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Abstract

This paper investigates quantitative estimates in the homogenization of second-
order elliptic systems with periodic coefficients that oscillate on multiple separated
scales. We establish large-scale interior and boundary Lipschitz estimates down to
the finest microscopic scale via iteration and rescaling arguments. We also obtain a
convergence rate in the L2 space by the reiterated homogenization method.
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1 Introduction

In this paper we investigate quantitative estimates in the homogenization of elliptic systems
with periodic coefficients that oscillate on multiple separated scales. More precisely, consider
the m×m elliptic system in divergence form,

Lε(uε) = F (1.1)

in a bounded domain Ω ⊂ Rd (d ≥ 2), where

Lε = −div
(
Aε(x)∇

)
= −div

(
A(x, x/ε1, x/ε2, . . . , x/εn

)
∇
)
, (1.2)

and {0 < εn < εn−1 < · · · < ε1 < 1} represents a set of n ordered lengthscales, all depending
on a single parameter ε. We assume that the coefficient tensor A = A(x, y1, y2, . . . , yn) is
real, bounded measurable, and satisfies the ellipticity condition,

‖A‖L∞(Rd×(n+1)) ≤
1

µ
and µ|ξ|2 ≤ 〈Aξ, ξ〉 (1.3)
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for any ξ ∈ Rm×d, where µ > 0, and the periodicity condition

A(x, y1 + z1, · · ·, yn + zn) = A(x, y1, · · ·, yn) for any (z1, · · · , zn) ∈ Zd×n. (1.4)

We also impose the Hölder continuity condition on A: there exist constants L ≥ 0 and
0 < θ ≤ 1 such that

|A(x, y1, · · ·, yn−1, yn)− A(x′, y′1, · · ·, y′n−1, yn)| ≤ L
{
|x− x′|+

n−1∑
`=1

|y` − y′`|
}θ

(1.5)

for x, x′, y1, . . . , yn, y
′
1, . . . , y

′
n−1 ∈ Rd. Note that no continuity condition is needed for the

last variable yn.
Homogenization problems with multiscale structures were first considered in the 1930s

by Bruggeman [9]. In the case where εk = εk for 1 ≤ k ≤ n, the qualitative homogenization
theory for Lε in (1.2) was established in the 1970s by Bensoussan, Lions, and Papanicolaou
[8]. Let uε be a weak solution of the Dirichlet problem,

Lε(uε) = F in Ω and uε = f on ∂Ω. (1.6)

Assume that A satisfies (1.3)-(1.4) and some continuity condition. It is known that uε
converges weakly in H1(Ω) to the solution u0 of the homogenized problem,

L0(u0) = F in Ω and u0 = f on ∂Ω, (1.7)

where L0 = −div
(
Â(x)∇

)
is a second-order elliptic operator. The effective tensor Â(x) is

obtained by homogenizing separately and successively the different scales, starting from the
finest one εn, as follows. One fixes (x, y1, . . . , yn−1) and homogenizes the last variable yn =
x/εn in An = A(x, y1, . . . , yn) to obtain An−1(x, y1, . . . , yn−1). Repeat the same procedure

on An−1 to obtain An−2, and continue until one arrives at A0(x), which is Â(x). This
process, in which at each step the standard homogenization is performed on an operator
with a parameter, is referred in [8] as reiterated homogenization. For more recent work in
the reiterated homogenization theory and its applications, we refer the reader to [6, 1, 14,
15, 17, 18, 22, 16, 20, 21] and their references. In particular, using the method of multiscale
convergence, Allaire and Briane [1] obtained qualitative results for Lε in a general case under
the condition of separation of scales,

ε1 → 0 and εk+1/εk → 0 for 1 ≤ k ≤ n− 1, as ε→ 0. (1.8)

This paper is devoted to the quantitative homogenization theory for the operator Lε and
concerns problems of convergence rates and large-scale regularity estimates. We point out
that in the case n = 1, where Aε(x) = A(x/ε) or A(x, x/ε), major progress has been made in
quantitative homogenization in recent years. We refer the reader to [7, 26, 12, 13, 4, 23, 19, 24]
and their references for the periodic case, and to [10, 5, 3, 11, 2] and their references for
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quantitative homogenization in the stochastic setting. The primary purpose of this paper is
to extend quantitative estimates in periodic homogenization for n = 1 to the case n > 1,
where the operator Lε is used to model a composite medium with several microscopic scales.

Our main results are given in the following two theorems. We establish the large-scale
interior and boundary Lipschitz estimates down to the finest scale εn, assuming that the
scales 0 < εn < εn−1 < · · · < ε1 < ε0 = 1 are well-separated in the sense that there exists a
positive integer N such that(

εk+1

εk

)N
≤ εk
εk−1

for 1 ≤ k ≤ n− 1. (1.9)

In particular, this includes the case where εk = ελk with λ0 = 0 < λ1 < λ2 < · · · < λn <∞
and 0 < ε ≤ 1, but excludes the case (ε1, ε2) = (ε, ε(| log ε| + 1)−1). We point out that the
condition (1.9) is equivalent to the following condition introduced in [1]: there exists N ≥ 1
such that

lim
ε→0

1

εk

(
εk+1

εk

)N
= 0 for 1 ≤ k ≤ n− 1.

Theorem 1.1. Suppose that A satisfies conditions (1.3), (1.4), and (1.5) for some 0 < θ ≤ 1.
Also assume that 0 < εn < εn−1 < · · · < ε1 < ε0 = 1 and (1.9) holds. For BR = B(x0, R)
with 0 < εn < R ≤ 1, let uε ∈ H1(BR;Rm) be a weak solution of Lε(uε) = F in BR, where
F ∈ Lp(BR;Rm) for some p > d. Then for 0 < εn ≤ r < R,( 

Br

|∇uε|2
)1/2

≤ C

{( 
BR

|∇uε|2
)1/2

+R

( 
BR

|F |p
)1/p

}
, (1.10)

where C depends at most on d, n, m, µ, p, (θ, L) in (1.5), and N in (1.9).

Let Ω be a bounded domain in Rd. Define Dr = D(x0, r) = B(x0, r) ∩ Ω and ∆r =
∆(x0, r) = B(x0, r) ∩ ∂Ω, where x0 ∈ ∂Ω and 0 < r < diam(Ω).

Theorem 1.2. Assume that A and (ε1, ε2, . . . , εn) satisfy the same conditions as in Theorem
1.1. Let Ω be a bounded C1,α domain in Rd for some α > 0. Let uε ∈ H1(DR;Rm) be a weak
solution to Lε(uε) = F in DR and uε = f on ∆R, where εn < R ≤ 1, F ∈ Lp(DR;Rm) for
some p > d, and f ∈ C1,ν(∆R;Rm) for some 0 < ν ≤ α. Then for 0 < εn ≤ r < R,( 

Dr

|∇uε|2
)1/2

≤ C

{( 
DR

|∇uε|2
)1/2

+R

( 
DR

|F |p
)1/p

+R−1‖f‖C1,ν(∆R)

}
, (1.11)

where C depends at most on d, m, n, µ, p, ν, (θ, L) in (1.5), N in (1.9), and Ω.

Remark 1.1. Under the additional assumption that A = A(x, y1, . . . , yn) is also Hölder con-
tinuous in yn, estimates (1.10) and (1.11) imply the uniform pointwise interior and boundary
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Lipschitz estimates for uε, respectively. To see this, one introduces a dummy variable yn+1

and considers the tensor Ã(x, y1, . . . , yn, yn+1) = A(x, y1, . . . , yn). Since εn+1 may be arbi-
trarily small, it follows that the inequalities (1.10) and (1.11) hold for any 0 < r < R ≤ 1.
By letting r → 0 we see that |∇uε(x0)| is bounded by the right-hand sides of the inequalities.

Remark 1.2. In the case Aε(x) = A(x/ε), Theorems 1.1 and 1.2 were proved by Avellaneda
and Lin in a seminal paper [7] by using a compactness method. The boundary Lipschitz
estimate in Theorem 1.2 was extended in [12] to solutions with Neumann conditions. Also
see [4] for operators with almost-periodic coefficients and [5, 3] for large-scale Lipschitz
estimates in stochastic homogenization. Our results for n > 1 are new even in the case
Aε(x) = A(x/ε, x/ε2).

We now describe our approach to the proof of Theorem 1.1; the same approach works
equally well for Theorem 1.2. The proof is divided into two steps. In the first step we
prove the estimate (1.10) for the case ε1 ≤ r < R ≤ 1. To do this, we use a general
approach developed in [5] by Armstrong and Smart (also see [4, 3]), which reduces the
large-scale Lipschitz estimates to a problem of approximating solutions of Lε(uε) = F by
solutions of L0(u0) = F in the L2 norm. Given uε, to find a good approximation u0, we
use the idea of reiterated homogenization and introduce a (finite) sequence of approxima-
tions as follows. One first approximates uε by solutions of −div

(
Aεn−1(x)∇uε,n−1

)
= F ,

where Aεn−1(x) = An−1(x, x/ε1, . . . , x/εn−1) and An−1(x, y1, . . . , yn−1) is the effective ten-
sor for An = A(x, y1, . . . , yn−1, yn), with (x, y1, . . . , yn−1) fixed as parameters. The function
uε,n−1 is then approximated by a solution of −div

(
Aεn−2(x)∇uε,n−2

)
= F , where Aεn−2(x) =

An−2(x, x/ε1, . . . , x/εn−2) and An−2(x, y1, . . . , yn−2) is the effective tensor for
An−1(x, y1, . . . , yn−2, yn−1), with (x, y1, . . . , yn−2) fixed. Continue the process until one reaches

the tensor A0(x) = Â(x). By an induction argument on n, to carry out the process above, it
suffices to consider the special case where n = 1 and Aε(x) = A(x, x/ε). Moreover, by using
a convolution in the x variable, one may assume that A = A(x, y) is Lipschitz continuous
in x ∈ Rd. We point out that even though the case Aε(x) = A(x/ε) has been well studied,
new techniques are needed for the case Aε(x) = A(x, x/ε) to derive estimates with sharp
bounding constants depending explicitly on ‖∇xA‖∞. For otherwise, the results would not
be useful in the induction argument.

In the second step, a rescaling argument, together with another induction argument, is
used to reach the finest scale εn. We mention that the condition (1.9) of well-separation is
only used in the first step. Without this condition, our argument yields estimates (1.10) and
(1.11) for

ε1 + (ε2/ε1 + · · ·+ εn/εn−1)N ≤ r < R ≤ 1, (1.12)

where N ≥ 1, with bounding constants C depending on N . See Remark 6.1. Although we do
not know whether the condition (1.9) is necessary for Theorems 1.1 and 1.2, we believe that
some well-separation condition stronger than (1.8) is required for the large-scale Lipschitz
estimate down to the finest scale εn.
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As a byproduct of the first step described above, we show that if Aε(x) = A(x, x/ε), then

‖uε − u0‖L2(Ω) ≤ Cε
{

1 + ‖∇xA‖∞ + ε‖∇xA‖2
∞
} (
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
(1.13)

for 0 < ε < 1, where C depends only on d, m, µ, and Ω (see Lemma 4.1). Estimate (1.13)
improves a similar estimate in [28], where a general case Aε(x) = A(x, ρ(x)/ε) was considered
by the first and third authors. It also leads to the following theorem on the L2 convergence
rate for the operator Lε. Note that in Theorem 1.3, we assume A satisfies (1.5) with θ = 1,

which, among other things, ensures that Â(x) is Lipschitz continuous.

Theorem 1.3. Let Ω be a bounded C1,1 domain in Rd. Assume that A satisfies (1.3), (1.4),
and (1.5) with θ = 1. Let Lε be given by (1.2) with 0 < εn < εn−1 < · · · < ε1 < 1. For
F ∈ L2(Ω;Rm) and f ∈ H3/2(∂Ω;Rm), let uε ∈ H1(Ω;Rm) be the solution of (1.6) and u0

the solution of the homogenized problem (1.7). Then

‖uε − u0‖L2(Ω) ≤ C
{
ε1 + ε2/ε1 + · · ·+ εn/εn−1

}
‖u0‖H2(Ω), (1.14)

where C depends at most on d, m, n, µ, L, and Ω.

In the case Aε = A(x/ε, x/ε2), the estimate (1.14) was proved in [20] (also see [22, 21]).
As indicated in [21], one may extend the proof to the general case considered in Theorem
1.3. However, the error estimates of the multiscale expansions for the case n = 2 in [20] are
already quite involved, and their extension to the case n > 2 is not so obvious. Our proof of
(1.14), which is based on the idea of reiterated homogenization, seems to be natural and is
much simpler conceptually. Note that if ε1 = εα and ε2 = ε, where 0 < α < 1, the estimate
(1.14) gives an O(εα + ε1−α) convergence rate in L2(Ω). The rate is sharp, at least in the
case d = 1 by considering the example where

A−1(y1, y2) = 2 + k−1<
(
e2πi(ky1−y2)

)
,

with k ∈ N.
The paper is organized as follows. In Section 2 we give the definition of the effective

tensor Â(x) as well as the tensors Ak(x, y1, . . . , yk) for 1 ≤ k ≤ n, mentioned earlier. We also
introduce a smoothing operator and prove two estimates needed in the following sections.
The proof of (1.13) is given in Section 3 and that of Theorem 1.3 in Section 4. In Section 5
we establish an approximation theorem, using the results in Section 3. Sections 6 and 7 are
devoted to the proofs of Theorems 1.1 and 1.2, respectively.

For notational simplicity we will assume m = 1 in the rest of the paper. However, no
particular fact pertain to the scalar case is ever used. All results and proofs extend readily
to the case m > 1 - the case of elliptic systems. We will use

ffl
E
u to denote the L1 average

of u over the set E; i.e.
ffl
E
u = 1

|E|

´
E
u. A function is said to be 1-periodic in yk ∈ Rd if it

is periodic in yk with respect to Zd. Finally, the summation convention is used throughout.
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2 Preliminaries

2.1 Effective coefficients

Suppose A = A(x, y1, . . . , yn) satisfies conditions (1.3) and (1.4). To define the effective

matrix Â = Â(x) in the homogenized operator L0 = −div
(
Â(x)∇

)
, we introduce a sequence

of d× d matrices,
A` = A`(x, y1, . . . , y`) for 0 ≤ ` ≤ n, (2.1)

which are 1-periodic in (y1, . . . , y`) ∈ Rd×` and satisfy the ellipticity condition,

‖A`‖L∞(Rd×(`+1)) ≤ µ1 and µ|ξ|2 ≤ 〈A`ξ, ξ〉 (2.2)

for ξ ∈ Rd, where µ1 > 0 depends only on d, n and µ. To this end, we let An(x, y1, · · · , yn) =
A(x, y1, . . . , yn). Suppose A` has been given for some 1 ≤ ` ≤ n. For a.e. (x, y1, . . . , y`−1) ∈
Rd×` fixed, we solve the elliptic cell problem,

− divy
(
A`(x, y1, . . . , y`−1, y)∇yχ

j
`) = divy

(
A`(x, y1, . . . , y`−1, y)∇yy

j
)

in Td,
χj` = χj`(x, y1, · · · , y`−1, y) is 1-periodic in y,ˆ

Td
χj`(x, y1, . . . , y`−1, y) dy = 0

(2.3)

for 1 ≤ j ≤ d, where yj denotes the jth component of y ∈ Rd. Since A` is 1-periodic in
(y1, . . . , y`), so is the corrector χ`(x, y1, . . . , y`−1, y`) = (χ1

` , · · · , χd` ). We now define

A`−1(x, y1, . . . , y`−1) =

 
Td

(
A`(x, y1, . . . , y`) + A`(x, y1, . . . , y`)∇y`χ`

)
dy`. (2.4)

Clearly, A`−1 is 1-periodic in (y1, . . . , y`−1). It is also well known that A`−1 satisfies the
ellipticity condition (2.2) [8]. As a result, by induction, we obtain the matrixA` for 0 ≤ ` ≤ n.

In particular, Â(x) = A0(x) is the effective matrix for the operator Lε in (1.2).

Theorem 2.1. Suppose A satisfies conditions (1.3) and (1.4). Also assume that as a func-
tion of (x, y1, . . . , yn−1), A ∈ C(Rd×n;L∞(Rd)). Let Ω be a bounded Lipschitz domain in Rd.
Let uε be a weak solution of the Dirichlet problem (1.6), with F ∈ H−1(Ω) and f ∈ H1/2(∂Ω).
Then, if ε→ 0 and (ε1, ε2, . . . , εn) satisfies the condition (1.8), uε converges weakly in H1(Ω)
to the solution u0 of the homogenized problem (1.7).

Theorem 2.1, whose proof may be found in [8, 1], is not used in this paper. In fact,
by approximating the coefficients, our quantitative result in Theorem 1.3, provides another
proof of Theorem 2.1.

It follows by the energy estimate as well as Poincaré’s inequality that
 
Td
|∇yχ`(x, y1, . . . , y`−1, y`)|2 dy` +

 
Td
|χ`(x, y1, . . . , y`−1, y`)|2 dy` ≤ C (2.5)

6



for a.e. (x, y1, . . . , y`−1) ∈ Rd×`, where 1 ≤ ` ≤ n and C depends only on d, n and µ. The
next lemma gives the Hölder estimates for χ` and A` under the Hölder continuity condition
on A.

Lemma 2.1. Suppose A satisfies conditions (1.3), (1.4), and (1.5) for some θ ∈ (0, 1] and
L ≥ 0. Then

‖χ`(x, y1, . . . , y`−1, ·)− χ`(x′, y′1, . . . , y′`−1, ·)‖H1(Td)

≤ CL
(
|x− x′|+ |y1 − y′1|+ · · ·+ |y`−1 − y′`−1|

)θ
,

|A`−1(x, y1, . . . , y`−1)− A`−1(x′, y′1, . . . , y
′
`−1)|

≤ CL
(
|x− x′|+ |y1 − y′1|+ · · ·+ |y`−1 − y′`−1|

)θ
(2.6)

for 1 ≤ ` ≤ n, where C depends only on d, n, θ and µ. In particular, |Â(x) − Â(x′)| ≤
C|x− x′|θ, where C depends only on d, n, µ, θ and L.

Proof. It suffices to prove (2.6) for ` = n. The rest follows by induction. Note that for
(x, y1, . . . , yn−1), (x′, y′1, . . . , y

′
n−1) ∈ Rd×n fixed,

− divy

(
A(x, y1, . . . , yn−1, y)∇y

(
χjn(x, y1, . . . yn−1, y)− χjn(x′, y′1, . . . , y

′
n−1, y)

))
= divy

((
A(x, y1, . . . , yn−1, y)− A(x′, y′1, . . . , y

′
n−1, y)

)
∇y

(
yj + χjn(x′, y′1, . . . , y

′
n−1, y)

))
.

The estimate for the correct χn in (2.6) follows readily from the usual energy estimate and
(1.5). In view of (2.4) we may deduce the estimate for An−1 in (2.6) by using (1.5) and the
estimate of χn in (2.6).

2.2 An ε-smoothing operator

Fix a function ϕ ∈ C∞0 (B(0, 1/2)) such that ϕ ≥ 0 and
´
Rd ϕdx = 1. For functions of form

gε(x) = g(x, x/ε), we introduce a smoothing operator Sε, defined by

Sε(g
ε)(x) =

ˆ
Rd
g(z, x/ε)ϕε(x− z)dz, (2.7)

where ϕε(z) = ε−dϕ(z/ε). Note that the smoothing is only done to the slow variable x.

Lemma 2.2. Let 1 ≤ p < ∞. Suppose that h = h(x, y) is 1-periodic in y and h ∈
L∞(Rd

x;L
p(Tdy)). Then for any f ∈ Lp(Rd),

‖Sε(hεf)‖Lp(Rd) ≤ C‖f‖Lp(Rd) sup
x∈Rd

( 
Td
|h(x, y)|p dy

)1/p

, (2.8)

where hε(x) = h(x, x/ε) and C depends only on d and p.
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Proof. It follows by Hölder’s inequality and the assumption
´
Rd ϕ = 1 that

|Sε(hεf)(x)|p ≤
ˆ
Rd
|h(z, x/ε)|p|f(z)|pϕε(x− z) dz.

This, together with Fubini’s Theorem, givesˆ
Rd
|Sε(hεf)|p dx ≤

ˆ
Rd
|f(z)|p

ˆ
Rd
ϕε(x− z)|h(z, x/ε)|p dx dz

≤ ‖f‖p
Lp(Rd)

sup
z∈Rd

ˆ
Rd
ϕε(x− z)|h(z, x/ε)|p dx

≤ C‖f‖p
Lp(Rd)

sup
z∈Rd

 
B(z,ε/2)

|h(z, x/ε)|p dx.

Using the periodicity of h(x, y) in the second variable, it is easy to see that

sup
z∈Rd

 
B(z,ε/2)

|h(z, x/ε)|p dx ≤ C sup
x∈Rd

 
Td
|h(x, y)|p dy,

which finishes the proof.

Lemma 2.3. Let 1 ≤ p ≤ ∞. Suppose that h = h(x, y) ∈ L∞(Rd × Rd) and ∇xh ∈
L∞(Rd × Rd). Then for any f ∈ W 1,p(Rd),

‖hεf − Sε(hεf)‖Lp(Rd) ≤ Cε
{
‖∇xh‖∞‖f‖Lp(Rd) + ‖h‖∞‖∇f‖Lp(Rd)

}
, (2.9)

where hε(x) = h(x, x/ε) and C depends only on d and p.

Proof. Write

hε(x)f(x)− Sε(hεf)(x) =

ˆ
Rd

(
h(x, x/ε)f(x)− h(z, x/ε)f(z)

)
ϕε(x− z) dz,

which leads to

|hε(x)f(x)− Sε(hεf)(x)| ≤ C

 
B(x,ε/2)

|h(x, x/ε)f(x)− h(z, x/ε)f(z)| dz.

We now apply the inequality, 
B(x,ε/2)

|u(z)− u(x)| dz ≤ C

ˆ
B(x,ε/2)

|∇u(z)|
|z − x|d−1

dz, (2.10)

where C depends only on d. This gives

|hε(x)f(x)− Sε(hεf)(x)|

≤ C‖∇xh‖∞
ˆ
B(x,ε/2)

|f(z)|
|z − x|d−1

dz + C‖h‖∞
ˆ
B(x,ε/2)

|∇zf(z)|
|z − x|d−1

dz.
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It follows thatˆ
Rd
|hεf − Sε(hεf)||F | dx ≤ C‖∇xh‖∞

ˆ
Rd

(ˆ
B(x,ε/2)

|f(z)||F (x)|
|z − x|d−1

dz

)
dx

+ C‖h‖∞
ˆ
Rd

(ˆ
B(x,ε/2)

|∇zf(z)||F (x)|
|z − x|d−1

dz

)
dx.

(2.11)

Finally, we note that the operator defined by

Tg(x) =

ˆ
B(x,ε/2)

g(z)

|z − x|d−1
dz

is bounded on Lp(Rd) and ‖Tg‖Lp(Rd) ≤ Cε‖g‖Lp(Rd) for 1 ≤ p ≤ ∞. Thus, if 1 ≤ p ≤ ∞
and q = p′,

ˆ
Rd
|hεf − Sε(hεf)||F | dx ≤ Cε‖F‖Lq(Rd)

{
‖∇xh‖∞‖f‖Lp(Rd) + ‖h‖∞‖∇f‖Lp(Rd)

}
,

from which the inequality (2.9) follows by duality.

3 Convergence rate (n = 1)

In this section we consider a simple case, where n = 1 and

Lε = −div
(
A(x, x/ε)∇

)
. (3.1)

The matrix A = A(x, y) satisfies the ellipticity condition (1.3) and is 1-periodic in y ∈ Rd.
We also assume that

‖∇xA‖∞ = ‖∇xA‖L∞(Rdx×Rdy) <∞. (3.2)

Recall that

Â(x) =

 
Td

(
A(x, y) + A(x, y)∇yχ(x, y)

)
dy,

where the corrector χ(x, y) = (χ1(x, y), . . . , χd(x, y)) is given by the cell problem (2.3) with
` = n = 1. Note that by (2.6),

‖∇xÂ‖∞ ≤ C‖∇xA‖∞, (3.3)

and  
Td

(
|∇x∇yχ(x, y)|2 + |∇xχ(x, y)|2

)
dy ≤ C‖∇xA‖2

∞, (3.4)

where C depends only on d and µ.
Define

B(x, y) = A(x, y) + A(x, y)∇yχ(x, y)− Â(x). (3.5)
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The d× d matrix B(x, y) = (bij(x, y)) is 1-periodic in y and

 
Td
|B(x, y)|2 dy ≤ C, (3.6)

where C depends only on d and µ. In view of (3.3)-(3.4) we obtain

 
Td
|∇xB(x, y)|2 dy ≤ C‖∇xA‖2

∞. (3.7)

By the definitions of Â(x) and χ(x, y), it follows that

ˆ
Td
bij(x, y) dy = 0 and

∂

∂yi
bij(x, y) = 0 (3.8)

for each x ∈ Rd (the index i is summed from 1 to d), where we have used the notation
y = (y1, · · · , yd) ∈ Rd.

Lemma 3.1. There exist functions φ(x, y) = (φkij(x, y)) with 1 ≤ k, i, j ≤ d such that φ is
1-periodic in y,

φkij = −φikj and bij(x, y) =
∂

∂yk
φkij(x, y). (3.9)

Moreover,
´
Td φ(x, y)dy = 0, and

 
Td
|∇yφ(x, y)|2 dy +

 
Td
|φ(x, y)|2 dy ≤ C,

 
Td
|∇x∇yφ(x, y)|2 dy +

 
Td
|∇xφ(x, y)|2 dy ≤ C‖∇xA‖2

∞,

(3.10)

where C depends only on d and µ.

Proof. Using (3.8), the flux correctors φkij are constructed in the same manner as in the case
A = A(y) (see e.g. [24]). Indeed, for each x fixed, one solves the cell problem{

∆yfij(x, y) = bij(x, y) in Td,
fij(x, y) is 1-periodic in y,

and sets

φkij(x, y) =
∂

∂yk
fij(x, y)− ∂

∂yi
fkj(x, y).

The first inequality in (3.10) follows by using the L2 estimate and (3.6). To see the second
one uses (3.7).
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Let uε be a weak solution of the Dirichlet problem (1.6) and u0 the solution of the
homogenized problem (1.7). Let

wε = uε − u0 − εSε(ηεχε∇u0), (3.11)

where χε(x) = χ(x, x/ε) and the operator Sε is defined by (2.7). The cut-off function ηε in
(3.11) is chosen so that ηε ∈ C∞0 (Ω), 0 ≤ ηε ≤ 1,

ηε(x) = 1 if x ∈ Ω and dist(x, ∂Ω) ≥ 4ε,

ηε(x) = 0 if dist(x, ∂Ω) ≤ 3ε,

and |∇ηε| ≤ Cε−1. Define

Ωt =
{
x ∈ Ω : dist(x, ∂Ω) < t

}
. (3.12)

The following lemma was proved in [25] for the case Aε = A(x/ε). The case Aε =
A(x, ρ(x)/ε) for stratified structures was considered in [28] by the first and third authors.
Also see [27] for the nonlinear case. The estimate (3.13) is sharper than the similar estimates
in [28, 27].

Lemma 3.2. Let Ω be a bounded Lipschitz domain in Rd. Let wε be defined by (3.11). Then
for any ψ ∈ H1

0 (Ω),∣∣∣ ˆ
Ω

Aε∇wε · ∇ψdx
∣∣∣

≤ Cε‖∇ψ‖L2(Ω)

{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω\Ω3ε)

}
+ C‖∇ψ‖L2(Ω5ε)‖∇u0‖L2(Ω4ε),

(3.13)

where Aε = A(x, x/ε) and C depends only on d, µ, and Ω.

Proof. Using Lε(uε) = L0(u0), we obtain

Lε(wε) = div
[
(Aε − Â)∇u0

]
+ div

[
AεSε

(
ηε(∇yχ)ε∇u0

)]
+ ε div

[
AεSε

(
(∇ηε)χε∇u0

)]
+ ε div

[
AεSε

(
ηε(∇xχ)ε∇u0

)]
+ ε div

[
AεSε

(
ηεχ

ε∇2u0

)]
.

(3.14)

The last three terms in the right-hand side of (3.14) are easy to handle. Let B(x, y) be given
by (3.5). To deal with the first two terms, we write the sum of them as

I1 + I2 + div
[
Sε
(
ηεB

ε∇u0)
]
, (3.15)

where Bε = B(x, x/ε), and

I1 = div
[
(Aε − Â)∇u0 − Sε

(
(Aε − Â)ηε∇u0

)]
,

I2 = div
[
AεSε

(
ηε(∇yχ)ε∇u0

)
− Sε

(
ηεA

ε(∇yχ)ε∇u0

)]
.

(3.16)
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It follows from (3.14)-(3.16) that∣∣∣ ˆ
Ω

Aε∇wε · ∇ψdx
∣∣∣

≤
ˆ

Ω

∣∣(Aε − Â)∇u0 − Sε
(
(Aε − Â)ηε∇u0

)∣∣|∇ψ| dx
+

ˆ
Ω

∣∣AεSε(ηε(∇yχ)ε∇u0

)
− Sε

(
ηεA

ε(∇yχ)ε∇u0

)∣∣|∇ψ| dx
+
∣∣∣ ˆ

Ω

Sε
(
ηεB

ε∇u0) · ∇ψ dx
∣∣∣

+ Cε

ˆ
Ω

|Sε
(
(∇ηε)χε∇u0

)
||∇ψ| dx

+ Cε

ˆ
Ω

|Sε
(
ηε(∇xχ)ε∇u0

)
||∇ψ| dx

+ Cε

ˆ
Ω

|Sε
(
ηεχ

ε∇2u0

)
||∇ψ| dx

= J1 + · · ·+ J6,

(3.17)

for any ψ ∈ H1
0 (Ω). We estimate Ji, i = 1, . . . , 6 separately.

To bound J4, we use the Cauchy inequality and (2.8) to obtain

J4 ≤ Cε‖Sε
(
(∇ηε)χε∇u0

)
‖L2(Ω)‖∇ψ‖L2(Ω5ε)

≤ Cε‖(∇ηε)∇u0‖L2(Ω)‖∇ψ‖L2(Ω5ε)

≤ C‖∇u0‖L2(Ω4ε)‖∇ψ‖L2(Ω5ε),

(3.18)

where we have used the estimate for χ(x, y) in (2.5). In view of the estimate for ∇xχ(x, y)
in (3.4), the same argument also shows that

J5 + J6 ≤ Cε‖∇ψ‖L2(Ω)

{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω\Ω3ε)

}
. (3.19)

Next, to bound J3, we use the flux correctors φkij given by Lemma 3.1. Note that by
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using the second equation in (3.9),

ηε(x− z)bij(x− z, x/ε)
∂u0

∂xj
(x− z)

= εηε(x− z)
∂

∂xk

{
φkij(x− z, x/ε)

}∂u0

∂xj
(x− z)

− εηε(x− z)
∂φkij
∂xk

(x− z, x/ε)∂u0

∂xj
(x− z)

= ε
∂

∂xk

{
ηε(x− z)φkij(x− z, x/ε)

∂u0

∂xj
(x− z)

}
− ε ∂

∂xk

{
ηε(x− z)

}
φkij(x− z, x/ε)

∂u0

∂xj
(x− z)

− εηε(x− z)
∂φkij
∂xk

(x− z, x/ε)∂u0

∂xj
(x− z)

− εηε(x− z)φkij(x− z, x/ε)
∂2u0

∂xj∂xk
(x− z).

It follows that

J3 = ε
∣∣∣ ˆ

Ω

∂

∂xk
Sε

(
ηεφ

ε
kij

∂u0

∂xj

)
∂ψ

∂xi
dx−

ˆ
Ω

Sε((∇ηε)φε∇u0) · ∇ψ dx

−
ˆ

Ω

Sε(ηε(∇xφ)ε∇u0) · ∇ψ dx−
ˆ

Ω

Sε(ηεφ
ε∇2u0) · ∇ψ dx

∣∣∣. (3.20)

By using the skew-symmetry property of φkij in (3.9) and integration by parts we may show
that the first term in the right-hand side of (3.20) is zero, if ψ ∈ C∞0 (Ω). The same is true
for any ψ ∈ H1

0 (Ω) by a simple density argument. The remaining terms in the right-hand
side of (3.20) may be handled as in the case of J4, but using estimates of φ and ∇xφ in
(3.10). As a result, we obtain

J3 ≤ C‖∇ψ‖L2(Ω5ε)‖∇u0‖L2(Ω4ε)

+ Cε‖∇ψ‖L2(Ω)

{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω\Ω3ε)

}
.

(3.21)

It remains to estimate J1 and J2. Note that

J1 ≤ C

ˆ
Ω

|∇u0||1− ηε||∇ψ| dx+

ˆ
Ω

|(Aε − Â)ηε∇u0 − Sε
(
(Aε − Â)ηε∇u0

)
| |∇ψ| dx

= J11 + J12.
(3.22)

By the Cauchy inequality,

J11 ≤ C‖∇ψ‖L2(Ω4ε)‖∇u0‖L2(Ω4ε). (3.23)
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To bound J12, we use (2.11) to obtain

J12 ≤ C‖∇xA‖∞
ˆ

Ω

|∇ψ(x)|
ˆ
B(x,ε)

ηε(z)|∇u0(z)|
|z − x|d−1

dzdx

+ C

ˆ
Ω

|∇ψ(x)|
ˆ
B(x,ε)

|∇ηε||∇u0(z)|+ ηε(z)|∇2u0(z)|
|z − x|d−1

dzdx.

As in the proof of Lemma 2.3, this yields that

J12 ≤ Cε‖∇xA‖∞‖∇ψ‖L2(Ω)‖∇u0‖L2(Ω) + C‖∇ψ‖L2(Ω5ε)‖∇u0‖L2(Ω4ε)

+ Cε‖∇ψ‖L2(Ω)‖∇2u0‖L2(Ω\Ω3ε).
(3.24)

Finally, to bound J2, we observe that

J2 ≤ C

ˆ
Ω

 
B(x,ε)

|A(x, x/ε)− A(z, x/ε)|ηε(z)|∇yχ(z, x/ε)||∇u0(z)||∇ψ(x)| dzdx

≤ Cε‖∇xA‖∞
ˆ

Ω

 
B(x,ε)

ηε(z)|∇yχ(z, x/ε)||∇u0(z)||∇ψ(x)| dzdx

≤ Cε‖∇xA‖∞‖∇ψ‖L2(Ω)‖
 
B(x,ε)

|∇yχ(z, x/ε)|ηε(z)|∇u0(z)| dz‖L2(Ω)

≤ Cε‖∇xA‖∞‖∇ψ‖L2(Ω)

∥∥∥( 
B(x,ε)

|∇yχ(z, x/ε)|2ηε(z)|∇u0(z)|2 dz
)1/2 ∥∥∥

L2(Ω)
,

where we have used the Cauchy inequality for the last two inequalities. By using Fubini’s
Theorem and (2.5) we see that

∥∥∥( 
B(x,ε)

|∇yχ(z, x/ε)|2ηε(z)|∇u0(z)|2 dz
)1/2 ∥∥∥

L2(Ω)
≤ C‖∇u0‖L2(Ω).

This gives
J2 ≤ Cε‖∇xA‖∞‖∇ψ‖L2(Ω)‖∇u0‖L2(Ω),

and completes the proof.

The next theorem provides an error estimate in H1(Ω).

Theorem 3.1. Let Ω be a bounded Lipschitz domain in Rd. Assume that A satisfies the
same conditions as in Lemma 3.2. Let wε be defined by (3.11). Then

‖wε‖H1(Ω) ≤ Cε1/2‖u0‖1/2

H2(Ω)‖∇u0‖1/2

L2(Ω) + Cε‖u0‖H2(Ω) + Cε‖∇xA‖∞‖∇u0‖L2(Ω) (3.25)

for 0 < ε < 1, where C depends only on d, µ and Ω.
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Proof. Note that wε ∈ H1
0 (Ω) and ‖wε‖H1(Ω) ≤ C‖∇wε‖L2(Ω). By taking ψ = wε in (3.13)

and using the ellipticity condition of A, we obtain

‖wε‖H1(Ω) ≤ Cε
{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω\Ω3ε)

}
+ C‖∇u0‖L2(Ω4ε). (3.26)

This, together with the inequality

‖v‖L2(Ωt) ≤ Ct1/2‖v‖1/2

L2(Ω)‖v‖
1/2

H1(Ω) (3.27)

for t > 0 and v ∈ H1(Ω), where Ωt is defined by (3.12), gives (3.25).

Remark 3.1. Let Ω be a bounded Lipschitz domain. Let uε, u0 and wε be the same as in
Theorem 3.1. Observe that

‖uε − u0‖L2(Ω) ≤ ‖wε‖L2(Ω) + ε‖Sε
(
ηεχ

ε∇u0

)
‖L2(Ω)

≤ C‖wε‖H1(Ω) + Cε‖∇u0‖L2(Ω),

where we have used (2.8). This, together with (3.26), yields

‖uε − u0‖L2(Ω) ≤ Cε(‖∇xA‖∞ + 1)‖∇u0‖L2(Ω) + Cε‖∇2u0‖L2(Ω\Ω3ε)

+ C‖∇u0‖L2(Ω4ε),
(3.28)

where C depends only on d, µ and Ω. Estimate (3.28) is not sharp, but will be useful in the
proof of Theorems 1.1 and 1.2.

Remark 3.2. Let Ω be a bounded C1,1 domain in Rd. Let wε be defined by (3.11), where
uε and u0 have the same data F and f . Then

‖wε‖H1(Ω) ≤ Cε1/2
{

1 + ‖∇xA‖1/2
∞ + ε1/2‖∇xA‖∞

}(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
, (3.29)

where C depends only on d, µ and Ω. This follows from (3.25), the energy estimate

‖u0‖H1(Ω) ≤ C
(
‖F‖L2(Ω) + ‖f‖H1/2(∂Ω)

)
,

and the H2 estimate for L0,

‖u0‖H2(Ω) ≤ C(‖∇xA‖∞ + 1)
(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
, (3.30)

where C depends only on d, µ and Ω.
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4 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on an approach of homogenization with a parameter. We
start with the case n = 1 and Aε = A(x, x/ε), considered in the last section.

Lemma 4.1. Let Ω be a bounded C1,1 domain in Rd. Assume that A = A(x, y) is 1-
periodic in y and satisfies conditions (1.3) and (3.2). Let uε be a weak solution of (1.6),
with Lε = −div

(
A(x, x/ε)∇

)
, and u0 the solution of (1.7) with the same data F ∈ L2(Ω)

and f ∈ H3/2(∂Ω). Then

‖uε − u0‖L2(Ω) ≤ Cε
{

1 + ‖∇xA‖∞ + ε‖∇xA‖2
∞

}(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
(4.1)

for 0 < ε < 1, where C depends only on d, n, µ and Ω.

Proof. Let wε be given by (3.11). It follows from (2.8) that

‖Sε(ηεχε∇u0)‖L2(Ω) ≤ C‖∇u0‖L2(Ω).

Thus it suffices to show that ‖wε‖L2(Ω) is bounded by the right-hand side of (4.1). This is done
by using (3.13) and a duality argument, as in [26]. Let A∗(x, y) denote the adjoint of A(x, y).
Note that A∗(x, y) satisfies the same conditions as A(x, y). We denote the corresponding
correctors and flux correctors by χ∗(x, y) and ψ∗(x, y), respectively. Its matrix of effective

coefficients is given by Â∗ = (Â)∗, the adjoint of Â.
For G ∈ C∞c (Ω), let vε be the weak solution of the following Dirichlet problem,{

−div (A∗(x, x/ε)∇vε(x)) = G in Ω,

vε = 0 on ∂Ω,
(4.2)

and v0 the homogenized solution. Define

w̃ε(x) =vε − v0 − εSε
(
η̃ε(χ

∗)ε∇v0

)
,

where (χ∗)ε = χ∗(x, x/ε) and η̃ε ∈ C∞0 (Ω) is a cut-off function such that 0 ≤ η̃ε ≤ 1,

η̃ε(x) = 1 in Ω \ Ω10ε, η̃ε(x) = 0 in Ω8ε,

and |∇η̃ε| ≤ Cε−1. Note that∣∣∣ ˆ
Ω

wε ·Gdx
∣∣∣ =

∣∣∣ˆ
Ω

Aε(x)∇wε · ∇vε dx
∣∣∣

≤
∣∣∣ˆ

Ω

Aε(x)∇wε · ∇w̃ε dx
∣∣∣+
∣∣∣ˆ

Ω

Aε(x)∇wε · ∇v0 dx
∣∣∣

+ ε
∣∣∣ ˆ

Ω

Aε(x)∇wε · ∇
[
Sε
(
η̃ε(χ

∗)ε∇v0

)]
dx
∣∣∣
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.
= J1 + J2 + J3. (4.3)

We estimate J1, J2, and J3 separately.
By using the Cauchy inequality and (3.29), we obtain

J1 ≤ C‖∇wε‖L2(Ω)‖∇w̃ε‖L2(Ω)

≤ Cε
{

1 + ‖∇xA‖∞ + ε‖∇xA‖2
∞

}(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
‖G‖L2(Ω),

(4.4)

where we have also used the estimate

‖w̃ε‖H1
0 (Ω) ≤ Cε1/2

{
1 + ‖∇xA‖1/2

∞ + ε1/2‖∇xA‖∞
}
‖G‖L2(Ω). (4.5)

The proof of (4.5) is the same as that of (3.29).
Next, we use (3.13) to obtain

J2 ≤ Cε‖∇v0‖L2(Ω)

{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω)

}
+ C‖∇v0‖L2(Ω5ε)‖∇u0‖L2(Ω4ε).

(4.6)

Note that by (3.27),

‖∇v0‖L2(Ω5ε)‖∇u0‖L2(Ω4ε) ≤ Cε‖∇v0‖1/2

L2(Ω)‖v0‖1/2

H2(Ω)‖∇u0‖1/2

L2(Ω)‖u0‖1/2

H2(Ω).

This, together with (4.6) and the energy estimates and H2 estimates for L0 and L∗0, gives

J2 ≤ Cε(1 + ‖∇xA‖∞)
(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
‖G‖L2(Ω). (4.7)

The estimate of J3 is similar to that of J2. By (3.13) we see that

J3 ≤ Cε2‖∇
[
Sε
(
η̃ε(χ

∗)ε∇v0

)]
‖L2(Ω)

{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω)

}
,

where we have used the fact η̃ε = 0 on Ω8ε. Note that by (2.8),

‖∇
[
Sε
(
η̃ε(χ

∗)ε∇v0

)]
‖L2(Ω)

≤ ‖Sε
[
(∇η̃ε)(χ∗)ε∇v0

]
‖L2(Ω) + ‖Sε

[
η̃ε(∇xχ

∗)ε∇v0

]
‖L2(Ω)

+ ε−1‖Sε
[
η̃ε(∇yχ

∗)ε∇v0

]
‖L2(Ω) + ‖Sε

[
η̃ε(χ

∗)ε∇2v0

]
‖L2(Ω)

≤ Cε−1‖∇v0‖L2(Ω) + C‖∇2v0‖L2(Ω).

It follows that

J3 ≤ Cε
{
‖∇v0‖L2(Ω) + ε‖∇2v0‖L2(Ω)

}{
‖∇xA‖∞‖∇u0‖L2(Ω) + ‖∇2u0‖L2(Ω)

}
≤ Cε(1 + ‖∇xA‖∞)(1 + ε‖∇xA‖∞)

(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
‖G‖L2(Ω).
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By combining the estimates of J1, J2 and J3 we obtain∣∣∣ ˆ
Ω

wε ·Gdx
∣∣∣

≤ Cε
{

1 + ‖∇xA‖∞ + ε‖∇xA‖2
∞

}(
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

)
‖G‖L2(Ω),

from which the desired estimate for wε follows by duality.

We are now in a position to give the proof of Theorem 1.3.

Proof of Theorem 1.3. We prove the theorem by using an induction argument on n. The
case n = 1 follows directly from Lemma 4.1. Suppose that the theorem is true for some
n− 1. To prove the theorem for n, let uε be a weak solution of the Dirichlet problem (1.6)
and u0 the solution of the homogenized problem (1.7) with the same data (F, f). Let vε be
the weak solution to

−div
(
An−1(x, x/ε1, . . . , x/εn−1)∇vε

)
= F in Ω and vε = f on ∂Ω, (4.8)

where An−1 is defined by (2.4) with ` = n and An = A. Note that

‖∇x,y1,...,yn−2An−1‖∞ ≤ C‖∇x,y1,...,yn−1A‖∞ ≤ CL.

By the induction assumption,

‖vε − u0‖L2(Ω) ≤ C
{
ε1 + ε2/ε1 + · · · εn−1/εn−2

}{
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

}
, (4.9)

where C depends only on d, n, µ, L and Ω.
To bound ‖uε − vε‖L2(Ω), we use Lemma 4.1. For each 0 < ε < 1 fixed, we let

E(x, y) = A(x, x/ε1, . . . , x/εn−1, y).

Then
A(x, x/ε1, . . . , x/εn) = E(x, x/εn).

Note that
‖∇xE‖∞ ≤ CLε−1

n−1,

where we have used the assumption that 0 < εn < εn−1 < · · · < ε1 < 1. By Lemma 4.1, we
obtain

‖uε − vε‖ ≤ Cεn
{

1 + ‖∇xE‖∞ + εn‖∇xE‖2
∞
}{
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

}
≤ Cεn

{
1 + Lε−1

n−1 + L2εnε
−2
n−1

}{
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

}
≤ C(1 + L)2εnε

−1
n−1

{
‖F‖L2(Ω) + ‖f‖H3/2(∂Ω)

}
.

This, together with (4.9), gives (1.14).
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5 Approximation

In preparation for the proofs of Theorems 1.1 and 1.2, we establish several results on the
approximation of solutions of Lε(uε) = F by solutions of L0(u0) = F in this section. We
start with a simple case, where n = 1 and A = A(x, y) is Lipschitz continuous in x.

Lemma 5.1. Suppose A = A(x, y) satisfies (1.3) and is 1-periodic in y. Also assume that
‖∇xA‖∞ < ∞. Let Lε = −div

(
A(x, x/ε)∇

)
and uε be a weak solution of Lε(uε) = F in

B2r = B(x0, 2r), where ε ≤ r ≤ 1 and F ∈ L2(B2r). Then there exists a weak solution to
L0(u0) = F in Br such that( 

Br

|uε − u0|2
)1/2

≤ C
{(ε

r

)σ
+ ε‖∇xA‖∞

}{( 
B2r

|uε|2
)1/2

+ r2

( 
B2r

|F |2
)1/2

}
,

(5.1)

where σ > 0 and C depends only on d and µ.

Proof. By rescaling we may assume r = 1. To see this, we note that if −div
(
A(x, x/ε)∇uε

)
=

F in B2r and v(x) = uε(rx), then −div
(
Ã(x, x/δ)∇v

)
= G in B2, where Ã(x, y) = A(rx, y),

δ = ε/r, and G(x) = r2F (rx). Also, observe that ‖∇xÃ‖∞ = r‖∇xA‖∞.
Now, suppose that −div

(
A(x, x/ε)∇uε

)
= F in B2. Let u0 ∈ H1(B3/2) be the weak

solution to
L0(u0) = F in B3/2 and u0 = uε on ∂B3/2.

Note that u0 − uε ∈ H1
0 (B3/2) and

Lε(u0 − uε) = div
(
(Â− Aε)∇uε

)
in B3/2.

It follows from the Meyers’ estimates that

 
B3/2

|∇(uε − u0)|q ≤ C

 
B3/2

|∇uε|q

for some q > 2 and C > 0, depending only on d and µ. This, together with the Meyers’
estimate, ( 

B3/2

|∇uε|q
)1/q

≤ C

( 
B2

|uε|2
)1/2

+ C

( 
B2

|F |2
)1/2

,

gives ( 
B3/2

|∇u0|q
)1/q

≤ C

( 
B2

|uε|2
)1/2

+ C

( 
B2

|F |2
)1/2

. (5.2)
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Also, by the interior H2 estimate for L0,
 
B(z,ρ)

|∇2u0|2 ≤ C

 
B(z,2ρ)

|F |2 + C
(
‖∇xA‖2

∞ + ρ−2
)  

B(z,2ρ)

|∇u0|2, (5.3)

where B(z, 2ρ) ⊂ B2, we may deduce that

ˆ
B(3/2)−t

|∇2u0|2 dx ≤ C

ˆ
B3/2

|F |2 dx+ C‖∇xA‖2
∞

ˆ
B3/2

|∇u0|2 dx

+ C

ˆ
B(3/2)−(t/2)

|∇u0(x)|2 dx
|dist(x, ∂B3/2)|2

(5.4)

for 0 < t < 1. By Hölder’s inequality, the last term in the right-hand side of (5.4) is bounded
by

Ct−
2
q
−1

(ˆ
B3/2

|∇u0|q
)2/q

.

In view of (5.2) and (5.4) we obtain

ˆ
B(3/2)−t

|∇2u0|2 dx ≤ C
{
t−

2
q
−1 + ‖∇xA‖2

∞

}{ 
B2

|F |2 +

 
B2

|uε|2
}

(5.5)

for 0 < t < 1, where C depends only on d and µ.
Finally, to finish the proof, we use the estimate (3.28) to obtain

ˆ
B3/2

|uε − u0|2 ≤ Cε2(‖∇xA‖2
∞ + 1)

ˆ
B3/2

|∇u0|2 + Cε2

ˆ
B|x|< 3

2−3ε

|∇2u0|2

+ C

ˆ
3
2
−4ε<|x|< 3

2

|∇u0|2.

We bound the second term in the right-hand side of the inequality above by using (5.5), and
the third term by using Hölder inequality and (5.2). It follows that

ˆ
B3/2

|uε − u0|2 ≤ C
{
ε1− 2

q + ε2‖∇xA‖2
∞

}{ˆ
B2

|uε|2 +

ˆ
B2

|F |2
}
.

This gives the estimate (5.1) with r = 1 and σ = 1
2
− 1

q
> 0.

The next lemma deals with the case n = 1 and A = A(x, y) is Hölder continuous in x,

|A(x, y)− A(x′, y)| ≤ L|x− x′|θ for any x, x′ ∈ Rd, (5.6)

where L ≥ 0 and θ ∈ (0, 1).

20



Lemma 5.2. Suppose A = A(x, y) satisfies (1.3), (5.6), and is 1-periodic in y. Let Lε =
−div

(
A(x, x/ε)∇

)
and uε be a weak solution of Lε(uε) = F in B2r = B(x0, 2r), where

ε ≤ r ≤ 1 and F ∈ L2(B2r). Then there exists a weak solution to L0(u0) = F in Br such
that ( 

Br

|uε − u0|2
)1/2

≤ C
{(ε

r

)σ
+ εθL

}{( 
B2r

|uε|2
)1/2

+ r2

( 
B2r

|F |2
)1/2

}
,

(5.7)

where σ > 0 depends only on d and µ. The constant C depends only on d, µ and θ.

Proof. As in the proof of Lemma 5.1, by rescaling, we may assume r = 1. We also assume
that εθL < 1; for otherwise the inequality is trivial.

By using a convolution in the x variable we may find a matrix Ã = Ã(x, y) such that Ã
satisfies the ellipticity condition (1.3), is 1-periodic in y, and

‖A− Ã‖∞ ≤ CLεθ and ‖∇xÃ‖∞ ≤ CLεθ−1, (5.8)

where C depends only on d and θ. Let vε be the weak solution to

−div
(
Ã(x, x/ε)∇vε

)
= F in B3/2 and vε = uε on ∂B3/2. (5.9)

By the energy estimate as well as the first inequality in (5.8), 
B3/2

|∇(uε − vε)|2 ≤ C(Lεθ)2

 
B3/2

|∇uε|2

≤ C(Lεθ)2

{ 
B2

|uε|2 +

 
B2

|F |2
}
,

where we have used the Caccioppoli inequality for the last step. This, together with
Poincaré’s inequality, gives( 

B3/2

|uε − vε|2
)1/2

≤ CLεθ

{( 
B2

|uε|2
)1/2

+

( 
B2

|F |2
)1/2

}
. (5.10)

Next, we apply Lemma 5.1 (and its proof) to the operator −div
(
Ã(x, x/ε)∇

)
. Let Ã0(x)

denote the matrix of effective coefficients for Ã(x, y). It follows that there exists v0 ∈
H1(B5/4) such that −div

(
Ã0(x)∇v0) = F in B5/4, and( 

B5/4

|vε − v0|2
)1/2

≤ C
{
εσ + εθL

}
( 

B3/2

|vε|2
)1/2

+

( 
B3/2

|F |2
)1/2


≤ C

{
εσ + εθL

}{( 
B2

|uε|2
)1/2

+

( 
B2

|F |2
)1/2

}
,

(5.11)
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where we have used the second inequality in (5.8) as well as (5.10).
Finally, let u0 be the weak solution to L0(u0) = F in B1 and u0 = v0 on ∂B1. Observe

that by the first inequality in (5.8),

‖Ã0 − Â‖∞ ≤ CεθL,

where C depends only on d and µ. It follows that by Poincaré’s inequality,ˆ
B1

|u0 − v0|2 ≤ C

ˆ
B1

|∇(u0 − v0)|2

≤ C(εθL)2

ˆ
B1

|∇v0|2

≤ C(εθL)2

{ˆ
B5/4

|v0|2 +

ˆ
B2

|F |2
}

≤ C(εθL)2

{ˆ
B2

|uε|2 +

ˆ
B2

|F |2
}
,

where we have used Cacciopoli’s inequality for the third inequality and (5.11) for the fourth.
This, together with (5.10) and 5.11), gives (5.7) for r = 1.

We are now ready to handle the general case, where n ≥ 1 and

Lε = −div
(
A(x, x/ε1, . . . , x/εn)∇

)
(5.12)

with 0 < εn < εn−1 < · · · < ε1 < 1.

Theorem 5.1. Suppose that A = A(x, y1, . . . , yn) satisfies conditions (1.3), (1.4), and (1.5)
for some θ ∈ (0, 1] and L ≥ 0. Let Lε be given by (5.12) and uε a weak solution of Lε(uε) = F
in Btr = B(x0, tr) for some t > 1, where ε1 ≤ r ≤ 1 and F ∈ L2(Btr). Then there exists
u0 ∈ H1(Br) such that L0(u0) = F in Br and( 

Br

|uε − u0|2
)1/2

≤ C
{(ε1

r

)σ
+ (ε1 + ε2/ε1 + · · ·+ εn/εn−1)θ L

}
·

{( 
Btr

|uε|2
)1/2

+ r2

( 
Btr

|F |2
)1/2

}
,

(5.13)

where σ > 0 depends only on d and µ. The constant C depends only on d, n, µ, t, and θ.

Proof. We prove the theorem by an induction argument on n. The case n = 1 with t = 2
is given by Lemma 5.2. The proof for the general case t > 1 is similar. Now suppose the
theorem is true for n− 1. To show it is true for n, let uε be a weak solution to Lε(uε) = F
in Btr, where Lε is given by (5.12). Fix ε > 0 and consider the matrix

E(x, y) = A(x, x/ε1, . . . , x/εn−1, y).
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Note that E satisfies the ellipticity condition (1.3) and is 1-periodic in y. Moreover, we have

|E(x, y)− E(x′, y)| ≤ Cε−θn−1L|x− x′|θ for any x, x′ ∈ Rd, (5.14)

where C depends only on d and n. Also recall that the matrix of effective coefficients for
E(x, y) is given by

An−1(x, x/ε1, · · · , x/εn−1),

where An−1(x, y1, · · · , yn−1) is given by (2.4) with ` = n and An = A. Let 1 < s < t. By the
theorem for the case n = 1, there exists vε ∈ H1(Bsr) such that

−div
(
An−1(x, x/ε1, . . . , x/εn−1)∇vε

)
= F in Bsr,

and ( 
Bsr

|uε − vε|2
)1/2

≤ C

{(εn
r

)σ
+

(
εn
εn−1

)θ
L

}

·

{( 
Btr

|uε|2
)1/2

+ r2

( 
Btr

|F |2
)1/2

}
.

(5.15)

By induction assumption there exists u0 ∈ H1(Br) such that L0(u0) = F in Br and( 
Br

|vε − u0|2
)1/2

≤ C
{(ε1

r

)σ
+ (ε1 + ε2/ε1 + · · ·+ εn−1/εn−2)θL

}
·

{( 
Bsr

|vε|2
)1/2

+ r2

( 
Bsr

|F |2
)1/2

}
.

(5.16)

Estimate (5.13) follows readily from (5.15) and (5.16).

Remark 5.1. Let δ = ε1 + ε2/ε1 + · · ·+ εn/εn−1. It follows from Theorem 5.1 (with t = 2)
that for δ ≤ r < 1,( 

Br

|uε − u0|2
)1/2

≤ C

(
δ

r

)σ{( 
B2r

|uε|2
)1/2

+ r2

( 
B2r

|F |2
)1/2

}
, (5.17)

where σ > 0 depends only on d, µ and θ. The constant C depends at most on d, n, µ and
(θ, L). Suppose (ε1, ε2, . . . , εn) satisfies the condition (1.9). Then δ ≤ Cεβ1 for some β > 0
depending only on n and N . This, together with (5.17), implies that for ε1 ≤ r < 1,( 

Br

|uε − u0|2
)1/2

≤ C
(ε1

r

)ρ{( 
B2r

|uε|2
)1/2

+ r2

( 
B2r

|F |2
)1/2

}
, (5.18)

where ρ > 0 depends only on d, n, µ, θ, and N .
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6 Large-scale interior estimates

This section focuses on large-scale interior estimates for Lε(uε) = F and gives the proof
of Theorem 1.1. Throughout this section we assume that Lε is given by (1.2) and A =
A(x, y1, . . . , yn) satisfies (1.3), (1.4), and (1.5) for some θ ∈ (0, 1] and L ≥ 0. We also assume
that 0 < εn < εn−1 < · · · < ε1 < 1 and the condition (1.9) of well-separation is satisfied.

We start with estimates of solutions of L0(u0) = F . Let P denote the set of linear
functions.

Lemma 6.1. Let u0 ∈ H1(Br) be a solution to L0(u0) = F in Br = B(0, r), where 0 < r ≤ 1
and F ∈ Lp(Br) for some p > d. Define

G(r;u0) =
1

r
inf
P∈P

{( 
Br

|u0 − P |2
)1/2

+ r1+ϑ|∇P |

}
+ r

( 
Br

|F |p
)1/p

, (6.1)

where ϑ = min{θ, 1 − d/p}. Then there exists t ∈ (0, 1/8), depending only on d, µ, p and
(θ, L) in (1.5), such that

G(tr;u0) ≤ 1

2
G(r;u0).

Proof. Let P0 = x · ∇u0(0) + u0(0). Then

G(tr;u0) ≤ 1

tr
‖u0 − P0‖L∞(Btr) + tr

( 
Btr

|F |p
)1/p

+ (tr)ϑ|∇u0(0)|

≤ (tr)ϑ‖∇u0‖C0,ϑ(Btr) + tr

( 
Btr

|F |p
)1/p

+ (tr)ϑ|∇u0(0)|

= (tr)ϑ‖∇(u0 − P )‖C0,ϑ(Btr) + tr

( 
Btr

|F |p
)1/p

+ (tr)ϑ|∇u0(0)|

(6.2)

for any P ∈ P . Note that

tr

( 
Brt

|F |p
)1/p

≤ Ct1−d/pr
(  

Br

|F |p
)1/p

. (6.3)

By interior Lipschitz estimates for u0, we may deduce that

|∇u0(0)| ≤ C

r

( 
Br

|u0 − b|2
)1/2

+ Cr

( 
Br

|F |p
)1/p

≤ C

r

( 
Br

|u0 − P |2
)1/2

+
C

r

( 
Br

|P − b|2
)1/2

+ Cr

( 
Br

|F |p
)1/p

≤ C

r

( 
Br

|u0 − P |2
)1/2

+ C|∇P |+ Cr

( 
Br

|F |p
)1/p

,

(6.4)
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where b = P (0). Also, note that

−div
(
Â∇(u0 − P )

)
= F + div

(
[Â− Â(0)]∇P

)
in Br.

By C1,ϑ estimates for the elliptic operator L0, we obtain that for 0 < t < 1/2,

‖∇(u0 − P )‖C0,ϑ(Btr) ≤ ‖∇(u0 − P )‖C0,ϑ(Br/2)

≤ C

r1+ϑ

( 
Br

|u0 − P |2
)1/2

+ Cr−ϑ‖[Â− Â(0)]∇P‖L∞(Br)

+ C‖[Â− Â(0)]∇P‖C0,ϑ(Br) + Cr1−ϑ
(  

Br

|F |p
)1/p

≤ C

r1+ϑ

( 
Br

|u0 − P |2
)1/2

+ C|∇P |+ Cr1−ϑ
( 

Br

|F |p
)1/p

.

(6.5)

By using (6.3)–(6.5) to bound the right-hand side of (6.2), it yields that

G(tr;u0) ≤ CtϑG(r;u0)

for some constant C depending only on d, µ, p and (θ, L) in (1.5). The desired result follows
by choosing t so small that Ctϑ ≤ 1/2.

Lemma 6.2. Let uε ∈ H1(B1) be a solution of Lε(uε) = F in B1, where F ∈ Lp(B1) for
some p > d and ε ∈ (0, 1/4). For 0 < r ≤ 1, we define

H(r) =
1

r
inf
P∈P

{( 
Br

|uε − P |2
)1/2

+ r1+ϑ|∇P |

}
+ r

( 
Br

|F |p
)1/p

,

Φ(r) =
1

r
inf
b∈R

( 
Br

|uε − b|2
)1/2

+ r

( 
Br

|F |2
)1/2

.

(6.6)

Let t ∈ (0, 1/8) be given by Lemma 6.1. Then for r ∈ (ε1, 1/2],

H(tr) ≤ 1

2
H(r) + C

(ε1

r

)ρ
Φ(2r), (6.7)

where ρ > 0 and C depends at most on d, n, µ, p, (θ, L) in (1.5), and N in (1.9).

Proof. For any fixed r ∈ (ε1, 1/2], let u0 be the solution to L0(u0) = F in Br, given in
Theorem 5.1. By the definitions of G,H and Φ, we have

H(tr) ≤ 1

tr

( 
Btr

|uε − u0|2
)1/2

+G(tr;u0)

≤ 1

tr

( 
Btr

|uε − u0|2
)1/2

+
1

2
G(r;u0)

25



≤ C

r

( 
Br

|uε − u0|2
)1/2

+
1

2
H(r)

≤ C
(ε1

r

)ρ{1

r

( 
B2r

|uε − b|2
)1/2

+ r

( 
B2r

|F |2
)1/2

}
+

1

2
H(r)

for any b ∈ R, where we have used Lemma 6.1 and (5.18) in the second and last inequalities,
respectively.

The following lemma can be found in [23, p.155].

Lemma 6.3. Let H(r) and h(r) be two nonnegative continuous functions on the interval
(0, 1] and let t ∈ (0, 1/4). Assume that

max
r≤t≤2r

H(t) ≤ C0H(2r), max
r≤t,s≤2r

|h(t)− h(s)| ≤ C0H(2r), (6.8)

for any r ∈ [δ, 1/2], and also

H(tr) ≤ 1

2
H(r) + C0ω(δ/r) {H(2r) + h(2r)} , (6.9)

for any r ∈ [δ, 1/2], where ω is a nonnegative increasing function on [0, 1] such that ω(0) = 0
and

ˆ 1

0

ω(s)

s
ds <∞. (6.10)

Then

max
δ≤r≤1

{H(r) + h(r)} ≤ C {H(1) + h(1)} , (6.11)

where C depends only on C0, θ0 and ω.

The next lemma gives the large-scale Lipschitz estimate down to the scale ε1.

Lemma 6.4. Let uε ∈ H1(B1) be a solution to Lε(uε) = F in B1, where B1 = B(x0, 1) and
F ∈ Lp(B1) for some p > d ≥ 2. Then for ε1 ≤ r < 1,( 

Br

|∇uε|2
)1/2

≤ C

{( 
B1

|∇uε|2
)1/2

+

( 
B1

|F |p
)1/p

}
, (6.12)

where C depends only on d, n, µ, p, (θ, L) in (1.5), and N in (1.9).
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Proof. By translation we may assume x0 = 0. Let Pr, br be a linear function and constant
achieving the infimum in (6.6). In particular,

H(r) =
1

r

( 
Br

|uε − Pr|2
)1/2

+ rϑ|∇Pr|+ r
(  

Br

|F |p
)1/p

.

Let h(r) = |∇Pr|. It follows by Poincaré’s inequality that

Φ(2r) ≤ H(2r) +
1

r
inf
b∈R

( 
B2r

|P2r − b|2
)1/2

≤ H(2r) + Ch(2r).

This, combined with (6.7), gives (6.9) with ω(t) = tρ, which satisfies (6.10).
For t ∈ [r, 2r], it is obvious that H(t) ≤ CH(2r). Furthermore, observe that

|h(t)− h(s)| = |∇(Pt − Ps)| ≤
C

r

( 
Br

|Pt − Ps|2
)1/2

≤ C

r

( 
Br

|uε − Pt|2
)1/2

+
C

r

( 
Br

|uε − Ps|2
)1/2

≤ C

t

( 
Bt

|uε − Pt|2
)1/2

+
C

s

( 
Bs

|uε − Ps|2
)1/2

≤ C{H(t) +H(s)}
≤ CH(2r)

for all t, s ∈ [r, 2r], which is exactly the condition (6.8).
Thanks to (6.11), we obtain that

1

r
inf
b∈R

( 
Br

|uε − b|2
)1/2

≤ H(r) +
1

r
inf
b∈R

( 
Br

|Pr − b|2
)1/2

≤ C{H(r) + h(r)}
≤ C{H(1) + h(1)}

≤ C

{( 
B1

|uε|2
)1/2

+

( 
B1

|F |p
)1/p

}
, (6.13)

for any r ∈ [ε1, 1/2], where for the last step the following observation is used,

h(1) ≤ C

( 
B1

|P1|2
)1/2

≤ C

( 
B1

|uε − P1|2
)1/2

+ C

( 
B1

|uε|2
)1/2
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≤ CH(1) + C

( 
B1

|uε|2
)1/2

.

The estimate (6.12) follows readily from (6.13) by Poincaré and Caccioppoli’s inequalities.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof uses an induction on n and relies on Lemma 6.4 and
a rescaling argument. The case n = 1 follows directly from Lemma 6.4 by translation and
dilation. Assume the theorem is true for n− 1. Suppose

div
(
A(x, x/ε1, . . . , x/εn)∇uε

)
= F in BR = B(x0, R)

for some 0 < R ≤ 1. We need to show that( 
Br

|∇uε|2
)1/2

≤ C

{( 
BR

|∇uε|2
)1/2

+R

( 
BR

|F |p
)1/p

}
, (6.14)

for εn ≤ r < R ≤ 1. By translation and dilation we may assume that x0 = 0 and R = 1.
Note that the case (1/8) ≤ r < R = 1 is trivial. If εn < r ≤ (1/8), we may cover the ball
B(0, r) with a finite number of balls B(x`, εn), where x` ∈ B(0, r). Consequently, it suffices
to prove (6.14) for the case r = εn and R = 1. We further note that by Lemma 6.4, the
estimate (6.14) holds for r = ε1 and R = 1.

To reach the finest scale εn, we let w(x) = uε(ε1x). Then

−div
(
E(x, x/(ε2ε

−1
1 ), . . . , x/(εnε

−1
1 ))∇w

)
= H in B1,

where H(x) = ε2
1F (ε1x) and

E(x, y2, . . . , yn) = A(ε1x, x, y2, . . . , yn).

Observe that the matrix E satisfies (1.3) and is 1-periodic in (y2, . . . , yn). It also satisfies
the smoothness condition (1.5) with the same constants θ and L as for A. Furthermore, the
(n− 1) scales (ε2ε

−1
1 , . . . , εnε

−1
1 ) satisfies the condition (1.9) of well-separation. Thus, by the

induction assumption,( 
Br

|∇w|2
)1/2

≤ C

{( 
B1

|∇w|2
)1/2

+

( 
B1

|H|p
)1/p

}
, (6.15)

for r = εn/ε1. By a change of variables it follows that (6.14) holds for r = εn and R = ε1.
This, combined with the inequality for r = ε1 and R = 1, implies that (6.14) holds for r = εn
and R = 1. The proof is complete.
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Remark 6.1. It follows from the proof of Theorem 1.1 that without the condition (1.9), the
estimate (1.10) continues to hold if

ε1 + (ε2/ε1 + · · ·+ εn/εn−1)N ≤ r < R ≤ 1,

for any N ≥ 1. In this case the constant C in (1.10) also depends on N . The case N = 1
follows by using (5.17) in the place of (5.18). The general case is proved by an induction
argument on N . Suppose the claim is true for some N ≥ 1. Assume that β = ε2/ε1 +
· · · + εn/εn−1 ≥ ε1 (for otherwise, there is nothing to prove). Let w(x) = uε(βx). Then
−div

(
E(x, x/(β−1ε1), . . . , x/(β−1εn))∇w

)
= H, where E(x, y1, . . . yn) = A(βx, y1, . . . , yn).

By the induction assumption, the inequality (6.15) holds for β−1ε1 + βN < r < 1. By a
change of variables we obtain (1.10) for ε1 + βN+1 ≤ r < R = β. This, together with the
estimate for the case N = 1, gives (1.10) for ε1 + βN+1 ≤ r < R ≤ 1.

7 Large-scale boundary Lipschitz estimates

This section is devoted to the large-scale boundary Lipschitz estimate and contains the
proof of Theorem 1.2. Throughout the section we assume that Lε is given by (1.2) with
A = A(x, y1, . . . , yn) satisfying conditions (1.3), (1.4) and (1.5) for some 0 < θ ≤ 1. The
condition (1.9) is also imposed.

Let ψ : Rd−1 → R be a C1,α function with

ψ(0) = 0 and ‖∇ψ‖∞ + ‖∇ψ‖C0,α(Rd−1) ≤M. (7.1)

Set

Zr = Z(r, ψ) =
{

(x′, xd) ∈ Rd : |x′| < r and ψ(x′) < xd < 10(M + 10)r
}
,

Ir = I(r, ψ) =
{

(x′, ψ(x′)) ∈ Rd : |x′| < r
}
.

(7.2)

For f ∈ C1,α(Ir) with 0 < α < 1, we introduce a scaling-invariant norm,

‖f‖C1,α(Ir) = ‖f‖L∞(Ir) + r‖∇tanf‖L∞(Ir) + r1+α‖∇tanf‖C0,α(Ir), (7.3)

where ∇tanf denotes the tangential gradient of f and

‖g‖C0,α(Ir) = sup
x,y∈Ir,x 6=y

|g(x)− g(y)|
|x− y|α

.

Theorem 7.1. Let uε ∈ H1(ZR) be a weak solution of Lε(uε) = F in ZR and uε = f on
IR, where 0 < εn < R ≤ 1, F ∈ Lp(ZR) for some p > d, and f ∈ C1,α(IR). Then for
εn ≤ r < R,( 

Zr

|∇uε|2
)1/2

≤ C

{( 
ZR

|∇uε|2
)1/2

+R−1‖f‖C1,α(IR) +R

( 
ZR

|F |p
)1/p

}
, (7.4)

where C depends at most on d, n, µ, p, (θ, L) in (1.5), N in (1.9), and (α,M) in (7.1).
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Theorem 1.2 follows readily from Theorem 7.1 by translation and a suitable rotation of
the coordinate system. To prove Theorem 7.1, we use the same approach as in the proof of
Theorem 6.4. We will provide only a sketch of the proof for Theorem 7.1.

First, we point out that the rescaling argument, which is used extensively for interior
estimates, works equally well in the case of boundary estimates. Indeed, suppose Lε(uε) = F
in Z(r, ψ) and uε = f on I(r, ψ) for some 0 < r ≤ 1. Let v(x) = uε(rx). Then

−div
(
Ã(x, x/ε1r

−1, . . . , x/εnr
−1)∇v

)
= G in Z(1, ψr) and v = g on I(1, ψr),

where Ã(x, y1, . . . , yn) = A(rx, y1, . . . , yn), G(x) = r2F (rx), g(x) = f(rx), and ψr(x
′) =

r−1ψ(rx′). Since ∇ψr(x′) = ∇ψ(rx′) and 0 < r ≤ 1, the function ψr satisfies the condition
(7.1) with the same M . Also, note that ‖f‖C1,α(I(r,ψ)) = ‖g‖C1,α(I(1,ψr)). As a result, it suffices
to prove Theorem 7.1 for R = 1.

Next, we establish an approximation result in the place of (5.18). Define

‖f‖C1(Ir) = ‖f‖L∞(Ir) + r‖∇tanf‖L∞(Ir).

Theorem 7.2. Let uε ∈ H1(Z2r) be a weak solution of Lε(uε) = F in Z2r and uε = f on I2r,
where 0 < ε ≤ r ≤ 1. Then there exists u0 ∈ H1(Zr) such that L0(u0) = F in Zr, u0 = f on
Ir, and ( 

Zr

|uε − u0|2
)1/2

≤ C
(ε1

r

)ρ{( 
Z2r

|uε|2
)1/2

+ r2

( 
Z2r

|F |2
)1/2

+ ‖f‖C1(I2r)

}
.

(7.5)

The constants ρ ∈ (0, 1) and C > 0 depend at most on d, n, µ, (θ, L) in (1.5), N in (1.9),
and (α,M) in (7.1).

Proof. The proof of (7.5) is similar to that of (5.18).
Step 1. Assume that n = 1, Lε = −div

(
A(x, x/ε)∇

)
and A(x, y) is Lipschitz continuous in

x. Suppose that Lε(uε) = F in Z2r and uε = f on I2r. Show that there exists u0 ∈ H1(Zr)
such that L0(u0) = F in Zr, u0 = f on Ir, and( 

Zr

|uε − u0|2
)1/2

≤ C
{(ε

r

)σ
+ ε‖∇xA‖∞

}{( 
Z2r

|uε|2
)1/2

+ r2

( 
Z2r

|F |2
)1/2

+ ‖f‖C1(I2r)

}
.

(7.6)

The proof of (7.6) is similar to (5.1). By rescaling we may assume r = 1. Let u0 be the
weak solution of

L0(u0) = F in Ω and u0 = uε on ∂Ω,
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where Ω = Z3/2. By using (3.28), we obtain

ˆ
Ω

|uε − u0|2 ≤ Cε2(‖∇xA‖2
∞ + 1)

ˆ
Ω

|∇u0|2 + Cε2

ˆ
Ω\Ω3ε

|∇2u0|2 + C

ˆ
Ω4ε

|∇u0|2.

The rest of the proof is the same as the proof of Lemma 5.1, using interior H2 estimates for
L0 as well as Meyers’ estimates for Lε,( 

Z3/2

|∇uε|q
)1/q

≤ C

{( 
Z2

|uε|2
)1/2

+ ‖f‖C1(I2) +

( 
Z2

|F |2
)1/2

}
(7.7)

for some q > 2, depending only on d, µ and M .

Step 2. Assume n = 1 and A(x, y) is Hölder continuous in x. Suppose Lε(uε) = F in Z2r

and uε = f on I2r. Show that there exists u0 ∈ H1(Zr) such that L0(u0) = F in Zr, u0 = f
on Ir, and( 

Zr

|uε − u0|2
)1/2

≤ C
{(ε

r

)σ
+ εθL

}{( 
Z2r

|uε|2
)1/2

+ r2

( 
Z2r

|F |2
)1/2

+ ‖f‖C1(I2r)

}
.

(7.8)

As in the case of (5.7), the estimate (7.8) follows from (7.6) by approximating A(x, y) in the
x variable.

Step 3. As in the interior case, the case n > 1 follows from (7.8) by an induction argument
on n.

The following two lemmas will be used in the place of Lemmas 6.1 and 6.2. Recall that
P denotes the set of linear functions in Rd.

Lemma 7.1. Let u0 ∈ H1(Zr) be a weak solution of L0(u0) = F in Zr and u0 = f on Ir,
where 0 < r ≤ 1, F ∈ Lp(Zr) for some p > d, and f ∈ C1,α(Ir) for some 0 < α < 1. Define

G(r;u0) = inf
P∈P

1

r

{( 
Zr

|u0 − P |2
)1/2

+ r1+ϑ|∇P |+ ‖f − P‖C1,α(Ir)

}

+ r

( 
Zr

|F |p
)1/p

,

where ϑ = min{θ, α, 1 − d/p}. Then there exists t ∈ (0, 1/8), depending only on d, n, µ, p,
(θ, L) in (1.5), and (α,M) in (7.1), such that,

G(tr;u0) ≤ 1

2
G(r;u0).
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Proof. The proof is similar to that of Lemma 6.1. Let P0(x) = ∇u0(0) · x+ u0(0). Then for
0 < t < (1/8),

G(tr;u0) ≤ C(tr)ϑ
{
‖∇u0‖C0,ϑ(Ztr) + |∇u0(0)|

}
+ tr

( 
Ztr

|F |p
)1/p

≤ C(tr)ϑ
{
‖∇(u0 − P )‖C0,ϑ(Ztr) + |∇u0(0)−∇P |+ |∇P |

}
+ tr

( 
Ztr

|F |p
)1/p

(7.9)

for any P ∈ P , where we have used the fact ∇P is constant. Note that

−div
(
Â∇(u0 − P )

)
= F + div

(
[Â− Â(0)]∇P

)
in Zr.

By boundary C1,ϑ estimates for the operator L0 in C1,α domains, it follows that for 0 < t <
(1/8),

‖∇(u0 − P )‖C0,ϑ(Ztr) + ‖∇(u0 − P )‖L∞(Ztr)

≤ ‖∇(u0 − P )‖C0,ϑ(Zr/2) + ‖∇(u0 − P )‖L∞(Zr/2)

≤ C

r1+ϑ

( 
Zr

|u0 − P |2
)1/2

+ C|∇P |+ Cr1−ϑ
( 

Zr

|F |p
)1/p

+
C

r1+ϑ
‖f − P‖C1,α(Ir)

(7.10)

for any P ∈ P . This, together with (7.9), implies that G(tr;u0) ≤ CtϑG(r;u0). To complete
the proof, we choose t so small that Ctϑ ≤ (1/2).

Lemma 7.2. Let uε ∈ H1(Z1) be a weak solution of Lε(uε) = F in Z1 and u = f on I1,
where 0 < ε < (1/4), F ∈ Lp(Z1) for some p > d and f ∈ C1,α(I1) for some α > 0. For
0 < r ≤ 1, define

H(r) = inf
P∈P

1

r

{( 
Zr

|uε − P |2
)1/2

+ r1+ϑ|∇P |+ ‖f − P‖C1,α(Ir)

}

+ r

( 
Zr

|F |p
)1/p

,

Υ(r) = inf
b∈R

1

r

{( 
Zr

|uε − b|2
)1/2

+ ‖f − b‖C1,α(Ir)

}
+ r

( 
Zr

|F |2
)1/2

.

(7.11)

Let t ∈ (0, 1/8) be given by Lemma 6.1. Then for any r ∈ [ε1, 1/2],

H(tr) ≤ 1

2
H(r) + C

(ε1

r

)ρ
Υ(2r), (7.12)

where ρ > 0 and C > 0 depends at most on d, n, µ, p, (θ, L) in (1.5), N in (1.9), and
(α,M) in (7.1).
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Proof. We omit the proof, which is the same as that of Lemma 6.2.

Proof of Theorem 7.1. With Theorem 7.2, Lemmas 7.1 and 7.2 at our disposal, Theorem
7.1 follows from Lemma 6.3 in the same manner as in the case of Theorem 6.4. We omit the
details.
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