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A B S T R A C T   

Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) of civil infrastructure has been an 
active area of research for the past few decades. Due to rising costs, safety issues and error of human inspection 
methods, automated methods for bridge inspection and maintenance are being proposed. The purpose of this 
research is to develop an automated rebar detection and localization system utilizing supervised (Deep Residual 
Networks) and unsupervised (K- means clustering) techniques. Data has been collected from nine bridges using 
Ground Penetrating Radar (GPR) sensors. The performance of the proposed rebar detection and localization 
system has been evaluated on a wide-range of performance metrics, which emphasize the superior performance 
of the proposed technique over existing methods. The results reveal positive correlation between number of 
layers of networks, training time and other performance metrics. The overall performance of the proposed 
system is also dataset-dependent with factors such as noise artefacts, reflections and visual quality of rebar 
profiles.   

1. Introduction 

The monitoring, maintenance and rehabilitation of civil infra
structure is of paramount importance at the national and international 
level. Of the different types of civil infrastructure, the need for main
tenance and evaluation of bridges has been stressed by studies in the 
recent past [1–4]. According to the National Bridge Inventory (NBI) 
statistics, there are more than 307,000 bridges in the entirety of the 
United States [5]. Although, the overall ratio of marginally or seriously 
damaged bridges has been declining over the past few decades, the 
recent statistics outlined by the US Department of Transportation have 
classified around 67,000 bridges as structurally deficient and 85.000 as 
functionally obsolete in nature [5]. Out of the $14.3 billion expenditure 
sanctioned for maintenance of existing bridges and construction of new 
bridges in 2010, $12.8 billion was dedicated towards the maintenance 
of existing bridges [6], which shows that a considerable portion of 
annually allocated funds are being diverted for the maintenance of 
bridges. The primary motivations for conducting this research can be 
broken down into two parts, namely: (i) the need for robotic automa
tion to improve the cost-effectiveness and efficiency of the different 
processes underlying non-destructive evaluation of bridges, and (ii) the 
importance of including GPR data from different bridges to develop a 
robust rebar detection and localization system. 

The first motivation is to ensure that novel automation solutions can 
be proposed, which can replace the existing methods that are error- 
prone and financially inefficient in nature. Lack of adequate attention 
towards maintenance and monitoring of bridges can lead to disastrous 
incidents. A number of different factors contribute towards the partial 
or total destruction of bridges, ranging from design errors and con
struction defects to environmental degradation, scour, flood, collision 
and overloading [7,8]. The impact of bridge destruction and collapse 
far exceeds the overall material and financial costs associated with the 
bridge construction, as it also includes the various direct and indirect 
costs, which include, but are not limited to loss of lives, user delays, 
planning for alternate routes, along with the greenhouse gas emissions 
linked to detours and delays in traffic [7,9.10,11]. Fig. 1 highlights 
some of the multitude of prior tragedies in the wake of bridge de
struction incidents in the US. It is being predicted that with the increase 
in climate change and frequency of adverse climate incidents (e.g. 
hurricane, floods, tsunamis) on a global scale, the overall costs related 
to repairing is also expected to accelerate from $140 billion to $250 
billion annually [10] with direct and indirect losses amounting to more 
than 17% of the total costs [11]. Therefore, the timely evaluation, 
monitoring and rehabilitation of bridges can result in reduced overall 
direct costs as well as the indirect costs in terms of potential destruction 
of property and lives in the wake of bridge destruction. For the purpose 
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off brfidge monfitorfing and evafluatfion, the dfifferent technfiques ffor NDE 

have the potentfiafl towards mfinfimfizfing the overaflfl dfirect and findfirect 

costs  assocfiated  wfith  destructfion  off  brfidges  caused  by  finternafl  defi-

cfiencfies,  constructfion  deficfits  and  mafintenance-reflated  fissues.  In  the 

flfight off thfis reaflfizatfion, a number off natfionafl-flevefl finfitfiatfives have been 

devefloped  fin  the  Unfited  States.  One  such  exampfle  fis  the  Long-Term 

Brfidge Perfformance Program (LTBP) finfitfiated by the Federafl Hfighway 

Admfinfistratfion (FHWA) wfith the prfimary afim towards promotfing the 

utfiflfizatfion  off  non-destructfive  evafluatfion  technoflogfies  and  technfiques 

ffor reguflar brfidge finspectfion and mafintenance [12]. 

Another  fimportant  motfivatfion  ffor  thfis  research  fis  reflated  to  the 

fincorporatfion off data ffrom mufltfipfle brfidges. Many off the reflevant stu-

dfies do not effectfivefly hfighflfight the varfious propertfies off the GPR data 

ffrom the dfifferent brfidges that has been coflflected. It can be seen ffrom 

some off the dataset exampfles gfiven fin Ffig. 2 that the dfifferent physficafl 

propertfies  (e.g.  physficafl  dfimensfions,  use  off  constructfion  materfiafls, 

depth off steefl rebars and spacfing between findfivfiduafl rebars) wfithfin the 

dfifferent  brfidges  can  flead  to  varyfing  resuflts  obtafined  usfing  GPR  ra-

dargram.  The  usage  off  data  ffrom  dfiverse  brfidges  fis  partficuflarfly  fim-

portant ffor rebar detectfion and flocaflfizatfion systems that empfloy deep 

neurafl networks, as fin the case off thfis research. Accordfing to thfis ra-

tfionafle,  thfis  research  has  utfiflfized  data  ffrom  dfifferent  brfidges,  whfich 

provfide a dfiverse set off data wfith varyfing physficafl propertfies that aflflow 

the deveflopment off a robust rebar detectfion and flocaflfizatfion system. 

There  are  a  number  off  ways  fin  whfich  thfis  study  fimproves  on  the 

state-off-the-art, whfich fincflude the ffoflflowfing: 

•A  novefl  method  ffor  rebar  detectfion  and  flocaflfizatfion,  whfich  fle-
verages supervfised (fi.e.  Deep  Resfiduafl  Networks)  and unsupervfised 

(fi.e. K-means cflusterfing) flearnfing-based technfiques.  

• The fincorporatfion off chaflflengfing dataset ffrom nfine reafl brfidges wfith 
varyfing data propertfies; the data ffrom many off the brfidges have not 

been used fin any prfior studfies.  

• Majorfity  off  reflevant  studfies  provfide  examfinatfion  off  a  sfingfle  Deep 
flearnfing fframework. In thfis research, the effect off dfifferent network 

parameters (e.g. number off flayers, batch sfize and epochs ffor system 

trafinfing)  off  the  dfifferent  Deep  Resfiduafl  Networks  (ResNet-18, 

ResNet-34,  ResNet-50,  ResNet-101,  ResNet-152,  DenseNet-121, 

DenseNet-161) has been examfined on the overaflfl perfformance off the 

rebar detectfion and flocaflfizatfion system.  

• A  comprehensfive  dfiscussfion  on  perfformance  evafluatfion  has  been 
provfided, whfich shows that the perfformance off proposed method fis 

superfior or at par wfith recentfly devefloped technfiques. A comparfison 

wfith exfistfing studfies has reveafled that thfis study empfloys a wfide- 

range  off  perfformance  metrfics  that  have  not  been  used  fin  the  re-

flevant researches fin the past. 

•Unflfike earflfier studfies, thfis study aflso provfides a detafifled examfina-
tfion off dfifferent chaflflenges and the manner fin whfich fit affects the 

overaflfl perfformance off the rebar detectfion and flocaflfizatfion systems. 

2.  Reflated works 

The  non-destructfive  evafluatfion  (NDE)  off  cfivfifl  finffrastructure  has 

been a wfidefly-dfiscussed research area fin the past. In order to do ade-

quate  justfice  to  the  dfifferent  toofls,  technfiques,  methodoflogfies  and 

technoflogfies  used  by  the  prfior  studfies  reflated  to  NDE  off  brfidges,  the 

proceedfing dfiscussfion wfiflfl be dfivfided fin terms off varfiatfions fin exfistfing 

studfies reflated to: (fi) a generafl overvfiew off flfiterature on dfifferent toofls 

and  technfiques  ffor  NDE  off  finffrastructures,  (fifi)  flfiterature  partficuflarfly 

emphasfizfing  towards  deveflopfing  methods  ffor  rebar  detectfion  and  flo-

caflfizatfion  ffor  brfidges.  A  comprehensfive  overvfiew  off  the  recent  and 

reflevant  flfiterature  has  been  aflso  provfided  fin  [13]. Ffig.  3 effectfivefly 

outflfines  the  dfifferent  ways  fin  whfich  the  prfior  studfies  have  been  ex-

tendfing  the  state-off-the-art  fin  the  flfiterature  pertafinfing  to  brfidge  fin-

spectfion fin partficuflar and cfivfifl finffrastructure fin generafl. 

2.1.  Generafl overvfiew off technfiques ffor NDE off finffrastructures 

Tradfitfionaflfly,  finffrastructure  evafluatfion  has  been  consfidered  a 

manuafl task, whfich has been carrfied out by cfivfifl personnefl usfing prfi-

mfitfive sensors ffor data coflflectfion [8]. In the recent past, a number off 

dfifferent robotfic pflatfforms have aflso been fintroduced ffor the purpose off 

finffrastructure evafluatfion to enhance the overaflfl eficfiency and reduce 

the  tfime-consumptfion  and  error  fin  data  coflflectfion.  A  wfide  array  off 

dfiverse robots have been devefloped rangfing ffrom cflfimbfing robots (e.g. 

flegged-robots, wheefl-based sflfidfing robots and crawfler robots) [14–29], 

and  mufltfi-rotor  unmanned  aerfiafl  vehficfles  (e.g.  quad-rotors  and  octo- 

rotors)  [30–37]  to  unmanned  ground  vehficfles  (UGVs)  (e.g. ARA  Lab 

Robot., ROCIM, RABIT) [38–49] and water-based robotfic craffts (e.g. un-

manned  submersfibfle  vehficfles  (USVs),  underwater  marfine  vehficfles 

(UMVs), underwater vehficfles (UUVs)) [50–53]. Robotfics Assfisted Brfidge 

Inspectfion  Toofl (RABIT)  fis  desfigned  ffor  an  eficfient  automated  deffect 

detectfion  off  brfidge  decks  [12,48,53,54]  wfith  state-off-the-art  sensor 

technoflogfies (e.g. fimpact echo, ufltrasonfic surfface waves, eflectrficafl re-

sfistfivfity and GPR). A mufltfi-ffunctfionafl, mufltfi-sensor-based mobfifle pflat-

fform (fi.e. ARA Lab pflatfform) ffor the evafluatfion and finspectfion off cfivfifl 

finffrastructure [8,55] has been devefloped recentfly. Due to the finherent 

flexfibfiflfity off most robotfic pflatfforms, majorfity off these pflatfforms can be 

utfiflfized ffor SHM off wfide-range off dfifferent cfivfifl finffrastructures. 

Apart ffrom deveflopment off novefl robotfic pflatfforms ffor SHM, con-

sfiderabfle  research  ffocus  towards  concrete  crack  detectfion 

[14,20,53,55,56–59].  Some  off  the  earflfier  works  ffocused  on  the  utfiflfi-

zatfion off basfic-flevefl fimage processfing technfiques ffor crack detectfion fin 

concrete structures [14] [20] [53]. A bflock-based crack detectfion ap-

proach was devefloped ffor brfidge decks fin another study [55]. A genetfic 

flearnfing-based network optfimfizatfion aflgorfithm was aflso proposed wfith 

appflficatfion  ffor  concrete  crack  detectfion  [58].  In  order  to  overcome 

some off the flfimfitatfions off basfic-flevefl fimage processfing technfiques, the 

use off dfifferent Deep Learnfing fframeworks has aflso been proposed ffor 

crack detectfion [57] [59] [60] [61] [62]. The use off encoder-decoder- 

Ffig. 1. Some off the serfious recent brfidge accfidents fin the US: (a) A coflflapsed rafiflroad brfidge fin Aflabama that resuflted fin around 47 deaths. (b) Coflflapsed brfidge that 

connected Pofint Pfleasant, West Vfirgfinfia wfith Gaflflfipoflfis, Ohfio [1]. 
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based Deep learning architecture was able to improve the existing 
limitations using a pixel-wise classification of images [59]. Using data 
from various concrete structures captured in different lighting condi
tions, Cha [60] leveraged Deep learning-based model for concrete crack 
detection. Another study made use of damage quantification using 
depth-based camera and Faster R-CNN model for SHM of concrete 
structures [61]. The use of Deep-learning-based techniques was also 
used for developing image transformation method for sewer inspection 
to transform GPR scans into sub-surface permittivity maps [63]. For the 
classification of underground objects using GPR data, a 3D CNN model 
was proposed in another recent study [64]. 

2.2. Methods for rebar detection and localization 

The usage of GPR data for infrastructure evaluation has been in 
practice for as far back as the 1970s with applications that include void 
space detection, depth of concrete cover on bridges, locating metallic 
objects in concrete spaces, and general inspection and maintenance of 
reinforced concrete structures [65]. Some of the earlier studies have 
used GPR data for underground pipe detection [66], as well as detection 

of various buried objects, e.g. landmines and pipes [67]. It is only re
cently that the shift has focused towards using GPR for bridge evalua
tion with particular emphasis on rebar detection and localization [48] 
[65] [68] [69] [70]. For the case of bridge monitoring, one of the 
earlier studies utilized GPR data for rebar detection in bridge decks 
[65]. This particular study made use of partial differential equations 
and template matching technique with sum of square similarity index 
for hyperbola localization [65]. The different existing techniques for 
rebar localization can be broadly classified into bounding-box and hy
perbola interpolation-based approaches. For hyperbola interpolation in 
the context of rebar localization, RANSAC and Hough transforms are 
frequently employed [48] [67]. 

Another research by Gibb and La [68] proposed a method for rebar 
detection using Naïve Bayesian classifier trained on HOG features for 
rebar detection, along with the precise hyperbola localization algorithm 
for rebar localization. Kaur et al. [48] developed an automated system 
for rebar analysis using Histogram of Oriented Gradients (HOG)-based 
features and Support Vector Machines (SVM) for recognition and clas
sification of rebar and non-rebar images. Another recent study by Dinh 
et al. [71] proposed a novel method for rebar detection, which involved 

Fig. 2. Diversity of data obtained from the different bridges used in this research from the following bridges: (a) East Helena Bridge, (b) Dove Creek Bridge, (c) 
Warren County bridge and (d) Fordway Bridge. 
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the usage off Convoflutfionafl Neurafl Networks (CNNs). A number off dfiff-

fferent methods have been depfloyed ffor the case off rebar detectfion, but 

most off the earflfier studfies on rebar flocaflfizatfion attempt to fleverage the 

hyperboflfic  sfignatures  [65]  [68].  In  the  ffoflflowfing  sectfion  off  the  dfis-

cussfion, some off the saflfient ffeatures off the proposed rebar detectfion and 

flocaflfizatfion method wfiflfl be dfiscussed. 

3.  System methodoflogy 

In  thfis  sectfion,  a  comprehensfive  evafluatfion  off  the  dfifferent  pro-

cesses wfithfin the proposed method ffor rebar detectfion and flocaflfizatfion 

wfiflfl  be  perfformed.  Earflfier  studfies  ffocusfing  on  rebar  detectfion  and 

cflassfificatfion  have used a number off dfifferent methods, rangfing ffrom 

Support  Vector  Machfines  [48]  and  Naïve  Bayesfian  cflassfifier  [68]  to 

prfimfitfive Neurafl networks fin some off the earfly studfies usfing GPR [66] 

[67].  One  off  the  recent  studfies  by  [71]  has  utfiflfized  a  convoflutfionafl 

neurafl network ffor rebar detectfion. From a machfine flearnfing perspec-

tfive,  the  detectfion  and  recognfitfion  off  rebar  ffrom  other  non-rebar 

anomaflfies and arteffacts detected fin B-scans can be consfidered as a two- 

cflass  cflassfificatfion  probflem.  Earflfier  studfies  empfloyfing  Resfiduafl  Net-

works  and  thefir  varfiants  have  attested  to  thefir  superfior  perfformance 

towards tackflfing a vast range off research probflems [72] [73] [74]. To 

the knowfledge off the authors, there fis no sfingfle work fin the past, whfich 

has provfided a comprehensfive and detafifled evafluatfion and anaflysfis off 

Deep Resfiduafl Networks (ResNet) towards rebar detectfion and flocaflfi-

zatfion. It fis ffor thfis reason thfis study has fleveraged dfifferent pre-exfistfing 

ResNet fframeworks (e.g. ResNet-18, ResNet-34, ResNet-50, ResNet-101, 

ResNet-152).  Resfiduafl  Networks  have  shown  hfigh  perfformance  on 

dfiverse appflficatfions, whfich wfiflfl be hfighflfighted fin the next sub-sectfion. 

Aflthough, a preflfimfinary anaflysfis has been fintroduced fin recent works 

by  the  authors  [69]  [70].  However,  fit  flacks  the  depth  and  cflarfity 

warranted  towards  finvestfigatfing  Deep  Learnfing  modefls  devefloped  fin 

the  recent years. In contrast to  these earflfier  works, thfis  research wfiflfl 

essentfiaflfly  be  a  contfinuatfion  and  fin-depth  evafluatfion  off  the  perffor-

mance off Deep Resfiduafl Networks, aflong wfith fits varfious pros and cons 

ffor the appflficatfion off rebar detectfion fin brfidges. Ffig. 3 hfighflfights the 

two Deep Learnfing archfitectures, whfich have been used fin thfis study, 

namefly  ResNet-18  and  DenseNet-121.  A  number  off  dfifferent  ResNet 

archfitectures  (e.g.  ResNet-18,  ResNet-34,  ResNet-50,  ResNet-101,  Re-

sNet-152) are used to assess the effect off dfifferent network parameters 

(e.g. number off epochs, batch sfize, and number off flayers) on the per-

fformance  off  proposed  rebar  detectfion  and  flocaflfizatfion  system.  The 

perfformance off the hfigh perfformfing ResNet (e.g. ResNet-101, ResNet- 

152)  fis  compared  wfith  DenseNet  archfitectures  (e.g.  DenseNet-121, 

DenseNet-161). 

3.1.  Background on deep resfiduafl networks 

Ever  sfince  fits  finceptfion  fin  the  recent  past,  the  Deep  Resfiduafl 

Networks [75] [77] have gafined a consfiderabfle amount off attentfion, as 

a  state-off-the-art  Deep  Convoflutfionafl  Networks  fframework,  whfich 

provfides  reflfiabfle  perfformance  and  robustness  fin  dfiverse  appflficatfions. 

The  semfinafl  research  outflfinfing  the  eficacy  off  thfis  partficuflar  Deep 

Learnfing modefl on varfious fimage recognfitfion competfitfions hfighflfighted 

the  rectfificatfion  off  varfious  flfimfitatfions  (e.g.  vanfishfing/expflodfing  gra-

dfients,  degradatfion)  pertafinfing  to  perfformance  off  tradfitfionafl  Deep 

Ffig. 3. Some off the Deep Archfitecturafl fframeworks used fin thfis study: (a) ResNet-18 [75], and (b). Densenet-121 [76].  
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Convolution Neural Network (CNN) models, especially with increase in 
the depth or number of layers [75]. It is for this reason that a wide 
range of different applications have been successfully developed in a 
diverse field of research, ranging from medical imaging and diagnostics 
[72], remote sensing applications [73], steganography [78], image 
super-resolution [74], video-based human action recognition [79] to 
optical flow estimation [80], image de-blurring [81], hyperspectral 
imaging [82] as well as fault analysis and diagnostics [83]. 

Another area of emphasis of recent studies is towards proposing 
modifications of the original Residual Network architecture (i.e. 
ResNet-50) in order to leverage its benefits in terms of performance and 
efficiency as well as cater to other application-specific challenges. For 
example, a two-stage framework for melanoma was proposed in one of 
the recent study, which included fully-connected Residual Network 
with multi-scale contextual information [72]. For the case of image 
super-resolution, the original Residual block was modified in order to 
provide a multi-scale residual block, which was able to enhance the 
performance of the developed system [84]. A two-stream motion and 
appearance information processing Residual network was also proposed 
for video-based human action recognition [79]. For image classification 
tasks, it was demonstrated that by using dilation layers in the overall 
ResNet architecture, the overall output resolution and classification 
performance was improved considerably [72]. Similarly, the use of 
single-image-based super-resolution method was improved by merging 
the upscaling module within the residual framework to propose a Deep 
upscaling framework with improved performance over state-of-the-art 
[74]. A multiple layer of residual networks, namely the Residual of 
Residual (RoR) network was proposed in another recent study with 
multiple layers of shortcut connections that resulted in improved per
formance on benchmark dataset (e.g. CIFAR-10, CIFAR-100, SVHN) 
[85]. By combining the positive elements of the two different networks, 
namely the ResNet [75] and U- Net [58], a deep ResUnet framework 
was developed in another recent study, which was successfully tested 
towards the detection and extraction of roads in remote sensing images 
[48]. Table 1 outlines the different Deep Learning architecture em
ployed in the relevant research area with their different model prop
erties. It can be seen that unlike other studies, this research employs a 
wide-range of different ResNet and DenseNet models. 

3.2. GPR data collection 

In this study, data collected using GPR sensor has been used as input 
for the rebar detection and localization systems. The purpose of this 
sub-section is to provide a brief overview of the salient features of the 
GPR data collection processes. GPR and the associated data has been 
widely used for conducting geological surveys on a number of different 

terrains, ranging from analysis of glacial deposits [87] [88], faults [89] 
[90], and peatland [91] [92], to coastal regions [93] [94], delta [95] 
and lunar explorations [96] [97]. At the same time, data collected from 
GPR sensors have also been extensively employed for NDE of different 
civil infrastructures [8] [12] [55] [54] [69] [70] and detection of 
various terrain-level and underground features (e.g. underground pipes, 
cables, landmines, tunnel defects, buried objects) [65] [68] [66] [67] 
within civil engineering and civil surveying tasks. The principles un
derlying the data collection using GPR sensors have been given in  
Fig. 4. In typical inspection operations, the electromagnetic (EM) waves 
with a frequency between 10 MHz and 5 GHz is transmitted into the 
sub-surface using mono-static GPR antennas as the primary transmis
sion device [98]. As, the EM waves progress through the different layers 
of the underground sub-surfaces with varying dielectric properties, 
these waves undergo changes in velocity, which are dependent on the 
dielectric constant and electrical conductivity of the different sub-sur
face layers [98]. This phenomenon has been highlighted in Fig. 4(a). 
Slight variations in the dielectric properties of the sub-surface layers 
can lead to partial reflection of the originally transmitted EM waves, 
which are amplified and recorded by the receiving antennas. The dif
ferent factors that affect the dielectric constant for any specific material 
is dependent on moisture content, porosity, texture, chemical compo
sition and density [98] [99]. For the detection of different underground 
objects (e.g. buried objects, landmines, steel pipes, cables, metal ob
jects, archaeological sites) within different types of subsurface media 
(e.g. sand, clay, wood, concrete, body of water, oil, ice), there are a 
number of different variables that need to be taken into consideration. 

The value for dielectric permittivity km is selected based on the 
composition of the underground material m [100]. Typically, the value 
for v which is given in eq. (1) is specified as 0.2998 m/ns [100]. The 
eqs. (1)–(3) have been given along with supporting mathematical evi
dences and technical details in [100]. Following are some of the 
mathematical equations governing the calculation of these variables, 
which include wavelength in air λa, wavelength in specific material λm, 
central frequency fc and maximum sampling interval t for the different 
antennas being used: 

= v
fa
c (1)  

=
km

a

m (2)  

=t
f

1000
6 c (3)  

Depending on the type of application for which the GPR data is 
being collected, a number of different approaches for data collection 
have been employed in the past, which include common mid-point, 
fixed off-set profiling and reflection profiling-based approaches [101] 
[102] [103] [104]. Fig. 4 highlights the different approaches and the 
ways in which the transmitter and receiver positions change over time.  
Fig. 4(a) provides a visualized effect of different sub-surface layers on 
the velocity of the transmitted and received EM waves. Fig. 4(b) 
highlights the fixed offset profiling method for GPR data collection with 
the GPR transmitter and receiver collectively moving in a linear fashion 
to cover the underground mapping of the desired region. It can be seen 
from Fig. 4(b) that presence of anomalous underground object can lead 
to variations in the reading by the receiver over time. In Fig. 4(c), the 
common midpoint position method has been highlighted, which shows 
that the transmitter and receiver move further apart as the data col
lection progresses from the initial points T1 and R1 to the final points Tn 

and Rn (details regarding the system parameter adjustment and best 
practices for GPR using fixed offset-based profiling method, see [101] 
[103] [105]). In the following sub-section, the salient features of the 
proposed method for rebar detection and localization will be outlined. 

Table 1 
Comparison of the different Deep Learning architectures used in relevant stu
dies.       

Study Applications Network 
Architecture 

Network Characteristics 

Depth Parameter  

[64] Underground object 
classification 

3D-CNN 3 N/A 

[86] Bridge damage 
detection 

DINN 20 24.8 million 

[60] Concrete crack 
detection 

CNN 8 N/A 
[61] Faster-R-CNN 16 N/A 
This study Rebar detection and 

localization 
ResNet-18 18 11.2 million 
ResNet-34 34 21.3 million 
ResNet-50 50 23.5 million 
ResNet-101 101 42.5 million 
ResNet-152 152 58.2 million 
DenseNet-121 121 ~4 million 
DenseNet-161 161 ~18 million 
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3.3. Proposed method for rebar detection and localization 

In this section, a detailed examination of the proposed rebar de
tection and localization system will be provided. Earlier discussion has 
shed light on some of the most important recent works towards rebar 
detection and localization. A number of different techniques have been 
proposed for the development of rebar detection system in the past, 
ranging from simple Neural Network implementations [66] [67] and 
24-layer Convolutional Neural Network [71] to Support Vector Ma
chine [48] and Naive Bayesian-based approaches [68]. In the proposed 
study for rebar detection, the use of Deep Residual Neural Network has 
been proposed [75]. Some of the preliminary works in this respect have 
been proposed in recent studies by the authors [69] [70]. This study 
will provide a comprehensive, in-depth analysis of different Deep Re
sidual Network-based architectures (namely ResNet-34, ResNet-50, 
ResNet-101 and ResNet-152) for the development of rebar detection 
and localization system. There are a number of key objectives, which 
will be evaluated in this research. Despite the widespread use of Deep 
Learning architectures, there is a need for assessing their feasibility 
towards practical development and implementation on practical robotic 
systems for real-time bridge infrastructure evaluation [8] [12] [55] 
[54] [69] [70]. In this regard, there is a need to assess the ideal balance 
between network complexity (the complexity and computational re
quirements increase exponentially with increase in depth or number of 
layers of Deep layered architectures) and performance (measured in 
terms of accuracy, loss, time and computational requirements). This 
particular aspect will involve the use of Residual Networks for rebar 
detection system with the ultimate aim of developing practical infra
structure evaluation of bridges, which is currently lacking in the 

existing literature. 
The findings in this study will provide valuable insights that can aid 

in the development of state-of-the-art Deep Learning-based systems 
with potential for practical implementation on real-time systems. The 
practical implementation will be carried out in the future after the 
successful validation and evaluation of the various performance-level 
trade-offs in this study. At the same time, a novel rebar localization 
system has also been proposed that will visually detect and highlight 
the location of rebar signatures within GPR radargram, which contains 
vital underground information regarding the presence of different 
buried objects (e.g. underground pipes, underground transmission 
cables, steel rebars and other construction material). 

The localization of rebar signatures from GPR radargram is a crucial 
component of the overall accurate SHM for bridges using NDE-based 
methods that ensure the integrity of the bridge infrastructure. Instead of 
directly relying on raw GPR data, the proposed rebar localization 
system will allow the civil inspectors to focus their attention on rebar 
signatures in GPR radargrams, which can allow them to assess the 
overall level of deterioration of the individual steel rebars within the 
overall bridge infrastructure. Fig. 5 highlights the main components of 
the proposed rebar detection and localization system. Starting from the 
data collection process to discussion regarding rebar detection and lo
calization system, which will conclude with the evaluation of perfor
mance of both systems using credible performance evaluation metrics. 
Based on Fig. 5, the proposed model for rebar detection and localization 
can be divided into three main sections, namely: 

(i) GPR data collection: In the previous sub-section, a considerable 
level of theoretical detail has been outlined for data collection using 
GPR sensors. In this section, some additional details regarding the 

Fig. 4. Principles of GPR data collection using different methods: (a) the transmission and reception of radar waves from different sub-surface layers, (b) fixed-offset 
reflection profiling method, (c) midpoint position method starting from transmitters and receivers at T1 and R1 to Tn and Rn [98]. 
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practficafl  fimpflementatfions  ffor  data  coflflectfion  fin  thfis  research  wfiflfl  be 

dfiscussed. 

(fifi).  Rebar  detectfion  system:  Some  off  the  saflfient  ffeatures  off  rebar 

detectfion method wfiflfl be hfighflfighted fin the ffoflflowfing sub-sectfion, and. 

(fififi). Rebar  flocaflfizatfion  system:  The  dfiscussfion  fin  one  off  the  sub- 

sectfion wfiflfl aflso outflfined the proposed method ffor rebar flocaflfizatfion. 

For  the  case  off  GPR  data  coflflectfion,  the  ffundamentafl  detafifls  are 

gfiven fin the prevfious sectfion. Ffig. 5 outflfines some off the dfifferent steps 

undertaken ffrom data coflflectfion usfing GPR sensor. The GPR data cofl-

flectfion starts wfith brfidge seflectfion, whfich shoufld take finto account type 

off materfiafl, physficafl and geometrfic propertfies off brfidge (fi.e. flength, wfidth, 

hefight off brfidge), brfidge type (e.g. arch, beam, truss, gfirder brfidges), and 

sensor used  ffor  data  coflflectfion.  The  ffrequency  at  whfich  GPR  data  fis 

coflflected  fis  dependent  on  the  type  and  flocatfion  off  sub-surfface  re-

finfforcements  fin  brfidges.  Based  on  the  type  off  appflficatfion,  there  fis  a 

need ffor seflectfion off approprfiate GPR sensor ffor the reflevant appflfica-

tfion. A number off dfifferent firms (e.g. GSSI [106], Sensors & Sofftware Inc 

[107], US  Radar  Inc [108])  provfide  a  wfide-  range  off  reflfiabfle  GPR 

equfipment  ffor  data  coflflectfion.  The  GPR  data  coflflected  fin  thfis  study 

utfiflfized the IDS Georadar® sensor equfipment system [109]. Based on the 

physficafl and geometrfic propertfies (e.g. flength, wfidth and hefight) off the 

brfidge befing finvestfigated, there fis a need to make approprfiate adjust-

ment  wfithfin  the  system,  such  as  center  ffrequency,  GPR  resoflutfion, 

sampflfing fintervafl and puflse wfidth [100]. The mathematficafl detafifls off 

the dfifferent varfiabfles have been outflfined fin eqs. (1), (2) and (3), whfich 

are  gfiven  fin  the  prevfious  sectfion.  There  are  a  number  off  dfifferent 

methods that can be empfloyed ffor data coflflectfion usfing GPR sensors, as 

dfiscussed  fin  the  prevfious  sub-sectfion.  In  the  current  research,  the 

sfingfle-ffofld, fixed-offset reflectfion profiflfing method has been used, as fit 

fis the most wfidefly empfloyed method ffor GPR appflficatfion reflated to cfivfifl 

finffrastructure  evafluatfion,  especfiaflfly  when  there  fis  a  requfirement  off 

hfigh spatfiafl horfizontafl resoflutfion [104]. 

The rebar detectfion system utfiflfizes dfifferent Deep Resfiduafl Network 

archfitectures  (e.g.  ResNet-34,  ResNet-50,  ResNet-101,  ResNet-152) 

wfith  varyfing  network  parameters  (e.g.  systems  trafined  wfith  dfifferent 

batch sfize, number off epochs and number off flayers). The perfformance 

off the Deep Resfiduafl Network wfith the most optfimafl network config-

uratfion  fis  compared  wfith  reflevant  DenseNet  archfitectures  (DenseNet- 

121,  DenseNet-161)  [76],  whfich  fis  another  Deep  Convoflutfionafl  Net-

work  that  has  gafined  consfiderabfle  attentfion  fin  the  recent  past.  The 

rebar  flocaflfizatfion  aflgorfithm  perfforms  the  dfifferent  fimage  pre-proces-

sfing ffunctfions to ensure that the smaflfler regfions off GPR fimages can be 

used  to  extract  the  reflevant  rebar  sfignatures.  K-means  cflusterfing  has 

been empfloyed as an unsupervfised fform off flearnfing aflgorfithm, whfich 

enabfles  the  effectfive  separatfion  between  the  fforeground  and  back-

ground regfions wfithfin the GPR fimages. Due to the flevefl off nofise and 

other  arteffacts  present  fin  the  GPR  data,  a  number  off  dfifferent  vfisuafl 

arteffacts are aflso fincfluded fin the fforeground. In order to decrease the 

finterfference  off  nofise  and  other  arteffacts,  a  number  off  dfifferent  mor-

phoflogficafl operatfions are used, whfich ensure that the orfigfinafl fimage fis 

converted  finto  bfinary  fimage  wfith  fforeground  regfions  separated  ffrom 

the background regfions. Wfith the use off morphoflogficafl ffeatures, many 

Ffig. 5. Modefl ffor the proposed rebar detectfion and flocaflfizatfion method.  
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of the noise and other reflective signals are separated and bounding box 
is used to highlighted the rebar signature within the GPR images. 

The details of the proposed rebar localization system have been 
highlighted in Fig. 5. The different processes for rebar localization and 
rebar detection systems are separate in nature, which means that they 
can work simultaneously towards providing the desirable output within 
the larger framework of the overall. 

system. Rebar localization system employs elements of the rebar 
detection system to ensure that it is able to perform different image 
processing functions on the parts of the larger GPR images that contain 
rebar signatures. Due to the large-scale size of the GPR images obtained 
from the raw GPR scan data, the rebar localization algorithm only 
works on portions of the GPR image using the sliding window-based 
approach. In the following section of the paper, the focus will be to
wards highlighting the effectiveness of the proposed rebar detection 
and localization method. 

4. Results 

In this section, a comprehensive detail regarding relevant data and 
its subsequent analyses will be provided, along with visualization and 
supporting discussion to provide a detailed evaluation of the overall 
performance of the proposed system. At the same time, the various 
factors will also be highlighted that affect the overall performance of 
the proposed system for rebar detection and localization. Prior to the 
discussion related to performance of the rebar detection and localiza
tion system, there is a need to shed light on the data used for the 
training and validation of the proposed system, which will be discussed 
in the following sub-section. 

4.1. Dataset 

For the development of the proposed system for rebar detection and 
localization, GPR data was acquired from a number of different bridges 
in the US. It can be seen from Table 2 that dataset 1 has been acquired 
from a bridge located in Warren County, NJ, which was included as part 
of the data within one of the earlier studies [48]. Since, the original 
source failed to mention the actual location of the bridge, it is for this 
reason that the dimensions and other physical properties of the bridge 
are not known. According to the knowledge of the authors, this dataset 
is the only publicly-available bridge dataset using GPR sensors. It can be 
seen from Table 2 that the bridge data has been taken from different 
type of bridges (e.g. suspension, beam, truss, girder). The physical di
mensions vary considerably, ranging from the largest bridge in the 
dataset (i.e. Broadway Bridge, AR) spanning to a length of around 
2786 ft. and the smallest in length being the Dove Creek Bridge, BC 
with a length of 50 ft. Table 2 outlines the important properties of the 
different bridges in terms of the bridge name, geographical location, 
and physical properties of the different bridges. 

Table 3 highlights the quantity of images acquired from the dif
ferent dataset. A major part of the GPR data (i.e. dataset 2 and 3) used 

in this research is one segment of the overall GPR data collected from 
the inspection and evaluation performed on 40 different bridges in the 
United States between the time period of 2013 and 2014 [8] [12]. A 
portion of the collective GPR data (i.e. dataset 2) has also been used in 
previous studies [68] [69] [70]. Dataset 2 contains GPR data from four 
different bridges. It can be seen in Table 1 that the overall number of 
images in dataset 1 is considerably higher in comparison to dataset 2. 
Dataset 3 is a novel dataset that has not been used in any other studies 
in the past. It also contains data from four different bridges. All of the 
data was collected using RABIT platform in an automated fashion (for 
details regarding data collection, see [8] [12]). The additional data will 
ensure that the proposed rebar detection and localization is able to 
provide reliable performance for bridges with different physical prop
erties. In terms of quantity, this dataset provides a reasonable amount 
of data, which can be used with Deep Learning-based algorithms to 
provide a foundation for development of reliable and robust rebar de
tection and localization system. 

4.2. Rebar detection method 

In order to adequately assess the results that are presented in this 
sub-section, there is a need to understand the manner in which the 
testing and evaluation of the proposed model was performed. Firstly, 
the different dataset (i.e. dataset 1, 2 and 3) will be trained and tested 
individually on the designated Deep Learning model. The results will 
provide valuable insights in relation to optimizing the different learning 
parameters and their effect on the overall performance of the developed 
system for rebar detection. Secondly, the performance of the rebar 
detection system will be evaluated by separating the collective dataset 
into training and validation sets (i.e. six bridges for training and three 
bridges for validation), which will prompt further inquiry towards 
analyzing the robustness of the developed system towards unseen 
bridge data. Thirdly, in order to highlight the effects of computational 
resources on the proposed rebar detection system, two separate PC 
systems with different set of configurations and specifications were 
used. During the training of the individual dataset, it was revealed that 
freezing multiple layers had a counter-productive effect on the overall 
accuracy of the proposed system. Consequently, the number of freeze 
layers were kept to zero. For some applications involving learning- 
based systems, freezing of initial layers has been noted to benefit the 
overall performance, as it leads to reduction of the overall memory 

Table 2 
Details regarding dataset obtained from different bridges.      

Dataset Bridge Location Bridge Type Bridge Dimensions (ft) 
(length x width)  

1 1. Warren County Bridge, NJ N/A N/A 
2 2. Galena Creek Bridge, NV Twin Span Arch Bridge 1726.5 × 62.0 

3. East Helena Bridge, MT Concrete Tee-Beam Bridge 66.9 × 40.0 
4. Kendall Pond Rd Bridge, NH Girder Bridge 78.1 × 44.0 
5. Piscataqua Bridge, ME Through-Arch Bridge 4503 × 98 

3 6. Broadway Bridge, AR Arch Bridge 2786 × 40 
7. Fordway Bridge, NH Beam Bridge 131 × 23 
8. Dove Creek Rd Bridge, BC Beam Bridge 50 × 45 
9. Baxterville Bridge, CO Lost-through Truss Bridge 117 × 15.4 

Table 3 
Data distribution of three datasets between training and validation sets.        

Name Class Rebar Class No Rebar  
Total 

Training Validation Training Validation  

Dataset 1 1043 228 7027 2040 10,338 
Dataset 2 1200 300 2400 600 4500 
Dataset 3 7562 1000 8859 1000 18,421 
Total 9805 1528 18,286 3640 33,259 
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utilization and hastens the training process. 
Table 4-7 highlights the performance of dataset 1 for the different 

ResNet architectures (i.e. ResNet-34, ResNet-50, ResNet-101, ResNet- 
152), which vary in terms of their depth, number of epochs and batch 
sizes of the trained network architecture. The purpose of this evaluation 
is to examine the effect of number of layers on the overall performance 
on the rebar detection system. For majority of instances given in  
Table 4-7, increase in batch size results in improved training perfor
mance of the rebar detection systems. However, in some of the cases, 
the accuracy of the system trained for batch size equal to 32 is slightly 
lower than systems trained with batch size equal to 16. Similarly, for 
majority the of cases of system training with different network para
meters (i.e. batch size and number of there is increase in the overall 
accuracy and decrease in the loss/error value of the trained rebar de
tection system. 

Similar to the results highlighted for dataset 1, in Table 8-11, the 
details regarding the accuracy and loss of the different ResNet archi
tectures trained for dataset 2 have been outlined. It can be seen in  
Table 8-11 that for majority of instances, an increase in the batch size 
resulted in improved accuracy and decreased system loss/error rate of 
the trained rebar detection systems. There are some instances in which 
the results with the highest accuracy do not necessarily correspond to 
systems with the highest batch size. In order to facilitate the 

examination of the results for rebar detection system, the average va
lues for each instance of batch size and number of epochs has been 
calculated. It can be seen from Tables 8 and 9 that increase in batch size 
leads to increase in accuracy of the rebar detection system. However, 
there are some examples in which increase in batch size does not 

Table 4 
Accuracy and error for rebar detection system trained using ResNet-34 and 
dataset 1.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 98.92/3.79 98.67/3.72 98.44/4.16 98.64/3.82 98.67/3.87 
8 98.64/4.04 98.67/4.47 98.69/4.33 98.72/4.03 98.68/4.22 
16 98.89/2.91 98.89/3.62 98.72/3.79 98.86/3.19 98.84/3.38 
32 98.39/4.77 98.69/3.86 98.53/4.02 98.36/4.55 98.49/4.30 
Average 98.71/3.88 98.73/3.92 98.60/4.08 98.65/3.90  

Table 5 
Accuracy and error for rebar detection system trained using ResNet-50 and 
dataset 1.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 94.44/ 
15.48 

94.72/ 
15.17 

94.72/ 
17.99 

96.39/ 
14.38 

95.07/ 
15.76 

8 95.28/ 
13.17 

96.39/9.68 95.83/ 
11.22 

97.50/9.66 96.25/ 
10.92 

16 97.50/8.37 96.39/8.79 95.28/9.79 96.39/9.16 96.39/9.03 
32 98.33/6.72 95.28/ 

12.02 
97.78/8.18 95.56/ 

11.46 
96.74/9.60 

Average 98.39/ 
10.94 

95.70/ 
11.42 

95.90/ 
11.80 

96.46/ 
11.17  

Table 6 
Accuracy and error for rebar detection system trained using ResNet-101 and 
dataset 1.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 94.72/ 
17.04 

97.78/7.11 96.39/ 
10.56 

97.78/5.07 96.67/9.95 

8 96.11/8.36 98.33/6.56 98.33/5.20 98.33/3.95 97.76/6.02 
16 97.78/8.82 98.61/4.37 98.61/4.44 98.06/5.11 98.27/5.69 
32 98.89/5.52 99.17/3.51 98.89/7.20 99.44/2.33 99.10/4.64 
Average 96.86/ 

9.94 
98.47/5.39 98.06/6.85 98.40/4.12  

Table 7 
Accuracy and error for rebar detection system trained using ResNet-152 and 
dataset 1.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 95.56/ 
14.96 

97.22/7.23 98.33/8.55 98.06/5.92 97.30/9.17 

8 98.33/5.55 97.50/6.04 98.61/6.12 98.89/4.39 98.33/5.53 
16 98.61/4.98 98.89/4.51 97.50/5.58 98.61/3.39 98.40/4.62 
32 98.06/7.13 97.78/8.14 98.89/2.52 99.72/1.71 98.61/4.88 
Average 97.64/8.16 97.85/6.48 98.33/5.69 98.82/3.85  

Table 8 
Accuracy and error for rebar detection system using ResNet-34 and dataset 2.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 98.50/4.15 98.73/3.63 98.65/3.65 98.42/4.19 98.56/3.91 
8 98.72/3.64 98.75/3.48 98.61/3.57 98.66/3.63 98.69/3.58 
16 98.89/3.17 98.95/3.16 98.73/3.36 98.74/3.43 98.83/3.28 
32 98.77/3.16 98.95/3.06 98.77/3.37 98.86/3.45 98.84/3.26 
Average 98.72/3.53 98.85/3.33 98.69/3.49 98.67/3.68  

Table 9 
Accuracy and error for rebar detection system using ResNet-50 and dataset 2.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 97.12/6.57 97.88/6.28 98.03/5.84 97.72/6.56 97.69/6.31 
8 98.18/5.12 98.94/4.45 97.57/5.37 98.03/4.96 98.18/4.96 
16 97.72/5.49 98.03/5.29 98.63/5.49 98.18/6.15 98.14/5.61 
32 97.88/5.23 96.97/9.93 98.48/3.33 99.39/2.36 98.18/5.21 
Average 97.73/5.60 97.96/6.49 98.18/5.01 98.33/5.01  

Table 10 
Accuracy and error for rebar detection system using ResNet-101 and dataset 2.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 97.42/ 
10.63 

99.09/4.21 97.88/6.32 97.42/ 
10.51 

97.95/7.91 

8 97.72/5.12 98.48/3.84 98.48/3.83 98.48/5.05 98.29/4.50 
16 98.33/5.38 98.18/4.13 98.48/4.76 98.33/4.74 98.33/4.75 
32 98.33/4.85 97.72/5.25 95.57/6.33 98.18/6.12 97.45/5.64 
Average 97.95/6.49 98.37/4.36 97.60/5.31 98.10/6.61  

Table 11 
Accuracy and error for rebar detection system using ResNet-152 and dataset 2.         

Batch Size 
Number of Epochs  

Average 
20 40 80 100  

4 98.63/6.14 97.78/7.11 98.03/4.79 98.03/4.94 98.12/5.75 
8 98.48/3.96 98.94/4.27 97.88/4.18 97.72/5.91 98.26/4.58 
16 98.48/4.97 98.94/3.26 98.48/4.49 99.09/2.97 98.75/3.92 
32 98.94/4.33 98.33/4.30 98.33/4.58 97.88/5.78 98.37/4.75 
Average 98.63/4.85 98.50/4.74 98.18/4.51 98.18/4.90  
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necessarfifly flead to correspondfing fincrease fin the accuracy and decrease 

fin system floss/error rate. 

In  the  ffoflflowfing  dfiscussfion,  the  ffocus  wfiflfl  shfifft  towards  the  other 

metrfics  that  have  been  used  to  evafluate  the  proposed  modefl,  whfich 

fincflude  computatfionafl  consfideratfions  fin  terms  off  tfime  taken  towards 

trafinfing off the rebar detectfion system. At the same tfime, there fis aflso a 

need to examfine the effect off CPU and GPU on the overaflfl trafinfing tfime. 

Aflthough, the system fis trafined oflfine fin both finstances. However, fit fis 

fimportant to consfider the trafinfing tfime ffor reafl-tfime systems, as there 

wfiflfl be a need ffor the system to be reguflarfly updated rfight affter data 

coflflectfion ffrom dfifferent brfidges, whfich can aflflow the rebar detectfion 

and. 

flocaflfizatfion  system  to  fimprove  fits  perfformance  and  robustness  to 

dfifferent  brfidges.  The  earflfier  dfiscussfion  regardfing  accuracy/floss  pro-

vfide finfformatfion regardfing the specfific network parameters that flead to 

the optfimafl perfformance off the rebar detectfion system. In thfis dfiscus-

sfion, the tfime constrafint wfiflfl be added to the overaflfl dfiscussfion, whfich 

wfiflfl provfide a baflance and compromfise between fimproved robustness, 

accuracy and reduced computatfionafl constrafints, as thfis system has to 

be practficaflfly fimpflemented on an actuafl robotfic pflatfform wfith flfimfited 

computatfionafl  and  memory  resources,  whfich  need  to  be  effectfivefly 

utfiflfized to ensure that the robot fis abfle to perfform flocaflfizatfion, map-

pfing, navfigatfion, coflflfisfion and obstacfle avofidance, and varfious sensor- 

based  operatfions  ffor  data  coflflectfion  fin  reafl-tfime.  The  detafifls  off  the 

perfformance  off  the  dfifferent  ResNet  archfitecture  networks  have  been 

gfiven fin Ffig. 6-8. Ffigs. 6 and 7 show bar-pflot wfith average, maxfimum 

and mfinfimum vaflues ffor the dfifferent Deep Resfiduafl networks. It can be 

seen ffrom Ffig. 6(a) and 6(b) that the average accuracy off ResNet ffra-

meworks fincreases wfith number off epochs and batch sfizes. The fincrease 

fis steady and varfies ffrom one network archfitecture to another. Sfimfiflar 

resuflts are reveafled ffor findfings fin Ffig. 7(a) and Ffig. 7(b). Overaflfl, the 

fincrease fin the number off epochs flead to fincrease fin the accuracy off the 

rebar detectfion systems. 

It fis fimportant to understand that Increase fin batch sfize and number 

off epochs ffor system trafinfing has dfifferent effect on the dfifferent net-

work  archfitectures.  For  exampfle,  ResNet-18  hfighflfights  very  mfinfimafl 

changes fin the overaflfl accuracy wfith fincrease fin batch sfizes and number 

off epochs. It can be concfluded ffrom Ffigs. 6. 

and 7 that there fis a posfitfive correflatfion between number off flayers 

and  perfformance  off  rebar  detectfion  method,  whfich  fis  measured  here 

usfing accuracy and floss metrfics. However, fin comparfison to the effect off 

number  off  flayers  on  system  accuracy,  the  effects  off  batch  sfize  and 

number  off  epochs  on  accuracy  fis  not  cflear  ffor  some  off  the  network 

archfitectures  examfined.  There  fis  aflso  a  need  to  assess  the  effect  off 

trafinfing  tfime  on  the  number  off  flayers  fin  the  network  archfitectures, 

whfich are trafined usfing dfifferent computatfionafl resources. Ffig. 8(a) and  

Ffig.  8(b)  examfine  the  change  fin  the  trafinfing  tfime  ffor  the  dfifferent 

network  archfitectures  trafined  usfing  CPU  and  GPU  resources  respec-

tfivefly. The specfificatfion ffor system flabeflfled as CPU are gfiven as ffoflflows: 

Ubuntu  16.04  LTS,  32  GB  memory,  350  GB  hard  dfisk,  Intefl ® Core 

fi7–8700 CPU wfith 3.2 GHz cflock speed. Meanwhfifle, the system flabeflfled 

as GPU had the ffoflflowfing hardware and sofftware specfificatfions: Ubuntu 

18.04 LTS, 32 GB memory, 350 GB hard dfisk, Intefl ® Core fi7–8700 CPU 

wfith  3.2  GHz  cflock  speed  and  NVIDIA® GeForce® GTX  1080  TI  Gra-

phficafl Processfing Unfit (GPU). In Ffig. 8(a) and 8(b), the trafinfing tfime 

has  been  specfified  fin  mfinutes.  It  can  be  seen  ffrom Ffig.  8(a)  that  fin-

creasfing number off flayers by a smaflfl ffractfion fleads to greater fincrease 

fin  trafinfing  ffor  the  dfifferent  ResNet  fframeworks,  especfiaflfly  when 

trafinfing  usfing  CPU  aflone.  The  trafinfing  tfime  fincreases  ffrom  fless  than 

1000  mfin  ffor  ResNet-18  to  approxfimatefly  5000  mfin  ffor  ResNet-152 

archfitecture, whfich fis a roughfly five tfimes fincrease fin the trafinfing tfime. 

In comparfison wfith these resuflts, fit can be seen that the system trafined 

on  GPU  take  sfignfificantfly  reduced  tfime  ffor  trafinfing  and  there  fis  a 

margfinafl fincrease fin the trafinfing tfime wfith correspondfing fincrease fin 

the  number  off  flayers  off  the  networked  archfitecture.  There  fis  a  wfide 

dfifference  fin  trafinfing  tfime  between  CPU  and  GPU  ffor  the  dfifferent 

flayered  archfitectures,  whfich  fis  evfident  ffrom  cross-examfinatfion  off  

Ffig. 8(a) and 8(b). 

Tabfle  12 outflfines  the  finafl  resuflts  ffor  the  rebar  detectfion  system, 

whfich  shows  the  system  trafinfing  usfing  the  most  promfisfing  system 

trafinfing  configuratfion,  based  on  the  resuflts  obtafined  fin  the  prevfious 

sectfions. Consequentfly, each off the system fis trafined wfith batch sfize off 

32 and number off epochs equafl to 100. In the finafl evafluatfion off the 

rebar  detectfion  system,  the  totafl  dataset  contafinfing  data  ffrom  nfine 

brfidges fis dfivfided finto sfix brfidges ffor testfing and three brfidges ffor va-

flfidatfion  off  the  system  trafinfing.  The  overaflfl  perfformance  fis  examfined 

usfing  trafinfing  accuracy,  trafinfing  floss,  vaflfidatfion  accuracy,  vaflfidatfion 

floss and trafinfing tfime. It can be seen fin Tabfle 12 that fincrease fin the 

number  off  flayers  off  network  archfitecture  fimproves  the  overaflfl  cap-

abfiflfitfies off the system to accuratefly detect rebar fimages ffrom brfidges 

that have not been prevfiousfly been encountered by the rebar detectfion 

system.  Comparfison  off  ResNet  and  DenseNet  archfitectures  and  thefir 

perfformance gfiven fin Tabfles 1 and 12 respectfivefly reveafl that ResNet- 

152 contafins  an fincreased number off parameters, but provfides better 

perfformance  than  Densenet-161  fin  terms  off  trafinfing  tfime,  vaflfidatfion 

accuracy,  trafinfing  accuracy,  vaflfidatfion  floss  and  trafinfing  floss.  These 

resuflts  are  comparabfle  to  the  state-off-the-art  fin  the  rebar  detectfion 

systems [48] [68] [69] [70] [71]. 

4.3.  Rebar flocaflfizatfion method 

In thfis sectfion, the perfformance off the rebar flocaflfizatfion system wfiflfl 

Ffig. 6. Resuflt ffrom dataset 3 provfidfing finfformatfion regardfing change fin accuracy wfith constant batch sfizes and (a). number off epoch = 20, and (b) number off 

epoch = 100. 
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be dfiscussed. The majorfity off studfies devefloped ffor rebar detectfion and 

flocaflfizatfion fin the past have not emphasfized on the expfloratfion off the 

perfformance ffrom a mufltfi-dfimensfionafl perspectfive. In contrast to those 

studfies, thfis research wfiflfl ensure that the perfformance off the proposed 

rebar detectfion and flocaflfizatfion system fis assessed usfing a wfide-range 

off avafiflabfle technfiques ffor perfformance evafluatfion. The dfiscussfion off 

the  resuflts  ffor  rebar  flocaflfizatfion  wfiflfl  be  dfivfided  finto  two  sectfions, 

namefly  the  quaflfitatfive  and  quantfitatfive  anaflyses.  In  the  quaflfitatfive 

anaflysfis  sectfion,  the  ffocus  wfiflfl  be  towards  examfinfing  the  quaflfitatfive 

aspects off the resuflts, whfich pertafin to the vfisuafl evafluatfion off the way 

fin whfich the rebar flocaflfizatfion process has taken pflace, aflong wfith the 

dfificufltfies  ffaced  towards  the  accurate  flocaflfizatfion  off  the  findfivfiduafl 

rebar fimages. There are varfious ffactors that affect the accurate flocaflfi-

zatfion off the rebar profifles; these ffactors wfiflfl be dfiscussed fin terms off 

the ways fin whfich data ffrom dfifferent brfidge was affected wfith these 

dfifferent ffactors. A vfisuafl apprafisafl off these ffactors wfiflfl provfide finsfights 

that wfiflfl enabfle the fimprovement off the dfifferent processes underflyfing 

rebar flocaflfizatfion. For the quantfitatfive anaflysfis off the resuflts, there wfiflfl 

be a need to examfine the perfformance off the proposed rebar flocaflfiza-

tfion usfing dfifferent statfistficafl measures. 

4.3.1.  Quaflfitatfive anaflysfis 

The quaflfitatfive anaflysfis ffor rebar flocaflfizatfion system deafls wfith the 

examfinatfion off the resuflts obtafined usfing the human vfisuafl system fin 

terms off accuracy and the overaflfl quaflfity off rebar flocaflfizatfion usfing the 

system  proposed  fin  thfis  study.  As,  the  name  suggests,  the  quaflfitatfive 

anaflysfis can vary ffrom one subjectfive vfiewer to another. It fis ffor thfis 

reason  that  cfivfifl  experts (fi.e.  someone  wfith  a  flevefl  off  ffamfiflfiarfity  and 

experfience wfith the use off GPR sensor ffor cfivfifl finffrastructures and de-

tectfion  off  sub-surfface  objects  usfing  GPR  data)  are  requfired  ffor  effec-

tfivefly hfighflfightfing the rebar sfignatures wfithfin GPR fimages and asses-

sfing thefir overaflfl accuracy towards rebar flocaflfizatfion fin GPR fimages.  

Ffig. 9 outflfines resuflts ffor rebar flocaflfizatfion ffrom dfifferent dataset usfing 

green  boundfing  boxes  wfithfin  GPR  fimages  (Ffig.  2 and Ffig.  9 provfide 

Ffig. 7. Resuflt ffrom dataset 3 provfidfing finfformatfion regardfing change fin accuracy wfith constant number off epoch and (a). batch sfize = 4, and (b) batch sfize = 32.  

Ffig. 8. The resuflts ffor dataset 3 provfide finfformatfion regardfing trafinfing tfime wfith respect to the number off flayers ffor whfich the system fis befing trafined ffor the case off 

CPU, and GPU. 

Tabfle 12 

Perfformance off rebar detectfion system ffor dfifferent network archfitectures wfith resuflts ffor trafinfing and vaflfidatfion.        

Network archfitecture Trafinfing Accuracy Trafinfing Loss Vaflfidatfion Accuracy Vaflfidatfion Loss Trafin Tfime (mfinutes)  

ResNet-18 99.23 2.15 80.60 10.2 25 

ResNet-34 99.31 2.03 84.70 8.51 47 

ResNet-50 99.37 1.66 93.20 7.44 75 

ResNet-101 99.37 1.69 94.30 7.05 118 

DesneNet-121 99.23 2.00 96.67 18.9 273 

ResNet-152 99.42 1.51 97.20 5.32 190 

DenseNet-161 99.30 1.89 97.19 11.2 622 
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GPR  data  ffrom  dfifferent  brfidges  fin  dfifferent  order).  The  GPR  scan 

fimages fin Ffig. 9 are smaflfl portfions off the overaflfl GPR scan. 

data obtafined ffrom dfifferent brfidges. It can be seen that each off the 

dataset  ffrom  the  dfifferent  brfidges  contafin  varyfing  flevefls  off  nofise,  re-

flectfion sfignafls and other non-rebar arteffacts. For the case off Ffig. 9(a), 

whfich  contafins  GPR  fimage  ffrom  dataset  1  (fi.e.  Warren  County,  NJ 

brfidge) wfith flfimfited amount off nofise fleadfing to effectfive rebar detec-

tfion  and  flocaflfizatfion.  Sfimfiflar  findfings  are  reveafled  ffor Ffig.  9(b)  con-

tafinfing  GPR  fimage  ffrom  dataset  2  fleadfing  to  accurate  flocaflfizatfion  off 

rebar sfignatures. 

Conversefly, ffor the case off brfidge dataset ffrom Dove Creek brfidge 

and Fordway brfidge, whfich are gfiven fin Ffig. 9(c) and 9(d) respectfivefly, 

Ffig. 9. The resuflt ffor rebar flocaflfizatfion ffor brfidges wfith dfifferent flevefls off dfificuflty fin rebar recognfitfion: (a) Warren County, NJ brfidge fin dataset 1, (b) East Heflena 

brfidge, whfich beflongs to dataset 2 (c) data ffrom Dove Creek Brfidge, (d) data ffrom Fordway Brfidge. 
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there is a considerable level of noise and reflection artefacts, which 
prevented the successful recognition and localization of different rebar 
signatures. At the same time, there is some misclassification of re
flective signals and artefacts as correct rebar signatures. There are re
flective signals in the shape of parabolic shapes that are depicted above 
and below the actual rebar profiles, which has led to the false classifi
cation of some of these reflective signals as actual rebar signatures. Due 
to the noise-related artefacts in the GPR data, there are some instances 
of false negative (the actual rebar profiles that are not accurately de
tected) and false positive (noise and other artefacts that are wrongly 
classified as rebar profile) within the dataset 3. In contrast to the da
taset 1 and 2, the GPR data for bridges in dataset 3 contain considerable 
level of noise, and reflective artefacts, which leads to difficulties in the 
accurate localization of the rebar signals. These types of anomalous 
artefacts are not present in GPR data from dataset 1 and 2. 

4.3.2. Quantitative analysis 
The quantitative analysis deals with the statistical aspect of the 

performance related to the rebar localization system developed in this 
study. A number of different performance evaluation metrics are used 
in the relevant literature for the effective examination of system per
formance. Tables 13-15 outline the results in the form of confusion 
matrix for the rebar localization for dataset 1, 2 and 3 respectively. The 
values in the confusion matrices for TP (True Positive), FP (False Po
sitive), TN (True Negative), and FN (False Negative) are given in the 

form of percentages. The confusion matrices for the different dataset 
highlight the variation for the two classes (i.e. rebar and non-rebar 
classes) between the actual values of the images and the predicted 
values that were reported by the proposed rebar localization method. 
Since, the primary purpose of the rebar localization algorithm is to 
separate rebar signatures, it is for this reason that the TP values are 
equal to zero, as the rebar localization is not used to high non-rebar 
regions, but to separately highlight rebar regions only. It can be seen 
from the results in Tables 13-15 that the proposed rebar localization 
technique has provided a high level of accuracy, due to which, this 
system can be implemented in a practical NDE system for infrastructure 
monitoring and assessment. For the calculation of the different statis
tical properties related to performance evaluation, a number of dif
ferent mathematical formulas have been used. The mathematical detail 
for the different statistical criteria have been outlined in eq. 4–9, which 
are given below: 

= +
+ + +

Accuracy TP TN
TP TN FP FN

( )
( ) (4)  

= +
+ + +

FP FN
TP FP TN FN

Error Rate
( ) (5)  

=
+

TP
TP FP

Recall
( ) (6)  

=
+
TP

TP FN
Precision

( ) (7)  

= × ×
+

Precision Recall
Precision Recall

F1 score 2 ( )
( ) (8)  

=
Area Area
Area Area

IoU
( )
( )

Ground Output

Ground Output (9)  

The statistical criteria for performance evaluation outlined in eq. 
(4)–(8) have been adopted from [110]. Table 16 outlines the compar
ison between the performance of the proposed method in this research 
with state-of-the-art for rebar localization methods in relation to the 
different performance evaluation metrics [48,68,70,71,111,112]. This 
shows that majority of the studies on rebar localization do not put 
enough emphasis on the statistical evaluation of the performance of the 
proposed rebar localization. Unlike prior studies, this research has le
veraged different statistical performance evaluation metrics that are 
widely employed in the field of machine learning. The performance of 
the rebar localization system is comparable or superior to the different 
algorithms discussed in the state-of-the-art. Fig. 10 highlights the pro
cess for calculating Intersection-over-Union (IoU) given in eq. (9), 
which has gained importance in recent years in order to cater to class 
imbalances within classification problems. 

Table 13 
Confusion Matrix for rebar localization using dataset 1.        

Predicted Results    

Class No Rebar Class Rebar 
Actual 

Results 
Class No Rebar TN = 0% FP = 1.48% 
Class Rebar FN = 0.98% TP = 97.50% 

Table 14 
Confusion Matrix for rebar localization using dataset 2.        

Predicted Results    

Class No Rebar Class Rebar 
Actual 

Results 
Class No Rebar TN = 0% FP = 4.25% 
Class Rebar FN = 0.67% TP = 95.30% 

Table 15 
Confusion Matrix for rebar localization using dataset 3.        

Predicted Results    

Class No Rebar Class Rebar 
Actual 

Results 
Class No Rebar TN = 0% FP = 10.23% 
Class Rebar FN = 6.83% TP = 82.93% 

Table 16 
Quantitative performance evaluation of the rebar localization system and comparison with recent studies (red region shows metrics not highlighted in studies). 
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5.  Dfiscussfion 

In  thfis  sectfion,  the  prfime  ffocus  off  the  dfiscussfion  wfiflfl  be  towards 

examfinfing practficafl fissues wfithfin the dfifferent processes ffor rebar de-

tectfion and flocaflfizatfion, 

affect the overaflfl perfformance off the rebar detectfion and flocaflfiza-

tfion system. One off the mafin fissues fis data coflflectfion. Due to the dfiff-

fferent  brfidge  physficafl  propertfies  and  the  envfironmentafl  condfitfions 

durfing the data coflflectfion process, the quaflfity off data can vary drastfi-

caflfly.  It  fis  ffor  thfis  reason  that  robustness  fis  essentfiafl  ffor  fimproved 

perfformance off rebar detectfion system, whfich can be fincreased by fin-

corporatfing  data  ffrom  mufltfipfle  brfidges.  However,  there  are  varfious 

nofise arteffacts and reflectfion sfignafls wfithfin the GPR fimages, whfich are 

sfimfiflar  to  actuafl  rebar  sfignatures.  The  dfifferent  anomaflous  ffeatures, 

(varfious nofise arteffacts that cause cflutterfing and reduce the varfiatfion 

between  fforeground  and  background,  reflectfion  sfignafls  that  mfimfic 

paraboflfic rebar sfignatures, and flevefl off overflap between the adjacent 

rebar profifles) are outflfined fin Ffig. 10. The dfifferentfiatfion off these nofise 

arteffacts  and  reflectfion  sfignafls  ffrom  the  actuafl  rebar  sfignatures  can 

pose  sfignfificant  chaflflenges  towards  accuracy  off  the  proposed  rebar 

detectfion system. There fis aflso an eflement off human-error fin reflatfion to 

the  deveflopment  off  database  ffor  the  rebar  detectfion  towards  dfiffer-

entfiatfing  between  rebar  and  non-rebar  eflements  fin  the  dfifferent  GPR 

fimages.  Another  chaflflenge  ffor  the  deveflopment  off  rebar  detectfion 

system reflates to the finherent flfimfitatfions off the type off flearnfing aflgo-

rfithm used ffor cflassfiffyfing rebar and non-rebar fimages ffrom the orfigfinafl 

GPR data. 

The first fissue that can jeopardfize the accuracy off the rebar flocaflfi-

zatfion reflates to the robustness off the rebar detectfion system towards 

handflfing data ffrom dfifferent brfidges. The bflock-based sflfidfing wfindow 

approach  towards  rebar  flocaflfizatfion  aflso  has  some  drawbacks,  whfich 

can affect fits overaflfl perfformance. For a sflfidfing wfindow off fixed sfize, fit 

can be dfificuflt to accuratefly flocaflfize rebar sfignatures wfithfin the rebar 

detectfion  and  flocaflfizatfion  systems  fin  reafl-worfld  scenarfios. Tabfle  17 

outflfines the data coflflected ffrom dfifferent brfidges and the effect off the 

dfifferent ffactors towards reducfing the overaflfl effectfiveness off the pro-

posed  rebar  detectfion  and  flocaflfizatfion  method.  The  dfifferent  ffactors 

that  can  potentfiaflfly  fimpact  the  overaflfl  perfformance  off  the  rebar  de-

tectfion and flocaflfizatfion system fincflude the ffoflflowfing: 

(fi). Reflectfions  fin  GPR  fimages:  The  parts  off  the  GPR  fimage  that 

contafin paraboflfic. 

reflectfive anomaflfies, whfich are vfisuaflfly sfimfiflar to the actuafl rebar 

sfignatures.  The  ffrequency  off  occurrence  off  these  reflectfion  decreases 

the overaflfl perfformance off the rebar detectfion and flocaflfizatfion system, 

whfich fis one off the reasons ffor the flower perfformance off the proposed 

flocaflfizatfion method on dataset 3. It can be seen that Ffig. 11(a) contafins 

a  hfigher  ffrequency  off  such  reflectfions  at  the  flower-end  off  the  GPR 

fimage,  ffoflflowed  by  reduced  flevefl  off  reflectfions  fin Ffig.  11(c)  at  the 

upper-end  off  the  GPR  fimage.  There  fis  a  flower  presence  off  reflectfion 

observed fin Ffigs. 11(b) and 11(d). 

(fifi). Inter-sfignature separatfion: Another fimportant ffactor fis the flevefl 

off vfisuafl separatfion between the adjacent rebar sfignatures, whfich can 

Ffig. 10. An fiflflustratfion to hfighflfight caflcuflatfion off Intersectfion over Unfion (IoU) wfith exampfles to hfighflfight the dfifference between sufitabfle and unsufitabfle finstances.  

Tabfle 17 

The effects off dfifferent ffactors ffor the GPR data acqufired ffrom the dfifferent brfidges fin thfis research. 
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affect the performance of the rebar detection and localization system. 
The greater the inter- signature separation, the better the ability of the 
rebar detection and localization system towards detecting and loca
lizing the individual rebar signatures. Conversely, reduced inter-sig
nature separation leads to increased overlapping between adjacent 
rebar signatures such that it becomes increasingly challenging for the 
rebar detection and localization system to separately detect and localize 
each parabolic signature. It can be seen in Fig. 11(a) that the inter- 
signature separation is very low. However, for the case of Figs. 11(b),  
11(c) and 11(d), it can be seen that the inter- signature separation is 
high, which leads to improved performance of rebar detection and lo
calization system. 

(iii) Rebar signature brightness The overall performance of the pro
posed rebar detection and localization system is dependent on its ability 
to effectively differentiate between the foreground and background 
regions. This process can be facilitated due to the distinct visual prop
erties (e.g. brightness, parabolic shape and difference in the visual 
elements between foreground and background regions) of the rebar 
signatures. The overall brightness of the rebar profiles in Figs. 11(a),  
11(b) and 11(d) is sufficient to allow effective differentiation between 
foreground and background regions. For the case of Fig. 11(b), the 
reduced brightness of rebar signatures leads to increased challenges for 
rebar detection and localization system. 

(v). Noise: The effect of noise can manifest within GPR images in a 
number of different ways. Increased overlapping between adjacent 
rebar signatures can lead to noise between the overlapping rebar sig
natures, which makes it challenging to separately identify the in
dividual rebar signatures. There can also be blurring effect in the dif
ferent segments of the GPR image, which can reduce the performance of 
rebar detection and localization system. 

6. Conclusion and future works 

This paper has discussed the development of rebar detection and 
localization system, which is based on different supervised (Deep 
Residual Networks) and unsupervised (K-means clustering) learning- 
based techniques. This method has been tested and evaluated using 
novel dataset collected from real bridges that has not been used in any 
of the existing studies. This research provides an examination of the 
research problem with focus towards utilizing Deep Learning frame
works, in particular the Deep Residual Networks (ResNets) and Deep 
Dense Networks (DenseNets). A wide-range of performance evaluation 
metrics were leveraged for the rebar detection and localization system, 
which can provide insights towards developing a robust, real-time 
practical rebar detection and localization system for bridge inspection 
and monitoring. A comparison of proposed method for rebar detection 
and localization with recent research revealed that performance of the 
proposed system is better or at par with state-of-the-art. A number of 
different factors have also been identified, which affect the overall 
performance of the rebar detection and localization systems. 

There are various existing deficiencies in this research area, which 
should be improved by the future researchers in this field. These issues 
have been highlighted in the discussion section. There is a need to 
develop rebar detection and localization systems that are able to better 
differentiate between the noise/reflection artefacts (reflection artefacts 
have the property of being similar in visual characteristics to the actual 
parabolic rebar profiles) and actual rebar signatures within GPR data. 
There is also a need to include data from additional bridges for devel
opment of practical, robust and reliable rebar detection and localization 
systems. In order to further improve on the state-of-the-art, future re
searchers should develop real-time rebar detection and localization 
systems that provide reliable performance that can be deployed within 

Fig. 11. Some of the factors affecting the performance of rebar detection and localization algorithm for the following bridges: (a) data from Fordway bridge, (b) 
Warren County Bridge, (c) Dove Creek bridge, and (d) East Helena Bridge. 
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efficient, real-time bridge inspection robots in the future. 
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