

1
2
3 1 **A Tail of Four Fishes: An analysis of kinematics and material properties of elongate fishes**
4 2 Lydia F. Naughton^{1*}, Sebastian Kruppert², Beverly Jackson³, Marianne E. Porter⁴, Cassandra M.
5 3 Donatelli⁵
6
7 4
8 5 *corresponding author
9 6 ¹Bucknell University; 701 Moore Ave, Lewisburg PA, 17837; lfn001@bucknell.edu;
10 7 443-886-4607
11 8 ²University of Washington, Friday Harbor Labs; sebastian.kruppert@googlemail.com
12 9 ³Idaho State University; beverlyjackson@isu.edu
13 10 ⁴Florida Atlantic University, Biological Sciences; mporte26@fau.edu
14 11 ⁵University of Ottawa, Department of Biology; cdonatel@uottawa.ca
15
16
17
18 13 **Running Title:** Fish mechanics tuned to habitat and diet
19
20
21 15 **Abstract**
22
23 The elongate body plan is present in many groups of fishes, and this morphology
24 dictates functional consequences seen in swimming behavior. Previous work has shown that
25 increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed
26 length artificial system increases stiffness. Tails with increased stiffness can generate more
27 power from tail beats, resulting in an increased mean swimming speed. This demonstrates the
28 impacts of morphology on both material properties and kinematics, establishing mechanisms
29 for form contributing to function. Here, we wanted to investigate relationships between form
30 and ecological function, such as differences in dietary strategies and habitat preferences among
31 fish species. This study aims to characterize and compare the kinematics, material properties,
32 and vertebral morphology of four species of elongate fishes: *Anoplarchus insignis*, *Anoplarchus*
33 *purpurescens*, *Xiphister atropurpureus*, and *Xiphister mucosus*. We hypothesized that these
34 properties would differ among the four species due to their differential ecological niches. To
35 calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured
36 body stiffness by bending the abdominal and tail regions of sacrificed individuals in different
37 stages of dissection (whole body, removed skin, removed muscle). Finally, we counted the
38 number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal
39 component and linear discriminant analyses suggested that the elongate fish species can be
40 distinguished from one another by their material properties, morphology, and swimming
41 kinematics. With this information combined, we can draw connections between the physical
42 properties of the fishes and their ecological niches.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
51
52
53
54
55
56
57
58
59
60

36 **Introduction**

37 The elongate body plan has evolved many times across the fish tree of life (Claverie and
38 Wainwright, 2014; Mehta et al., 2010). Many elongate fishes swim using an undulatory gait, in
39 which the bending body generates waves that propagate from anterior to posterior and propel
40 the fish forward (Long et al., 1994). Though there is some variation in the undulatory wave,
41 such as the percentage of the body used, the general kinematics typically follow established
42 patterns. For fishes in general, swimming speed is often directly proportional to tail beat
43 frequency, whereas tail beat amplitude generally stays the same across speeds (Bainbridge,
44 1958). Elongate fishes use an extreme form of undulatory kinematics often referred to as
45 anguilliform swimming. In anguilliform swimming, elongate fishes take advantage of their highly
46 flexible bodies to pass a bending wave of increasing amplitude from their heads to their tails
47 (Sfakiotakis et al., 1999; Tytell, 2004). In elongate fishes, this form of locomotion is 4-6 times
48 more efficient than non-elongated fishes and has been hypothesized to be a major factor which
49 allows migratory species, such as European Eels (*Anguilla anguilla*), to swim 5000-6000 km
50 without eating (van Ginneken et al., 2005).

51 In addition to kinematics, the material properties of the fish body and of individual
52 tissues are also known to affect swimming behavior (Donatelli et al., 2017; Long et al., 1996;
53 Nowroozi and Brainerd, 2014; Porter et al., 2014; Wainwright et al., 1978). The three main
54 material components considered in this study are skin, muscle, and bone. Each of these
55 materials contributes to the overall flexibility and swimming attributes of the fish (Altringham
56 and Ellerby, 1999; Hirokawa et al., 2011; Long et al., 1996). Long et al. (1996) investigated the
57 effects of body mechanics on swimming kinematics by removing the dermal scales of the

1
2
3 58 longnose gar, reducing its overall bending stiffness. They found that when the skin is removed
4
5 59 from the fish, tail beat frequency decreased and tail amplitude increased (Long et al., 1996). In
6
7 60 this case, without the supporting structure of the skin, the fish must alter its swimming
8
9 behavior to account for increased flexibility. Simulations have also demonstrated the impact of
10
11 61 stiffness on fish swimming kinematics: Tytell et al. (2010) developed a computational model of
12
13 62 lamprey swimming that considered body stiffness, muscle activation, and hydrodynamics. This
14
15 63 model showed that, for a given muscle activation pattern, low body stiffness yielded higher
16
17 64 mean acceleration but slower steady swimming speed compared to high body stiffness (Tytell
18
19 65 et al., 2010). In addition to *in vivo* experiments and simulations, material testing experiments
20
21 66 have provided much insight into the biomechanics of fishes. Long and colleagues quantified the
22
23 67 stiffness provided by multiple body materials for the hagfish. They sequentially removed the
24
25 68 skin, muscle, and notochord sheath from euthanized hagfishes and measured the strain on the
26
27 69 body during bending. Both the muscle and the notochord sheath were significant contributors
28
29 70 to stiffness (Long et al., 2002).
30
31
32
33
34
35
36
37 72 Bony vertebrae, which are an important component of the body plan for most
38
39 73 vertebrate fishes, were not quantified in previous experiments. One morphological
40
41 74 characteristic of the vertebral column that has implications for material stiffness and kinematics
42
43 75 is the presence of bony centra (Donatelli and Porter, 2013; Long et al., 1997; Nowroozi et al.,
44
45 76 2012). During development, the ossification of the centra obliterates the notochord and gives
46
47 77 rise to the formation of the vertebral column (Schaeffer, 1967). Centra morphology is known to
48
49 78 affect the material properties of the entire vertebral column. For example, by adding artificially
50
51 79 designed centra to a model hagfish notochord, Long et al. (2004) found that, as intervertebral
52
53
54
55
56
57
58
59
60

1
2
3 joint length increased, the stiffness of the notochord decreased (Long et al., 2004). Long and
4
5 colleagues also built a mobile autonomous robot (TADRO) for mechanical testing with
6
7 biomimetic vertebral columns to quantify the effects of vertebral count on stiffness and
8
9 swimming behavior (Hirokawa et al., 2011). They created several models with a range of
10
11 vertebral densities and measured swimming performance in a bioinspired robot. This study
12
13 showed that tails with increased stiffness, i.e., higher vertebral density, had greater peak
14
15 acceleration and mean swimming speed (Long et al., 2011). The findings from these studies
16
17 suggest that as fishes evolved elongated body plans, the total number of vertebrae may have
18
19 increased, rather than the length of a set number of vertebrae, in order to conserve local body
20
21 stiffness. In fact, elongation in actinopterygian fishes is most strongly associated with an
22
23 increase in vertebral number, as opposed to an increase in aspect ratio of the vertebrae, and
24
25 generally, the increase is greater in the tail region compared to the abdominal region (Mehta et
26
27 al., 2010; Ward and Brainerd, 2007).

34
35 Though all these studies investigate effects of individual morphological components on
36
37 locomotion, very few integrate gross morphology, mechanics, kinematics, and ecology. We are
38
39 curious about the material contributions of body tissues and morphology on behavior,
40
41 especially swimming kinematics, in species with varying ecological niches. In order to
42
43 investigate this, we chose to examine four species of fishes from the family Stichaeidae:
44
45 *Anoplarchus insignis*, *Anoplarchus purpurescens*, *Xiphister atropurpureus*, and *Xiphister*
46
47 *mucosus*. These four fishes all reside in and near the rocky intertidal zone in the Pacific
48
49 Northwest. They are all benthic fishes that tend to situate themselves beside and underneath
50
51 rocks, but they each occupy slightly different ecological niches. *A. insignis* and *X. atropurpureus*,
52
53
54
55
56
57
58
59

1
2
3 102 for example, tend to live several meters deeper than the other two species (Froese and Pauly,
4
5 103 2019; Lamb and Edgell, 2010). In terms of diet, both *Anoplarchus* species are carnivores, *X.*
6
7 104 *atropurpureus* is an omnivore, and *X. mucosus* is an herbivore (German et al., 2015).
8
9

10 105 Using these fishes, our goal was to answer the following questions. 1) How do tail
11
12 106 amplitude, head amplitude, and tailbeat frequency change with swimming speed? Based on
13
14 107 previous work, we predict that tail and head amplitude will not change with swimming speed
15
16 108 while tailbeat frequency will increase as speed increases. 2) Which body tissues (skin, muscle,
17
18 109 or vertebral column) contribute the most to stiffness? Due to the stiffness of bone at the tissue
19
20 110 level and previous documented impacts of vertebral column mechanics on swimming, we
21
22 111 predicted that the vertebral column would have the greatest impact on body stiffness. 3) Do
23
24 112 body mechanics and vertebral morphology impact swimming kinematics? We expected that
25
26 113 swimming speed would be tied with vertebral counts and body stiffness, especially vertebral
27
28 114 column stiffness. 4) When examining the suite of variables quantified here, can we draw
29
30 115 connections between the combined variables and the ecological niches that these four fishes
31
32 116 occupy? With the kinematics, material properties, and morphometrics data, we aimed to
33
34 117 explain the ecological differences, such as dietary strategy and habitat preference, among our
35
36 118 four fishes.
37
38
39
40
41
42
43
44
45
46
47 120 **Materials and Methods**
48
49
50 121 Specimen Collection and Care. We collected five individuals each of four species of fishes
51
52 122 from the family Stichaeidae: *Anoplarchus purpurescens*, *Anoplarchus insignis*, *Xiphister*
53
54 123 *atropurpureus*, and *Xiphister mucosus* (Figure 1). We caught these fishes by flipping over rocks
55
56
57
58
59
60

1
2
3 124 and scooping them out of tidepools during low tide at Friday Harbor Laboratories and
4
5 125 Deadman's Bay in San Juan Island, Washington, USA. Specimens ranged in size from 8 cm to 25
6
7 126 cm (Table 1). We housed fishes in open sea tables fed from a flow through system. The
8
9 127 specimens were sacrificed prior to material testing using a lethal dose of MS222 following
10
11 128 IACUC protocol 4238-03.
12
13

14
15 129 *Kinematic Analysis.* In order to understand the swimming kinematics of the elongate
16 fishes, a video recording setup was designed to record their movement (Figure 2). A long,
17
18 130 rounded track was placed in a 1.425 m x 0.61 m x 0.14 m tank so that each fish could circle the
19
20 131 tank and cross through the video frame at its own pace. The device used to record videos was a
21
22 132 GoPro Hero4 (GoPro Inc, San Mateo CA, USA) with settings set to 1080p resolution, 30 frames
23
24 133 per second, and a linear field of view. In a GoPro, the linear field of view corrects the distortion
25
26 134 from the fisheye lens. Five individuals of each species were filmed, and 5-11 steady swimming
27
28 135 trial video clips were collected for each individual. We considered a swimming bout "steady" if
29
30 136 the animal did not appear to accelerate or decelerate during the bout. Videos were trimmed to
31
32 137 the duration that included the behavior of interest using MPEG Streamclip (Squared 5 srl,
33
34 138 Rome, Italy). We used a custom Matlab code to track the midlines of the five cleanest videos for
35
36 139 each individual (Matlab R2020a, Mathworks, Natik MA, USA) (Donatelli et al., 2017). We used
37
38 140 another Matlab script to calculate swimming speed (BL-body lengths-per second), tail beat
39
40 141 frequency (Hz), tail beat period (s), stride length (BL), tail beat amplitude (BL), head amplitude
41
42 142 (BL), and body amplitude (BL) at three points along the midline (25%, 50%, and 75% posterior
43
44 143 from the head). These kinematic data points were formatted into a table and imported into R
45
46 144 for statistical analysis (R version 4.0.1; RStudio Desktop 1.3.1073, Boston, MA, USA).
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 146 Material Testing. We used an MTS Synergie 100 material tester (MTS Systems Corp,
4
5 147 Eden Prairie, MN, USA) to measure the mechanical properties of different components of fish
6
7 148 bodies (Figure 3A). Individuals (N=2 for *A. insignis*, N=3 for the three other species) were placed
8
9 149 in a tank with 4 L of seawater and 1 g of MS-222 for 60 minutes to be sacrificed following IACUC
10
11 150 protocol 4238-03. Specimens were then sealed in bags and left in the freezer until needed for
12
13 151 material testing within the next 6 days. Once the specimens underwent one freeze-thaw cycle,
14
15 152 the fishes were tested under three different conditions: 1) fully intact (Figure 3B), 2) skin
16
17 153 removed (Figure 3C), and 3) muscle removed (Figure 3D). For the second condition, the skin
18
19 154 was peeled off of the fish from the back of the head down to the caudal fin. The abdominal
20
21 155 cavity was cleared to avoid leakage during the bending trials. For the third condition, the bulk of
22
23 156 the muscle was scraped off over the same length of the fish as the previous dissection. Only the
24
25 157 vertebral column and a thin layer of muscle and connective tissue between the spines were left
26
27 158 intact.

34
35 159 After each dissection, the fish was bent in two different regions along the body: the
36
37 160 abdomen and the tail (Figure 3E). The abdomen was defined as the length between the end of
38
39 161 the head and the beginning of the anal fin; the tail was defined as the length between the
40
41 162 beginning of the anal fin and the beginning of the caudal fin. When testing the bending
42
43 163 performance of the abdomen, the stationary gripper and the pulling string were attached
44
45 164 inward of the head and anal fin by 10% of the abdomen length. For the tail bending trials, the
46
47 165 stationary gripper and the pulling string were attached inward of the anal fin and the tail fin by
48
49 166 10% of the tail length. In both trial types, the point of the string attachment was aligned with
50
51 167 the material tester pulley so that the string was pulling perpendicular to the body (Figure 3A).

1
2
3 168 The fish was placed on a thin wooden board with a protractor taped to it. A single bending test
4
5 169 started when the 500 N load cell began to rise, pulling the string and bending the specimen. The
6
7 170 test terminated when the specimen reached its maximum bending angle - a switch from
8
9 bending to tensile mode. The material tester measured the force (N) exerted on the fish during
10
11 171 bending and the linear distance the string traveled (mm).
12
13 172
14

15
16 173 The bending trials were filmed using a Nikon D5300 (1920x10180, 60p, Nikon Inc,
17
18 174 Minato City, Tokyo, Japan) to provide a visual record of each test. We then analyzed these
19
20 175 videos using the Matlab app DLTdv8 (DLTdv8a version 8.2.0) (Hedrick, 2008) to track two points
21
22 176 frame by frame on the fish body as it bent: the bending point and the anchor point. The
23
24 177 bending point was marked at the site of string attachment, and the anchor point was marked at
25
26 178 the stationary gripper. The program recorded the x-y coordinates for each point for every
27
28 179 frame, so we then calculated the angle between the two points over all frames for each video.
29
30 180
31

32
33 180 Morphometrics. We counted the total number of vertebrae down the length of the body
34
35 181 in our species using CT scans of the specimens. We got scans of our four species from the Scan
36
37 182 All Fishes and oVert projects (Watkins-Colwell et al., 2018). The vertebrae of each of our fish
38
39 183 were marked in 3D Slicer following the protocol from Buser et al (2020) and we extracted the
40
41 184 coordinates for measurement in Matlab (Buser et al., 2020; BWH and Contributors, 2019).
42
43

44
45 185 Statistical analysis. We compiled our kinematics, mechanics, and morphometrics into
46
47 186 csv files and imported them into R for statistical analysis. To analyze the kinematics data, we
48
49 187 created linear models to ask if tail beat amplitude, head amplitude, and tail beat frequency
50
51 188 were affected by swimming speed (Figure 4). For the material testing data, we examined
52
53 189 variations of both abdominal stiffness and tail stiffness by species and dissection condition
54
55
56
57
58
59
60

1
2
3 190 using a chi-square test. We then used pairwise t-tests to examine differences in the stiffness
4
5 191 measurements between the three dissection conditions for each species. *A. insignis* was not
6
7 192 included in the statistical analysis for material testing, as there were only two individuals
8
9 193 tested. The kinematics and mechanics data were merged in R and we performed both a linear
10
11 194 discriminant analysis (*lda()*, “MASS” package) to determine if our species could be grouped and
12
13 195 a principal components analysis (*prcomp()*, “FactoMineR” package) to determine which factors
14
15 196 contributed most to the variation in our data. We also excluded *A. insignis* from our LD analysis.
16
17 197 Finally, we used the *Anova()* function (“car” package) to examine the effects of material
18
19 198 properties (intact, muscle only, and bone only stiffness) on kinematics (swimming speed,
20
21 199 frequency, body amplitude, and tail amplitude).

22
23 200

24
25 201 **Results**

26
27 202 The data extracted from the live swimming trials was consistent with undulatory
28
29 203 swimming patterns typical for elongate fishes. By allowing the specimens to swim at their own
30
31 204 pace, we were able to measure the effect of varying swimming speed on the bending wave
32
33 205 properties of natural swimming behavior. Differences in swimming speed had no effect on head
34
35 206 amplitude or tail beat amplitude, except for *A. purpurescens*, which displayed a significant
36
37 207 inverse relationship between swimming speed and both tail beat amplitude and head
38
39 208 amplitude (Figure 4A: $p=0.008$, $R^2=0.788$; Figure 4B: $p=0.049$, $R^2=0.573$). Head amplitude had a
40
41 209 much lower maximum value at 0.032 body lengths (BL) as opposed to tail beat amplitude which
42
43 210 had a maximum value at 0.124 BL. Conversely, swimming speed and tail beat frequency
44
45 211 exhibited a significant directly proportional relationship for all species (Figure 4C: *X. mucosus*

1
2
3 212 $p=0.003, R^2=0.523$; *A. insignis* $p=0.003, R^2=0.654$; *X. atropurpureus* $p<0.001, R^2=0.7664$; *A.*
4
5 213 *purpurescens* $p<0.001, R^2=0.906$). When comparing the kinematic data between each of the
6
7 214 four species, *X. mucosus* displays the steepest linear trend line slope, and this species has the
8
9 215 slowest maximum swimming speed at about 2 BL/s.

12
13 216 Abdominal stiffness and tail stiffness were examined in regards to species and to
14
15 217 dissection condition using the material testing data (Figure 5A and B). Species was not a
16
17 218 significant factor in determining abdominal stiffness or tail stiffness ($p=0.616, p=0.425$). The
18
19 219 dissection condition, however, showed statistical significance in determining both abdominal
20
21 220 stiffness and tail stiffness ($p<0.001, p=0.036$). For abdominal stiffness, there was a significant
22
23 221 difference between the intact and vertebrae exposed conditions for *X. atropurpureus* ($p=0.002$)
24
25 222 and *X. mucosus* ($p=0.003$). Furthermore, *X. atropurpureus* ($p=0.021$) and *X. mucosus* ($p=0.003$)
26
27 223 showed a significant difference between the intact and muscle exposed conditions (Figure 5A).
28
29 224 For tail stiffness, there was only a significant difference between the intact and vertebrae
30
31 225 conditions for *X. atropurpureus* ($p=0.034$; Figure 5B).

32
33 226 The combination of material properties and kinematics quantified here showed
34
35 227 differences between the four different species. The principal components analysis plot showed
36
37 228 that the four species groups separated from each other (Figure 6A). We found that the first PC
38
39 229 axis described 49.2% of the variation and was mostly weighted by kinematics variables and
40
41 230 vertebrae count. The second PC described 20.1% of the variation and was mostly weighted by
42
43 231 material properties. For our linear discriminant analysis (Figure 6B), the first LD axis described
44
45 232 89.71% of the between group variation and was weighted mostly by differences in stride length

1
2
3 233 and swim speed. The second LD axis described 10.29% of the variation and was mostly
4
5 234 weighted by swim speed, tail beat frequency, and body amplitude (Table 3).
6
7 235
8
9
10 236 **Discussion**
11
12 237 The four species of elongate fishes examined in this study have interesting differences in
13
14 238 material properties, vertebral morphology, and swimming kinematics. The two *Anoplarchus*
15
16 239 species showed a close grouping in the principal components analysis while the two *Xiphister*
17
18 240 species displayed less overlap with each other. *X. mucosus* grouped the furthest to the right
19
20 241 along the PC1 axis (Figure 6A). This could be a result of each of their ecological niches. The two
21
22 242 *Anoplarchus* species are both carnivores, which might explain their similar kinematic,
23
24 243 morphological, and material properties. The *Xiphister* species, on the other hand, do not share
25
26 244 the same diet; *X. atropurpureus* is an omnivore and *X. mucosus* is an herbivore. *X. mucosus*
27
28 245 could be the most distinguished of all of the groups along the PC1 axis because they are the
29
30 246 only species that do not actively hunt for prey items. In the linear discriminant analysis, the
31
32 247 three species separate well across LD1 while the *Xiphister* species further separate from *A.*
33
34 248 *purpurescens* along LD2 (Figure 6B). Interestingly, *A. purpurescens* and *X. atropurpureus* are
35
36 249 close together along LD1 which could be explained by an overlap in their diet.
37
38
39
40
41
42
43
44
45 250 From our kinematics plots, we can see that the less intertidal species, *A. insignis*, and *X.*
46
47 251 *atropurpureus*, have more similar kinematics than the other two, more intertidal species.
48
49
50 252 Species that tend to live *near* the intertidal zone do not regularly deal with the constantly
51
52 253 changing conditions of living *in* the intertidal zone. The preference of deeper habitats is equal
53
54 254 to an avoidance of the intertidal and its complexity. It is safe to assume that species movement
55
56
57
58
59
60

1
2
3 255 performances match the preferred habitat complexity, and thus, species with similar habitat
4
5 256 preference are more likely to share kinematic and morphological characteristics than species
6
7 257 with different preferences.
8
9

10 258 The material properties of the fishes, specifically the stiffnesses of the abdomen and the
11 tail, were affected by sequential removal of the skin and muscle. When comparing the two
12 body regions, the dissection condition had a greater effect on the abdominal stiffness than on
13 tail stiffness (Figure 5). This result has two significant implications. First, because locomotion-
14 generating waves originate near the front of the body and propagate backward, higher stiffness
15 would be needed in the abdominal region to produce waves (Long et al., 1994). The skin and
16 muscle of the abdomen could therefore be primarily responsible for this region's rigidity for the
17 purpose of generating power for these traveling waves. Second, while the abdominal region is
18 thicker and more dependent on the bulk of muscle and skin for stiffness, the tail is thinner and
19 may depend more on the properties of the bone for stiffness. The assumption that it is possible
20 to estimate tail stiffness based on bone stiffness can be applied to the modeling of thin
21 biomaterials. Future work could focus on creating a model for approximating the stiffness of
22 thin organisms (*Ptilichthys goodei*, for example) using the material properties of the vertebral
23 column.
24
25

26 272 Consistent with the results from the principal components analysis, *X. mucosus* stood
27 apart from the other three species in the material testing trials (Figure 5). One noteworthy
28 difference in the material properties of *X. mucosus* was the change in abdominal stiffness
29 between the intact and muscle conditions. *X. mucosus* exhibited the most significant reduction
30 in abdominal stiffness after the skin was removed compared to the other three species. As
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 277 mentioned previously, both *Anoplarchus* species are carnivores and *X. atropurpureus* is an
4 omnivore, so all three of these fishes must partake in some degree of hunting behavior. These
5
6 278 hunters would want to invest stiffness properties into the muscle as opposed to the skin
7
8 279 because the muscle could exert finer control in stiffness changes (i.e. when to be stiff versus
9 flexible) in order to quickly and efficiently pursue and catch prey items. It is therefore logical
10
11 280 that the three hunters do not exhibit a significant decrease in abdominal stiffness when the skin
12
13 281 is removed but do exhibit a significant reduction in abdominal stiffness from the intact
14
15 282 condition to when the muscle is removed. It is worth mentioning that there is some variation in
16
17 283 the material testing data (Figure 5). Though we corrected for bending angle in our stiffness
18
19 284 calculations, a potential reason for the variation in these data is that there was not a
20
21 285 programmed endpoint for the MTS trials, but rather a manual endpoint based on visual criteria.
22
23
24
25
26
27
28
29
30 288 The swimming properties of the four elongate fishes aligned with typical kinematic
31
32 289 trends; however, there was some interesting variation among the species (Figure 4). Overall,
33
34 290 both head amplitude and tail amplitude had no significant relationship to swimming speed
35
36 291 (except in *A. purpurescens*) while tail beat frequency was directly proportional to swimming
37
38 speed. Of the four species, *X. mucosus* displayed some distinctive kinematic properties. While
39
40 292 the linear regression lines for *X. mucosus* extended along the x-axis past 3 BL/s, the maximum
41
42 293 swimming speed recorded for this species was only 2 BL/s. This slow swimming speed
43
44 294 maximum fits in the ecological context for *X. mucosus* because herbivores do not need to chase
45
46 295 after their food, and therefore do not often engage in aggressive and bold swimming behaviors.
47
48 296 This behavioral predisposition could manifest in “casual” swimming properties such as slow
49
50 297 swimming speed and large wave amplitude. While the differences in the swimming kinematics
51
52 298 swimming speed and large wave amplitude. While the differences in the swimming kinematics
53
54
55
56
57
58
59
60

1
2
3 299 for *X. mucosus* can be explained neatly by their outlying ecology, the difference in size of the
4
5 300 fishes is another possible explanation for these results. Since the *X. mucosus* specimens
6
7 301 extended to a larger length for their size range, it is possible that their larger sizes could explain
8
9 302 why they are differentiated from the other species in regards to tail beat frequency. As fish size
10
11 303 increases, the slope of the tail beat frequency to swimming speed ratio increases, so this might
12
13 304 also explain why *X. mucosus* exhibits the greatest rate of change for tail beat frequency
14
15 305 (Bainbridge, 1958).
16
17
18

19
20 306 There are a few interesting factors that could additionally affect swimming kinematics
21
22 307 that we did not measure in this study but would like to address. Two morphological
23
24 308 characteristics that differ across the four fishes are head shape and fin shape. Firstly, the heads
25
26 309 of the *Xiphister* fishes appear more oblong, whereas the heads of the *Anoplarchus* fishes tend
27
28 310 to be larger and rounder. A larger head would be heavier and lead to more drag force (Van
29
30 Wassenbergh et al., 2015), so we might expect a reduced kinematic range for the *Anoplarchus*
31
32 311 species, which we do not see (Figure 4). This could mean either that their head width has a
33
34 312 negligible effect on their kinematics, or that there is an effect on kinematics from being
35
36 313 carnivores. As carnivores, the *Anoplarchus* fishes may need to push their bodies a little harder
37
38 314 to catch prey and are therefore used to swimming at a wide range of speeds, despite the effect
39
40 315 of their large head. Because we did not measure head morphology or the kinematics of feeding
41
42 316 behavior, we cannot make a conclusion either way, but we believe that these are interesting
43
44 317 factors to consider. Fin shape is another factor that could potentially affect swimming
45
46 318 kinematics. The pectoral fins for all four species are quite small, but the *Anoplarchus* fins are
47
48 319 more prominent. The fishes rest on their pectoral fins when sitting on the substrate (Figure 1)
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 321 but tend to tuck them to their sides during swimming, so they are unlikely to have an effect.
4
5 322 The dorsal fin, however, is a bit taller in the *Anoplarchus* species than it is in the *Xiphister*
6
7 323 species, so it could have an effect on the kinematics by creating a larger hydrofoil and
8
9 324 increasing thrust at the caudal fin (Han et al., 2020). In that case, we may expect *Anoplarchus* to
10
11 325 out-perform *Xiphister*. Though we did not measure performance directly, we can say that all
12
13 326 four species choose to swim at close to the same range of speeds when corrected for body
14
15 327 length. The dorsal fin-vertebral connection could be a fascinating avenue for further
16
17 328 exploration. Because the *Anoplarchus* species have bigger heads, making their swimming
18
19 329 potentially less efficient, but also larger fins, making them theoretically more efficient, we
20
21 330 speculate that these two factors may be leveling out their swimming performance.
22
23
24
25
26
27
28 331 This study combined kinematic, biomechanical, and morphological data to establish a
29
30 332 relationship among four different species of elongate fishes. Our analysis showed that each
31
32 333 species has a unique combination of mechanical properties and kinematic preferences. With
33
34 334 this information, we were able to draw connections between the physical properties of the fish
35
36 335 and their ecological niches. The herbivorous *X. mucosus* was separated from the other three
37
38 336 carnivorous species, and the deeper dwelling *A. insignis* and *X. atropurpureus* separated from
39
40 337 the other two species. These findings reinforce the thematic connection between form and
41
42 338 function in nature.
43
44
45
46
47 339
48
49
50 340 **Acknowledgements**
51
52
53 341 The authors want to thank the NSF REU-Blinks Internship Program at Friday Harbor
54
55 342 Laboratories for funding this research. All authors are grateful to Stacy Farina and Adam
56
57
58
59
60

1
2
3 Summers; had it not been for their outstanding efforts, the program could not have been
4
5 possible. Special thanks to all of the mentors, interns, facilities staff, graduate students, and all
6
7 of the FHL community for your support. S.K: further wants to thank the DFG (German Science
8
9 Foundation) for funding (409126405). MEP is supported by a grant from the National Science
10
11 Foundation (OS-1941713).
12
13
14
15
16
17
18 349 **Data Availability:** *The data underlying this article will be shared on reasonable request to the*
19
20 350 *corresponding author.*
21
22
23
24
25 352 **References**
26
27 353 **Altringham, J. D. and Ellerby, D. J. (1999).** Fish swimming: Patterns in muscle function. *J. Exp.*
28
29 354 *Biol.* **202**, 3397–3403.
30
31
32 355 **Bainbridge, B. Y. R. (1958).** The Speed of Swimming of Fish as Related to Size and to the
33
34 356 Frequency and Amplitude of the Tail Beat. *J. Exp. Biol.* **35**, 109–133.
35
36
37 357 **Buser, T. J., Boyd, O. F., Cortés, Á., Donatelli, C. M., Kolmann, M. A., Luparell, J. L.,**
38
39 358 **Pfeiffenberger, J. A., Sidlauskas, B. L. and Summers, A. P. (2020).** The Natural Historian's
40
41 359 Guide to the CT Galaxy: Step-by-Step Instructions for Preparing and Analyzing Computed
42
43 360 Tomographic (CT) Data Using Cross-Platform, Open Access Software. *Integr. Org. Biol.* **2**,
44
45
46 361 **BWH and Contributors, 3D Slicer (2019).** 3DSlicer.
47
48
49 362 **Claverie, T. and Wainwright, P. C. (2014).** A morphospace for reef fishes: Elongation is the
50
51 363 dominant axis of body shape evolution. *PLoS One* **9**,
52
53
54 364 **Donatelli, C. M. and Porter, M. E. (2013).** Bent out of shape: Bioinspired vertebral column
55
56
57
58
59
60

1
2
3 365 morphology and mechanics.
4
5 366 **Donatelli, C. M., Summers, A. P. and Tytell, E. D.** (2017). Characterizing body twisting in
6 elongate fishes: kinematics, mechanics, and control. In *INTEGRATIVE AND COMPARATIVE*
7
8 367 *BIOLOGY*, pp. E247--E247.
9
10 368
11
12 369 **Froese, R. and Pauly, D.** (2019). FishBase. *World Wide Web Electron. Publ.*
13
14 370 **German, D. P., Sung, A., Jhaveri, P. and Agnihotri, R.** (2015). More than one way to be an
15 herbivore : convergent evolution of herbivory using different digestive strategies in
16
17 371 prickleback fishes (Stichaeidae). *Zoology* **118**, 161–170.
18
19 372
20
21 373 **Han, P. (韓攀), Lauder, G. V., and Dong, H. (董海波).** (2020). Hydrodynamics of median-fin
22
23 interactions in fish-like locomotion: Effects of fin shape and movement. *Physics of Fluids*
24
25 374
26 375 **32**, 011902.
27
28
29
30 376 **Hedrick, T. L.** (2008). Software techniques for two- and three-dimensional kinematic
31
32 measurements of biological and biomimetic systems. *Bioinspir. Biomim.* **3**, 034001.
33
34
35 377
36 378 **Hirokawa, J., de Leeuw, J., Krenitsky, N. M., Porter, M. E., Long, J. H. and Roberts, S. F.** (2011).
37
38
39 379 Testing Biomimetic Structures in Bioinspired Robots: How Vertebrae Control the Stiffness
40
41 of the Body and the Behavior of Fish-Like Swimmers. *Integr. Comp. Biol.* **51**, 158–175.
42
43
44 380
45 381 **Lamb, A. and Edgell, P.** (2010). *Coastal Fishes of the Pacific Northwest*. 2nd ed. (ed. Robson, P.)
46
47 Maderia Park, BC: Harbour Publishing.
48
49 382
50 383 **Long, J. H., McHenry and Boetticher** (1994). Undulatory Swimming: How Traveling Waves Are
51
52 Produced and Modulated in Sunfish (Lepomis Gibbosus). *J. Exp. Biol.* **192**, 129–45.
53
54 384
55 385 **Long, J. H., Hale, M. E., McHenry, M. J. and Westneat, M. W.** (1996). Functions of fish skin:
56
57 Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus. *J. Exp. Biol.*
58
59
60

1
2
3 387 199, 2139–2151.
4
5
6 388 Long, J. H., Pabst, D. A., Shepherd, W. R. and McLellan, W. A. (1997). Locomotor design of
7 dolphin vertebral columns: Bending mechanics and morphology of *Delphinus delphis*. *J.*
8
9 390 *Exp. Biol.* **200**, 65–81.
10
11
12 391 Long, J. H., Koob-Emunds, M., Sinwell, B. and Koob, T. J. (2002). The notochord of hagfish
13
14 392 *Myxine glutinosa*: visco-elastic properties and mechanical functions during steady
15
16 393 swimming. *J. Exp. Biol.* **205**, 3819–3831.
17
18
19 394 Long, J. H., Koob-Emunds, M. and Koob, T. J. (2004). The mechanical consequences of vertebral
20
21 395 centra. *Bull Mt Desert Isl. Biol Lab* **43**, 99–101.
22
23
24 396 Mehta, R. S., Ward, A. B., Alfaro, M. E. and Wainwright, P. C. (2010). Elongation of the body in
25
26 397 Eels. *Integr. Comp. Biol.* **50**, 1091–1105.
27
28
29 398 Nowroozi, B. N. and Brainerd, E. L. (2014). Importance of mechanics and kinematics in
30
31 399 determining the stiffness contribution of the vertebral column during body-caudal-fin
32
33 400 swimming in fishes. *Zoology* **117**, 28–35.
34
35
36 401 Nowroozi, B. N., Harper, C. J., De Kegel, B., Adriaens, D. and Brainerd, E. L. (2012). Regional
37
38 402 variation in morphology of vertebral centra and intervertebral joints in striped bass,
39
40 403 *Morone saxatilis*. *J. Morphol.* **273**, 441–452.
41
42
43
44 404 Porter, M. E., Diaz, C., Sturm, J. J., Grotmol, S., Summers, A. P. and Long, J. H. (2014). Built for
45
46 405 speed: Strain in the cartilaginous vertebral columns of sharks. *Zoology* **117**, 19–27.
47
48
49 406 Schaeffer, B. (1967). Osteichthyan vertebrae. *Zool. J. Linn. Soc.* **47**, 185–195.
50
51
52 407 Sfakiotakis, M., Lane, D. M. and Davies, J. B. C. (1999). Review of fish swimming modes for
53
54 408 aquatic locomotion. *IEEE J. Ocean. Eng.* **24**, 237–252.
55
56
57
58
59
60

1
2
3 409 **Tytell, E. D.** (2004). The hydrodynamics of eel swimming II. Effect of swimming speed. *J. Exp.*
4
5 410 *Biol.* **207**, 3265–3279.
6
7
8 411 **Tytell, E. D., Hsu, C. Y., Williams, T. L., Cohen, A. H. and Fauci, L. J.** (2010). Interactions
9
10 412 between internal forces, body stiffness, and fluid environment in a neuromechanical
11
12 413 model of lamprey swimming. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 19832–19837.
13
14
15 414 **van Ginneken, V., Antonissen, E., Müller, U. K., Booms, R., Eding, E. ., Verreth, J. and van den**
16
17
18 415 **Thillart, G.** (2005). Eel migration to the Sargasso: remarkably high swimming efficiency and
19
20 416 low energy costs. *J. Exp. Biol.* **208**, 1329–1335.
21
22
23 417 **Van Wassenbergh, S., Potes, N. Z., and Adriaens, D.** (2015). Hydrodynamic drag constrains
24
25 418 head enlargement for mouthbrooding in cichlids. *J. R. Soc. Interface* **12**, 20150461.
26
27
28 419 **Wainwright, S. A., Vosburgh, F. and Hebrank, J. H.** (1978). Shark skin: Function in locomotion.
29
30 420 *Science (80-.)* **202**, 747–749.
31
32
33 421 **Ward, A. B. and Brainerd, E. L.** (2007). Evolution of axial patterning in elongate fishes. *Biol. J.*
34
35 422 *Linn. Soc.* **90**, 97–116.
36
37
38 423 **Watkins-Colwell, G., Love, K., Randall, Z., Boyer, D., Winchester, J., Stanley, E. and Blackburn,**
39
40 424 **D.** (2018). The Walking Dead: Status Report, Data Workflow and Best Practices of the oVert
41
42 425 Thematic Collections Network. *Biodivers. Inf. Sci. Stand.* **2**, e26078.
43
44
45 426
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1. Four species of elongate fishes. A) *Anoplarchus purpurescens*. B) *Anoplarchus insignis*. C) *Xiphister atropurpureus*. D) *Xiphister mucosus*.

241x147mm (96 x 96 DPI)

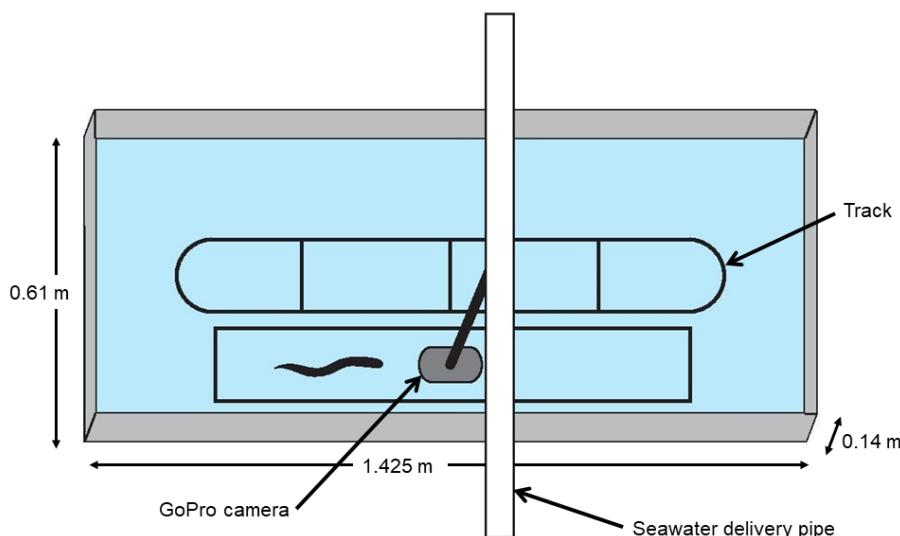


Figure 2. Video recording setup. Drawing shows an overhead view of the setup. Fishes swam around a track in the middle of the tank, crossing through the camera's field of view. The GoPro was suspended from the seawater delivery pipe above the tank.

279x165mm (96 x 96 DPI)

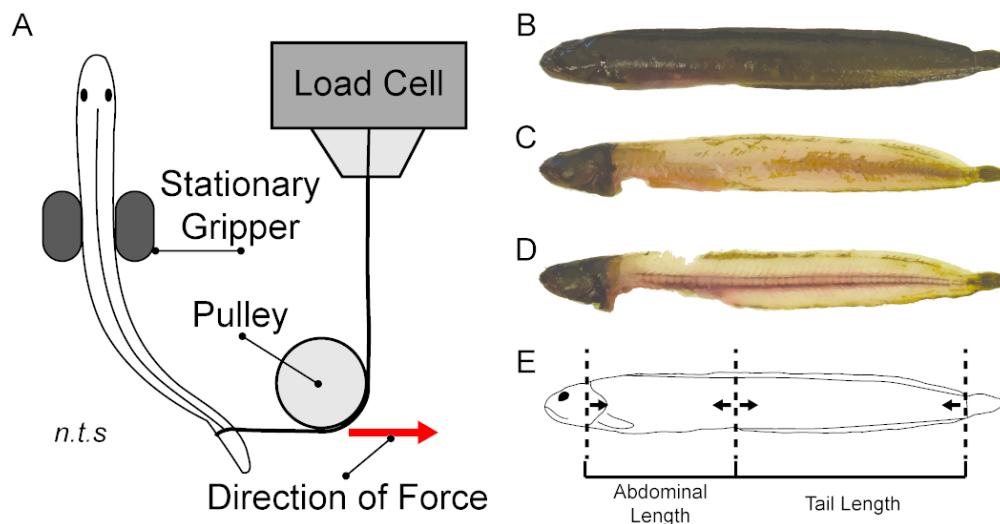


Figure 3. Mechanical testing method. A) Schematic of bending setup. This illustration shows a tail bending trial, where the stationary gripper is positioned at the anal fin and the pulling string is tied prior to the tail fin. The string was threaded through a pulley and the direction of force was maintained perpendicular to the body. B-D) Stages of dissection: B) whole fish, C) skin removed, and D) muscle removed. E) Defining regions for abdominal and tail bending tests. Arrows indicate the points of stationary gripper and string placement that are inward a distance of 10% of the region length.

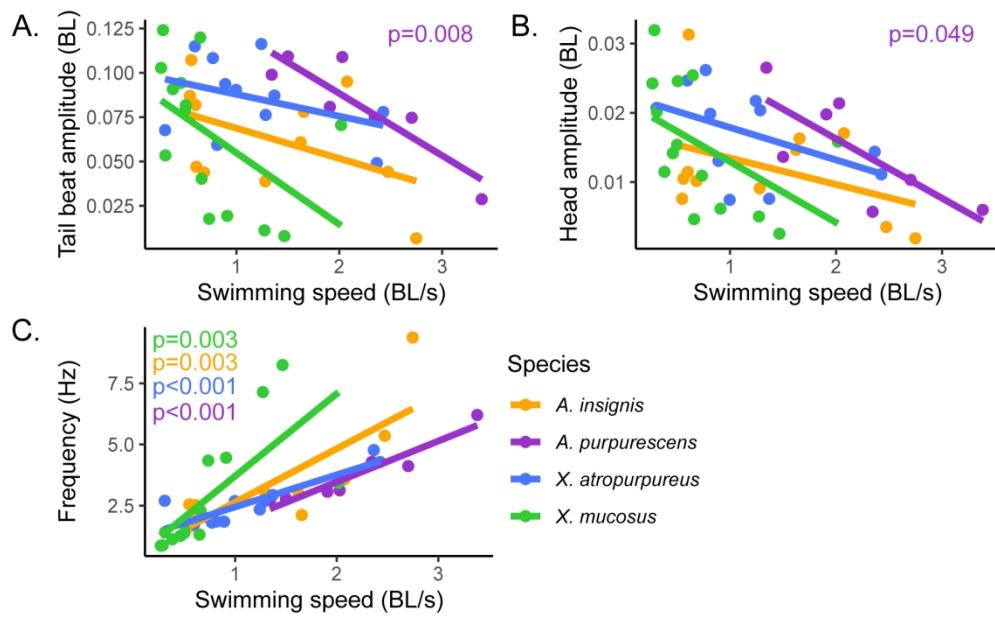


Figure 4. Varying swimming speed effect on wave properties of natural swimming kinematics. Each point represents one video recording trial of an individual fish. A) Average amplitude of tail movement in body lengths (BL) as a function of swimming speed in BL/second. B) Average amplitude of head movements as a function of swimming speed. C) Average tail beat frequency in hertz as a function of swimming speed. P values indicate a significant linear relationship between the variables for a particular species.

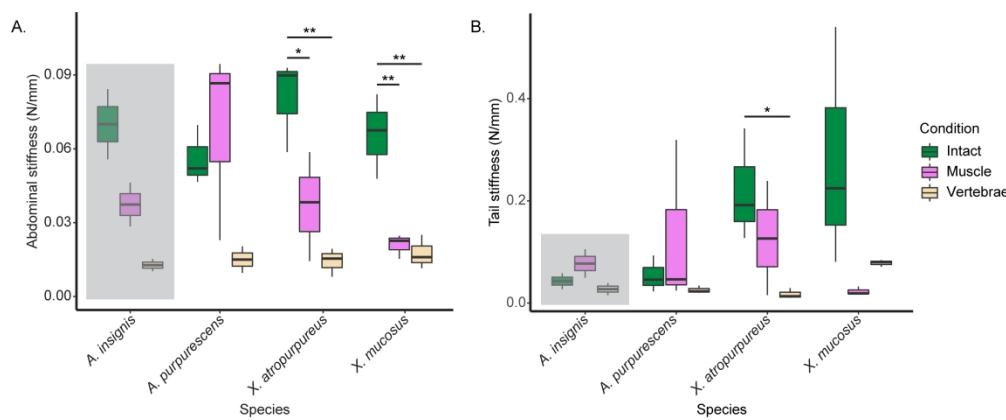


Figure 5. Stiffness of the abdominal and tail regions for each species under different dissection conditions. A) Stiffness (calculated as N/mm) of the abdominal region when bent fully intact, with skin removed to expose the muscle, and with muscle removed to expose the vertebral column. B) Stiffness of the tail region when bent in the three different material testing conditions. Post hoc comparisons are denoted by lines with stars above significantly different groups. Grey boxes over data for *A. insignis* indicate that no statistics were run on this species for material testing as there were only two individuals (N=2).

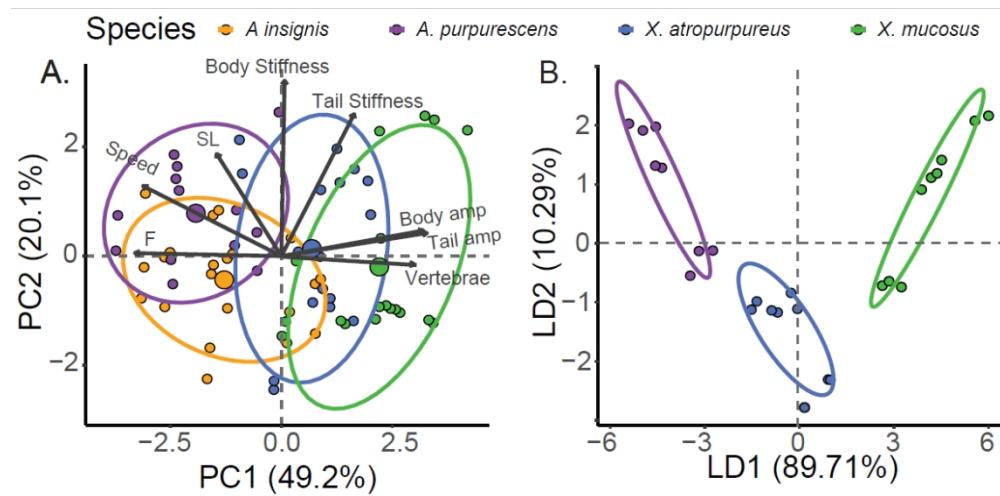


Figure 6. Principal component and linear discriminant plots of swimming kinematics, material testing, and vertebral counts obtained from CT scan scans. Percentages of PC axis show the percentage of variation explained by each PC. Percentages of LD axis show the percentage of between group variation described by the LD. Ellipses are drawn at a 75% confidence level using a multivariate t-distribution.

311x153mm (96 x 96 DPI)

Table 1. Specimens used in this study

Species	Specimens filmed	Specimens material tested	CT scans analyzed	Size range (cm)
<i>Anoplarchus insignis</i>	5	2	3	11-15.5
<i>Anoplarchus purpurescens</i>	5	3	4	8-15
<i>Xiphister atropurpureus</i>	5	3	4	8.5-19
<i>Xiphister mucosus</i>	5	3	4	11-25

1
2
3 **Table 2.** Merged kinematics and mechanics. Values shown are p-values. Bolded values are significant and italicized
4 values are approaching significance.
5
6

Condition	Intact		Muscle Only		Bone Only	
	Position	Body	Tail	Body	Tail	Body
Speed	0.618	0.878	<0.001	0.088	0.550	0.447
Frequency	0.769	0.778	0.490	0.294	0.498	0.414
Body Amplitude	0.609	0.824	0.396	0.126	0.336	0.223
Tail Amplitude	0.152	0.457	0.635	0.039	0.399	0.013

Table 3. Loadings for all three LDs. Bolded values indicate inputs which contribute most to each axis

	LD1	LD2
Tail Stiffness	-0.54521	-0.18259
Body Stiffness	0.368791	-0.00608
Swim Speed	4.082834	6.046713
Tail Beat Frequency	-2.77633	-5.15873
Stride Length	-5.59385	-3.28076
Body Amplitude	-0.68109	-4.03552
Tail Amplitude	1.863151	2.640358