) V. - ¥ [S. (iL(¢) Vo) Jda
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= T+ Iy + T, (4.3)

We estimate Ji, Jo, and J3 separately.
By using the Cauchy inequality and (3.29), we obtain

Ji < C||Vw:|| 2@l V| 120

) (4.4)
< Ce{1+ VoAl + VoAl } (IFllzz0) + Il sv2(009) 16 20,
where we have also used the estimate
1@y < C2{1+ VL AIL + 22 VoAl G 20 (4.5)
The proof of (4.5) is the same as that of (3.29).
Next, we use (3.13) to obtain
Jo < Ce|[Fuoll 2oy { I VaAlloe| Vol 20 + 1V 2uol 20 § o)

+ C||Vvol| L2 (50 | Vil L2 (0240 -

Note that by (3.27),

1/2 1/2 1/2 1/2
V20| L2050 | Vtt0l| 2200y < Cll V00| oty 00l Ha e | Vil oty 1l 2 -

This, together with (4.6) and the energy estimates and H? estimates for £y and £}, gives
Ja € Ce(U+ IV Alle) (IF L2y + 12 0m) 1G ey (47)

The estimate of Jj is similar to that of Jo. By (3.13) we see that
Js < CEV [S. (i1 () Fo0) ] ey {1V Allocl Vol 20y + 17220 2200 }
where we have used the fact 7. = 0 on Qg.. Note that by (2.8),

IV [S: (7-(x")* Vo) | |20
< 1S (V) (X) Vo] | 22y + 1S [1:(Vax ™) Vo | 2

+ e 1S [T (Vyx ™) Vo ey + 192 [ (0¢) TV 200] [l 2o
< O™ Vol 20 + ClIV 00l 2 @)

It follows that

J3 < C€{||Vvo||L2(Q) + €||V2U0||L2(Q)}{||VxA||oo||VU0||L2(Q) + ||V2u0||L2(Q)}
< Ce(1+ IVaAlloo) X+ llVaAlloo) (I1F N 20) + 1 lersr200)) 1G22 (0)-
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By combining the estimates of Ji, Jo and J3; we obtain

‘/wg-Gda:)
Q

< Ce{1+ Vol + el VAl (IF 20y + 1720009 1G 2200,

from which the desired estimate for w,. follows by duality. n
We are now in a position to give the proof of Theorem 1.3.

Proof of Theorem 1.3. We prove the theorem by using an induction argument on n. The
case n = 1 follows directly from Lemma 4.1. Suppose that the theorem is true for some
n — 1. To prove the theorem for n, let u. be a weak solution of the Dirichlet problem (1.6)
and ug the solution of the homogenized problem (1.7) with the same data (F, f). Let v. be
the weak solution to

—diV(An,l(x,x/gl, . ,w/én,l)va) =F inQ and wv.=f on 0, (4.8)

where A,,_; is defined by (2.4) with £ =n and A, = A. Note that

va,yh-..,ynsznleoo < C||Vx,y1 ,,,,, yn71A||oo < CL.
By the induction assumption,
[ve — uollz2() < Cler +ea/er + -+ en1/en2 }{I|Fllr20) + ||f||H3/2(8Q)}7 (4.9)

where C' depends only on d, n, u, L and ).
To bound ||u: — v.||12(), Wwe use Lemma 4.1. For each 0 < ¢ < 1 fixed, we let

E(x,y) = Az, x/eq,...,x/en_1,7).
Then
Alx,x/er,...,x/e,) = E(z,x/e,).

Note that
|VeEl||oo < CLe},!

n—1

where we have used the assumption that 0 < ¢, <e,_1 <--- <e; < 1. By Lemma 4.1, we
obtain

Jue —vel| < Cen {1+ | VaElloo + enl Vo B2} {I1F N2 + 11 £l 1372000 }
S C€n {1 + Lff;il + L25n€;31} {||F||L2(Q) + ||f||H3/2(8Q)}
< C(1+ L)?eneyty {I1F 2@ + 1 fll o200 } -

This, together with (4.9), gives (1.14). O
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5 Approximation

In preparation for the proofs of Theorems 1.1 and 1.2, we establish several results on the
approximation of solutions of L.(u.) = F by solutions of Ly(up) = F in this section. We
start with a simple case, where n = 1 and A = A(z,y) is Lipschitz continuous in x.

Lemma 5.1. Suppose A = A(x,y) satisfies (1.3) and is 1-periodic in y. Also assume that
VoAl < co. Let L. = —div(A(z,z/e)V) and u. be a weak solution of L.(u.) = F in
By, = B(xg,2r), where e < r <1 and F € L*(By,.). Then there exists a weak solution to
Lo(ug) = F in B, such that

(f o) ) )
gc{(i)”+e|rva|roo}{(]i%w) w0 (£ 1rp) }

where o > 0 and C' depends only on d and p.

(5.1)

Proof. By rescaling we may assume r = 1. To see this, we note that if —diV(A(x, x/s)VuE) =
F in By, and v(x) = u.(rz), then —div(Z(m, x/6)Vv) = G in B,, where A(z,y) = A(ra, y),
§ =¢/r, and G(z) = r2F(rz). Also, observe that |VoA|s = || VoAl so-
Now, suppose that —div(A(z,z/e)Vu.) = F in By. Let ug € H'(Bs)2) be the weak
solution to
,C()(Uo) =F in B3/2 and Uy = Uge on 833/2.

Note that uy — u. € Hy(Bs/2) and
Lo(up —ue) = div((ﬁ — AE)VuE) in Bs/s.

It follows from the Meyers’ estimates that

f |V(Ue—uo)|qﬁcf V|
33/2 B3/2

for some ¢ > 2 and C' > 0, depending only on d and p. This, together with the Meyers’

estimate,
1/q 1/2 1/2
(f |Vu€|q> <o(f k) wo(f )
B3 /o B> Bz
1/q 1/2 1/2
(][ yvuo\Q) gc(][ |ug|2) +C(][ |F]2) : (5.2)
B3/2 By Ba

19
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Also, by the interior H? estimate for Lo,

fovuPsof PVl 4ot f [FwP (53
B(z,p) B(z,2p) B(z,2p)

where B(z,2p) C By, we may deduce that

/ |V%wagc/’\ﬂ%m+cmam&/q|vmﬁm
B3/2)—¢ B2 Bz /2

|Vug(x)|* dz
) |d1St(ZE, 8Bg/2>|2

(5.4)
+C

Bayay—(/2

for 0 <t < 1. By Holder’s inequality, the last term in the right-hand side of (5.4) is bounded

by
2/q
_2_
Ct a (/ IVU()lq) .
B/

In view of (5.2) and (5.4) we obtain

[ wwpaso{riavar {f meef weh 69
Ba/2)-t Ba By

for 0 <t < 1, where C' depends only on d and pu.
Finally, to finish the proof, we use the estimate (3.28) to obtain

|de?+ij/ V2 2

B\:c\<%—35

/ e — wol? < CE(| VLA +1) /
B3/

B /s

+C/ V.
%—45<|x\<%

We bound the second term in the right-hand side of the inequality above by using (5.5), and
the third term by using Holder inequality and (5.2). It follows that

[k sc{etvemap [ e [ re).
B3/2 BQ BQ

—1>0. O
q

This gives the estimate (5.1) with 7 =1 and o =

The next lemma deals with the case n = 1 and A = A(z,y) is Holder continuous in z,
|A(z,y) — A(2',y)| < Llx — 2'|°  for any z, 2’ € RY, (5.6)

where L > 0 and 6 € (0,1).
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Lemma 5.2. Suppose A = A(x,y) satisfies (1.3), (5.6), and is 1-periodic in y. Let L. =
—div(A(z,z/e)V) and u. be a weak solution of L.(u.) = F in Ba, = B(zo,2r), where
e<r<1and F € L*(By,). Then there exists a weak solution to Ly(ug) = F in B, such

el s () oo () )

where o > 0 depends only on d and p. The constant C' depends only on d,  and 6.

Proof. As in the proof of Lemma 5.1, by rescaling, we may assume r = 1. We also assume
that ¢ L < 1; for otherwise the inequality is trivial. L _

By using a convolution in the x variable we may find a matrix A = A(z,y) such that A
satisfies the ellipticity condition (1.3), is 1-periodic in y, and

A=Al <CLE”  and | V,A|ls < CLEY, (5.8)
where C' depends only on d and 6. Let v. be the weak solution to
—div(ﬁ(m,m/s)VuE) =F inBsp and v, =wu. on dBj)p. (5.9)

By the energy estimate as well as the first inequality in (5.8),

;f W@f%WSCwﬁff Ve
B3/

Bz

scuﬁf{ mﬁ+f|ﬂﬂ,
Bo B

where we have used the Caccioppoli inequality for the last step. This, together with
Poincaré’s inequality, gives

<7i3/2 fue = ”€|2> - < OLe { (]i !usP)W - (]i !FP) 1/2} . (5.10)

Next, we apply Lemma 5.1 (and its proof) to the operator —div(ﬁ(:vw/e)V). Let Ay(z)
denote the matrix of effective coefficients for A(z,y). It follows that there exists vy €
H'(Bs,4) such that —div(Ao(a:)Vvo) = F in Bj,4, and

(5.11)

<C{e”+£L} {(]i |u5|2)1/2 + (]{32 |F|2)1/2} :
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where we have used the second inequality in (5.8) as well as (5.10).
Finally, let ug be the weak solution to Lo(ug) = F in By and ug = vy on dB;. Observe
that by the first inequality in (5.8),

| Ag — Al|oe < CE°L,

where C' depends only on d and p. It follows that by Poincaré’s inequality,

ug —vol* < C [ [V (ug — vo)|?
Bl Bl

< C(L)? / Voo’

B1

SC@W{ / jwol? + / |F|2}
Bs/4 Bs

gc@%?{ u+ [ rFF},
Bo> B

where we have used Cacciopoli’s inequality for the third inequality and (5.11) for the fourth.
This, together with (5.10) and 5.11), gives (5.7) for r = 1. O

We are now ready to handle the general case, where n > 1 and
L.=—div(A(z,z/e1,...,2/e,)V) (5.12)
with 0 <e, <egp_1 < - <g < 1.

Theorem 5.1. Suppose that A = A(x,y1,...,yn) satisfies conditions (1.3), (1.4), and (1.5)
for some @ € (0,1] and L > 0. Let L. be given by (5.12) and u. a weak solution of L.(u.) = F
in By = B(xg,tr) for some t > 1, where ey < r < 1 and F € L*(By,). Then there exists
ug € H'(B,) such that Lo(ug) = F in B, and

( B, |ue — uo\2>1/2 <C { <%>0 +(e1+efer+- -+ 871/611—1)0[/}

| {(7[ r) e (f 1#e) 1/2} |

where o > 0 depends only on d and p. The constant C' depends only on d, n, u, t, and 6.

(5.13)

Proof. We prove the theorem by an induction argument on n. The case n = 1 with t = 2
is given by Lemma 5.2. The proof for the general case ¢t > 1 is similar. Now suppose the
theorem is true for n — 1. To show it is true for n, let u. be a weak solution to L.(u.) = F
in By, where L. is given by (5.12). Fix ¢ > 0 and consider the matrix

E(x,y) = Az, x/eq,...,x/en1,7).
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Note that E satisfies the ellipticity condition (1.3) and is 1-periodic in y. Moreover, we have

|E(x,y) — E(2',y)| < Ce,? Lz — 2'|°  for any x,2’ € RY, (5.14)

where C' depends only on d and n. Also recall that the matrix of effective coefficients for
E(x,y) is given by
Anfl(ma l’/€1, e 7x/€n71>7

where A, _1(z,y1, -+ ,Yn_1) is given by (2.4) with ¢ =n and A, = A. Let 1 < s < t. By the
theorem for the case n = 1, there exists v. € H'(B,,) such that

—div(An_1(z, /e, ..., x/e,-1)Vv.) = F  in By,

(f wmer) " <ef @)+ (2) o}

and

12 1/2 (5.15)
. (][ |u€|2) T <][ |F|2> |
Btr Btr
By induction assumption there exists uy € H'(B,) such that Ly(ug) = F in B, and
1/2 cne
(][ v — u0|2) <C { (7> + (e1+eo/er + -+ sn_l/en_g)eL}
By
1/2 1/2 (5.16)
| (][ |v€|2> T <][ |F|2> |
sTr BST
Estimate (5.13) follows readily from (5.15) and (5.16). O

Remark 5.1. Let § =1 +e5/e1 + -+ - + &,/n—1. It follows from Theorem 5.1 (with ¢t = 2)
that for 6 <r <1,

( . |ue — uOlg)m <C (g)g { (]; !uglz)m + 7’ (7{92 |F\2)1/2} : (5.17)

where o > 0 depends only on d, i and 8. The constant C' depends at most on d, n, p and
(0,L). Suppose (1,€s,...,e,) satisfies the condition (1.9). Then 6 < Ce? for some 8 > 0
depending only on n and N. This, together with (5.17), implies that for e; <r < 1,

(f, o) "o @ (fwr)er (f, )} e

where p > 0 depends only on d, n, u, 8, and N.
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6 Large-scale interior estimates

This section focuses on large-scale interior estimates for L.(u.) = F and gives the proof
of Theorem 1.1. Throughout this section we assume that L. is given by (1.2) and A =
A(x,y1,...,y,) satisfies (1.3), (1.4), and (1.5) for some 6 € (0,1] and L > 0. We also assume
that 0 < e, <e&,-1 <--- <& <1 and the condition (1.9) of well-separation is satisfied.

We start with estimates of solutions of Lo(ug) = F. Let P denote the set of linear
functions.

Lemma 6.1. Let ug € H'(B,) be a solution to Lo(ug) = F in B, = B(0,r), where 0 <r < 1
and F € LP(B,) for some p > d. Define

1 1/2 1/p
Glriw) =1 jat § (f fwa=pE) e v b (£ rr) T

where ¥ = min{0,1 — d/p}. Then there exists t € (0,1/8), depending only on d, u, p and
(0,L) in (1.5), such that

1
G(tr;ug) < iG(T;uo).

Proof. Let Py = - Vuo(0) 4 uo(0). Then

1 1/10
Gltriu) < oo = Folimiay +tr (. 1FP) 4 0/ Vun(0)
Bt'r
1/p
< @) [ wllovsisy + o (£, 1FP) "+ 007900 (62
Btr

1/p
= (@) 0 = Pllcso, 41 (£ 1FP) "+ 007 Fua0)
B

for any P € P. Note that

1/p 1/p
tr (][ \pr> < Ctld/pr<][ yF|p) . (6.3)
Brt BT‘

By interior Lipschitz estimates for uy, we may deduce that

tr

1/2 1/p
Vuo(0)] < & (][ g — b,z) +or (][ |F|p>
B
C 1/p
S (][ |uo — P| ][ |P—b|2) +Cr (][ |F|p> (6.4)
Br
C 1/2 1/p
<= ( lug — P|2> + C|VP|+ Cr <][ |F|p) ,
r B, B,
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where b = P(0). Also, note that
—div(AV(ug — P)) = F + div([A — A(0)]VP) in B,.
By C%? estimates for the elliptic operator £y, we obtain that for 0 <t < 1/2,

IV (1o = P)llcoss,,) < [IV(uo = P)llcoss,

¢ 2\ /2 —9 )
< (f, o PE)" + oA - G WPHMT

N (6.5)
+ CA ~ ROV Pl cnog, + O ][ 7P)

wa(]i |u0—P|2>1/2+C|VP|+Cr1_“9<][ |F|p>1/p

By using (6.3)—(6.5) to bound the right-hand side of (6.2), it yields that

G(tr;ug) < C’t’gG(r; Ug)

for some constant C' depending only on d, i, p and (0, L) in (1.5). The desired result follows
by choosing ¢ so small that Ct” < 1/2. O

Lemma 6.2. Let u. € H'(By) be a solution of L.(u.) = F in By, where F € LP(By) for
somep>d and e € (0,1/4). For 0 <r <1, we define

1 1/2 1/p
H(r) = - inf ( lue — P|2> + 7"1+19|VP| +r (][ |F|p> ,
r PeP B, B,

(6.6)
1 1/2 1/2
O(r) = —inf <][ |u6—b|2) +r <][ |F\2) .
rbek \ Jp .
Let t € (0,1/8) be given by Lemma 6.1. Then for r € (1,1/2],
1 €1\"
< - -t .
Htr) < SH(r) +C ( T) o(2r), (6.7)

where p > 0 and C depends at most on d, n, p, p, (0, L) in (1.5), and N in (1.9).

Proof. For any fixed r € (g1,1/2], let uy be the solution to Lo(ug) = F in B,, given in
Theorem 5.1. By the definitions of G, H and ®, we have

1 1/2
H(tr) < — (][ lu. — u0|2) + G(tr; uo)
Btr

1 N2
i (k) 5605
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C N1
= - _H

(2 {1 (F - ) (f IFIQ)UZ} +1HE)

for any b € R, where we have used Lemma 6.1 and (5.18) in the second and last inequalities,
respectively. O]

IN
Q

The following lemma can be found in [23, p.155].

Lemma 6.3. Let H(r) and h(r) be two nonnegative continuous functions on the interval
(0,1] and let t € (0,1/4). Assume that

max H(t) < CoH(2r), max |h(t) — h(s)| < CoH(2r), (6.8)

r<t<2r r<t,s<2r

for any r € [0,1/2], and also

H(tr) < —H(r) 4+ Cow(d/r){H(2r) + h(2r)}, (6.9)

N —

for any r € [0,1/2], where w is a nonnegative increasing function on [0, 1] such that w(0) = 0
and

/1 &ds < 00. (6.10)

S

Then

max {H(r)+ h(r)} <C{H1)+ h(1)}, (6.11)

0<r<1
where C' depends only on Cy, Oy and w.
The next lemma gives the large-scale Lipschitz estimate down to the scale ¢;.

Lemma 6.4. Let u. € H'(By) be a solution to L.(u.) = F in By, where By = B(x,1) and
F € LP(By) for some p>d > 2. Then fore; <r <1,

(][ \Vus|2> "o { <]i |Vu5|2)1/2 + (]i |F,p) 1/”} 7 (6.12)

where C' depends only on d, n, u, p, (0, L) in (1.5), and N in (1.9).
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Proof. By translation we may assume xy = 0. Let P, b, be a linear function and constant
achieving the infimum in (6.6). In particular,

1 1/2 1/p
H(r)= - ( lue — PT\2> +r§|VPT] —|—r(][ |F\p) )
r B, B,

Let h(r) = |VP,|. It follows by Poincaré’s inequality that

1/2
B(2r) < H(2r) + ~ inf (][ Py — b\2> < H(2r) + Ch(2r).

T beR

This, combined with (6.7), gives (6.9) with w(t) = t*, which satisfies (6.10).
For t € [r,2r], it is obvious that H(t) < CH(2r). Furthermore, observe that

1/2
o)~ )| = (90— Ry < € (f 1R - )

1/2 1/2
< (f o) ()
r B, r B,
1/2 1/2
<¢ ( e — B|2> ¢ ( e — PSP)
t By S B,
< C{H(t)+ H(s)}
<CH(2r)

for all t, s € [r,2r], which is exactly the condition (6.8).
Thanks to (6.11), we obtain that

1nf (][ lue — b|2) < H(r 1nf (f | P, — b|2)
r beR B,

< C{H(r) + h(r)}
< C{H(1 ) h(1)}

el (L)} s

for any r € [e1,1/2], where for the last step the following observation is used,

1/2
mwéc(f|a@
By
1/2 1/2
ol o) e )
B1 B
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<CH(1)+C <]il |u5|2)1/2.

The estimate (6.12) follows readily from (6.13) by Poincaré and Caccioppoli’s inequalities.
O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof uses an induction on n and relies on Lemma 6.4 and
a rescaling argument. The case n = 1 follows directly from Lemma 6.4 by translation and
dilation. Assume the theorem is true for n — 1. Suppose

div(A(z,z/e1,...,2/e,)Vu) = F  in Bg = B(zo, R)

for some 0 < R < 1. We need to show that

(][ !wﬁ)w <C { <]iR IVus!2)1/2 +R (éR |F‘p)”p} | (6.14)

for g, <r < R < 1. By translation and dilation we may assume that zo = 0 and R = 1.
Note that the case (1/8) < r < R = 1 is trivial. If ¢, < r < (1/8), we may cover the ball
B(0,7) with a finite number of balls B(xzy,¢,), where z, € B(0,r). Consequently, it suffices
to prove (6.14) for the case r = ¢, and R = 1. We further note that by Lemma 6.4, the
estimate (6.14) holds for r = ¢; and R = 1.

To reach the finest scale €, we let w(z) = u.(e;x). Then

—div(E(z,z/(e261"), ..., x/(eper ))Vw) = H  in By,
where H(x) = e2F(g1z) and
E('r?y% s 73/71) = A(glxama Y2, - .- 7yn)

Observe that the matrix E satisfies (1.3) and is 1-periodic in (ya,...,y,). It also satisfies
the smoothness condition (1.5) with the same constants 6 and L as for A. Furthermore, the
(n—1) scales (2677, ..., e,6] ") satisfies the condition (1.9) of well-separation. Thus, by the
induction assumption,

(][ |W|2>1/2 ¢ { (jé |Vw|2)l/2 + (]i 1H|”)1/p} , (6.15)

for r = e,/e1. By a change of variables it follows that (6.14) holds for r = ¢,, and R = &;.
This, combined with the inequality for » = ¢; and R = 1, implies that (6.14) holds for r = ¢,
and R = 1. The proof is complete. O
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Remark 6.1. It follows from the proof of Theorem 1.1 that without the condition (1.9), the
estimate (1.10) continues to hold if
e1+ (eg/e1 + - —I—en/en,l)N <r<R<I,

for any N > 1. In this case the constant C' in (1.10) also depends on N. The case N =1
follows by using (5.17) in the place of (5.18). The general case is proved by an induction
argument on N. Suppose the claim is true for some N > 1. Assume that § = e5/e7 +
-4 ep/en—1 > €1 (for otherwise, there is nothing to prove). Let w(x) = u.(Bx). Then
—div(E(z,z/(87e1),...,x/(87 e,))Vw) = H, where E(z,y1,...yn) = A(Bz,y1,...,Yn)-
By the induction assumption, the inequality (6.15) holds for 7'e; + Y < r < 1. By a
change of variables we obtain (1.10) for &y + 8~ < r < R = 3. This, together with the
estimate for the case N = 1, gives (1.10) for gy + V™! <r < R < 1.

7 Large-scale boundary Lipschitz estimates

This section is devoted to the large-scale boundary Lipschitz estimate and contains the
proof of Theorem 1.2. Throughout the section we assume that L. is given by (1.2) with
A = A(x,y1,...,y,) satisfying conditions (1.3), (1.4) and (1.5) for some 0 < # < 1. The
condition (1.9) is also imposed.

Let ¢ : R~! — R be a OV function with

$(0)=0 and  [|Vi[lec + [Vl coaga-1) < M. (7.1)
Set
Zy = Z(r,¢) = {(2/,2zq) € R : |2'] <r and ¢(2') < x4 < 10(M +10)r},
I =1I(r¢) = {(2/,0(2)) eR: [2'] <r}.
For f € CY*(1,) with 0 < @ < 1, we introduce a scaling-invariant norm,
Ifllerem) = 1 f ey + 71 Vian ey + ' (1 Vianfllove,) (7.3)

where V., f denotes the tangential gradient of f and

g\r)—g\y
l9llcoeq,y = sup Lﬁ”
z,y€ly x#y |ZI§' - y|

Theorem 7.1. Let u. € H'(ZR) be a weak solution of L.(u.) = F in Zp and u. = f on
Ig, where 0 < g, < R < 1, F € LP(Zg) for some p > d, and f € CY*(Ig). Then for
en <r <R,

1/2 1/2 1/p
(f 1vur) gc{(fz Vul) R ey + R (o 197 } (7.4

where C' depends at most on d, n, u, p, (0, L) in (1.5), N in (1.9), and (o, M) in (7.1).
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Theorem 1.2 follows readily from Theorem 7.1 by translation and a suitable rotation of
the coordinate system. To prove Theorem 7.1, we use the same approach as in the proof of
Theorem 6.4. We will provide only a sketch of the proof for Theorem 7.1.

First, we point out that the rescaling argument, which is used extensively for interior
estimates, works equally well in the case of boundary estimates. Indeed, suppose L.(u.) = F
in Z(r,¢) and u. = f on I(r,1) for some 0 < r < 1. Let v(z) = u.(rz). Then

—diV(Z(I,I‘/&ﬂ”_I, coxfer V) =G inZ(L,¢,) and v=g onlI(1,v,),

where A(z,y1,...,yn) = A(rz,y, ..., yn), G(z) = r2F(rz), g(z) = f(rz), and ¢, (') =
r~Y(ra’). Since Vi), (2') = Vip(ra’) and 0 < r < 1, the function v, satisfies the condition
(7.1) with the same M. Also, note that || f||ct.e(r(re)) = |9llctera,e))- As aresult, it suffices
to prove Theorem 7.1 for R = 1.

Next, we establish an approximation result in the place of (5.18). Define

I flleray = Il + 7l Vian fl L ,)-

Theorem 7.2. Let u. € H'(Zs,) be a weak solution of L.(u.) = F in Zy, and u. = f on Iy,
where 0 < ¢ <1 < 1. Then there exists ug € H*(Z,) such that Lo(ug) = F in Z,., ug = f on

I., and
1/2
()
SC(—) {(][ |u5|2> +r? (][ |F|2> Jr||f||01(12,»)}~
T Zor Zor

The constants p € (0,1) and C' > 0 depend at most on d, n, u, (6,L) in (1.5), N in (1.9),
and (o, M) in (7.1).

(7.5)

Proof. The proof of (7.5) is similar to that of (5.18).

Step 1. Assume that n =1, £. = —div(A(z,2/¢)V) and A(z,y) is Lipschitz continuous in
x. Suppose that £.(u.) = F in Zy, and u. = f on I5,. Show that there exists ug € H'(Z,)
such that Lo(up) = F in Z,, ug = f on I, and

(][ 1/2

|us _UO‘Z)

T eNOT 1/2 1/2

< — 2 2 2 ) .
< C{(r> +5HVIAHOO} {(][22 e | ) Y (][22 IF| ) 1 le (1%)}

The proof of (7.6) is similar to (5.1). By rescaling we may assume r = 1. Let uy be the
weak solution of

(7.6)

Lo(ug) =F inQ and wy=wu. on I,
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where ) = Z3/5. By using (3.28), we obtain

/|u8—u0\2 gch(Hvaugoﬂ)/ yvU0|2+052/ V22 +C [ |[Vuol
Q Q Q

\QBE Q4E

The rest of the proof is the same as the proof of Lemma 5.1, using interior H? estimates for
Ly as well as Meyers’ estimates for L.,

1/q 1/2 1/2
rw) sc{( w) +HfH12+< \FP) } (77)

for some ¢ > 2, depending only on d, p and M.

Step 2. Assume n = 1 and A(z,y) is Holder continuous in z. Suppose L.(u.) = F in Zy,
and u. = f on Iy.. Show that there exists ug € H'(Z,) such that Lo(ug) = F in Z,, ug = f

on [, and
1/2
Zn

<c{(E) +=r) {(][ |u6|2)1/2 2 (][ |F|2)1/2 " ||f||cl(12r>} -

As in the case of (5.7), the estimate (7.8) follows from (7.6) by approximating A(z,y) in the
x variable.

(7.8)

Step 3. As in the interior case, the case n > 1 follows from (7.8) by an induction argument
on n. [l

The following two lemmas will be used in the place of Lemmas 6.1 and 6.2. Recall that
P denotes the set of linear functions in R%.

Lemma 7.1. Let ug € H'(Z,) be a weak solution of Lo(ug) = F in Z, and ug = f on I,
where 0 <r < 1,F € L?(Z,) for some p>d, and f € CY*(I,) for some 0 < a < 1. Define

e 1/2
G(r;ug) = inf ~ { (][ lup — PF) + VP + ||f — PHCLQ(IT)}
z

PEP 1

1/p
vr(f 1)
Zr

where 9 = min{#, a, 1 — d/p}. Then there exists t € (0,1/8), depending only on d, n, u, p,
(0,L) in (1.5), and (o, M) in (7.1), such that,

1
G(tr; u0) < 5G(r;uo).
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Proof. The proof is similar to that of Lemma 6.1. Let Py(x) = Vuy(0) - & + u(0). Then for
0<t<(1/8),
1/p
)

< C(tr)"{|IV(uo = P)lcos(z,) + [Vuo(0) = VP| + |V P} (7.9)

(ftr | | )
A

for any P € P, where we have used the fact VP is constant. Note that

G(tr;ug) < C(tr)"{||[Vuollcoo(z,) + [Vuo(0)| } + tr (f

Ztr

—div(AV(ug — P)) = F + div([A — A(0)]VP) in Z,.

By boundary C'¥ estimates for the operator £y in C** domains, it follows that for 0 < t <

(1/8),

IV (uo — P)llcos(z,) + [IV(uo — P)ll Lz,
< [V(uwo = P)llcosz,,,) + [[V(vo = P)llr=(z,,)

C 2\ o e
< (][Z |u0—P|) + C|VP|+Cr'- (][ |F|p) + 75 f = Pllereay

for any P € P. This, together with (7.9), implies that G(tr;ug) < Ct?’G(r;ug). To complete
the proof, we choose t so small that Ct¥ < (1/2). O

(7.10)

Lemma 7.2. Let u. € HY(Z,) be a weak solution of L.(u.) = F in Z; and v = f on I,
where 0 < € < (1/4), F € LP(Zy) for some p > d and f € C**(I;) for some o > 0. For
0<r <1, define

| 1/2
H(r) = inf — { (][ |ue — P|2) +r VP f - P“Cl’a(”)}
Zr

pPePr
1/p
+r(][ |F|p) | (7.11)
1 , 1/2 ' ) 1/2
1) =t 4 (f = R) s =t o ( 17P)

Let t € (0,1/8) be given by Lemma 6.1. Then for any r € [e1,1/2],
1

SHr) +C (%)pT(Qr), (7.12)
where p > 0 and C' > 0 depends at most on d, n, u, p, (0,L) in (1.5), N in (1.9), and
(v, M) in (7.1).

H(tr) <
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Proof. We omit the proof, which is the same as that of Lemma 6.2. [

Proof of Theorem 7.1. With Theorem 7.2, Lemmas 7.1 and 7.2 at our disposal, Theorem
7.1 follows from Lemma 6.3 in the same manner as in the case of Theorem 6.4. We omit the

details. O
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