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ARTICLE INFO ABSTRACT

Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) of civil infrastructure has been an
active area of research for the past few decades. Due to rising costs, safety issues and error of human inspection
methods, automated methods for bridge inspection and maintenance are being proposed. The purpose of this
research is to develop an automated rebar detection and localization system utilizing supervised (Deep Residual
Networks) and unsupervised (K- means clustering) techniques. Data has been collected from nine bridges using
Ground Penetrating Radar (GPR) sensors. The performance of the proposed rebar detection and localization
system has been evaluated on a wide-range of performance metrics, which emphasize the superior performance
of the proposed technique over existing methods. The results reveal positive correlation between number of
layers of networks, training time and other performance metrics. The overall performance of the proposed
system is also dataset-dependent with factors such as noise artefacts, reflections and visual quality of rebar
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profiles.

1. Introduction

The monitoring, maintenance and rehabilitation of civil infra-
structure is of paramount importance at the national and international
level. Of the different types of civil infrastructure, the need for main-
tenance and evaluation of bridges has been stressed by studies in the
recent past [1-4]. According to the National Bridge Inventory (NBI)
statistics, there are more than 307,000 bridges in the entirety of the
United States [5]. Although, the overall ratio of marginally or seriously
damaged bridges has been declining over the past few decades, the
recent statistics outlined by the US Department of Transportation have
classified around 67,000 bridges as structurally deficient and 85.000 as
functionally obsolete in nature [5]. Out of the $14.3 billion expenditure
sanctioned for maintenance of existing bridges and construction of new
bridges in 2010, $12.8 billion was dedicated towards the maintenance
of existing bridges [6], which shows that a considerable portion of
annually allocated funds are being diverted for the maintenance of
bridges. The primary motivations for conducting this research can be
broken down into two parts, namely: (i) the need for robotic automa-
tion to improve the cost-effectiveness and efficiency of the different
processes underlying non-destructive evaluation of bridges, and (ii) the
importance of including GPR data from different bridges to develop a
robust rebar detection and localization system.
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The first motivation is to ensure that novel automation solutions can
be proposed, which can replace the existing methods that are error-
prone and financially inefficient in nature. Lack of adequate attention
towards maintenance and monitoring of bridges can lead to disastrous
incidents. A number of different factors contribute towards the partial
or total destruction of bridges, ranging from design errors and con-
struction defects to environmental degradation, scour, flood, collision
and overloading [7,8]. The impact of bridge destruction and collapse
far exceeds the overall material and financial costs associated with the
bridge construction, as it also includes the various direct and indirect
costs, which include, but are not limited to loss of lives, user delays,
planning for alternate routes, along with the greenhouse gas emissions
linked to detours and delays in traffic [7,9.10,11]. Fig. 1 highlights
some of the multitude of prior tragedies in the wake of bridge de-
struction incidents in the US. It is being predicted that with the increase
in climate change and frequency of adverse climate incidents (e.g.
hurricane, floods, tsunamis) on a global scale, the overall costs related
to repairing is also expected to accelerate from $140 billion to $250
billion annually [10] with direct and indirect losses amounting to more
than 17% of the total costs [11]. Therefore, the timely evaluation,
monitoring and rehabilitation of bridges can result in reduced overall
direct costs as well as the indirect costs in terms of potential destruction
of property and lives in the wake of bridge destruction. For the purpose
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Fig. 1. Some of the serious recent bridge accidents in the US: (a) A collapsed railroad bridge in Alabama that resulted in around 47 deaths. (b) Collapsed bridge that

connected Point Pleasant, West Virginia with Gallipolis, Ohio [1].

of bridge monitoring and evaluation, the different techniques for NDE
have the potential towards minimizing the overall direct and indirect
costs associated with destruction of bridges caused by internal defi-
ciencies, construction deficits and maintenance-related issues. In the
light of this realization, a number of national-level initiatives have been
developed in the United States. One such example is the Long-Term
Bridge Performance Program (LTBP) initiated by the Federal Highway
Administration (FHWA) with the primary aim towards promoting the
utilization of non-destructive evaluation technologies and techniques
for regular bridge inspection and maintenance [12].

Another important motivation for this research is related to the
incorporation of data from multiple bridges. Many of the relevant stu-
dies do not effectively highlight the various properties of the GPR data
from the different bridges that has been collected. It can be seen from
some of the dataset examples given in Fig. 2 that the different physical
properties (e.g. physical dimensions, use of construction materials,
depth of steel rebars and spacing between individual rebars) within the
different bridges can lead to varying results obtained using GPR ra-
dargram. The usage of data from diverse bridges is particularly im-
portant for rebar detection and localization systems that employ deep
neural networks, as in the case of this research. According to this ra-
tionale, this research has utilized data from different bridges, which
provide a diverse set of data with varying physical properties that allow
the development of a robust rebar detection and localization system.

There are a number of ways in which this study improves on the
state-of-the-art, which include the following:

e A novel method for rebar detection and localization, which le-
verages supervised (i.e. Deep Residual Networks) and unsupervised
(i.e. K-means clustering) learning-based techniques.

e The incorporation of challenging dataset from nine real bridges with
varying data properties; the data from many of the bridges have not
been used in any prior studies.

e Majority of relevant studies provide examination of a single Deep
learning framework. In this research, the effect of different network
parameters (e.g. number of layers, batch size and epochs for system
training) of the different Deep Residual Networks (ResNet-18,
ResNet-34, ResNet-50, ResNet-101, ResNet-152, DenseNet-121,
DenseNet-161) has been examined on the overall performance of the
rebar detection and localization system.

e A comprehensive discussion on performance evaluation has been
provided, which shows that the performance of proposed method is
superior or at par with recently developed techniques. A comparison
with existing studies has revealed that this study employs a wide-
range of performance metrics that have not been used in the re-
levant researches in the past.

e Unlike earlier studies, this study also provides a detailed examina-
tion of different challenges and the manner in which it affects the
overall performance of the rebar detection and localization systems.

2. Related works

The non-destructive evaluation (NDE) of civil infrastructure has
been a widely-discussed research area in the past. In order to do ade-
quate justice to the different tools, techniques, methodologies and
technologies used by the prior studies related to NDE of bridges, the
proceeding discussion will be divided in terms of variations in existing
studies related to: (i) a general overview of literature on different tools
and techniques for NDE of infrastructures, (ii) literature particularly
emphasizing towards developing methods for rebar detection and lo-
calization for bridges. A comprehensive overview of the recent and
relevant literature has been also provided in [13]. Fig. 3 effectively
outlines the different ways in which the prior studies have been ex-
tending the state-of-the-art in the literature pertaining to bridge in-
spection in particular and civil infrastructure in general.

2.1. General overview of techniques for NDE of infrastructures

Traditionally, infrastructure evaluation has been considered a
manual task, which has been carried out by civil personnel using pri-
mitive sensors for data collection [8]. In the recent past, a number of
different robotic platforms have also been introduced for the purpose of
infrastructure evaluation to enhance the overall efficiency and reduce
the time-consumption and error in data collection. A wide array of
diverse robots have been developed ranging from climbing robots (e.g.
legged-robots, wheel-based sliding robots and crawler robots) [14-29],
and multi-rotor unmanned aerial vehicles (e.g. quad-rotors and octo-
rotors) [30-37] to unmanned ground vehicles (UGVs) (e.g. ARA Lab
Robot., ROCIM, RABIT) [38-49] and water-based robotic crafts (e.g. un-
manned submersible vehicles (USVs), underwater marine wvehicles
(UMVs), underwater vehicles (UUVs)) [50-53]. Robotics Assisted Bridge
Inspection Tool (RABIT) is designed for an efficient automated defect
detection of bridge decks [12,48,53,54] with state-of-the-art sensor
technologies (e.g. impact echo, ultrasonic surface waves, electrical re-
sistivity and GPR). A multi-functional, multi-sensor-based mobile plat-
form (i.e. ARA Lab platform) for the evaluation and inspection of civil
infrastructure [8,55] has been developed recently. Due to the inherent
flexibility of most robotic platforms, majority of these platforms can be
utilized for SHM of wide-range of different civil infrastructures.

Apart from development of novel robotic platforms for SHM, con-
siderable research focus towards concrete crack detection
[14,20,53,55,56-59]. Some of the earlier works focused on the utili-
zation of basic-level image processing techniques for crack detection in
concrete structures [14] [20] [53]. A block-based crack detection ap-
proach was developed for bridge decks in another study [55]. A genetic
learning-based network optimization algorithm was also proposed with
application for concrete crack detection [58]. In order to overcome
some of the limitations of basic-level image processing techniques, the
use of different Deep Learning frameworks has also been proposed for
crack detection [57] [59] [60] [61] [62]. The use of encoder-decoder-
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Fig. 2. Diversity of data obtained from the different bridges used in this research from the following bridges: (a) East Helena Bridge, (b) Dove Creek Bridge, (c)

Warren County bridge and (d) Fordway Bridge.

based Deep learning architecture was able to improve the existing
limitations using a pixel-wise classification of images [59]. Using data
from various concrete structures captured in different lighting condi-
tions, Cha [60] leveraged Deep learning-based model for concrete crack
detection. Another study made use of damage quantification using
depth-based camera and Faster R-CNN model for SHM of concrete
structures [61]. The use of Deep-learning-based techniques was also
used for developing image transformation method for sewer inspection
to transform GPR scans into sub-surface permittivity maps [63]. For the
classification of underground objects using GPR data, a 3D CNN model
was proposed in another recent study [64].

2.2. Methods for rebar detection and localization

The usage of GPR data for infrastructure evaluation has been in
practice for as far back as the 1970s with applications that include void
space detection, depth of concrete cover on bridges, locating metallic
objects in concrete spaces, and general inspection and maintenance of
reinforced concrete structures [65]. Some of the earlier studies have
used GPR data for underground pipe detection [66], as well as detection

of various buried objects, e.g. landmines and pipes [67]. It is only re-
cently that the shift has focused towards using GPR for bridge evalua-
tion with particular emphasis on rebar detection and localization [48]
[65] [68] [69] [70]. For the case of bridge monitoring, one of the
earlier studies utilized GPR data for rebar detection in bridge decks
[65]. This particular study made use of partial differential equations
and template matching technique with sum of square similarity index
for hyperbola localization [65]. The different existing techniques for
rebar localization can be broadly classified into bounding-box and hy-
perbola interpolation-based approaches. For hyperbola interpolation in
the context of rebar localization, RANSAC and Hough transforms are
frequently employed [48] [67].

Another research by Gibb and La [68] proposed a method for rebar
detection using Naive Bayesian classifier trained on HOG features for
rebar detection, along with the precise hyperbola localization algorithm
for rebar localization. Kaur et al. [48] developed an automated system
for rebar analysis using Histogram of Oriented Gradients (HOG)-based
features and Support Vector Machines (SVM) for recognition and clas-
sification of rebar and non-rebar images. Another recent study by Dinh
et al. [71] proposed a novel method for rebar detection, which involved
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Fig. 3. Some of the Deep Architectural frameworks used in this study: (a) ResNet-18 [75], and (b). Densenet-121 [76].

the usage of Convolutional Neural Networks (CNNs). A number of dif-
ferent methods have been deployed for the case of rebar detection, but
most of the earlier studies on rebar localization attempt to leverage the
hyperbolic signatures [65] [68]. In the following section of the dis-
cussion, some of the salient features of the proposed rebar detection and
localization method will be discussed.

3. System methodology

In this section, a comprehensive evaluation of the different pro-
cesses within the proposed method for rebar detection and localization
will be performed. Earlier studies focusing on rebar detection and
classification have used a number of different methods, ranging from
Support Vector Machines [48] and Naive Bayesian classifier [68] to
primitive Neural networks in some of the early studies using GPR [66]
[67]. One of the recent studies by [71] has utilized a convolutional
neural network for rebar detection. From a machine learning perspec-
tive, the detection and recognition of rebar from other non-rebar
anomalies and artefacts detected in B-scans can be considered as a two-
class classification problem. Earlier studies employing Residual Net-
works and their variants have attested to their superior performance
towards tackling a vast range of research problems [72] [73] [74]. To
the knowledge of the authors, there is no single work in the past, which
has provided a comprehensive and detailed evaluation and analysis of
Deep Residual Networks (ResNet) towards rebar detection and locali-
zation. It is for this reason this study has leveraged different pre-existing
ResNet frameworks (e.g. ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-152). Residual Networks have shown high performance on

diverse applications, which will be highlighted in the next sub-section.
Although, a preliminary analysis has been introduced in recent works
by the authors [69] [70]. However, it lacks the depth and clarity
warranted towards investigating Deep Learning models developed in
the recent years. In contrast to these earlier works, this research will
essentially be a continuation and in-depth evaluation of the perfor-
mance of Deep Residual Networks, along with its various pros and cons
for the application of rebar detection in bridges. Fig. 3 highlights the
two Deep Learning architectures, which have been used in this study,
namely ResNet-18 and DenseNet-121. A number of different ResNet
architectures (e.g. ResNet-18, ResNet-34, ResNet-50, ResNet-101, Re-
sNet-152) are used to assess the effect of different network parameters
(e.g. number of epochs, batch size, and number of layers) on the per-
formance of proposed rebar detection and localization system. The
performance of the high performing ResNet (e.g. ResNet-101, ResNet-
152) is compared with DenseNet architectures (e.g. DenseNet-121,
DenseNet-161).

3.1. Background on deep residual networks

Ever since its inception in the recent past, the Deep Residual
Networks [75] [77] have gained a considerable amount of attention, as
a state-of-the-art Deep Convolutional Networks framework, which
provides reliable performance and robustness in diverse applications.
The seminal research outlining the efficacy of this particular Deep
Learning model on various image recognition competitions highlighted
the rectification of various limitations (e.g. vanishing/exploding gra-
dients, degradation) pertaining to performance of traditional Deep
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Convolution Neural Network (CNN) models, especially with increase in
the depth or number of layers [75]. It is for this reason that a wide
range of different applications have been successfully developed in a
diverse field of research, ranging from medical imaging and diagnostics
[72], remote sensing applications [73], steganography [78], image
super-resolution [74], video-based human action recognition [79] to
optical flow estimation [80], image de-blurring [81], hyperspectral
imaging [82] as well as fault analysis and diagnostics [83].

Another area of emphasis of recent studies is towards proposing
modifications of the original Residual Network architecture (i.e.
ResNet-50) in order to leverage its benefits in terms of performance and
efficiency as well as cater to other application-specific challenges. For
example, a two-stage framework for melanoma was proposed in one of
the recent study, which included fully-connected Residual Network
with multi-scale contextual information [72]. For the case of image
super-resolution, the original Residual block was modified in order to
provide a multi-scale residual block, which was able to enhance the
performance of the developed system [84]. A two-stream motion and
appearance information processing Residual network was also proposed
for video-based human action recognition [79]. For image classification
tasks, it was demonstrated that by using dilation layers in the overall
ResNet architecture, the overall output resolution and classification
performance was improved considerably [72]. Similarly, the use of
single-image-based super-resolution method was improved by merging
the upscaling module within the residual framework to propose a Deep
upscaling framework with improved performance over state-of-the-art
[74]. A multiple layer of residual networks, namely the Residual of
Residual (RoR) network was proposed in another recent study with
multiple layers of shortcut connections that resulted in improved per-
formance on benchmark dataset (e.g. CIFAR-10, CIFAR-100, SVHN)
[85]. By combining the positive elements of the two different networks,
namely the ResNet [75] and U- Net [58], a deep ResUnet framework
was developed in another recent study, which was successfully tested
towards the detection and extraction of roads in remote sensing images
[48]. Table 1 outlines the different Deep Learning architecture em-
ployed in the relevant research area with their different model prop-
erties. It can be seen that unlike other studies, this research employs a
wide-range of different ResNet and DenseNet models.

3.2. GPR data collection

In this study, data collected using GPR sensor has been used as input
for the rebar detection and localization systems. The purpose of this
sub-section is to provide a brief overview of the salient features of the
GPR data collection processes. GPR and the associated data has been
widely used for conducting geological surveys on a number of different

Table 1
Comparison of the different Deep Learning architectures used in relevant stu-
dies.

Study Applications Network Network Characteristics
Architecture
Depth Parameter
[64] Underground object 3D-CNN 3 N/A
classification
[86] Bridge damage DINN 20 24.8 million
detection
[60] Concrete crack CNN 8 N/A
[61] detection Faster-R-CNN 16 N/A
This study Rebar detection and ResNet-18 18 11.2 million
localization ResNet-34 34 21.3 million
ResNet-50 50 23.5 million
ResNet-101 101 42.5 million
ResNet-152 152 58.2 million
DenseNet-121 121 ~4 million
DenseNet-161 161 ~18 million
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terrains, ranging from analysis of glacial deposits [87] [88], faults [89]
[901, and peatland [91] [92], to coastal regions [93] [94], delta [95]
and lunar explorations [96] [97]. At the same time, data collected from
GPR sensors have also been extensively employed for NDE of different
civil infrastructures [8] [12] [55] [54] [69] [70] and detection of
various terrain-level and underground features (e.g. underground pipes,
cables, landmines, tunnel defects, buried objects) [65] [68] [66] [67]
within civil engineering and civil surveying tasks. The principles un-
derlying the data collection using GPR sensors have been given in
Fig. 4. In typical inspection operations, the electromagnetic (EM) waves
with a frequency between 10 MHz and 5 GHz is transmitted into the
sub-surface using mono-static GPR antennas as the primary transmis-
sion device [98]. As, the EM waves progress through the different layers
of the underground sub-surfaces with varying dielectric properties,
these waves undergo changes in velocity, which are dependent on the
dielectric constant and electrical conductivity of the different sub-sur-
face layers [98]. This phenomenon has been highlighted in Fig. 4(a).
Slight variations in the dielectric properties of the sub-surface layers
can lead to partial reflection of the originally transmitted EM waves,
which are amplified and recorded by the receiving antennas. The dif-
ferent factors that affect the dielectric constant for any specific material
is dependent on moisture content, porosity, texture, chemical compo-
sition and density [98] [99]. For the detection of different underground
objects (e.g. buried objects, landmines, steel pipes, cables, metal ob-
jects, archaeological sites) within different types of subsurface media
(e.g. sand, clay, wood, concrete, body of water, oil, ice), there are a
number of different variables that need to be taken into consideration.

The value for dielectric permittivity k,, is selected based on the
composition of the underground material m [100]. Typically, the value
for v which is given in eq. (1) is specified as 0.2998 m/ns [100]. The
egs. (1)—(3) have been given along with supporting mathematical evi-
dences and technical details in [100]. Following are some of the
mathematical equations governing the calculation of these variables,
which include wavelength in air A,,, wavelength in specific material A,
central frequency f. and maximum sampling interval t for the different
antennas being used:

Aa=
fe M
Ay = 20
Jem @
¢ = 1000
6f. 3

Depending on the type of application for which the GPR data is
being collected, a number of different approaches for data collection
have been employed in the past, which include common mid-point,
fixed off-set profiling and reflection profiling-based approaches [101]
[102] [103] [104]. Fig. 4 highlights the different approaches and the
ways in which the transmitter and receiver positions change over time.
Fig. 4(a) provides a visualized effect of different sub-surface layers on
the velocity of the transmitted and received EM waves. Fig. 4(b)
highlights the fixed offset profiling method for GPR data collection with
the GPR transmitter and receiver collectively moving in a linear fashion
to cover the underground mapping of the desired region. It can be seen
from Fig. 4(b) that presence of anomalous underground object can lead
to variations in the reading by the receiver over time. In Fig. 4(c), the
common midpoint position method has been highlighted, which shows
that the transmitter and receiver move further apart as the data col-
lection progresses from the initial points T; and R; to the final points T,
and R, (details regarding the system parameter adjustment and best
practices for GPR using fixed offset-based profiling method, see [101]
[103] [105]). In the following sub-section, the salient features of the
proposed method for rebar detection and localization will be outlined.
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Fig. 4. Principles of GPR data collection using different methods: (a) the transmission and reception of radar waves from different sub-surface layers, (b) fixed-offset
reflection profiling method, (¢) midpoint position method starting from transmitters and receivers at T; and R; to T, and R, [98].

3.3. Proposed method for rebar detection and localization

In this section, a detailed examination of the proposed rebar de-
tection and localization system will be provided. Earlier discussion has
shed light on some of the most important recent works towards rebar
detection and localization. A number of different techniques have been
proposed for the development of rebar detection system in the past,
ranging from simple Neural Network implementations [66] [67] and
24-layer Convolutional Neural Network [71] to Support Vector Ma-
chine [48] and Naive Bayesian-based approaches [68]. In the proposed
study for rebar detection, the use of Deep Residual Neural Network has
been proposed [75]. Some of the preliminary works in this respect have
been proposed in recent studies by the authors [69] [70]. This study
will provide a comprehensive, in-depth analysis of different Deep Re-
sidual Network-based architectures (namely ResNet-34, ResNet-50,
ResNet-101 and ResNet-152) for the development of rebar detection
and localization system. There are a number of key objectives, which
will be evaluated in this research. Despite the widespread use of Deep
Learning architectures, there is a need for assessing their feasibility
towards practical development and implementation on practical robotic
systems for real-time bridge infrastructure evaluation [8] [12] [55]
[54] [69] [70]. In this regard, there is a need to assess the ideal balance

between network complexity (the complexity and computational re-
quirements increase exponentially with increase in depth or number of
layers of Deep layered architectures) and performance (measured in
terms of accuracy, loss, time and computational requirements). This
particular aspect will involve the use of Residual Networks for rebar
detection system with the ultimate aim of developing practical infra-
structure evaluation of bridges, which is currently lacking in the

existing literature.

The findings in this study will provide valuable insights that can aid
in the development of state-of-the-art Deep Learning-based systems
with potential for practical implementation on real-time systems. The
practical implementation will be carried out in the future after the
successful validation and evaluation of the various performance-level
trade-offs in this study. At the same time, a novel rebar localization
system has also been proposed that will visually detect and highlight
the location of rebar signatures within GPR radargram, which contains
vital underground information regarding the presence of different
buried objects (e.g. underground pipes, underground transmission
cables, steel rebars and other construction material).

The localization of rebar signatures from GPR radargram is a crucial
component of the overall accurate SHM for bridges using NDE-based
methods that ensure the integrity of the bridge infrastructure. Instead of
directly relying on raw GPR data, the proposed rebar localization
system will allow the civil inspectors to focus their attention on rebar
signatures in GPR radargrams, which can allow them to assess the
overall level of deterioration of the individual steel rebars within the
overall bridge infrastructure. Fig. 5 highlights the main components of

the proposed rebar detection and localization system. Starting from the
data collection process to discussion regarding rebar detection and lo-
calization system, which will conclude with the evaluation of perfor-
mance of both systems using credible performance evaluation metrics.
Based on Fig. 5, the proposed model for rebar detection and localization
can be divided into three main sections, namely:

(i) GPR data collection: In the previous sub-section, a considerable
level of theoretical detail has been outlined for data collection using
GPR sensors. In this section, some additional details regarding the
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Fig. 5. Model for the proposed rebar detection and localization method.

practical implementations for data collection in this research will be
discussed.

(ii). Rebar detection system: Some of the salient features of rebar
detection method will be highlighted in the following sub-section, and.

(iii). Rebar localization system: The discussion in one of the sub-
section will also outlined the proposed method for rebar localization.

For the case of GPR data collection, the fundamental details are
given in the previous section. Fig. 5 outlines some of the different steps
undertaken from data collection using GPR sensor. The GPR data col-
lection starts with bridge selection, which should take into account type
of material, physical and geometric properties of bridge (i.e. length, width,
height of bridge), bridge type (e.g. arch, beam, truss, girder bridges), and
sensor used for data collection. The frequency at which GPR data is
collected is dependent on the type and location of sub-surface re-
inforcements in bridges. Based on the type of application, there is a
need for selection of appropriate GPR sensor for the relevant applica-
tion. A number of different firms (e.g. GSSI [106], Sensors & Software Inc
[107], US Radar Inc [108]) provide a wide- range of reliable GPR
equipment for data collection. The GPR data collected in this study
utilized the IDS Georadar® sensor equipment system [109]. Based on the
physical and geometric properties (e.g. length, width and height) of the
bridge being investigated, there is a need to make appropriate adjust-
ment within the system, such as center frequency, GPR resolution,
sampling interval and pulse width [100]. The mathematical details of
the different variables have been outlined in egs. (1), (2) and (3), which
are given in the previous section. There are a number of different

methods that can be employed for data collection using GPR sensors, as
discussed in the previous sub-section. In the current research, the
single-fold, fixed-offset reflection profiling method has been used, as it
is the most widely employed method for GPR application related to civil
infrastructure evaluation, especially when there is a requirement of
high spatial horizontal resolution [104].

The rebar detection system utilizes different Deep Residual Network
architectures (e.g. ResNet-34, ResNet-50, ResNet-101, ResNet-152)
with varying network parameters (e.g. systems trained with different
batch size, number of epochs and number of layers). The performance
of the Deep Residual Network with the most optimal network config-
uration is compared with relevant DenseNet architectures (DenseNet-
121, DenseNet-161) [76], which is another Deep Convolutional Net-
work that has gained considerable attention in the recent past. The
rebar localization algorithm performs the different image pre-proces-
sing functions to ensure that the smaller regions of GPR images can be
used to extract the relevant rebar signatures. K-means clustering has
been employed as an unsupervised form of learning algorithm, which
enables the effective separation between the foreground and back-
ground regions within the GPR images. Due to the level of noise and
other artefacts present in the GPR data, a number of different visual
artefacts are also included in the foreground. In order to decrease the
interference of noise and other artefacts, a number of different mor-
phological operations are used, which ensure that the original image is
converted into binary image with foreground regions separated from
the background regions. With the use of morphological features, many
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of the noise and other reflective signals are separated and bounding box
is used to highlighted the rebar signature within the GPR images.

The details of the proposed rebar localization system have been
highlighted in Fig. 5. The different processes for rebar localization and
rebar detection systems are separate in nature, which means that they
can work simultaneously towards providing the desirable output within
the larger framework of the overall.

system. Rebar localization system employs elements of the rebar
detection system to ensure that it is able to perform different image
processing functions on the parts of the larger GPR images that contain
rebar signatures. Due to the large-scale size of the GPR images obtained
from the raw GPR scan data, the rebar localization algorithm only
works on portions of the GPR image using the sliding window-based
approach. In the following section of the paper, the focus will be to-
wards highlighting the effectiveness of the proposed rebar detection
and localization method.

4. Results

In this section, a comprehensive detail regarding relevant data and
its subsequent analyses will be provided, along with visualization and
supporting discussion to provide a detailed evaluation of the overall
performance of the proposed system. At the same time, the various
factors will also be highlighted that affect the overall performance of
the proposed system for rebar detection and localization. Prior to the
discussion related to performance of the rebar detection and localiza-
tion system, there is a need to shed light on the data used for the
training and validation of the proposed system, which will be discussed
in the following sub-section.

4.1. Dataset

For the development of the proposed system for rebar detection and
localization, GPR data was acquired from a number of different bridges
in the US. It can be seen from Table 2 that dataset 1 has been acquired
from a bridge located in Warren County, NJ, which was included as part
of the data within one of the earlier studies [48]. Since, the original
source failed to mention the actual location of the bridge, it is for this
reason that the dimensions and other physical properties of the bridge
are not known. According to the knowledge of the authors, this dataset
is the only publicly-available bridge dataset using GPR sensors. It can be
seen from Table 2 that the bridge data has been taken from different
type of bridges (e.g. suspension, beam, truss, girder). The physical di-
mensions vary considerably, ranging from the largest bridge in the
dataset (i.e. Broadway Bridge, AR) spanning to a length of around
2786 ft. and the smallest in length being the Dove Creek Bridge, BC
with a length of 50 ft. Table 2 outlines the important properties of the
different bridges in terms of the bridge name, geographical location,
and physical properties of the different bridges.

Table 3 highlights the quantity of images acquired from the dif-
ferent dataset. A major part of the GPR data (i.e. dataset 2 and 3) used

Table 2
Details regarding dataset obtained from different bridges.
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Table 3
Data distribution of three datasets between training and validation sets.

Name Class Rebar Class No Rebar
Total
Training Validation Training Validation
Dataset 1 1043 228 7027 2040 10,338
Dataset 2 1200 300 2400 600 4500
Dataset 3 7562 1000 8859 1000 18,421
Total 9805 1528 18,286 3640 33,259

in this research is one segment of the overall GPR data collected from
the inspection and evaluation performed on 40 different bridges in the
United States between the time period of 2013 and 2014 [8] [12]. A
portion of the collective GPR data (i.e. dataset 2) has also been used in
previous studies [68] [69] [70]. Dataset 2 contains GPR data from four
different bridges. It can be seen in Table 1 that the overall number of
images in dataset 1 is considerably higher in comparison to dataset 2.
Dataset 3 is a novel dataset that has not been used in any other studies
in the past. It also contains data from four different bridges. All of the
data was collected using RABIT platform in an automated fashion (for
details regarding data collection, see [8] [12]). The additional data will
ensure that the proposed rebar detection and localization is able to
provide reliable performance for bridges with different physical prop-
erties. In terms of quantity, this dataset provides a reasonable amount
of data, which can be used with Deep Learning-based algorithms to
provide a foundation for development of reliable and robust rebar de-
tection and localization system.

4.2. Rebar detection method

In order to adequately assess the results that are presented in this
sub-section, there is a need to understand the manner in which the
testing and evaluation of the proposed model was performed. Firstly,
the different dataset (i.e. dataset 1, 2 and 3) will be trained and tested
individually on the designated Deep Learning model. The results will
provide valuable insights in relation to optimizing the different learning
parameters and their effect on the overall performance of the developed
system for rebar detection. Secondly, the performance of the rebar
detection system will be evaluated by separating the collective dataset
into training and validation sets (i.e. six bridges for training and three
bridges for validation), which will prompt further inquiry towards
analyzing the robustness of the developed system towards unseen
bridge data. Thirdly, in order to highlight the effects of computational
resources on the proposed rebar detection system, two separate PC
systems with different set of configurations and specifications were
used. During the training of the individual dataset, it was revealed that
freezing multiple layers had a counter-productive effect on the overall
accuracy of the proposed system. Consequently, the number of freeze
layers were kept to zero. For some applications involving learning-
based systems, freezing of initial layers has been noted to benefit the
overall performance, as it leads to reduction of the overall memory

Dataset Bridge Location Bridge Type Bridge Dimensions (ft)
(length x width)
1 1. Warren County Bridge, NJ N/A N/A
2 2. Galena Creek Bridge, NV Twin Span Arch Bridge 1726.5 x 62.0
3. East Helena Bridge, MT Concrete Tee-Beam Bridge 66.9 x 40.0
4. Kendall Pond Rd Bridge, NH Girder Bridge 78.1 x 44.0
5. Piscataqua Bridge, ME Through-Arch Bridge 4503 x 98
3 6. Broadway Bridge, AR Arch Bridge 2786 x 40
7. Fordway Bridge, NH Beam Bridge 131 x 23
8. Dove Creek Rd Bridge, BC Beam Bridge 50 x 45
9. Baxterville Bridge, CO Lost-through Truss Bridge 117 x 15.4
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Table 4
Accuracy and error for rebar detection system trained using ResNet-34 and
dataset 1.
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Table 7
Accuracy and error for rebar detection system trained using ResNet-152 and
dataset 1.

Number of Epochs

Number of Epochs

Batch Size Average Batch Size Average
20 40 80 100 20 40 80 100
4 98.92/3.79  98.67/3.72  98.44/4.16  98.64/3.82  98.67/3.87 4 95.56/ 97.22/7.23  98.33/8.55 98.06/5.92  97.30/9.17
98.64/4.04  98.67/4.47 98.69/4.33  98.72/4.03  98.68/4.22 14.96
16 98.89/2.91 98.89/3.62 98.72/3.79 98.86/3.19 98.84/3.38 8 98.33/5.55 97.50/6.04 98.61/6.12 98.89/4.39 98.33/5.53
32 98.39/4.77 98.69/3.86 98.53/4.02 98.36/4.55 98.49/4.30 16 98.61/4.98 98.89/4.51 97.50/5.58 98.61/3.39 98.40/4.62
Average 98.71/3.88 98.73/3.92 98.60/4.08 98.65/3.90 32 98.06/7.13 97.78/8.14 98.89/2.52 99.72/1.71 98.61/4.88
Average 97.64/8.16 97.85/6.48 98.33/5.69 98.82/3.85
Table 5
Accuracy and error for rebar detection system trained using ResNet-50 and Table 8

dataset 1.

Accuracy and error for rebar detection system using ResNet-34 and dataset 2.

Number of Epochs

Number of Epochs

Batch Size Average Batch Size Average
20 40 80 100 20 40 80 100
4 94.44/ 94.72/ 94.72/ 96.39/ 95.07/ 4 98.50/4.15 98.73/3.63  98.65/3.65 98.42/4.19  98.56/3.91
15.48 15.17 17.99 14.38 15.76 8 98.72/3.64  98.75/3.48 98.61/3.57 98.66/3.63 98.69/3.58
8 95.28/ 96.39/9.68  95.83/ 97.50/9.66  96.25/ 16 98.89/3.17 98.95/3.16  98.73/3.36  98.74/3.43  98.83/3.28
13.17 11.22 10.92 32 98.77/3.16  98.95/3.06  98.77/3.37  98.86/3.45  98.84/3.26
16 97.50/8.37  96.39/8.79 95.28/9.79 96.39/9.16 96.39/9.03 Average 98.72/3.53 98.85/3.33 98.69/3.49 98.67/3.68
32 98.33/6.72  95.28/ 97.78/8.18  95.56/ 96.74/9.60
12.02 11.46
Average 98.39/ 95.70/ 95.90/ 96.46/ Table 9
10.94 11.42 11.80 11.17

utilization and hastens the training process.

Table 4-7 highlights the performance of dataset 1 for the different
ResNet architectures (i.e. ResNet-34, ResNet-50, ResNet-101, ResNet-
152), which vary in terms of their depth, number of epochs and batch
sizes of the trained network architecture. The purpose of this evaluation
is to examine the effect of number of layers on the overall performance
on the rebar detection system. For majority of instances given in
Table 4-7, increase in batch size results in improved training perfor-
mance of the rebar detection systems. However, in some of the cases,
the accuracy of the system trained for batch size equal to 32 is slightly
lower than systems trained with batch size equal to 16. Similarly, for
majority the of cases of system training with different network para-
meters (i.e. batch size and number of there is increase in the overall
accuracy and decrease in the loss/error value of the trained rebar de-
tection system.

Similar to the results highlighted for dataset 1, in Table 8-11, the
details regarding the accuracy and loss of the different ResNet archi-
tectures trained for dataset 2 have been outlined. It can be seen in
Table 8-11 that for majority of instances, an increase in the batch size
resulted in improved accuracy and decreased system loss/error rate of
the trained rebar detection systems. There are some instances in which
the results with the highest accuracy do not necessarily correspond to
systems with the highest batch size. In order to facilitate the

Table 6
Accuracy and error for rebar detection system trained using ResNet-101 and
dataset 1.

Number of Epochs

Batch Size Average
20 40 80 100
4 94.72/ 97.78/7.11  96.39/ 97.78/5.07  96.67/9.95
17.04 10.56
8 96.11/8.36  98.33/6.56  98.33/5.20 98.33/3.95 97.76/6.02
16 97.78/8.82  98.61/4.37 98.61/4.44  98.06/5.11 98.27/5.69
32 98.89/5.52  99.17/3.51 98.89/7.20 99.44/2.33  99.10/4.64
Average 96.86/ 98.47/5.39 98.06/6.85 98.40/4.12
9.94

Accuracy and error for rebar detection system using ResNet-50 and dataset 2.

Number of Epochs

Batch Size Average
20 40 80 100
4 97.12/6.57  97.88/6.28  98.03/5.84 97.72/6.56  97.69/6.31
98.18/5.12 98.94/4.45 97.57/5.37 98.03/4.96 98.18/4.96
16 97.72/5.49 98.03/5.29 98.63/5.49 98.18/6.15 98.14/5.61
32 97.88/5.23  96.97/9.93 98.48/3.33 99.39/2.36  98.18/5.21
Average 97.73/5.60 97.96/6.49 98.18/5.01 98.33/5.01
Table 10

Accuracy and error for rebar detection system using ResNet-101 and dataset 2.

Number of Epochs

Batch Size Average
20 40 80 100
4 97.42/ 99.09/4.21 97.88/6.32  97.42/ 97.95/7.91
10.63 10.51
8 97.72/5.12  98.48/3.84 98.48/3.83 98.48/5.05 98.29/4.50
16 98.33/5.38 98.18/4.13 98.48/4.76 98.33/4.74 98.33/4.75
32 98.33/4.85 97.72/5.25 95.57/6.33 98.18/6.12 97.45/5.64
Average 97.95/6.49 98.37/4.36 97.60/5.31 98.10/6.61
Table 11

Accuracy and error for rebar detection system using ResNet-152 and dataset 2.

Number of Epochs

Batch Size Average
20 40 80 100
4 98.63/6.14  97.78/7.11  98.03/4.79  98.03/4.94  98.12/5.75
98.48/3.96  98.94/4.27 97.88/4.18 97.72/5.91 98.26/4.58
16 98.48/4.97 98.94/3.26 98.48/4.49 99.09/2.97 98.75/3.92
32 98.94/4.33  98.33/4.30 98.33/4.58 97.88/5.78 98.37/4.75
Average 98.63/4.85 98.50/4.74 98.18/4.51 98.18/4.90

examination of the results for rebar detection system, the average va-
lues for each instance of batch size and number of epochs has been
calculated. It can be seen from Tables 8 and 9 that increase in batch size
leads to increase in accuracy of the rebar detection system. However,
there are some examples in which increase in batch size does not
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necessarily lead to corresponding increase in the accuracy and decrease
in system loss/error rate.

In the following discussion, the focus will shift towards the other
metrics that have been used to evaluate the proposed model, which
include computational considerations in terms of time taken towards
training of the rebar detection system. At the same time, there is also a
need to examine the effect of CPU and GPU on the overall training time.
Although, the system is trained offline in both instances. However, it is
important to consider the training time for real-time systems, as there
will be a need for the system to be regularly updated right after data
collection from different bridges, which can allow the rebar detection
and.

localization system to improve its performance and robustness to
different bridges. The earlier discussion regarding accuracy/loss pro-
vide information regarding the specific network parameters that lead to
the optimal performance of the rebar detection system. In this discus-
sion, the time constraint will be added to the overall discussion, which
will provide a balance and compromise between improved robustness,
accuracy and reduced computational constraints, as this system has to
be practically implemented on an actual robotic platform with limited
computational and memory resources, which need to be effectively
utilized to ensure that the robot is able to perform localization, map-
ping, navigation, collision and obstacle avoidance, and various sensor-
based operations for data collection in real-time. The details of the
performance of the different ResNet architecture networks have been
given in Fig. 6-8. Figs. 6 and 7 show bar-plot with average, maximum
and minimum values for the different Deep Residual networks. It can be
seen from Fig. 6(a) and 6(b) that the average accuracy of ResNet fra-
meworks increases with number of epochs and batch sizes. The increase
is steady and varies from one network architecture to another. Similar
results are revealed for findings in Fig. 7(a) and Fig. 7(b). Overall, the
increase in the number of epochs lead to increase in the accuracy of the
rebar detection systems.

It is important to understand that Increase in batch size and number
of epochs for system training has different effect on the different net-
work architectures. For example, ResNet-18 highlights very minimal
changes in the overall accuracy with increase in batch sizes and number
of epochs. It can be concluded from Figs. 6.

and 7 that there is a positive correlation between number of layers
and performance of rebar detection method, which is measured here
using accuracy and loss metrics. However, in comparison to the effect of
number of layers on system accuracy, the effects of batch size and
number of epochs on accuracy is not clear for some of the network
architectures examined. There is also a need to assess the effect of
training time on the number of layers in the network architectures,
which are trained using different computational resources. Fig. 8(a) and
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Fig. 8(b) examine the change in the training time for the different
network architectures trained using CPU and GPU resources respec-
tively. The specification for system labelled as CPU are given as follows:
Ubuntu 16.04 LTS, 32 GB memory, 350 GB hard disk, Intel ® Core
i7-8700 CPU with 3.2 GHz clock speed. Meanwhile, the system labelled
as GPU had the following hardware and software specifications: Ubuntu
18.04 LTS, 32 GB memory, 350 GB hard disk, Intel ® Core i7-8700 CPU
with 3.2 GHz clock speed and NVIDIA® GeForce® GTX 1080 TI Gra-
phical Processing Unit (GPU). In Fig. 8(a) and 8(b), the training time
has been specified in minutes. It can be seen from Fig. 8(a) that in-
creasing number of layers by a small fraction leads to greater increase
in training for the different ResNet frameworks, especially when
training using CPU alone. The training time increases from less than
1000 min for ResNet-18 to approximately 5000 min for ResNet-152
architecture, which is a roughly five times increase in the training time.
In comparison with these results, it can be seen that the system trained
on GPU take significantly reduced time for training and there is a
marginal increase in the training time with corresponding increase in
the number of layers of the networked architecture. There is a wide
difference in training time between CPU and GPU for the different
layered architectures, which is evident from cross-examination of
Fig. 8(a) and 8(b).

Table 12 outlines the final results for the rebar detection system,
which shows the system training using the most promising system
training configuration, based on the results obtained in the previous
sections. Consequently, each of the system is trained with batch size of
32 and number of epochs equal to 100. In the final evaluation of the
rebar detection system, the total dataset containing data from nine
bridges is divided into six bridges for testing and three bridges for va-
lidation of the system training. The overall performance is examined
using training accuracy, training loss, validation accuracy, validation
loss and training time. It can be seen in Table 12 that increase in the
number of layers of network architecture improves the overall cap-
abilities of the system to accurately detect rebar images from bridges
that have not been previously been encountered by the rebar detection
system. Comparison of ResNet and DenseNet architectures and their
performance given in Tables 1 and 12 respectively reveal that ResNet-
152 contains an increased number of parameters, but provides better
performance than Densenet-161 in terms of training time, validation
accuracy, training accuracy, validation loss and training loss. These
results are comparable to the state-of-the-art in the rebar detection
systems [48] [68] [69] [70] [71].

4.3. Rebar localization method

In this section, the performance of the rebar localization system will
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Change in Accuracy with Number of Epochs for ResNet Architectures
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Table 12

Performance of rebar detection system for different network architectures with results for training and validation.

Network architecture Training Accuracy Training Loss Validation Accuracy Validation Loss Train Time (minutes)
ResNet-18 99.23 215 80.60 10.2 25

ResNet-34 99.31 2.03 84.70 8.51 47

ResNet-50 99.37 1.66 93.20 7.44 75

ResNet-101 99.37 1.69 94.30 7.05 118

DesneNet-121 99.23 2.00 96.67 18.9 273

ResNet-152 99.42 1.51 97.20 5.32 190

DenseNet-161 99.30 1.89 97.19 11.2 622

be discussed. The majority of studies developed for rebar detection and
localization in the past have not emphasized on the exploration of the
performance from a multi-dimensional perspective. In contrast to those
studies, this research will ensure that the performance of the proposed
rebar detection and localization system is assessed using a wide-range
of available techniques for performance evaluation. The discussion of
the results for rebar localization will be divided into two sections,
namely the qualitative and quantitative analyses. In the qualitative
analysis section, the focus will be towards examining the qualitative
aspects of the results, which pertain to the visual evaluation of the way
in which the rebar localization process has taken place, along with the
difficulties faced towards the accurate localization of the individual
rebar images. There are various factors that affect the accurate locali-
zation of the rebar profiles; these factors will be discussed in terms of
the ways in which data from different bridge was affected with these
different factors. A visual appraisal of these factors will provide insights
that will enable the improvement of the different processes underlying

11

rebar localization. For the quantitative analysis of the results, there will
be a need to examine the performance of the proposed rebar localiza-
tion using different statistical measures.

4.3.1. Qualitative analysis

The qualitative analysis for rebar localization system deals with the
examination of the results obtained using the human visual system in
terms of accuracy and the overall quality of rebar localization using the
system proposed in this study. As, the name suggests, the qualitative
analysis can vary from one subjective viewer to another. It is for this
reason that civil experts (i.e. someone with a level of familiarity and
experience with the use of GPR sensor for civil infrastructures and de-
tection of sub-surface objects using GPR data) are required for effec-
tively highlighting the rebar signatures within GPR images and asses-
sing their overall accuracy towards rebar localization in GPR images.
Fig. 9 outlines results for rebar localization from different dataset using
green bounding boxes within GPR images (Fig. 2 and Fig. 9 provide
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Fig. 9. The result for rebar localization for bridges with different levels of difficulty in rebar recognition: (a) Warren County, NJ bridge in dataset 1, (b) East Helena
bridge, which belongs to dataset 2 (c) data from Dove Creek Bridge, (d) data from Fordway Bridge.

GPR data from different bridges in different order). The GPR scan
images in Fig. 9 are small portions of the overall GPR scan.

data obtained from different bridges. It can be seen that each of the
dataset from the different bridges contain varying levels of noise, re-
flection signals and other non-rebar artefacts. For the case of Fig. 9(a),
which contains GPR image from dataset 1 (i.e. Warren County, NJ

bridge) with limited amount of noise leading to effective rebar detec-
tion and localization. Similar findings are revealed for Fig. 9(b) con-
taining GPR image from dataset 2 leading to accurate localization of
rebar signatures.

Conversely, for the case of bridge dataset from Dove Creek bridge
and Fordway bridge, which are given in Fig. 9(c) and 9(d) respectively,
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Table 13
Confusion Matrix for rebar localization using dataset 1.

Predicted Results

Class No Rebar Class Rebar

Actual Class No Rebar TN = 0% FP = 1.48%
Results Class Rebar FN = 0.98% TP = 97.50%
Table 14

Confusion Matrix for rebar localization using dataset 2.

Predicted Results

Class No Rebar Class Rebar

Actual Class No Rebar TN = 0% FP = 4.25%
Results Class Rebar FN = 0.67% TP = 95.30%
Table 15

Confusion Matrix for rebar localization using dataset 3.

Predicted Results

Class Rebar
FP = 10.23%
TP = 82.93%

Class No Rebar
TN = 0%
FN = 6.83%

Class No Rebar
Class Rebar

Actual
Results

there is a considerable level of noise and reflection artefacts, which
prevented the successful recognition and localization of different rebar
signatures. At the same time, there is some misclassification of re-
flective signals and artefacts as correct rebar signatures. There are re-
flective signals in the shape of parabolic shapes that are depicted above
and below the actual rebar profiles, which has led to the false classifi-
cation of some of these reflective signals as actual rebar signatures. Due
to the noise-related artefacts in the GPR data, there are some instances
of false negative (the actual rebar profiles that are not accurately de-
tected) and false positive (noise and other artefacts that are wrongly
classified as rebar profile) within the dataset 3. In contrast to the da-
taset 1 and 2, the GPR data for bridges in dataset 3 contain considerable
level of noise, and reflective artefacts, which leads to difficulties in the
accurate localization of the rebar signals. These types of anomalous
artefacts are not present in GPR data from dataset 1 and 2.

4.3.2. Quantitative analysis

The quantitative analysis deals with the statistical aspect of the
performance related to the rebar localization system developed in this
study. A number of different performance evaluation metrics are used
in the relevant literature for the effective examination of system per-
formance. Tables 13-15 outline the results in the form of confusion
matrix for the rebar localization for dataset 1, 2 and 3 respectively. The
values in the confusion matrices for TP (True Positive), FP (False Po-
sitive), TN (True Negative), and FN (False Negative) are given in the

Table 16
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form of percentages. The confusion matrices for the different dataset
highlight the variation for the two classes (i.e. rebar and non-rebar
classes) between the actual values of the images and the predicted
values that were reported by the proposed rebar localization method.
Since, the primary purpose of the rebar localization algorithm is to
separate rebar signatures, it is for this reason that the TP values are
equal to zero, as the rebar localization is not used to high non-rebar
regions, but to separately highlight rebar regions only. It can be seen
from the results in Tables 13-15 that the proposed rebar localization
technique has provided a high level of accuracy, due to which, this
system can be implemented in a practical NDE system for infrastructure
monitoring and assessment. For the calculation of the different statis-
tical properties related to performance evaluation, a number of dif-
ferent mathematical formulas have been used. The mathematical detail
for the different statistical criteria have been outlined in eq. 4-9, which
are given below:

Accuracy = (TP + TN)
(TP + TN + FP + FN) @
Error Rate = FP + FN
(TP + FP + TN + FN) 5)
Recall = __r
(TP + FP) 6)
.. TP
Precision = ————
(TP + FN) ()]
F1 — score = 2 x (Precision X Recall)
(Precision + Recall) ®
IoU = (AreaGround n AreaOutpul)
(AreaGround U AreaOutput) (9)

The statistical criteria for performance evaluation outlined in eq.
(4)-(8) have been adopted from [110]. Table 16 outlines the compar-
ison between the performance of the proposed method in this research
with state-of-the-art for rebar localization methods in relation to the
different performance evaluation metrics [48,68,70,71,111,112]. This
shows that majority of the studies on rebar localization do not put
enough emphasis on the statistical evaluation of the performance of the
proposed rebar localization. Unlike prior studies, this research has le-
veraged different statistical performance evaluation metrics that are
widely employed in the field of machine learning. The performance of
the rebar localization system is comparable or superior to the different
algorithms discussed in the state-of-the-art. Fig. 10 highlights the pro-
cess for calculating Intersection-over-Union (IoU) given in eq. (9),
which has gained importance in recent years in order to cater to class
imbalances within classification problems.

Quantitative performance evaluation of the rebar localization system and comparison with recent studies (red region shows metrics not highlighted in studies).

Accuracy | Error

Precision

Recall

F1-score Time

Dou [111] 70.04%

Kaur [48] 91.98%
Gibb [68] 95.05%
Dinh [71] 99.60%
Ahmed [70] 94.52%
Harkat [112] 88.99%
This study 91.91% 96.89%

70.80% 70.20%

94.41% | 95.58% | 90.20%

13
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Fig. 10. An illustration to highlight calculation of Intersection over Union (IoU) with examples to highlight the difference between suitable and unsuitable instances.

Table 17

The effects of different factors for the GPR data acquired from the different bridges in this research.

Factors Affecting Performance for different bridge data

Datase Bridge Location _lnterh .Rehar Reflections Noise
t Signature Signature
Se
1 1. Warren County, N]
2 2. Galena Creek Bridge, NV

3. East Helena Bridge, MT
4. Kendall Pond Road Bridge, NH
5. Piscataqua Bridge, ME
3 6. Broadway Bridge, AR
7. Fordway Bridge, Derry, NH
8. Dove Creek Bridge, BC
9, Baxterville Bridge, CO

5. Discussion

In this section, the prime focus of the discussion will be towards
examining practical issues within the different processes for rebar de-
tection and localization,

affect the overall performance of the rebar detection and localiza-
tion system. One of the main issues is data collection. Due to the dif-
ferent bridge physical properties and the environmental conditions
during the data collection process, the quality of data can vary drasti-
cally. It is for this reason that robustness is essential for improved
performance of rebar detection system, which can be increased by in-
corporating data from multiple bridges. However, there are various
noise artefacts and reflection signals within the GPR images, which are
similar to actual rebar signatures. The different anomalous features,
(various noise artefacts that cause cluttering and reduce the variation
between foreground and background, reflection signals that mimic
parabolic rebar signatures, and level of overlap between the adjacent
rebar profiles) are outlined in Fig. 10. The differentiation of these noise
artefacts and reflection signals from the actual rebar signatures can
pose significant challenges towards accuracy of the proposed rebar
detection system. There is also an element of human-error in relation to
the development of database for the rebar detection towards differ-
entiating between rebar and non-rebar elements in the different GPR
images. Another challenge for the development of rebar detection
system relates to the inherent limitations of the type of learning algo-
rithm used for classifying rebar and non-rebar images from the original

14

GPR data.

The first issue that can jeopardize the accuracy of the rebar locali-
zation relates to the robustness of the rebar detection system towards
handling data from different bridges. The block-based sliding window
approach towards rebar localization also has some drawbacks, which
can affect its overall performance. For a sliding window of fixed size, it
can be difficult to accurately localize rebar signatures within the rebar
detection and localization systems in real-world scenarios. Table 17
outlines the data collected from different bridges and the effect of the
different factors towards reducing the overall effectiveness of the pro-
posed rebar detection and localization method. The different factors
that can potentially impact the overall performance of the rebar de-
tection and localization system include the following:

(i). Reflections in GPR images: The parts of the GPR image that
contain parabolic.

reflective anomalies, which are visually similar to the actual rebar
signatures. The frequency of occurrence of these reflection decreases
the overall performance of the rebar detection and localization system,
which is one of the reasons for the lower performance of the proposed
localization method on dataset 3. It can be seen that Fig. 11(a) contains
a higher frequency of such reflections at the lower-end of the GPR
image, followed by reduced level of reflections in Fig. 11(c) at the
upper-end of the GPR image. There is a lower presence of reflection
observed in Figs. 11(b) and 11(d).

(ii). Inter-signature separation: Another important factor is the level
of visual separation between the adjacent rebar signatures, which can
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Fig. 11. Some of the factors affecting the performance of rebar detection and localization algorithm for the following bridges: (a) data from Fordway bridge, (b)

Warren County Bridge, (c) Dove Creek bridge, and (d) East Helena Bridge.

affect the performance of the rebar detection and localization system.
The greater the inter- signature separation, the better the ability of the
rebar detection and localization system towards detecting and loca-
lizing the individual rebar signatures. Conversely, reduced inter-sig-
nature separation leads to increased overlapping between adjacent
rebar signatures such that it becomes increasingly challenging for the
rebar detection and localization system to separately detect and localize
each parabolic signature. It can be seen in Fig. 11(a) that the inter-
signature separation is very low. However, for the case of Figs. 11(b),
11(c) and 11(d), it can be seen that the inter- signature separation is
high, which leads to improved performance of rebar detection and lo-
calization system.

(iii) Rebar signature brightness The overall performance of the pro-
posed rebar detection and localization system is dependent on its ability
to effectively differentiate between the foreground and background
regions. This process can be facilitated due to the distinct visual prop-
erties (e.g. brightness, parabolic shape and difference in the visual
elements between foreground and background regions) of the rebar
signatures. The overall brightness of the rebar profiles in Figs. 11(a),
11(b) and 11(d) is sufficient to allow effective differentiation between
foreground and background regions. For the case of Fig. 11(b), the
reduced brightness of rebar signatures leads to increased challenges for
rebar detection and localization system.

(v). Noise: The effect of noise can manifest within GPR images in a
number of different ways. Increased overlapping between adjacent
rebar signatures can lead to noise between the overlapping rebar sig-
natures, which makes it challenging to separately identify the in-
dividual rebar signatures. There can also be blurring effect in the dif-
ferent segments of the GPR image, which can reduce the performance of
rebar detection and localization system.
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6. Conclusion and future works

This paper has discussed the development of rebar detection and
localization system, which is based on different supervised (Deep
Residual Networks) and unsupervised (K-means clustering) learning-
based techniques. This method has been tested and evaluated using
novel dataset collected from real bridges that has not been used in any
of the existing studies. This research provides an examination of the
research problem with focus towards utilizing Deep Learning frame-
works, in particular the Deep Residual Networks (ResNets) and Deep
Dense Networks (DenseNets). A wide-range of performance evaluation
metrics were leveraged for the rebar detection and localization system,
which can provide insights towards developing a robust, real-time
practical rebar detection and localization system for bridge inspection
and monitoring. A comparison of proposed method for rebar detection
and localization with recent research revealed that performance of the
proposed system is better or at par with state-of-the-art. A number of
different factors have also been identified, which affect the overall
performance of the rebar detection and localization systems.

There are various existing deficiencies in this research area, which
should be improved by the future researchers in this field. These issues
have been highlighted in the discussion section. There is a need to
develop rebar detection and localization systems that are able to better
differentiate between the noise/reflection artefacts (reflection artefacts
have the property of being similar in visual characteristics to the actual
parabolic rebar profiles) and actual rebar signatures within GPR data.
There is also a need to include data from additional bridges for devel-
opment of practical, robust and reliable rebar detection and localization
systems. In order to further improve on the state-of-the-art, future re-
searchers should develop real-time rebar detection and localization
systems that provide reliable performance that can be deployed within
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efficient, real-time bridge inspection robots in the future.
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