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Abstract—State estimation is a fundamental task in many
engineering fields, and therefore robust nonlinear filtering tech-
niques able to cope with misspecified, uncertain and/or corrupted
models must be designed for real-life applicability. In this
contribution we explore nonlinear Gaussian filtering problems
where measurements may be corrupted by outliers, and propose a
new robust variational-based filtering methodology able to detect
and mitigate their impact. This method generalizes previous
contributions to the case of multiple outlier indicators for both
independent and dependent observation models. An illustrative
example is provided to support the discussion and show the
performance improvement.
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I. INTRODUCTION

STATE estimation is a fundamental task in a plethora

of engineering fields, ranging from robotics, guidance

and navigation systems, to information fusion or time-series

analysis [1]–[3]. For linear dynamic state-space models, the

linear minimum mean square error (MSE) estimate is given

by the well known Kalman filter (KF), which is optimal under

nominal conditions, that is, known system matrices, known
noise statistics and perfect initialization [4]. For nonlinear

systems, the most popular approaches are the family of sigma-

point Gaussian filters (SPGF) under the Gaussian assumption

[5], [6] and sequential Monte Carlo (SMC) methods [7], [8]

for general non-Gaussian models. A fundamental problem of

all these well established techniques is their lack of robustness

in case of model mismatch (i.e., misspecified noise statistics

parameters, unexpected impulsive/heavy-tailed behaviours, or

different types of outliers in the state and/or observations),

which induces a bias and MSE degradation [9], or in high di-

mensional systems [10]. For the latter, a possible solution is to

resort to marginalization strategies (i.e., Rao-Blackwellization)

to reduce the dimension of the space to be explored by the

nonlinear filter [11]. That is the main reason why there is a

continued effort and an actual need to develop robust filtering

techniques for real-life applicability.
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To counteract the lack of knowledge for a correct filter

initialization one can set a distortionless constraint, leading to

the minimum variance distortionless response estimator [12],

[13]. In the context of constrained filtering, a linearly con-

strained KF has been recently proposed to cope with process

and measurement matrices model mismatch [14]. Regarding

the problems related to high-dimensional spaces, a possible

solution is to use a divide and conquer strategy, concept which

has been applied to both SPGF [15] and SMC methods [16], or

the use of Rao-Blackwellization techniques in case of mixed

linear/nonlinear systems [11].

In this contribution, we are interested in nonlinear/Gaussian

filtering problems with outlier (correlated) measurements. That

is, state-space models involving Gaussian distributions with

known parameters under nominal situations (M0) and with

additional outliers under non-nominal conditions (M). More

precisely, we consider models of the form of

xt = f (xt−1) + εt (1)

yt =

{
h (xt) + ηt , under M0

h (xt) + ηt + ot , under M (2)

where xt ∈ R
nx represents hidden (i.e. to be estimated)

state of the system; yt =
(
y
(1)
t , . . . , y

(ny)
t

)�
∈ R

ny is

the corresponding observation, whose elements conditioned

on xt might be correlated; εt ∼ N (0,Qt) is the process

noise; ηt ∼ N (0,Rt) is the measurement noise; ot ∈ R
ny

represents outliers on some or all observations in yt; and

N (μ,Σ) denotes a Gaussian distribution with mean μ and

covariance Σ. The mappings h(·) and f(·) are referred to as

the process and measurement functions. Several solutions can

be found to tackle this problem under different perspectives,

namely:

• Gaussian: consider that the noise statistics are Gaussian

but with unknown covariance matrices. In that case one

can resort to standard innovations-based techniques [17]

or variational Bayesian (VB) inference [18]–[20].

• Non-Gaussian: consider that the noise is heavy-tailed and

obtain a robust filtering solution via VB approximations

[21], [22], or exploiting a hierarchically Gaussian formu-

lation to obtain approximate Gaussian filtering solutions.

For the latter it is possible to use Rao-Blackwellization

[23], conjugate prior analysis [24] or for linear systems

to resort again to VB approximations [25]–[29].

• Nonparametric: consider that the noise distribution is

unknown (in contrast to the previous parametric ap-
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poaches) and resort to nonparametric Bayesian estimation

techniques such as Dirichlet Process Mixtures [30].

• Robust statistics: consider the standard contamination

model arising from robust statistics where a proportion

1 − ε of observations follows a nominal Gaussian noise

distribution, and another proportion 0 ≤ ε ≤ 1 of

observations is contaminated by an unknown distribution

[31]. Within this framework, the KF can be reformulated

as a regression problem and then solved via iterative M-

estimation techniques [32]–[34].

• Detect-and-reject: recently a probabilistic outlier rejection

method was proposed in [35], where the goal is to

have a binary indicator to decide whether a (vector)

measurement arises from the nominal noise distribution

or it is a contaminated observation (i.e., outlier). This

approach relies on VB inference to jointly estimate the

state vector and an indicator which informs whether the

observed data is legitimate or contaminated.

In this contribution we further elaborate on the methodology

proposed in [35] and extend it to more general problems.

One of the main limitations of that work is that even if it

allows treatment of multi-dimensional observations, a scalar

indicator is considered for the entire observation vector, thus

accepting/rejecting in its totality regardless of which entry

is corrupted. In this article, the method is generalized to

the more comprehensive case of multiple outlier indicators,

accounting for both independent and correlated observation

models (a common problem for RADAR processing [36] or

data gathering in sensor networks [37]–[39]).
We first introduce the proposed new framework in Section

II-A for the general case of correlated data, following a VB

approximation. This is then particularized to independent data

in Section II-B, showing that it is indeed a generalization of the

work in [40]. Remarkably, the relation to the original method

[35] where a single scalar indicator was used is detailed in

Section II-C, showing as well the generalization of this contri-

bution. An illustrative example is provided in Section III where

correlated data is used. More precisely, a code-based Global

Navigation Satellite System (GNSS) positioning problem [41]

is considered where double-difference range estimates are

used (causing the observations to become correlated). Finally,

conclusions are discussed in Section IV.

NOTATION

Italic indicates a scalar quantity, as in c; lower case boldface

indicates a column vector quantity, as in a; upper case bold-

face indicates a matrix quantity, as in A. The matrix/vector

transpose is indicated by a superscript (·)� as in A�. The

trace operator is denoted as Tr(A) and 〈A〉 represents the

expectation of A. Eb{g(a)} represents the expectation of g(a)
over the distribution of b, and we use equivalently 〈g(a)〉 for

simplicity where b is omitted. ||b|| A−1 = b�A−1b denotes

the weighted inner norm. The i−th row and j−th column

element of the matrix A is denoted by [A]i,j . The i−th

element of the column vector a will denoted by a(i), a(−i) is

the vector of all elements in a except for a(i), and [A]−i,−j

is defined as a matrix with all elements in matrix A except

for the i-th row and j-th column.

II. VARIATIONAL BAYES KALMAN FILTER FOR OUTLIER

REJECTION IN GENERAL NONLINEAR/GAUSSIAN SYSTEMS

In this section, we describe the proposed Variational Bayes

Kalman filter (VBKF) method for outlier detection and mit-

igation, which generalizes the work in [35] to the case of

multiple outlier indicators and correlated observations. As in

the original method, the new VBKF estimates the probability

of having outliers in the observation at every time step, and

then down-weights that particular observation. Notice that, in

the original algorithm, a single indicator zt was used for all

observations gathered at the same time, yt. In practice, outliers

might affect differently the elements in yt which ignited the

contribution in this paper.

A. Generalized VBKF for Correlated Data

Following the approach in [35] to derive a VBKF algorithm,

the likelihood distribution is modified to incorporate the effect

of an outlier indicator vector zt =
(
z
(1)
t , . . . , z

(ny)
t

)�
∈ Z =

{0, 1}ny , such that z
(i)
t = 0 if there is an outlier on the i-

th (corrupted) element of yt, i.e., y
(i)
t , and z

(i)
t = 1 if the

i-th element is otherwise clean (not corrupted). In the latter,

the nominal Gaussian modeling would apply, whereas in the

former the wrong information brought by y
(i)
t must be down-

weighted. Therefore, the observation model in (2) is modified

to incorporate those indicators, becoming

p (yt|xt, zt) =
1

c(zt)
e
− 1

2 ||yt−h(xt)||2
Σ

−1
t (zt) (3)

where Σt(zt) is

Σt(zt) =

⎡
⎢⎢⎢⎢⎣

σ 1,1/z
(1)
t σ 1, . . . σ 1,ny

σ  ,1 σ  , /z
( )
t . . . σ  ,ny

...
...

. . .
...

σ ny,1 σ ny, . . . σ ny,ny
/z

(ny)
t

⎤
⎥⎥⎥⎥⎦ , (4)

which corresponds to the original matrix Rt with (indepen-

dent) indicators {z(i)t }ny

i=1 dividing its diagonal terms, such that

Rt = Σt(1). The dependence on time of the various elements,

[Rt]i,j � σ i,j , has been omitted for notation convenience.

Contrary to what could be intuitively expected, the division by

zero when an indicator is zero does not cause any numerical

issue. As explained in this section, this is a consequence of

the algorithm operating on the precision matrix. In that case,

it can be shown using basic algebra manipulations that the

term in the exponent of the likelihood can be equivalently

reinterpreted as

||yt − h(xt)|| Σ−1
t (zt)

= ||T (yt − h(xt), zt)|| C−1
t (zt)

(5)

where T (·, zt) : R
ny �→ R

n′
y is an operator that removes

the elements in the input vector corresponding to indicators

valued zero, we define the limiting case T (·,0) = 1. Matrix

C(zt) is a transformation of Σt(zt) where the rows/columns

corresponding to those z
(i)
t = 0 are removed. Special cases

are i) C(1) = Σt(1) = Rt (resulting in the original

model without indicators), and ii) C(0), corresponding to the

absence of measurements and defined as C(0) = I. Therefore,
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the dimension of the resulting multivariate normal variable

(n′
y) is effectively reduced by the amount of zero indicators:

n′
y =

∑ny

i=1 z
(i)
t ≤ ny , with equality when all indicators are

one. Notice that c(zt), the proportionality term in (3), depends

on the indicators and can be readily computed from (5) as

c(zt) =

√
(2π)n

′
y |C(zt)| . (6)

Therefore, the likelihood distribution (3) can be expressed as

N (T (yt, zt); T (h(xt) , zt),C(zt)).
As a consequence of introducing the indicators zt, we need

to estimate those jointly with the state trajectory x0:t. To

accomplish this task in a Bayesian sense, we impose a beta-

Bernoulli hierarchical prior to each individual indicator,

p
(
z
(i)
t |π(i)t

)
=

(
π
(i)
t

)z
(i)
t

(
1− π

(i)
t

)1−z
(i)
t

, (7)

where π
(i)
t is a beta distributed random variable which is

parameterized by (unknown shape hyper-parameters1) e
(i)
0 and

f
(i)
0 ,

p
(
π
(i)
t

)
=

(
π
(i)
t

)e
(i)
0 −1 (

1− π
(i)
t

)f
(i)
0 −1

β
(
e
(i)
0 , f

(i)
0

) , (8)

and β(·, ·) is the beta function. Notice that we are assuming

that the indicators are mutually independent

p(zt,πt) =

ny∏
i=1

p
(
z
(i)
t |π(i)t

)
p
(
π
(i)
t

)
, (9)

as well as independent from the observations since the un-

derlying statistics modeling the outliers do not depend on the

actual values of the data. These assumptions determines the

graphical model shown in Fig. 1.

According to the Variational Inference (VI) principle [42],

[43], to estimate the posterior distribution of the latent vari-

ables θ = {xt,πt, zt}, that is p(θ|y1:t), we can resort to an

auxiliary distribution q(θ) such that:

q (θ) = q (xt) q (πt) q (zt)

= q (xt)

ny∏
i=1

q
(
π
(i)
t

)
q
(
z
(i)
t

)
.

(10)

According to Fig. 1, yt is conditionally independent on πt;

xt is conditionally independent on zt and πt; y1:t−1 is

conditionally independent on zt, πt and yt. Thus, the various

marginal distributions, q(·), are then obtained from the mean-

field VI method applied to the joint distribution

p (xt,πt, zt,y1:t) ∝ p (xt|y1:t−1) p (yt|xt, zt) p(zt,πt),
(11)

such that

ln [q(xt)] = Eπt,zt{ln [p (xt,πt, zt,y1:t)]} , (12)

ln [q(πt)] = Ext,zt
{ln [p (xt,πt, zt,y1:t)]} , (13)

ln [q(zt)] = Eπt,xt
{ln [p (xt,πt, zt,y1:t)]} . (14)

1Notice that a beta distribution is generically defined as p(x;α, γ) ∝
xα−1(1− x)γ−1, where α and γ are two shape parameters. For simplicity
we drop the dependence on α and γ and thus we write p(x).

Figure 1: Graphical model considered in the VBKF algorithm.

Within the Gaussian filtering framework, the first term

p (xt|y1:t−1) on the right-hand side of (11) is a predic-

tive density, which can be approximated as p (xt|y1:t−1) ≈
N (

x̂t|t−1,Pt|t−1

)
, where the corresponding mean and co-

variance are [6]

x̂t|t−1 =

∫
f (xt−1) p (xt−1|y1:t−1) dxt−1, (15)

Pt|t−1 =

∫ (
f (xt−1)− x̂t|t−1

) (
f (xt−1)− x̂t|t−1

)�
× p (xt−1|y1:t−1) dxt−1 +Qt, (16)

with x̂t−1|t−1 and Pt−1|t−1 the mean and covariance of

the filtering posterior at t − 1, that is p (xt−1|y1:t−1) ≈
N (

x̂t−1|t−1,Pt−1|t−1

)
. In the sequel we derive the update

of the terms in (10).

1) Update q (xt): According to the mean-field VI method,

q (xt) is obtained from (12) as

ln(p(xt,π, zt,y1:t)) = −1

2
||xt − x̂t|t−1|| P−1

t|t−1

− 1

2
||yt − h(xt)|| Σ−1

t (zt)
+ κ

(17)

ln(q(xt)) = Eπt,zt
{ln [p (xt,πt, zt,y1:t)]} (18)

= −1

2
||xt − x̂t|t−1|| P−1

t|t−1

(19)

− 1

2

∑
z∈Z

q(zt = z) ||yt − h(xt)|| Σ−1
t (zt)

+ κ

= −1

2
||xt − x̂t|t−1|| P−1

t|t−1

(20)

− 1

2
(yt − h(xt))

�〈Σ−1
t (zt)〉(yt − h(xt)) + κ,

where the term κ gathers the logarithm of those factors that

are constant in the expression, and z represents one of the 2ny

possible combinations of {z(i)t }ny

i=1 binary values; the set of

all those possible values is given by Z = {0, 1}ny such that

|Z| = 2ny ; The expectation of Σ−1
t (zt) with respect to q(zt)

is defined as

〈Σ−1
t (zt)〉 =

∑
z∈Z

Σ−1
t (z) q(zt = z) , (21)

and q(zt = z) =
ny∏
i=1

q(z
(i)
t = z(i)).
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Thus, the estimation of q(xt) is given by

q (xt) ∝ exp
(
− 1

2
||xt − x̂t|t−1|| P−1

t|t−1

− 1

2
||yt − h (xt) || 〈Σ−1

t (zt)〉
) (22)

Therefore, after manipulating (22), we can identify that

q (xt) ≈ N (
x̂t|t,Pt|t

)
, with

x̂t|t = x̂t|t−1 +Kt

(
yt − ŷt|t−1

)
, (23)

Pt|t = Pt|t−1 −Kt

(
St + 〈Σ−1

t (zt)〉−1
)
K�

t , (24)

Kt = Ct

(
St + 〈Σ−1

t (zt)〉−1
)−1

, (25)

where

ŷt|t−1 =

∫
h (xt) p (xt|y1:t−1) dxt (26)

St =

∫ (
h (xt)− ŷt|t−1

) (
h (xt)− ŷt|t−1

)�
× p (xt|y1:t−1) dxt (27)

Ct =

∫ (
xt − x̂t|t−1

) (
h (xt)− yt|t−1

)�
p (xt|y1:t−1) dxt

(28)

where the integrals can be solved analytically in linear systems

(as in the celebrated KF) or through numerical integration

in nonlinear systems where closed-form solutions are not

possible (approach taken in the case of SPGFs).
2) Update q (zt): Recall that due to the mutually indepen-

dence assumption, we operate on the marginal distributions

q(z
(i)
t ) in (10). Each is obtained following (14) as

ln
[
q(z

(i)
t )

]
= E

πt,xt,z
(−i)
t

{ln [p (xt,πt, zt,y1:t)]}
= E

π
(i)
t ,xt,z

(−i)
t

{ln [p (xt,πt, zt,y1:t)]} ,
(29)

where notice that the expectation is over {π(i)t ,xt, z
(−i)
t }.

For the sake of convenience, we reorganize the measurement

vector such that the i-th element is swap at the end of the

vector,

yt,i =

(
y
(−i)
t

y
(i)
t

)
, hi(xt) =

(
h(−i)(xt)
h(i)(xt)

)
, (30)

and the corresponding covariance matrix (4) is then reorga-

nized accordingly as

Σt,i(zt) =

[
Σ−i,−i Σ−i,i

Σi,−i σ i,i/z
(i)
t

]
. (31)

Operating on the precision matrix Λt,i = Σt,i(zt)
−1 and using

the Schur complement, this can be expressed as,

Λt,i =

[
Λ−i,−i Λ−i,i

Λi,−i λi,i

]

=

⎡
⎣ M−i −M−iΣ−i,i

z
(i)
t

σ2
i,i

− z
(i)
t

σ2
i,i
Σi,−iM−i Mi

⎤
⎦ (32)

where

M−i =

(
Σ−i,−i −Σ−i,i

z
(i)
t

σ i,i
Σi,−i

)−1

, (33)

Mi =

(
σ i,i

z
(i)
t

−Σi,−iΣ
−1
−i,−iΣ−i,i

)−1

. (34)

Applying the matrix inversion lemma, (33) can be further

extended as,

M−i = Σ−1
−i,−i +

Σ−1
−i,−iΣi,−iΣ−i,iΣ

−1
−i,−i

σ2
i,i

z
(i)
t

−Σi,−iΣ
−1
−i,−iΣ−i,i

. (35)

Notice that for independently-distributed observations, the

cross-covariance in Σt(zt) is zero and Mi = z
(i)
t /σ i,i. For

correlated data, z
(i)
t is part of a fraction which would make it

tedious in terms of computing the Bernoulli probabilities for

the indicator. Fortunately, z
(i)
t is a binary variable z

(i)
t = {0, 1}

which allows the following equivalent expression

Mi =
z
(i)
t

σ i,i −Σi,−iΣ
−1
−i,−iΣ−i,i

, (36)

which yields to identical result as in (34) regardless of the

value z
(i)
t takes. Thus, if z

(i)
t = 1, the multivariative Gaussian

with all ny observations would be obtained; if z
(i)
t = 0, the

corresponding diagonal elements and off-diagonal elements

in precision matrix would be 0 according to (32)-(34), and

the influence of those contaminated observations would be

removed according to (5), thus only keeping observations

deemed clean in a multivariate Gaussian of reduced dimension

n′
y . In order to model q(z

(i)
t ) in the form of a Bernoulli

distribution, we use

ln [p (xt,πt, zt,y1:t)] = −1

2
||yt,i − hi (xt) || Σt,i(zt)−1

+ z
(i)
t ln[π

(i)
t ] +

(
1− z

(i)
t

)
ln[1− π

(i)
t ]− ln[c(zt)] + κ ,

in

ln
[
q(z

(i)
t )

]
= E

π
(i)
t ,xt,z

(−i)
t

{ln [p (xt,πt, zt,y1:t)]}

= E
π
(i)
t ,xt,z

(−i)
t

{
−1

2
||y(−i)

t − h(−i) (xt) || Λ−i,−i

−
(
y
(−i)
t − h(−i) (xt)

)�
Λ−i,i

(
y
(i)
t − h(i) (xt)

)

− 1

2
||y(i)t − h(i) (xt) || λi,i

+ z
(i)
t ln[π

(i)
t ]

+
(
1− z

(i)
t

)
ln[1− π

(i)
t ]− 0.5z

(i)
t ln[2π]

− 0.5z
(i)
t ln |C([z

(−i)
t , z

(i)
t = 1])|

− 0.5(1− z
(i)
t ) ln |C([z

(−i)
t , z

(i)
t = 0])| +κ}

(37)

where in expanding the terms due to the normalizing constant

(6) we factorized the determinant of C (cf. (5)) as

|C(zt)| = |C([z
(−i)
t , z

(i)
t = 1])|z(i)

t |C([z
(−i)
t , z

(i)
t = 0])|(1−z

(i)
t )

(38)
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After additional manipulations (cf. Appendix A) we obtain

q
(
z
(i)
t

)
= exp{−0.5z

(i)
t Tr (B−i,−i〈Λt1〉)

− 0.5z
(i)
t Tr (−Bi,−i〈Λt 〉)

− 0.5z
(i)
t Tr (−Bi,−i〈Λt3〉)− 0.5z

(i)
t Tr (bi,i〈λt4〉)

+ z
(i)
t 〈ln[π(i)t ]〉+

(
1− z

(i)
t

)
〈ln[1− π

(i)
t ]〉

− 0.5z
(i)
t ln[2π]

− 0.5z
(i)
t 〈ln |C([z

(−i)
t , z

(i)
t = 1])|〉

− 0.5(1− z
(i)
t )〈ln |C([z

(−i)
t , z

(i)
t = 0])|〉+ κ}

(39)

where B−i,−i, Bi,−i, and bi,i are given by

B−i,−i =

∫ (
y
(−i)
t − h(−i) (xt)

)

×
(
y
(−i)
t − h(−i) (xt)

)�
q (xt) dxt, (40)

Bi,−i =

∫ (
y
(i)
t − h(i) (xt)

)

×
(
y
(−i)
t − h(−i) (xt)

)�
q (xt) dxt, (41)

bi,i =

∫ (
y
(i)
t − h(i) (xt)

)(
y
(i)
t − h(i) (xt)

)�
q (xt) dxt,

and the expectations (with respect to q(z
(−i)
t )) are

〈Λt1〉 =
∑

z(−i)∈Z−i

Σ−1
−i,−iΣ−i,iΣi,−iΣ

−1
−i,−i

σ i,i −Σi,−iΣ
−1
−i,−iΣ−i,i

× q(z
(−i)
t = z(−i)) (42)

〈Λt 〉 = 2

σ i,i

∑
z(−i)∈Z−i

Σ−1
−i,−iΣ−i,iq(z

(−i)
t = z(−i)) (43)

〈Λt3〉 =
∑

z(−i)∈Z−i

2Σ−1
−i,−iΣ−i,iΣi,−iΣ

−1
−i,−iΣ−i,i

σ4i,i − σ i,iΣi,−iΣ
−1
−i,−iΣ−i,i

× q(z
(−i)
t = z(−i)) (44)

〈λt4〉 =
∑

z(−i)∈Z−i

1

σ i,i −Σi,−iΣ
−1
−i,−iΣ−i,i

q(z
(−i)
t = z(−i))

(45)

where the sum over z(−i) is indeed the sum over all possible

2ny−1 values for the vector z(−i), whose associated probabil-

ity is q(z
(−i)
t = z(−i)). The set of all those possible values

is given by Z−i = {0, 1}ny−1 such that |Z−i| = 2ny−1.

Notice that z
(−i)
t appears in the diagonal elements of Σ−i,−i,

dependence that we omitted for the sake of simplicity.

Finally, we can identify from q
(
z
(i)
t

)
that z

(i)
t is a

Bernoulli-distributed random variable, whose distribution can

be characterized as

p
(
z
(i)
t = 1

)
∝ exp{−0.5 tr (B−i,−i〈Λt1〉)
− 0.5 Tr (Bi,−i〈Λt 〉)− 0.5 Tr (Bi,−i〈Λt3〉)
− 0.5 Tr (bi,i〈λt4〉) + 〈ln[π(i)t ]〉 − 0.5 ln[2π]

−0.5 〈ln |C([z
(−i)
t , z

(i)
t = 1])|〉} (46)

p
(
z
(i)
t = 0

)
∝ exp{〈ln[1− π

(i)
t ]〉

−0.5〈ln |C([z
(−i)
t , z

(i)
t = 0])|〉} . (47)

Using (46) and (47), the expectation of a Bernoulli z
(i)
t can

be readily computed as

〈z(i)t 〉 =
p
(
z
(i)
t = 1

)

p
(
z
(i)
t = 1

)
+ p

(
z
(i)
t = 0

) , (48)

a quantity that would be required in updating q
(
π
(i)
t

)
next.

3) Update q
(
π
(i)
t

)
: Similar to the derivation in [35], [40],

q
(
π
(i)
t

)
is updated for each indicator as,

q
(
π
(i)
t

)
∝ exp

(
e
(i)
t ln[π

(i)
t ] + f

(i)
t ln[1− π

(i)
t ]

)
(49)

where

e
(i)
t = e0 + 〈z(i)t 〉 (50)

f
(i)
t = f0 + 1− 〈z(i)t 〉 (51)

such that f0 and e0 are two initial hyper-parameters for

distribution π
(i)
t , assumed the same for all i.

4) Practical aspects: At this point, we would like to

comment on an algorithmic choice that should be taken in

order to make the proposed filter practical. More precisely, the

algorithm requires the evaluation of multivariate expectations

〈Σ−1
t (zt)〉, 〈Λt1〉, 〈Λt 〉, 〈Λt3〉, and 〈λt1〉 which are of the

form of Ezt
{·} or E

z
(−i)
t

{·}. These expectations over discrete

random variables involve sums over their 2ny and 2ny−1 pos-

sible combinations, respectively. Additionally, the expectation

requires solving a matrix inverse (with cubic complexity on

the dimension) for each of the combinations, resulting on

O(n3y2
ny ) and O((ny − 1)32ny−1) computational complex-

ities2, respectively. As a consequence, it is impractical to

exactly evaluate the expectation when ny grows. Alternatively,

we propose two practical methods based on the knowledge and

factorization of q(zt = z) =
ny∏
i=1

q(z
(i)
t = z(i)).

First, we propose a maximization approach in which we

select the value of each {z(i)t }ny

i=1 as the one with highest prob-

ability. That is for all i of interest, if p(z
(i)
t = 1) > p(z

(i)
t = 0)

then z
(i)
t = 1 is selected, and z

(i)
t = 0 otherwise.

Secondly, a sampling approach is also proposed in which a

binary value for z
(i)
t is drawn from q(z

(i)
t ) with probabilities

p(z
(i)
t = 1) and p(z

(i)
t = 0). This is done independently

2The asymptotic time complexity of an algorithm can be interpreted as
the number of required basic operations, denoted as O(d) with d being
the number of operations. A function p(d) is O(g(d)) if and only if
there exist a real, positive constant C and a positive integer d0 such that
p(d) ≤ Cg(d), ∀d ≥ d0.
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for all the i indicators of interest (depending on the target

expectation). In general, this independent sampling can be

done N times, such that

Ezt{g(zt)} ≈ 1

N

N∑
n=1

g(zt,n) (52)

E
z
(−i)
t

{g(z(−i)
t,n )} ≈ 1

N

N∑
n=1

g(z
(−i)
t,n ) (53)

where g(·) is an arbitrary function of the corresponding

random variable; and the samples are independently sampled

from zt,n ∼ q(zt) and z
(−i)
t,n ∼ q(z

(−i)
t ).

Finally, similarly to [35], since the VI process detailed here

is an iterative procedure, in practice we need to specify a stop

criteria. For instance, one could compare two consecutive state

estimates (i.e. through the norm of the difference) and choose

an arbitrary small threshold (e.g. 10−9 in the simulations of

this paper) below which the algorithm is said to converge.

B. Particular Case I: Independent Data and Multiple Outlier
Indicators

As mentioned at the beginning of this section, the General-

ized VBKF method described earlier can be particularized to

obtain other methods available in the literature. Mostly, this

involves a different arrangement of the latent variables θ and

the corresponding auxiliary distributions used in approximat-

ing q (θ) through the VI principle.

Particularly, we notice that the variant in [40], where an

indicator associate to each element in yt was considered under

the assumption that data was uncorrelated, can be derived from

the general VBKF. In this case, θ = {xt,πt, zt} remains the

same, with the update of q(πt) as in Section II-A3, since

the model assumed for those hyper-parameters is the same

in both methods. However, in [40] the assumption that all

measurements are uncorrelated was used in order to simplify

the model and the corresponding method’s derivation. Thus,

the covariance matrix Σt(zt) in (4) becomes:

Σt(zt) =

⎡
⎢⎢⎢⎢⎣

σ 1,1/z
(1)
t 0 . . . 0

0 σ  , /z
( )
t . . . 0

...
...

. . .
...

0 0 . . . σ ny,ny
/z

(ny)
t

⎤
⎥⎥⎥⎥⎦ ,

(54)

and the measurement model in (3) can be further derived as:

p (yt|xt, zt) = N (T (yt, zt); T (h(xt) , zt),C(zt))

=

ny∏
i=1

N
(
T (y

(i)
t , z

(i)
t ); T (h(i)(xt), z

(i)
t ), [C(z

(i)
t )]i,i

)

=

ny∏
i=1

N
(
y
(i)
t ;h(i) (xt) , [Rt]i,i

)z
(i)
t

,

(55)

Notice that with Rt diagonal, c(zt) =
√

(2π)n
′
y |C(zt)| =∏ny

i=1

√
(2π)z

(i)
t [C(z

(i)
t )]i,i =

∏ny

i=1 c(z
(i)
t ). The normaliza-

tion factor c(z
(i)
t ) being the standard one for a univariate

Gaussian distribution, yielding to the last equality in (55). This

simplification circumvents the general algorithm complexity

and computation but degrades the performance of the VBKF

when correlated data is observed.

According to (12), with the same model for zt and its

parameter πt, q(xt) is updated as:

q (xt) ∝ exp
(
−1

2
||xt − x̂t|t−1|| P−1

t|t−1

− 〈Zt〉
2

||yt − h (xt) || R−1
t

) (56)

where Zt is a diagonal matrix with zt as its elements, Zt =

diag
(
z
(1)
t , . . . , z

(ny)
t

)
.

Using (29), the update of q(z
(i)
t ) would be:

q
(
z
(i)
t

)
∝ exp

(
− 0.5z

(i)
t

(
b
(i)
t /σ i,i

)
+ z

(i)
t

〈
ln[π

(i)
t ]

〉
+

(
1− z

(i)
t

) 〈
ln[1− π

(i)
t ]

〉) (57)

where b
(i)
t is given by

b
(i)
t =

∫ (
y
(i)
t − h(i) (xt)

)(
y
(i)
t − h(i) (xt)

)�
q (xt) dxt

(58)

Thus, the update of q(xt), q(zt) and q(πt) in this particular

case would be the same as in [40], showing the generalization

of the method proposed in this contribution.

C. Particular Case II: Scalar Outlier Indicator

Here we notice that the seminal method in [35] can be

readily obtained from the Generalized VBKF. In this case,

θ = {xt, πt, zt} since a single indicator is used for the entire

vector yt, thus accepting or rejecting the entire observation

vector. Assuming a similar model for πt, the update of q(πt)
will be as in Section II-A3 with exception that just one indi-

cator is required. However, the likelihood distribution in (3)

will change in this case since the quality of all measurements

is modeled by a binary scalar indicator zt:

Σt(zt) =

⎡
⎢⎢⎢⎣
σ 1,1/zt σ 1, /zt . . . σ 1,ny

/zt
σ  ,1/zt σ  , /zt . . . σ  ,ny

/zt
...

...
. . .

...

σ ny,1/zt σ ny, /zt . . . σ ny,ny
/zt

⎤
⎥⎥⎥⎦ , (59)

thus the measurement model in (3) becomes

p (yt|xt, zt) = N (T (yt, zt); T (h(xt) , zt),C(zt))

= N (yt;h(xt) ,Rt/zt)

= N (yt;h(xt) ,Rt)
zt ,

(60)

where notice that Rt can be colored. In the general notation,

zt = zt · 1, and since c(zt) =
√

(2π)nyzt |Rt| then: c(1) =√
(2π)ny |Rt| and c(0) = 1, yielding to the last equality in

(60). According to (22), the update of q(xt) is:

q (xt) ∝ exp
(
− 1

2
||xt − x̂t|t−1|| P−1

t|t−1

− 〈zt〉
2

||yt − h (xt) || R−1
t

) (61)
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and q(zt) is updated according to (14):

q (zt) ∝ exp{−0.5zt Tr
(
BtR

−1
t

)
+ zt〈ln[πt]〉+ (1− zt) 〈ln[1− πt]〉}

(62)

where Bt is given by

Bt =

∫
(yt − h (xt)) (yt − h (xt))

�
q (xt) dxt (63)

=

[
B−i,−i B−i,i

Bi,−i bi,i

]
, (64)

the intuition being that when a single indicator is used, the

covariance Σt,i(zt)
−1 in (37) becomes Σt(zt) = Rt/zt.

Therefore, we have that

ln [q(zt)] = Eπt,xt{ln [p (xt, πt, zt,y1:t)]}
= Eπt,xt

{
−zt

2
||yt − h (xt) || R−1

t

+zt ln[πt] + (1− zt) ln[1− πt]}+ κ, (65)

matching the result in the original article, resulting in the same

q(zt) update. Thus, the update of q(xt), q(zt) and q(πt) in

this particular case would be the same as in [35]. Remarkably,

the original VBKF in [35] can deal with both correlated and

uncorrelated data. However, since it accepts or rejects the

entire observation vector jointly, it is potentially inefficient

in dealing with independent outliers among the elements in

yt whereby a single outlier can corrupt the observed vector.

In practice, the VBKF would only operate using predictions,

thus eventually losing track of the estimated state even when

a single element is contaminated.

III. ILLUSTRATIVE EXAMPLE: GPS LOCALIZATION

In order to put into practice the new generalized VBKF and

show the performance improvement with respect to previous

contributions, we consider an illustrative positioning example

where by construction the data is correlated.

A. GPS RTK Problem Formulation

Real Time Kinematic (RTK) is a well-known differential

GNSS-based positioning procedure, for which the unknown

location of a vehicle is determined with respect to a georefer-

enced base station [44]. Since satellite observations are influ-

enced by atmospheric delays and receiver clock offset effects,

RTK applies the so-called observation double-differencing to

eliminate the nuisance parameters. Double-differencing in-

volve taking differences between the observations at the target

and the base station, and then with respect to a reference

satellite [45]. Fig. 2 provides a pictorial example of the agents

involved in the RTK positioning: i = 1, . . . , ns satellites and

r (for reference) satellite, the base station and the trajectory

of the moving vehicle over time.

Hereinafter, we refer to observations as the result of double-

differencing the original measurements. The observation co-

variance matrix becomes then fully populated, since the noise

of the pivot satellite is present across all observations. RTK

implies the use of code and carrier phase observations, with

the later introducing an additional estimation complexity, since

a number of integer ambiguities is to be found. Given the fact

Figure 2: Illustration of the RTK positioning system: the

trajectory followed by the vehicle (in yellow) depicted with

the dashed black line. The localization problem is resolved

with respect to the position of the base station combining the

observations of the satellites between the base and vehicle

receivers.

that ambiguities are related to wavelength, double difference

observations needs to be calculated among satellites observa-

tions in the same frequency band. In each frequency band,

we have ñs satellite observation and ñy double difference

observations, ñy = ñs − 1. Without loss of generality and for

the sake of simplicity, this example disregards the exploitation

of carrier phase observations. The dynamical constant velocity

model for RTK is written as[
pt

vt

]
︸︷︷︸
xt

=

[
I ΔtI
0 I

]
︸ ︷︷ ︸

Ft

[
pt−1

vt−1

]
︸ ︷︷ ︸
xt−1

+εt (66)

where pt and vt are the three-dimensional vectors of position

and velocity, respectively, xt is the state to be inferred and εt
is a zero-mean Gaussian noise vector with known covariance

Qt. Having the base station as center of the coordinate frame

and the positions of the satellites and the vehicle w.r.t. to the

base, the observation model for the i-th measurement is

y
(i)
t =

∥∥∥p(i)t − pt

∥∥∥−
∥∥∥p(r)t − pt

∥∥∥−
∥∥∥p(i)t

∥∥∥+
∥∥∥p(r)t

∥∥∥︸ ︷︷ ︸
h(i)(xt)

+ n
(i)
t + n

(i)
b,t + n

(r)
t + n

(r)
b,t ,︸ ︷︷ ︸

η
(i)
t

(67)

where the superscript in p indicates the satellite and the

subscript b in the noise n refers to the noise observed at the

base station receiver. Notice that, the observation model (67) is

nonlinear and the observations’ noise vector ηt becomes inter-

correlated, since the noise for the reference satellite on the

base and moving receiver is common for the ny observations.

A linearized version of (67) subject to outliers is

yt =

{
Gtpt + ηt , under M0

Gtpt + ηt + ot , under M (68)

where yt = (y
(1)
t , . . . , y

(ny)
t )� ∈ R

ny is the vector of double

difference (DD) observations for the ny tracked satellites
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Figure 3: Sky plot of the tracked satellites from GPS L1 and

Galileo E1 for the simulation.

Table I: Parameters for the Markov Chain model

Initial probability for NLOS state 0.7
Initial probability for LOS state 0.3

Transition probability of staying in NLOS state 0.9
Transition probability from NLOS state to LOS state 0.1

Transition probability of staying in LOS state 0.3
Transition probability from LOS state to NLOS state 0.7

(plus the reference one) and Gt ∈ R
ny×3 is the geometry

matrix containing the unit line-of-sight steering vectors to the

satellites, as in [45, Ch. 26]. The observation noise ηt has a

fully populated covariance matrix Rt ∈ R
ny×ny , as described

in [46]. Multipath and non-line-of-sight (NLOS) effects lead

to gross biases in the range observations to the satellites. Such

errors are collected in vector ot, following the initial model (2)

to generate the data while the method is derived considering

the alternative model (3).

B. Simulation Setup

The root mean square error (RMSE) over a trajectory and

the percentage of misdetected outliers are taken as measures of

performance. The RMSEs are obtained from 50 independent

Monte Carlo runs for a 100 seconds trajectory, sampled at

Δt = 1 s, while 500 Monte Carlo runs were used in the

experiments comparing generalized VBKF with N = {1, 10}
to show the tiny difference between them. The present sim-

ulation, simulated in MATLAB, considers ns = 12 tracked

satellites at a specific time, distributed according to a realistic

sky plot, as shown in Fig. 3. In practice, satellites belonging

to different constellations (i.e., and depending on the satellite

generation) may broadcast a different number of signals at

different frequency bands. In the simulation, we consider

ny = 2ns − 4 DD observations from a dual-band receiver.

Outliers (i.e., NLOS) are simulated based on a Markov Chain

model according to [47] with parameters shown in Table I. The

motivation of such model is to account for the time correlation

of multipath (and other spatially correlated errors), in contrast

to the less realistic case of assuming totally independent

statistics between consecutive time instances.

Notice that from t = 10s, outliers are always injected into

both pivot satellite observations (i.e., at the base station and the

corresponding one at the receiver side), and to the observations

for 6 out of the ny = 20 DD observations, therefore outliers

are correlated. Besides, since outliers are simulated from the

corresponding carrier-to-noise density ratio (C/N0 in dB-Hz),

which is a common measure in GNSS receivers, the random

outlier amplitudes are in general correlated to the noise power,

which is also modelled from the C/N0 as [48],

σ =
c · 3.444 · 10−4√

C/N0BTobs

, (69)

where σ is the standard deviation for the observation noise, c is

the speed of light, B = 2 MHz is the receiver bandwidth, and

Tobs = 20 ms is the coherent integration time. We consider the

performance comparison of different methods: 1) a standard

Extended Kalman Filtering (EKF) that does not account for

possible outliers; 2) the original VBKF [35] using a single

outlier indicator; 3) a VBKF with independent outlier indi-

cators (see Sec. II-B); 4) the generalized VBKF, considering

two different values N = {1, 10}, which are used to estimate

(52)-(53); 5) an ideal EKF that accounts for all outliers;

6) a Cubature KF [6] with measurement gating by threshold

equalling to triple of standard deviation of innovations [49];

and 7) a Cubature KF with measurement gating by threshold

equalling to standard deviation of innovations. Note that, when

computation of expectations is needed in these methods, we

used numerical integration based on Gaussian cubature rules.

It is worth noting that the original VBKF [35] is taken as

the performance benchmark. In the original article [35], this

method was already shown to provide improved performances

with respect to other robust state-of-the-art filtering techniques

(i.e., IGG-based cubature information filter (CIF), Huber-based

CIF, Hampel-based CIF, and Student’s t-based robust cubature

KF), therefore we do not include the comparison to such

techniques in the results.

C. Results

When assessing the performance of new robust filtering

techniques, and because of the optimality versus robustness

trade-off, two important points are: i) the so-called loss of

efficiency (LoE) [31], that is, the loss in performance with

respect to the optimal method under nominal conditions; and

ii) under non-nominal conditions, the performance gain with

respect to the optimal solution that does not accounting for a

possible model mismatch, that is, outliers in our case.

1) Loss of efficiency: the LoE is assessed by comparing

the performance of the different methods under nominal line-

of-sight (LOS) conditions, i.e., without outliers. The LoE

results are shown in Fig. 4. It can be seen that the general

VBKF method (i.e., regardless of N ) exhibits a pretty similar

performance compared to the standard EKF and measurement

gating method in terms of RMSE, therefore the proposed

method has a very low LoE. The original VBKF with a

single scalar outlier indicator shows a minor degradation at

low C/N0. In contrast, the VBKF with independent outlier

indicators performance is degraded compared to the EKF,
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that is, it exhibits a larger LoE. This is mainly induced by

the model mismatch, because this method does not take into

account that observations are correlated. The uncorrelation of

the observations is the main assumption for its derivation (see

Sec. II-B).

Figure 4: RMSE performance of the VBKF with independent

outliers indicator, general VBKF, standard EKF and VBKF

with single outlier indicator as a function of C/N0 in the

LOS scenario.

2) Rob stness: to assess the robustness of the proposed

approach we show the performance of the different methods

under non-nominal NLOS conditions, i.e., with outliers, in

Fig. 5. The mean RMSE is given as a function of the C/N0.

When comparing both robust methods to the standard EKF,

it is obvious that while the latter is severely influenced by

outliers the robust solutions are able to cope with outliers

and improve the overall performance. Notice that the general

VBKF improves the performance obtained with the inde-

pendent outlier indicator VBKF. Such performance gain is

expected to be even larger in applications where the correlation

among observations increases. The performance of the original

VBKF is not shown in Fig. 5 because it is substantially

worse than the rest of methods (i.e., orders of magnitude

larger). The gating method works reasonably well against

outliers. Although, there are still meter level degradations

compared with the VBKF method in certain configurations, for

instance when the signal-to-noise ratio is small. Additionally,

in other applications where data becomes more correlated, it is

expected that the generalized VBKF will outperform the gating

approach more clearly. On the other hand, the measurement

gating strategy features a much lighter implementation, which

could suffice in certain applications where data correlation is

not severe.

The original VBKF with a single outlier indicator (as in Sec.

II-C and [35]) was also simulated, exhibiting a RMSE of large

magnitude. The reason being that the original VBKF, once it

determines that the observation contains an outlier, discards the

complete observation vector. In outlier-rich situations, as the

NLOS case simulated here, this implies that few observations

are indeed used in the KF update. To further support this

statement and provide a meaningful comparison, Fig. 6 shows

the empirical CDF of position estimation error of all VBKF

versions as well as the standard EKF and measurement gating

method under C/N0 = 30 dB-Hz in NLOS case. It is clear

that the VBKF with a single outlier indicator presents much

larger errors compared to the other methods, even with respect

Figure 5: RMSE performance of the VBKF with independent

outlier indicators, general VBKF and standard EKF as a

function of C/N0 in the NLOS scenario.

to the standard EKF, due to the fact the it mostly relies on KF

predictions as outliers are being detected.

Figure 6: Empirical CDF of position estimation error per-

formance of the VBKF with independent outlier indicators,

general VBKF, standard EKF and the VBKF with single

outlier indicator in logarithmic scale.

Again, notice that the performance of the generalized VBKF

in terms of RMSE for different values of N is very similar.

This behaviour can be explained by the fact that the estimation

of q(z
(i)
t ) is likely to converge to either 0 or 1 when the general

VBKF works properly. This can be further supported by the

results in Fig. 7 and Fig. 8 (along with an inner plot showing a

zoom for the lower values) for the case N = 1. In the iterative

VBKF process, the estimation of q(zt) experiences a transient

regime and a convergence regime, which we investigate in the

aforementioned figures, respectively. Whereas in the transient

regime there are some values in the open interval (0, 1), when

the algorithm converged, almost all the values are concentrated

in 0 and 1. In any case, the algorithm correctly estimates q(zt)
most of the times. As a consequence, when approximating

(52)-(53) through sampling, one sample is typically sufficient

(in this particular application). Similar results were obtained

with N = 10, which are omitted for the sake of clarity.
3) O tlier Misdetection: we notice from the previous anal-

ysis on the estimation of q(zt) that not all values are either

0 and 1, and that there is some probability associated with

values in (0, 1). Therefore, this uncertainty may lead to an

outlier misdetection (i.e., contaminated observations which are

regarded as clean ones). The percentage of misdetected outliers

for the different methods (i.e., not for the standard EKF which

do not allow to detect outliers) is shown. In this case we see
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Figure 7: Histogram for q(zt) in the transient regime.

Figure 8: Histogram for q(zt) in the convergence regime.

Figure 9: Misdetection performance for the VBKF with inde-

pendent outlier indicator and the general VBKF method as a

function of C/N0 in the NLOS scenario.

that increasing the value N from 1 to 10 within the general

VBKF reduces the misdetection, because this value controls

the accuracy of the expectation approximation in (52)-(53).

Therefore, increasing N leads to a lower misdetection and in

turn lower RMSE. Regardless of N , it is shown that taking into

account the correlated observations in the filter formulation as

expected improves the results compared to the independent

outlier indicator VBKF. That is one of the main reasons of

the performance loss in terms of RMSE previously shown in

Fig. 9. Notice that the VBKF with scalar outlier indicator is

not shown for the similar reasons as in Fig. 5.

IV. CONCLUSION

This article presented a generalization of the Variational

Bayes Kalman filter (VBKF) for correlated measurement

models. The VBKF acts as a method for outlier detection

and mitigation in the observations in filtering problems. The

original method, proposed in [35], considered a single indi-

cator for the vector-valued observations, therefore rejecting

the entire observation vector when a single element in it is

faulty. The present contribution generalized VBKF to having

multiple indicators (one per observation) and considering the

more comprehensive case of correlated observations. Practical

implementation solutions are proposed to avoid the otherwise

growing complexity with the observations’ dimension. The

method is validated on a precise-positioning problem, namely

the popular real-time kinematic (RTK) procedure, where cor-

related data appears. Results in this context show the benefits

of the generalized VBKF method, as compared to non-robust

filtering or the single-indicator VBKF.

APPENDIX A

COMPUTATION OF q(z
(i)
t )

To keep q(z
(i)
t ) Bernoulli distributed, (32) is substituted in

(37) and the equation is derived as:
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Following the transform from (34) to (36), we can write that:
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in the first term as a normalization coefficient and thus remove

it from the previous equation to further obtain that:
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Taking advantage of the properties of the trace of matrix,
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With z
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t being a scalar we can finally obtain:
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[7] P. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo,
and J. Mı́guez, “Particle filtering,” IEEE Signal Processing Magazine,
vol. 140, no. 2, pp. 19–38, Sept. 2003.

[8] A. Doucet, N. D. Freitas, and N. Gordon, Eds., Sequential Monte Carlo
methods in practice. Springer, 2001.
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