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Abstract—State estimation is a fundamental task in many
engineering fields, and therefore robust nonlinear filtering tech-
niques able to cope with misspecified, uncertain and/or corrupted
models must be designed for real-life applicability. In this
contribution we explore nonlinear Gaussian filtering problems
where measurements may be corrupted by outliers, and propose a
new robust variational-based filtering methodology able to detect
and mitigate their impact. This method generalizes previous
contributions to the case of multiple outlier indicators for both
independent and dependent observation models. An illustrative
example is provided to support the discussion and show the
performance improvement.
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I. INTRODUCTION

TATE estimation is a fundamental task in a plethora

of engineering fields, ranging from robotics, guidance
and navigation systems, to information fusion or time-series
analysis [1]-[3]. For linear dynamic state-space models, the
linear minimum mean square error (MSE) estimate is given
by the well known Kalman filter (KF), which is optimal under
nominal conditions, that is, known system matrices, known
noise statistics and perfect initialization [4]. For nonlinear
systems, the most popular approaches are the family of sigma-
point Gaussian filters (SPGF) under the Gaussian assumption
[5], [6] and sequential Monte Carlo (SMC) methods [7], [8]
for general non-Gaussian models. A fundamental problem of
all these well established techniques is their lack of robustness
in case of model mismatch (i.e., misspecified noise statistics
parameters, unexpected impulsive/heavy-tailed behaviours, or
different types of outliers in the state and/or observations),
which induces a bias and MSE degradation [9], or in high di-
mensional systems [10]. For the latter, a possible solution is to
resort to marginalization strategies (i.e., Rao-Blackwellization)
to reduce the dimension of the space to be explored by the
nonlinear filter [11]. That is the main reason why there is a
continued effort and an actual need to develop robust filtering
techniques for real-life applicability.
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To counteract the lack of knowledge for a correct filter
initialization one can set a distortionless constraint, leading to
the minimum variance distortionless response estimator [12],
[13]. In the context of constrained filtering, a linearly con-
strained KF has been recently proposed to cope with process
and measurement matrices model mismatch [14]. Regarding
the problems related to high-dimensional spaces, a possible
solution is to use a divide and conquer strategy, concept which
has been applied to both SPGF [15] and SMC methods [16], or
the use of Rao-Blackwellization techniques in case of mixed
linear/nonlinear systems [11].

In this contribution, we are interested in nonlinear/Gaussian
filtering problems with outlier (correlated) measurements. That
is, state-space models involving Gaussian distributions with
known parameters under nominal situations (M) and with
additional outliers under non-nominal conditions (M). More
precisely, we consider models of the form of

= f(xem1) + €& (1)
| h(z)+m , under M @)
Y=\ n (xy) + 1 + 04 , under M

where x; € R”+ represents hidden (i.e. to be estimated)

state of the system; y; = (yt(l),... R™ is
the corresponding observation, whose elements conditioned
on x; might be correlated; e, ~ N (0,Q;) is the process
noise; 17; ~ N (0,R;) is the measurement noise; o, € R™
represents outliers on some or all observations in vy;; and
N(p,X) denotes a Gaussian distribution with mean g and
covariance 3. The mappings h(-) and f(-) are referred to as
the process and measurement functions. Several solutions can
be found to tackle this problem under different perspectives,
namely:

by
) e

o Gaussian: consider that the noise statistics are Gaussian
but with unknown covariance matrices. In that case one
can resort to standard innovations-based techniques [17]
or variational Bayesian (VB) inference [18]-[20].

o Non-Gaussian: consider that the noise is heavy-tailed and
obtain a robust filtering solution via VB approximations
[21], [22], or exploiting a hierarchically Gaussian formu-
lation to obtain approximate Gaussian filtering solutions.
For the latter it is possible to use Rao-Blackwellization
[23], conjugate prior analysis [24] or for linear systems
to resort again to VB approximations [25]-[29].

o Nonparametric: consider that the noise distribution is
unknown (in contrast to the previous parametric ap-
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poaches) and resort to nonparametric Bayesian estimation
techniques such as Dirichlet Process Mixtures [30].

o Robust statistics: consider the standard contamination
model arising from robust statistics where a proportion
1 — € of observations follows a nominal Gaussian noise
distribution, and another proportion 0 < ¢ < 1 of
observations is contaminated by an unknown distribution
[31]. Within this framework, the KF can be reformulated
as a regression problem and then solved via iterative M-
estimation techniques [32]-[34].

o Detect-and-reject: recently a probabilistic outlier rejection
method was proposed in [35], where the goal is to
have a binary indicator to decide whether a (vector)
measurement arises from the nominal noise distribution
or it is a contaminated observation (i.e., outlier). This
approach relies on VB inference to jointly estimate the
state vector and an indicator which informs whether the
observed data is legitimate or contaminated.

In this contribution we further elaborate on the methodology
proposed in [35] and extend it to more general problems.
One of the main limitations of that work is that even if it
allows treatment of multi-dimensional observations, a scalar
indicator is considered for the entire observation vector, thus
accepting/rejecting in its totality regardless of which entry
is corrupted. In this article, the method is generalized to
the more comprehensive case of multiple outlier indicators,
accounting for both independent and correlated observation
models (a common problem for RADAR processing [36] or
data gathering in sensor networks [37]-[39]).

We first introduce the proposed new framework in Section
II-A for the general case of correlated data, following a VB
approximation. This is then particularized to independent data
in Section II-B, showing that it is indeed a generalization of the
work in [40]. Remarkably, the relation to the original method
[35] where a single scalar indicator was used is detailed in
Section II-C, showing as well the generalization of this contri-
bution. An illustrative example is provided in Section III where
correlated data is used. More precisely, a code-based Global
Navigation Satellite System (GNSS) positioning problem [41]
is considered where double-difference range estimates are
used (causing the observations to become correlated). Finally,
conclusions are discussed in Section IV.

NOTATION

Ttalic indicates a scalar quantity, as in c; lower case boldface
indicates a column vector quantity, as in a; upper case bold-
face indicates a matrix quantity, as in A. The matrix/vector
transpose is indicated by a superscript (-)" as in AT. The
trace operator is denoted as Tr(A) and (A) represents the
expectation of A. E,{g(a)} represents the expectation of g(a)
over the distribution of b, and we use equivalently (g(a)) for
simplicity where b is omitted. ||b[|3 -, = b" A~'b denotes
the weighted inner norm. The i—th row and j—th column
element of the matrix A is denoted by [A]; ;. The i—th
element of the column vector a will denoted by a(¥), a(~? is
the vector of all elements in a except for a(¥), and [A]_; _;
is defined as a matrix with all elements in matrix A except
for the i-th row and j-th column.

IT. VARIATIONAL BAYES KALMAN FILTER FOR OUTLIER
REJECTION IN GENERAL NONLINEAR/GAUSSIAN SYSTEMS

In this section, we describe the proposed Variational Bayes
Kalman filter (VBKF) method for outlier detection and mit-
igation, which generalizes the work in [35] to the case of
multiple outlier indicators and correlated observations. As in
the original method, the new VBKF estimates the probability
of having outliers in the observation at every time step, and
then down-weights that particular observation. Notice that, in
the original algorithm, a single indicator z; was used for all
observations gathered at the same time, y;. In practice, outliers
might affect differently the elements in y; which ignited the
contribution in this paper.

A. Generalized VBKF for Correlated Data

Following the approach in [35] to derive a VBKF algorithm,
the likelihood distribution is modified to incorporate the effect

&
of an outlier indicator vector z; = (z§1)7 AU zt(n”)) € Z=

{0,1}"v, such that zfl) = 0 if there is an outlier on the i-
th (corrupted) element of y, i.e., ygi), and th‘) = 1 if the
i-th element is otherwise clean (not corrupted). In the latter,
the nominal Gaussian modeling would apply, whereas in the
former the wrong information brought by y,gl) must be down-
weighted. Therefore, the observation model in (2) is modified
to incorporate those indicators, becoming

1 — 2
L 7 ORI

T, 2¢) = t) 3
P (Yt e, 2¢) (=) 3)
where Xy (z;) is
1
U%,l/zt( ) ‘7%,2( : U%,ny
2 2 2 2
02,1 ‘72,2/Zt 2,
Zt(zt) = " ) (4)
2 2 2 (ny)
Uny,l U7zy,2 ce U7Ly,ny /Zt

which corresponds to the original matrix R; with (indepen-
dent) indicators {zfz)}ﬁl dividing its diagonal terms, such that
R; = 3;(1). The dependence on time of the various elements,
[Ri];; = o7, has been omitted for notation convenience.
Contrary to what could be intuitively expected, the division by
zero when an indicator is zero does not cause any numerical
issue. As explained in this section, this is a consequence of
the algorithm operating on the precision matrix. In that case,
it can be shown using basic algebra manipulations that the
term in the exponent of the likelihood can be equivalently
reinterpreted as

e~ h(@)ll ) = 1T~ h(@e), 2015, ©)

where T (-, 2¢) : R™ — R™ is an operator that removes
the elements in the input vector corresponding to indicators
valued zero, we define the limiting case 7 (-,0) = 1. Matrix
C(z;) is a transformation of 3;(z;) where the rows/columns
corresponding to those z,gl) = 0 are removed. Special cases
are 1) C(1) = X;(1) = R (resulting in the original
model without indicators), and i7) C(0), corresponding to the
absence of measurements and defined as C(0) = I. Therefore,
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the dimension of the resulting multivariate normal variable

(n ) is effectively reduced by the amount of zero indicators:

n; = Z:”’l zt( 2 < n,, with equality when all indicators are

one. Notice that ¢(z;), the proportionality term in (3), depends
on the indicators and can be readily computed from (5) as

c(zt) = 1/ (2m)"|C(21)] - (6)

Therefore, the likelihood distribution (3) can be expressed as
N (T (1, z0); T (h(®1) , z1), C(21)).

As a consequence of introducing the indicators z;, we need
to estimate those jointly with the state trajectory xg.;. To
accomplish this task in a Bayesian sense, we impose a beta-
Bernoulli hierarchical prior to each individual indicator,

o N 1ma®
p(2070) = (=) (1= L@

where wt(i) is a beta distributed random variable which is

parameterized by (unknown shape hyper-parameters') eéi) and

2
-1 N P
0) (”t( )) (1 - W(Z)) O
P (”t ) - () () ’
A
and S(-,-) is the beta function. Notice that we are assuming
that the indicators are mutually independent

Hp( T)p() . O

as well as independent from the observations since the un-
derlying statistics modeling the outliers do not depend on the
actual values of the data. These assumptions determines the
graphical model shown in Fig. 1.

According to the Variational Inference (VI) principle [42],
[43], to estimate the posterior distribution of the latent vari-
ables 0 = {x;, ¢, 2z, }, that is p(0|y;..), we can resort to an
auxiliary distribution ¢(@) such that:

q(0) = q(x:) q (1) q(21)

= q(z) ﬁ a (") a (7).
i=1

According to Fig. 1, y; is conditionally independent on 7r;
x; is conditionally independent on z; and 7 Yi.4—1 1S
conditionally independent on z;, 7; and y,. Thus, the various
marginal distributions, ¢(-), are then obtained from the mean-
field VI method applied to the joint distribution

®)

Zt7 Trt

(10)

(e, T, 20, Y1) X D (T |Y1:0—1) P (Ye|@e, 2¢) p(2¢, T0),

(11

such that
In[g(z¢)] = En, 2 {In [p (@0, 70, 20, y10) ]}, (12)
In[q(m)] = Ea, z A [p (T4, 7, 20, y1:e)]} - (13)
In(q¢(z)] = En, w. {1 [p (24, 7¢, 20, Y1:0)]} - (14)

"Notice that a beta distribution is generically defined as p(z;c,v) o
x*71(1 — )Y, where o and  are two shape parameters. For simplicity
we drop the dependence on o and ~ and thus we write p(x).

yliygl) . yin“) ‘v_‘_ygl). yiny)vzyt
ki (- A (I
Zl‘_bzgl)... zgny) 22)51). . zlfny)_zt
! (. A (I
771‘_7#)... Wgny)_: ‘__7rt(1)... Wgny)jﬂ't
\/

€0, f 0
Figure 1: Graphical model considered in the VBKF algorithm.

Within the Gaussian filtering framework, the first term
p(x¢|y1.4—1) on the right-hand side of (11) is a predic-
tive density, which can be approximated as p (¢|y1.t—1) =~
J\/’(s&t|t,1,1%|t,1), where the corresponding mean and co-
variance are [6]

j:t|t—1 = /f(wt—l)p(wt—l\ylzt—l)d-’Et—l,

Pt|t—1 = / (f (wtfl) - 53:&|t—1) (f (thfl) - i’t\t—l)—r
(16)

15)

X p(Te—1|Yr:e—1) dxr—1 + Qy,

with &, 1,1 and P;_;);_; the mean and covariance of
the filtering posterior at ¢ — 1, that is p(@i—1|y1.4-1) =~
N(C&t—ut—uPt—ut—l)- In the sequel we derive the update
of the terms in (10).

1) Update q(x;): According to the mean-field VI method,
q (x;) is obtained from (12) as

In(p(xe, 7, 2, y1:4)) = —*H"Et — Ty 1HP 1
fet (17)
- QHyt - h’(mt)Hzt—l(zt) + K
In(g(x)) = Eg, z{In[p(x, 7, 20,914)]} (18)
1 .
= —§||£Bt - wt|t71||§3t\7r17 (19)

1
- 3 Z q(ze = 2) |y — h(mtmzz;l(zt) T

z€EZ
1
= —gllee = @yallp (20)
1
= 5= h@)) (27 (20w — hl@) + 5,

where the term x gathers the logarithm of those factors that
are constant in the expressmn and z represents one of the 2™
possible combinations of {zt )}”’/ binary values; the set of
all those possible values is given by Z = {0,1}"v such that
|Z| = 2™v; The expectation of ;' (z;) with respect to q(z;)

is defined as
)=y ="
zEZ

2 =2)= Hﬂ(zéi) =2,

=z), 2y

and ¢(
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Thus, the estimation of ¢(x¢) is given by
1 . 2
q(xy) exp( - §||£Bt - wt|t71||PtTt,171

h (@) H?z:l(zt»

Therefore, after manipulating (22), we can identify that

. (22)
- §||yt -

q(mt) %N (:i;t\hf’ﬂt)’ with
Tyjp = Typp—1 + K (yt - ﬁt\t—l) ) (23)
P, = Pt|t—1 - K; (St + <2;1(Zt)>_1) K/, 24)
=G (Si+ (3727 (25)
where
yt\t—l = /h () p(Te|yr:e—1) dey (26)
Si= [ (h(@) ~ ) ()~ i)
X p(xe|yr:e—1) doey (27

C; = / (wt - ﬁ;t\tfl) (h (x1) — ’!Jt|t71)Tp(th|y1:t—1) dxz;
(28)

where the integrals can be solved analytically in linear systems
(as in the celebrated KF) or through numerical integration
in nonlinear systems where closed-form solutions are not
possible (approach taken in the case of SPGFs).

2) Update q(z;): Recall that due to the mutually indepen-
dence assumption, we operate on the marginal distributions
q(zt(')) in (10). Each is obtained following (14) as

In [ (2 (Z))} L {In[p (¢, ¢, 20, Y1:0)]}

(29)
=E () (—1) {IHLP(Q%JTt,Zt,yl:t)}}a

where notice that the expectation is over {7rt ,wt,zt 1)}
For the sake of convenience, we reorganize the measurement
vector such that the ¢-th element is swap at the end of the

vector,
h(—=9)

and the corresponding covariance matrix (4) is then reorga-
nized accordingly as

Sa(z) = Y Xy 31)
ti\2t) = Ei,—i Ufl/zt(t)
Operating on the precision matrix A, ; = 3 ; (zt)’1 and using
the Schur complement, this can be expressed as,
A o A
A ;= 1,—1% 7,1
b [ Q=i Aig ]
M, Mz ] Y
= L)
— X M-, M;
where
o -
M—z - <2—1 —1 E—zz 2 2i,—i> ) (33)
i

-1
2 R L.z_m) . (34)

7
= (

(@)

2t

Applying the matrix inversion lemma, (33) can be further
extended as,

IR SR Y HND SEE) Y
M_; =37, ;+— ’ (35)
& — Ei,fiz:g,_ixfi,i
Notice that for independently-distributed observations, the

cross-covariance in X;(z;) is zero and M; = zt(i) /o?,. For
correlated data, zii) is part of a fraction which would make it
tedious in terms of computing the Bernoulli probab111t1es for
the indicator. Fortunately, zt( Disa binary variable zt ={0,1}

which allows the following equivalent expression
o
012714 - 21‘,—12:;_

M,; = (36)

)
iz—i,i

which yields to identical result as in (34) regardless of the
value zt(z) takes. Thus, if zt(l) = 1, the multivariative Gaussian
with all n, observations would be obtained; if zt(z) = 0, the
corresponding diagonal elements and off-diagonal elements
in precision matrix would be 0 according to (32)-(34), and
the influence of those contaminated observations would be
removed according to (5), thus only keeping observations
deemed clean in a multivariate Gaussian of reduced dimension
ny. In order to model q(zt(z)) in the form of a Bernoulli
distribution, we use

hi () 1%, (201
+ Zt(i) hl[ﬂ't(i)] + (1 — Zti)) Infl — Wt(i)] —Infe(ze)] + 5,

In[p (@, m, 20, y14)] = —%llym -
in
In {q(z,gi))} =B,
=B 0 4, 200 {—|y( Y hD () A,
_ (yt(*i) _ p=d (wt)) A (yt(l) _ ) (wt)>
Sl O @) R, + = )
+ (1 - z;)) 1 — 7?] — 0.5z In[27]

—0.52" ln|C (2079 20 = 1))
—0.5(1 — 2N In|C([z7, 2 = 0])] +x}

e {In[p (x4, 7, 2, y1:4)]}

(37

where in expanding the terms due to the normalizing constant
(6) we factorized the determinant of C (cf. (5)) as

L —q i _ @)
)7 e[z, 27 = o)) =)
(38)

IC(z)| = |C([2{ ", 2" =
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After additional manipulations (cf. Appendix A) we obtain

q (z,@) = exp{70.5zt(i) Tr (B_;,—i(Au))
— 0.5 Tr (=B _i(Aw))
— 052" Tr (= By _i(Ays)) — 0.525 Tr (b (\,,))
+ 2w + (1 - 27) nft - =)
—0. 52,5 2 In[27]

— 0.5z mC((z77, 2 = 1))

~0.5(1 — 2 In |C([z ", 2" = 0])]) + K}
(39)
where B_; _;, B; _;, and b; ; are given by
B_;_;= / (y,f_“ —hY (mt))
. . T
(w7 = (@) q(@0) da, (40)
B = / (ygl) —hl (wt))
. ) T
< (w7 =R @) q(w) day, (1)

B (wt)> ! q (xy) dey,

bi; = / (yt(” —h® (a:t)) (yt( ) _

(=)

and the expectations (with respect to ¢(z; ")) are
DI YERND YN Y

A _ —1, ) —i,—1

(Aa)= D, o~ %, Bl %,

z(—’i)ez 1,1

xq((“—z<% (42)
2 _ » »
M) == Y B =200 @)
z z(*i)EZﬂ'
(Ags) = Z P> VS YEEED YN Yt YRR
N _z<—i>ez 04 _02 i, =i X ; —i X
xq(z V= z7) (44)
1 (=0 _
Aig) = 2 (=9
(Aea) HZ U%i_zi_iixj_il”q( )
z v 6271 ? ’ ’ ’
(45)

where the sum over z(~9 is indeed the sum over all possible
27v~1 values for the vector z(~%), whose associated probabil-
ity is q(zg_i) = 2(=9). The set of all those possible values
is given by Z_; = {0,1}"v~! such that |Z_;| = 2"~
Notice that zt(ﬂ) appears in the diagonal elements of 3 _; _;,

dependence that we omitted for the sake of simplicity.

Finally, we can identify from ¢ (z( )> that zﬁi) is a
Bernoulli-distributed random variable, whose distribution can

5
be characterized as
P (ztm = 1) ox exp{—0.5 tr (B_; _i{A¢1))
— 05 Tr (Bi,—i<At2>) — 0 5Tr (Bi,—i<At3>)
— 0.5 Tr (b; s (\,,)) + (In[r{"]) — 0.5 In[27]
~05 (In[C([z ", 2" = 1))} (46)
P (zt(l) = 0) x exp{(In[l — 7r,@]>
~0.5(n |C([= ", 2" = 0)))} - (47)
Using (46) and (47), the expectation of a Bernoulli z( R
be readily computed as
(@) P (Zf@ - 1)
(%) = (48)

p(a =1)+p (4" =0)
a quantity that would be required in updating ¢ (w,gi)) next.
3) Update g (wgi)): Similar to the derivation in [35], [40],

q (Tl't(i)> is updated for each indicator as,

q (ﬂgi)) X exp (egi) ln[wgi)] + ft(i) In[1 — w,ﬁ“}) (49)
where .

el = eo + (") (50)

£ = fo+1— () (51)

such that fy and e are two initial hyper-parameters for
distribution w,E”, assumed the same for all i.

4) Practical aspects: At this point, we would like to
comment on an algorithmic choice that should be taken in
order to make the proposed filter practical. More precisely, the
algorithm requires the evaluation of multivariate expectations
(71(z)), (As1), (Asa), (Ayz), and (\;1) which are of the
form of E,,{-} or E e o {-}. These expectations over dlscrete
random variables 1nv01ve sums over their 2" and 2"v~! pos-
sible combinations, respectively. Additionally, the expectation
requires solving a matrix inverse (with cubic complexity on
the dimension) for each of the combinations, resulting on
O(nj2"™) and O((n, — 1)*2"v~!) computational complex-
ities>, respectively. As a consequence, it is impractical to
exactly evaluate the expectation when n, grows. Alternatively,
we propose two practical methods based on the knowledge and

H a(z" = =),

First, we propose a max1mlzat10n approach in which we
select the value of each {zf } ., as the one with highest prob-
ability. That is for all 4 of interest, if p(z, @ = =1)> p(zt(z) 0)
then zt( D =1is selected, and zt( = 0 otherwise.

Secondly, a sam thg approach is also g)roposed in which a
binary value for 2, is drawn from g( zt with probabilities

= 0). This is done independently

factorization of ¢(z; = z) =

p(z” = 1) and p(z;”

>The asymptotic time complexity of an algorithm can be interpreted as
the number of required basic operations, denoted as O(d) with d being
the number of operations. A function p(d) is O(g(d)) if and only if
there exist a real, positive constant C' and a positive integer do such that
p(d) < Cg(d), Vd > do.
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for all the ¢ indicators of interest (depending on the target
expectation). In general, this independent sampling can be
done N times, such that

1 N
E. (g0} ~ 1 D 9(zin)

(52)
n=1
) 1 N .
E {9z} ~ 5 2 a(=in") (53)
n=1

where g(-) is an arbitrary function of the corresponding
random variable; and the samples are independently sampled
from z;,, ~ q(2;) and zt(;f) ~q(z7).

Finally, similarly to [35], since the VI process detailed here
is an iterative procedure, in practice we need to specify a stop
criteria. For instance, one could compare two consecutive state
estimates (i.e. through the norm of the difference) and choose
an arbitrary small threshold (e.g. 1079 in the simulations of
this paper) below which the algorithm is said to converge.

B. Particular Case I: Independent Data and Multiple Outlier
Indicators

As mentioned at the beginning of this section, the General-
ized VBKF method described earlier can be particularized to
obtain other methods available in the literature. Mostly, this
involves a different arrangement of the latent variables 6 and
the corresponding auxiliary distributions used in approximat-
ing ¢ (0) through the VI principle.

Particularly, we notice that the variant in [40], where an
indicator associate to each element in y; was considered under
the assumption that data was uncorrelated, can be derived from
the general VBKF. In this case, 6 = {x;, 7, 2; } remains the
same, with the update of ¢(7;) as in Section II-A3, since
the model assumed for those hyper-parameters is the same
in both methods. However, in [40] the assumption that all
measurements are uncorrelated was used in order to simplify
the model and the corresponding method’s derivation. Thus,
the covariance matrix 3;(z;) in (4) becomes:

U%l/zt(l) 0 o 0
0 o35/2 ... 0
Et(zt) = . 7 . . . )
0 0 02 A

(54)
and the measurement model in (3) can be further derived as:

p(Yilxe, 20) = N (T (ye, 20); T (h(zt) , 2¢), C(21))

-1 (T, A7) T @), 247, [C)i. ) (55)
ny . Zii)

fHN<yt(z);h(z) () [Rt]“) 7
=1

Notice that with R; diagonal, c(z;) = 1/(27)"|C(z;)| =

T, (27T)Zt(i) [C(zt(z))]ZZ = I c(z,gi)). The normaliza-
tion factor c(zt(i)) being the standard one for a univariate
Gaussian distribution, yielding to the last equality in (55). This

simplification circumvents the general algorithm complexity
and computation but degrades the performance of the VBKF
when correlated data is observed.

According to (12), with the same model for z; and its
parameter 7r;, g(a¢) is updated as:

1 .
q(x) x exp(—§||wt - wt\t—l”?yl
<Z> tit—1 (56)
llye = b (20|12,

where Z; is a diagonal matrix with z; as its elements, Z; =
dia ( (1) ("y))
glz /.., % .

Using (29), the update of q(zt(i)) would be:
q (Zt(z)) x eXp( - 0'5Zti) (bgi)/aii) + Zzgi)<ln[7r§i)}>

+ (1 — th‘)) (In[1 — ng)]>)

where by) is given by

A . , T
b = / (yt(z) _p® (xt)) (yt(l) _p® (:vt)) q () d,
(58)
Thus, the update of q(x:), ¢(z:) and ¢(7;) in this particular
case would be the same as in [40], showing the generalization
of the method proposed in this contribution.

(57)

C. PFarticular Case II: Scalar Outlier Indicator

Here we notice that the seminal method in [35] can be
readily obtained from the Generalized VBKF. In this case,
0 = {x;, 7, 2} since a single indicator is used for the entire
vector vy, thus accepting or rejecting the entire observation
vector. Assuming a similar model for 7, the update of g(m)
will be as in Section II-A3 with exception that just one indi-
cator is required. However, the likelihood distribution in (3)
will change in this case since the guality of all measurements
is modeled by a binary scalar indicator z;:

O'il/Zt 0'%’2/2} O'%ny/zt
0’%,1/2& U%,z/zt a%,ny /2t
Xi(z) = . , (59
O',iy’l/zt 0',,21?!’2/2} 02117n7//2t
thus the measurement model in (3) becomes
p (yt|$t7 Zt) =N (T(yta Zt); T(h(wt) 7Zt)’ C(Zt))
=N (ye; h(xy) , R/ 2) (60)

=N (ys; h(x:) , Ry,

where notice that R, can be colored. In the general notation,
zi = z - 1, and since ¢(z) = /(2m)™* | Ry then: ¢(1) =

V(2m)™|R;| and ¢(0) = 1, yielding to the last equality in
(60). According to (22), the update of g(x;) is:

1 N
a(@:) o< exp( = gller = @yealfd
(=) " ©b

— Tl — k(@)% )
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and ¢(z) is updated according to (14):
q(2:) < exp{—0.52; Tr (B, R; ")
+ z(In[m]) + (1 — z;) (In[1 — m])}

where B; is given by

B, - / (e — b (@) (e — b (@) g (@) der  (63)

_ | B-i—i B_i;
B; _; bi.i ’
the intuition being that when a single indicator is used, the

covariance X ;(z;)"1 in (37) becomes X;(z) = R;/z.
Therefore, we have that

(62)

(64)

In[q(z)] = Em@t{ln [P (¢, T, 26, Y1:0)] }
zZ
= Enya { ~ 2 llye = h (@) |31

+zeIn[me] + (1 — z¢) In[1 — ]} + &, (65)

matching the result in the original article, resulting in the same
q(z¢) update. Thus, the update of g(x;), ¢(z¢) and ¢(m;) in
this particular case would be the same as in [35]. Remarkably,
the original VBKF in [35] can deal with both correlated and
uncorrelated data. However, since it accepts or rejects the
entire observation vector jointly, it is potentially inefficient
in dealing with independent outliers among the elements in
y; whereby a single outlier can corrupt the observed vector.
In practice, the VBKF would only operate using predictions,
thus eventually losing track of the estimated state even when
a single element is contaminated.

III. ILLUSTRATIVE EXAMPLE: GPS LOCALIZATION

In order to put into practice the new generalized VBKF and
show the performance improvement with respect to previous
contributions, we consider an illustrative positioning example
where by construction the data is correlated.

A. GPS RTK Problem Formulation

Real Time Kinematic (RTK) is a well-known differential
GNSS-based positioning procedure, for which the unknown
location of a vehicle is determined with respect to a georefer-
enced base station [44]. Since satellite observations are influ-
enced by atmospheric delays and receiver clock offset effects,
RTK applies the so-called observation double-differencing to
eliminate the nuisance parameters. Double-differencing in-
volve taking differences between the observations at the target
and the base station, and then with respect to a reference
satellite [45]. Fig. 2 provides a pictorial example of the agents
involved in the RTK positioning: ¢ = 1,...,n, satellites and
r (for reference) satellite, the base station and the trajectory
of the moving vehicle over time.

Hereinafter, we refer to observations as the result of double-
differencing the original measurements. The observation co-
variance matrix becomes then fully populated, since the noise
of the pivot satellite is present across all observations. RTK
implies the use of code and carrier phase observations, with
the later introducing an additional estimation complexity, since
a number of integer ambiguities is to be found. Given the fact

Figure 2: Illustration of the RTK positioning system: the
trajectory followed by the vehicle (in yellow) depicted with
the dashed black line. The localization problem is resolved
with respect to the position of the base station combining the
observations of the satellites between the base and vehicle
receivers.

that ambiguities are related to wavelength, double difference
observations needs to be calculated among satellites observa-
tions in the same frequency band. In each frequency band,
we have 7, satellite observation and 7, double difference
observations, 7, = N5 — 1. Without loss of generality and for
the sake of simplicity, this example disregards the exploitation
of carrier phase observations. The dynamical constant velocity
model for RTK is written as

pe| (I AtIl |pi
ol
—  ———

Tt F{,

(66)

Ti—1

where p; and v; are the three-dimensional vectors of position
and velocity, respectively, x; is the state to be inferred and €,
is a zero-mean Gaussian noise vector with known covariance
Q.. Having the base station as center of the coordinate frame
and the positions of the satellites and the vehicle w.r.t. to the
base, the observation model for the i-th measurement is

p|| + ||p”

|

) = ‘pf) —ptH — ’p§” —ptH - ‘

h() (z4)

() (4) (r) (r)

+n; 7 + Myt +ny’ + Myt (67)

Re
where the superscript in p indicates the satellite and the
subscript b in the noise n refers to the noise observed at the
base station receiver. Notice that, the observation model (67) is
nonlinear and the observations’ noise vector 7; becomes inter-
correlated, since the noise for the reference satellite on the
base and moving receiver is common for the n, observations.
A linearized version of (67) subject to outliers is

_ , under M
Y = , under M
(1) (ny)

where y: = (y; /..., Yy )T € R™ is the vector of double
difference (DD) observations for the n, tracked satellites

Gipi +m

68
Gip: + 1 + o4 (68)
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Figure 3: Sky plot of the tracked satellites from GPS L1 and
Galileo E1 for the simulation.

Table I: Parameters for the Markov Chain model

Initial probability for NLOS state 0.7

Initial probability for LOS state 0.3
Transition probability of staying in NLOS state 0.9
Transition probability from NLOS state to LOS state | 0.1
Transition probability of staying in LOS state 0.3

Transition probability from LOS state to NLOS state | 0.7

(plus the reference one) and G; € R™*3 is the geometry
matrix containing the unit line-of-sight steering vectors to the
satellites, as in [45, Ch. 26]. The observation noise 7; has a
fully populated covariance matrix R; € R"+*"v, as described
in [46]. Multipath and non-line-of-sight (NLOS) effects lead
to gross biases in the range observations to the satellites. Such
errors are collected in vector oy, following the initial model (2)
to generate the data while the method is derived considering
the alternative model (3).

B. Simulation Setup

The root mean square error (RMSE) over a trajectory and
the percentage of misdetected outliers are taken as measures of
performance. The RMSEs are obtained from 50 independent
Monte Carlo runs for a 100 seconds trajectory, sampled at
At = 1 s, while 500 Monte Carlo runs were used in the
experiments comparing generalized VBKF with N = {1,10}
to show the tiny difference between them. The present sim-
ulation, simulated in MATLAB, considers n, = 12 tracked
satellites at a specific time, distributed according to a realistic
sky plot, as shown in Fig. 3. In practice, satellites belonging
to different constellations (i.e., and depending on the satellite
generation) may broadcast a different number of signals at
different frequency bands. In the simulation, we consider
n, = 2ng — 4 DD observations from a dual-band receiver.
Outliers (i.e., NLOS) are simulated based on a Markov Chain
model according to [47] with parameters shown in Table I. The
motivation of such model is to account for the time correlation
of multipath (and other spatially correlated errors), in contrast
to the less realistic case of assuming totally independent
statistics between consecutive time instances.

Notice that from ¢ = 10s, outliers are always injected into
both pivot satellite observations (i.e., at the base station and the
corresponding one at the receiver side), and to the observations
for 6 out of the n, = 20 DD observations, therefore outliers
are correlated. Besides, since outliers are simulated from the
corresponding carrier-to-noise density ratio (C'/Ny in dB-Hz),
which is a common measure in GNSS receivers, the random
outlier amplitudes are in general correlated to the noise power,
which is also modelled from the C/Ny as [48],

-3.444 -10~*
g C8444-1077 69)

VC/NoBT s

where o is the standard deviation for the observation noise, ¢ is
the speed of light, B = 2 MHz is the receiver bandwidth, and
Toys = 20 ms is the coherent integration time. We consider the
performance comparison of different methods: 1) a standard
Extended Kalman Filtering (EKF) that does not account for
possible outliers; 2) the original VBKF [35] using a single
outlier indicator; 3) a VBKF with independent outlier indi-
cators (see Sec. II-B); 4) the generalized VBKF, considering
two different values N = {1,10}, which are used to estimate
(52)-(53); 5) an ideal EKF that accounts for all outliers;
6) a Cubature KF [6] with measurement gating by threshold
equalling to triple of standard deviation of innovations [49];
and 7) a Cubature KF with measurement gating by threshold
equalling to standard deviation of innovations. Note that, when
computation of expectations is needed in these methods, we
used numerical integration based on Gaussian cubature rules.

It is worth noting that the original VBKF [35] is taken as
the performance benchmark. In the original article [35], this
method was already shown to provide improved performances
with respect to other robust state-of-the-art filtering techniques
(i.e., IGG-based cubature information filter (CIF), Huber-based
CIF, Hampel-based CIF, and Student’s t-based robust cubature
KF), therefore we do not include the comparison to such
techniques in the results.

C. Results

When assessing the performance of new robust filtering
techniques, and because of the optimality versus robustness
trade-off, two important points are: i) the so-called loss of
efficiency (LoE) [31], that is, the loss in performance with
respect to the optimal method under nominal conditions; and
1) under non-nominal conditions, the performance gain with
respect to the optimal solution that does not accounting for a
possible model mismatch, that is, outliers in our case.

1) Loss of efficiency: the LoE is assessed by comparing
the performance of the different methods under nominal line-
of-sight (LOS) conditions, i.e., without outliers. The LoE
results are shown in Fig. 4. It can be seen that the general
VBKF method (i.e., regardless of N) exhibits a pretty similar
performance compared to the standard EKF and measurement
gating method in terms of RMSE, therefore the proposed
method has a very low LoE. The original VBKF with a
single scalar outlier indicator shows a minor degradation at
low C/Np. In contrast, the VBKF with independent outlier
indicators performance is degraded compared to the EKEF,
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that is, it exhibits a larger LoE. This is mainly induced by
the model mismatch, because this method does not take into
account that observations are correlated. The uncorrelation of
the observations is the main assumption for its derivation (see
Sec. 1I-B).

RMSE Comparison in LOS case

6or 35 —Independént VBKF 1l
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=
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Figure 4: RMSE performance of the VBKF with independent
outliers indicator, general VBKF, standard EKF and VBKF
with single outlier indicator as a function of C'/Ny in the
LOS scenario.

2) Robustness: to assess the robustness of the proposed
approach we show the performance of the different methods
under non-nominal NLOS conditions, i.e., with outliers, in
Fig. 5. The mean RMSE is given as a function of the C'/Nj.
When comparing both robust methods to the standard EKF,
it is obvious that while the latter is severely influenced by
outliers the robust solutions are able to cope with outliers
and improve the overall performance. Notice that the general
VBKF improves the performance obtained with the inde-
pendent outlier indicator VBKF. Such performance gain is
expected to be even larger in applications where the correlation
among observations increases. The performance of the original
VBKF is not shown in Fig. 5 because it is substantially
worse than the rest of methods (i.e., orders of magnitude
larger). The gating method works reasonably well against
outliers. Although, there are still meter level degradations
compared with the VBKF method in certain configurations, for
instance when the signal-to-noise ratio is small. Additionally,
in other applications where data becomes more correlated, it is
expected that the generalized VBKF will outperform the gating
approach more clearly. On the other hand, the measurement
gating strategy features a much lighter implementation, which
could suffice in certain applications where data correlation is
not severe.

The original VBKF with a single outlier indicator (as in Sec.
II-C and [35]) was also simulated, exhibiting a RMSE of large
magnitude. The reason being that the original VBKF, once it
determines that the observation contains an outlier, discards the
complete observation vector. In outlier-rich situations, as the
NLOS case simulated here, this implies that few observations
are indeed used in the KF update. To further support this
statement and provide a meaningful comparison, Fig. 6 shows
the empirical CDF of position estimation error of all VBKF
versions as well as the standard EKF and measurement gating
method under C'/Ny = 30 dB-Hz in NLOS case. It is clear
that the VBKF with a single outlier indicator presents much
larger errors compared to the other methods, even with respect

RMSE Comparison in NLOS case
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Figure 5: RMSE performance of the VBKF with independent
outlier indicators, general VBKF and standard EKF as a
function of C'/Ny in the NLOS scenario.

to the standard EKF, due to the fact the it mostly relies on KF
predictions as outliers are being detected.

Empirical CDF of position error
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Figure 6: Empirical CDF of position estimation error per-
formance of the VBKF with independent outlier indicators,
general VBKEF, standard EKF and the VBKF with single
outlier indicator in logarithmic scale.

Again, notice that the performance of the generalized VBKF
in terms of RMSE for different values of NV is very similar.
This behaviour can be explained by the fact that the estimation
of q(zt(z)) is likely to converge to either 0 or 1 when the general
VBKF works properly. This can be further supported by the
results in Fig. 7 and Fig. 8 (along with an inner plot showing a
zoom for the lower values) for the case N = 1. In the iterative
VBKEF process, the estimation of ¢(z;) experiences a transient
regime and a convergence regime, which we investigate in the
aforementioned figures, respectively. Whereas in the transient
regime there are some values in the open interval (0, 1), when
the algorithm converged, almost all the values are concentrated
in 0 and 1. In any case, the algorithm correctly estimates q(z;)
most of the times. As a consequence, when approximating
(52)-(53) through sampling, one sample is typically sufficient
(in this particular application). Similar results were obtained
with V = 10, which are omitted for the sake of clarity.

3) Outlier Misdetection: we notice from the previous anal-
ysis on the estimation of ¢(z;) that not all values are either
0 and 1, and that there is some probability associated with
values in (0, 1). Therefore, this uncertainty may lead to an
outlier misdetection (i.e., contaminated observations which are
regarded as clean ones). The percentage of misdetected outliers
for the different methods (i.e., not for the standard EKF which
do not allow to detect outliers) is shown. In this case we see
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Figure 7: Histogram for ¢(z;) in the transient regime.
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Figure 8: Histogram for ¢(z;) in the convergence regime.
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Figure 9: Misdetection performance for the VBKF with inde-
pendent outlier indicator and the general VBKF method as a
function of C'/Ny in the NLOS scenario.

that increasing the value N from 1 to 10 within the general
VBKEF reduces the misdetection, because this value controls
the accuracy of the expectation approximation in (52)-(53).
Therefore, increasing N leads to a lower misdetection and in
turn lower RMSE. Regardless of IV, it is shown that taking into
account the correlated observations in the filter formulation as
expected improves the results compared to the independent
outlier indicator VBKF. That is one of the main reasons of
the performance loss in terms of RMSE previously shown in
Fig. 9. Notice that the VBKF with scalar outlier indicator is
not shown for the similar reasons as in Fig. 5.

IV. CONCLUSION

This article presented a generalization of the Variational
Bayes Kalman filter (VBKF) for correlated measurement
models. The VBKF acts as a method for outlier detection
and mitigation in the observations in filtering problems. The

original method, proposed in [35], considered a single indi-
cator for the vector-valued observations, therefore rejecting
the entire observation vector when a single element in it is
faulty. The present contribution generalized VBKF to having
multiple indicators (one per observation) and considering the
more comprehensive case of correlated observations. Practical
implementation solutions are proposed to avoid the otherwise
growing complexity with the observations’ dimension. The
method is validated on a precise-positioning problem, namely
the popular real-time kinematic (RTK) procedure, where cor-
related data appears. Results in this context show the benefits
of the generalized VBKF method, as compared to non-robust
filtering or the single-indicator VBKF.

APPENDIX A
COMPUTATION OF ¢(z"))

To keep q(z,gi)) Bernoulli distributed, (32) is substituted in

(37) and the equation is derived as:

LR SH YN St ()
ol 2:11,7i + 02_1 — i E_mzt—g
o~ Ei,—iz:}’,iz_m i
7 i 1 i i T
X (Z/f()fh()(mt» ~5 yt()*h()(wt))
2 -1 ' .
(B memn ) o)
2t

— 052" m|C([z ", 2" =1))|
—0.52" [2n] — 0.5(1 — 2 In[C([2, 2 = 0])] + n}
(70)
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Following the transform from (34) to (36), we can write that:

(=)

1 i i T
Dt {3 (87 =R @)
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2 o1 -
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) . ‘ T
_ h(*l) (%)) + (yt(—l) . h(fz) (mt))
x |27 »_. ﬁ + Zt(i)E:zl,—izi,fiz—i,ixii_i24,1‘
—1,—1 =1 2i 0.4 0_2‘27;21.7_142:1 71»2_242»

i 4, i, )

1 i i T

5 (yi ) - h® (-’L't))
“t (1) _ 1)

g o7 = Eufizizl,fizfi,i (yt " (wt))

+ zt(i) ln[wgi)] + (1 - zﬁ”) In[1 — Wt(i)]

—0.52" Im|C([277, 2" = 1)) (71)

_ (4) _ _ ) (=) () _
0.5z; " In[27] —0.5(1 — 2, ") In|C([z; 7,2 =0])|+ k7.
(72)

. . i —i
Given the expectation over wt,w§ ),z§ )}, we can re-

gard —3 (yﬁ) —h=? (wt)) y = hD (wt))
in the first term as a normalization coefficient and thus remove
it from the previous equation to further obtain that:

»-1

i, —1

i L/ (i i T
In [Q(Zt( >)} =B 0 4, 200 {—2 (yt( )~ R(D (wt))
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% (5 = 0 (:vt))T
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(73)

Taking advantage of the properties of the trace of matrix,

i 1 i -
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With zt(i) being a scalar we can finally obtain:
) 1
In {q(zt(z))} = Eﬂgi)7wt7z£—i) {ta(z)
(-9) : ) : !
x Tr {(yt —hY (a:f)) (yt —h(Y (m,))
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1
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