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Abstract

Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A plethora of
deterministic bounds exist in the literature, ranging from the general Barankin bound to the well-known Cramér-Rao
bound (CRB), the latter providing the optimal mean square error performance of locally unbiased estimators. In this
contribution, we are interested in the estimation of mixed real- and integer-valued parameter vectors. We propose a
closed-form lower bound expression leveraging on the general CRB formulation, being the limiting form of the McAulay-
Seidman bound. Such formulation is the key point to take into account integer-valued parameters. As a particular
case of the general form, we provide closed-form expressions for the Gaussian observation model. One noteworthy point
is the assessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model with
mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich literature on that
topic. A representative carrier-phase based precise positioning example is provided to support the discussion and show
the usefulness of the proposed lower bound.

Keywords: Cramér-Rao bound, McAulay-Seidman bound, mixed real-integer parameter vector estimation, linear
regression, GNSS, ambiguity resolution.

1. Introduction

Integer parameter estimation appears in many sig-
nal processing, biology and communications problems, to
name a few. For instance, consider a multi-hypothesis
testing problem where we want to identify the received
signal over a (finite) set of possible transmitted signals,
then a solution is to maximize the log-likelihood func-
tion over the (integer) set of candidates. Another prob-
lem involving estimation of integer quantities, jointly with
a real-valued vector, is that of carrier-phase based pre-
cise positioning in the context of Global Navigation Satel-
lite Systems (GNSS) receivers. In the geodesy and navi-
gation community, a well known estimation approach is
referred to as Real Time Kinematic (RTK) positioning
[1]. Carrier-phase measurements have an unknown integer
part, referred to as the ambiguity, to be estimated in order
to achieve cm-level accuracy on the real-valued unknown
position of the receiver. The framework that underpins
precise GNSS carrier phase-based ambiguity resolution is
the theory of integer aperture estimation [2][3], which also
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applies to other carrier phase-based interferometric tech-
niques, such as Very Long Baseline Interferometry (VLBI)
[4], Interferometric Synthetic Aperture Radar (InSAR) [5],
or underwater acoustic carrier phase-based positioning [6].

Regardless of the estimation problem addressed, when
designing and assessing estimators it is of fundamental im-
portance to know the minimum achievable performance,
that is, to obtain tight performance lower bounds (LBs).
In general, in estimation problems we are interested in
minimal performance bounds in the mean squared error
(MSE) sense, which provide the best achievable perfor-
mance on the estimation of parameters of a signal cor-
rupted by noise. There are two main categories of LBs,
deterministic and Bayesian [7]. While the former consid-
ers that the parameters to be estimated are deterministic
and evaluate the locally best estimator performance, the
latter consider random parameters with a given a priori
probability and evaluate the globally best estimator behav-
ior. In this contribution we are interested in deterministic
parameter estimation, thus only the first class will be dis-
cussed.

It is worth saying that such LBs have been proved to
be extremely useful, not only for characterizing an esti-
mator asymptotic performance, but also for system de-
sign [7, 8, 9]. The most popular LB is the well-known
Cramér-Rao Bound (CRB) derived for real-valued param-
eter vector, mainly due to: i) its simplicity of calculation,
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for instance using the Slepian-Bangs’ formula [10]; ii) it
is the lowest bound on the MSE of any unbiased estima-
tor (i.e., it considers local unbiasedness at the vicinity of
any selected parameters’ value); and iii) it is asymptoti-
cally attained by maximum likelihood estimators (MLEs)
under certain conditions (i.e., high signal-to-noise ratio
(SNR) [11] and/or large number of snapshots [12]), that
is, MLEs are asymptotically efficient. Inherent limitations
of such CRBs are their inability to: predict the thresh-
old phenomena; provide tight bounds in certain cases [13];
and deal with integer-valued parameter estimation, which
is the contribution of this article.

Since the seminal CRB works, several deterministic
bounds have been proposed in the literature [14, 15, 16, 17,
18, 19, 20, 21, 22] to provide computable approximations
of the Barankin bound (BB) [23], which is the tightest
(greatest) LB for any absolute moment of order greater
than 1 of unbiased estimators. In fact, the BB considers
uniform unbiasedness (i.e., unbiasedness over an interval
of parameter values including the selected value), resulting
in a much stronger restriction than the local unbiasedness
condition of the CRB, but not admitting an analytic solu-
tion in general.

In this contribution, in order to obtain a CRB-like
closed-form expression for the estimation of mixed pa-
rameter vectors, including both real- and integer-valued
parameters, we leverage on the McAulay-Seidman bound
(MSB) [16]. The MSB is the BB approximation obtained
from a discretization of the Barankin uniform unbiasedness
constraint, using a set of selected values of the parameter
vector, so-called test points. The MSB yields to a gen-
eral definition of the CRB, expressed as a limiting form
of the MSB. We derive a closed-form general CRB expres-
sion for mixed parameter vectors and provide its particular
closed-form for the Gaussian observation model, which en-
compasses the well known conditional and unconditional
observation models [24].

On another note, one must keep in mind that in many
problems of practical interest, including the general (non-
linear) case of the problem under consideration, no evi-
dence of the achievability of a given LB by realizable es-
timators exists [7, 8, 13]. Thus, from a practical perspec-
tive, the LB considered may be too optimistic and unable
to represent the actual performance of any estimator. To
circumvent the unavailability of LB achievability results, a
solution relates to the derivation of an upper bound to pro-
vide a complementary vision to that of the LB. Unfortu-
nately, upper bounds on the MSE of unbiased estimates do
not generally exist if the observation space is unbounded.
Nonetheless, upper bounds on the statistical performance
(not necessarily the MSE) may exist for specific estimators
(not necessarily unbiased) in specific estimation problems
[1, 25, 26, 27]. In particular, for the mixed integer linear
regression model, a rich literature on the statistical perfor-
mances of various estimators is already available (see [1]
and references therein), and an upper bound on the prob-
ability that the MLE of the real-valued parameter vector

lies in a certain region exists [25].
The article is organized as follows: Section 2 provides

background on deterministic LBs and their derivation as a
norm minimization problem, mainly focused on the CRB
as the limiting form of the MSB. Section 3 details the
derivation of the new bound, in the general case and for
the Gaussian observation model. It establishes the asymp-
totic efficiency of the MLE for a linear regression model
with mixed parameter vectors and known noise covariance
matrix, and sketches possible generalizations and outlooks.
These results are then particularized for a linear regression
problem, serving as motivating example and discussed in
Section 4. The paper concludes with a discussion of the
results in Section 5.

2. Background on McAulay-Seidman and Cramér-
Rao Bounds for a Real-valued Parameter Vector

2.1. The McAulay-Seidman Bound

Let y1 be a random real-valued observations vector and
Ω ⊂ RM the observation space. Denote by p (y;θ) ,
p (y|θ) the pdf of the observations conditional on an un-
known deterministic real-valued parameter vector θ ∈ Θ ⊂
RK . Let L2 (Ω) be the real vector space of square in-
tegrable functions over Ω. If we consider an estimator

ĝ
(
θ0
)

(y) ∈ LN2 (Ω) of g
(
θ0
)
, where θ0 is a selected value

of the parameter θ and g (θ) = (g1 (θ) , . . . , gN (θ))
>

is a
real-valued function vector, then the MSE matrix writes,

MSEθ0

(
ĝ
(
θ0
))

= Ey;θ0

[(
ĝ
(
θ0
)

(y)− g
(
θ0
))

(·)>
]
.

(1)
By noticing that (1) is a Gram matrix associated with
the scalar product 〈h (y) |l (y)〉θ0 = Ey;θ0 [h (y) l (y)], the
search for a LB on the MSE (1) (w.r.t. the Löwner order-
ing for positive symmetric matrices [28]) can be performed
with two equivalent fundamental results: the generaliza-
tion of the Cauchy-Schwartz inequality to Gram matri-
ces (generally referred to as the ”covariance inequality”

1Italic indicates a scalar quantity, as in a; lower case boldface
indicates a column vector quantity, as in a; upper case boldface
indicates a matrix quantity, as in A. The n-th row and m-th column
element of the matrix A will be denoted by An,m or [A]n,m. The
n-th coordinate of the column vector a will be denoted by an or
[a]n. The matrix/vector transpose is indicated by a superscript (·)>
as in A>. |A| is the determinant of the square matrix A. [A B] and[A
B

]
denote the matrix resulting from the horizontal and the vertical

concatenation of A and B, respectively. IM is the identity matrix
of dimension M . 1M is a M -dimensional vector with all components
equal to one. For two matrices A and B,A ≥ B means that A−B is
positive semi-definite (Löwner partial ordering). ‖·‖ denotes a norm.

If θ = [θ1, θ2, . . . , θK ]>, then: ∂
∂θ

=
[
∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θK

]>
, ∂
∂θ>

=[
∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θK

]
and

∂h(θ0,y)
∂θ

=
∂h(θ,y)
∂θ

∣∣∣
θ0

. p (y;θ) , p (y|θ)

denotes the probability density function (pdf) of y parameterized
by θ. Ey;θ [g (y)] denote the statistical expectation of the vector of
functions g (·) with respect to y parameterized by θ. For the sake of

simplicity, (g (y)) (·)> , g (y)g (y)>.
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[18]) and the minimization of a norm under linear con-
straints (LCs) [17, 19, 20]. We shall prefer the “norm
minimization” form as its use requires explicitly the se-
lection of appropriate constraints, which then determine
the value of the LB on the MSE matrix, hence providing
a clear understanding of the hypotheses associated with
the different LBs on the MSE. To avoid the trivial solu-

tion ĝ
(
θ0
)

(y) = g
(
θ0
)
, some constraints must be added.

In that perspective, Barankin [23] introduced the uniform
unbiasedness formulation,

Ey;θ

[
ĝ
(
θ0
)

(y)

]
= g (θ) , ∀θ ∈ Θ, (2a)

leading to the Barankin bound (BB),

min
ĝ(θ0)∈LN

2 (Ω)

{
MSEθ0

(
ĝ
(
θ0
))}

s.t. Ey;θ

[
ĝ
(
θ0
)

(y)

]
= g (θ) , ∀θ ∈ Θ,

(2b)

which does not admit an analytic solution in general. The
McAulay-Seidman bound (MSB) is the computable BB
approximation obtained from a discretization of the uni-

form unbiasedness constraint (2a). Let {θ}L , {θ}[1,L]
={

θ1, . . . , θL
}
∈ ΘL be a subset of L selected values of

θ (a.k.a. test points). Then, any unbiased estimator

ĝ
(
θ0
)

(y) verifying (2a) must comply with the following
subset of L LCs,

Ey;θl

[
ĝ
(
θ0
)

(y)

]
= g

(
θl
)
, 1 ≤ l ≤ L, (3a)

which can be recast as

Ey;θ0

[
υθ0

(
y; {θ}L

)(
ĝ
(
θ0
)

(y)− g
(
θ0
))>]

︸ ︷︷ ︸
Γ

=


(
g
(
θ1
)
− g

(
θ0
))>

...(
g
(
θL
)
− g

(
θ0
))>


︸ ︷︷ ︸

V

,

(3b)

where υθ0

(
y; {θ}L

)
=
(
υθ0

(
y;θ1

)
, . . . , υθ0

(
y;θL

))>
,

υθ0 (y;θ) = p (y;θ) /p
(
y;θ0

)
, is the vector of likelihood

ratios associated to {θ}L. The L LCs (3b) yields the ap-
proximation of (2b) proposed by McAulay and Seidman
[20],

min
ĝ(θ0)∈LN

2 (Ω)

{
MSEθ0

(
ĝ
(
θ0
))}

s.t. Γ = V, (4a)

and defines the MSB (Lemma 1 in [29]) [16, 20]

Ey;θ0

[(
ĝ
(
θ0
)

(y)− g
(
θ0
))

(·)>
]
≥∆g

(
θ0
)
R−1
υθ0

∆>g
(
θ0
)
,

∆g

(
θ0
)
, ∆g

(
θ0, {θ}L

)
=
[

g
(
θ1
)
− g

(
θ0
)

. . . g
(
θL
)
− g

(
θ0
) ]

,

Rυθ0 , Rυθ0

(
{θ}L

)
= Ey;θ0

[
υθ0

(
y; {θ}L

)
υ>θ0

(
y; {θ}L

)]
,

(4b)
a generalization of the Hammersley-Chapman-Robbins
bound (HaChRB) previously introduced in [15, 30] for 2
test points (L = 2).

2.2. CRB as a Limiting Form of the MSB

The CRB can be defined for any absolute moment
(greater than 1) as the limiting form of the HaChRB
[15, 30], as showed in [23]. The extension to the multi-
dimensional real-valued parameters case for the MSE (i.e.,
absolute moment of order 2) was introduced in [16], allow-
ing to define the CRB as the limiting form of the MSB
(4b). Considering the subset of test points

{θ}1+K
=
{
θ0,θ0 + i1dθ1, . . . , θ

0 + iKdθK
}

under dθk 6= 0, 1 ≤ k ≤ K,

where ik is the kth column of the identity matrix IK , leads
to

υθ0

(
y; {θ}1+K

)
=
[

1
p(y;θ0+i1dθ1)

p(y;θ0)
. . .

p(y;θ0+iKdθK)
p(y;θ0)

]>
,

∆g

(
θ0
)

=
[
0 g

(
θ0 + i1dθ1

)
− g

(
θ0
)

. . . g
(
θ0 + iKdθK

)
− g

(
θ0
)]

and, with dθ = (dθ1, . . . , dθK)
>

, yields to (see Appendix
A)

∆g

(
θ0
)
R−1
υθ0

∆>g
(
θ0
)

= Λg

(
θ0, dθ

)
F̃
(
θ0, dθ

)−1
Λ>g

(
θ0, dθ

)
,

(5a)

F̃
(
θ0, dθ

)
= Ey;θ0




p(y;θ0+i1dθ1)−p(y;θ0)
dθ1p(y;θ0)

...
p(y;θ0+iKdθK)−p(y;θ0)

dθKp(y;θ0)

 (.)
>


(5b)

Λg

(
θ0, dθ

)
=
[

g(θ0+i1dθ1)−g(θ0)
dθ1

. . .
g(θ0+iKdθK)−g(θ0)

dθK

]
,

(5c)
which results in a general definition of the CRBg|θ

(
θ0
)

as

CRBg|θ
(
θ0
)

= lim
sup{dθ1 6=0,...,dθK 6=0}→0

Λg

(
θ0, dθ

)
F̃
(
θ0, dθ

)−1
Λ>g

(
θ0, dθ

)
.

(6a)
If θ0 ∈ Θ ⊂ RK and g (θ) and p (y;θ) are C1 at θ0,
then (6a) yields the well known Fisher Information Matrix
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(FIM) F (θ) and the usual CRB expression

F (θ) = Ey;θ

[
∂ ln p (y;θ)

∂θ
(.)
>
]
, (6b)

CRBg|θ
(
θ0
)

=
∂g
(
θ0
)

∂θ>
F
(
θ0
)−1

(
∂g
(
θ0
)

∂θ>

)>
. (6c)

3. CRB for a Mixture of Real-valued and Integer-
valued Parameters

Leveraging the MSB and CRB results presented in the
previous Section 2, we derive in this section a LB for de-
terministic parameter vector estimation, where such vector
contains both real-valued and integer-valued parameters.
A general result is provided, then particularized for the
case of Gaussian observations.

3.1. General CRB for Mixed Parameter Vectors

The main result derived in this article is summarized in
the form of Theorem 1. A corollary follows, which simpli-
fies the former in a particular class of models.

Theorem 1 (General CRB for mixed parameter vec-
tors). Assume a set of observations y ∈ Ω ⊂ RM and
an unknown deterministic real-valued parameter vector
θ ∈ Θ ⊂ RK where θ> =

[
ω>, z>

]
, ω ∈ RKω , z ∈ ZKz ,

Kω +Kz = K. Those quantities are related through a sta-
tistical model of the form y|θ ∼ p (y|θ), which is available.
Then, the MSE of any unbiased estimator of a function
g
(
θ0
)
∈ L2 (Ω) for a selected value of the parameter θ0 is

lower bounded by

CRBg|θ
(
θ0
)

= Λg

(
θ0
)
F
(
θ0
)−1

Λ>g
(
θ0
)
, (7)

with

Λg

(
θ0
)

=
[

∂g(θ0)
∂ω>

g
(
θ1
)
− g

(
θ0
)

. . . g
(
θ2Kz

)
− g

(
θ0
) ]
(8)

F
(
θ0
)

=

[
Fω|θ

(
θ0
)

H
(
θ0
)

H
(
θ0
)>

MSz|θ
(
θ0
) ] , (9)

where the test points {θ}2Kz are defined as

θj = θ0 + (−1)
j−1

iKω+b j+1
2 c, 1 ≤ j ≤ 2Kz, (10)

that is, [
θ1,θ2, . . . , θ2Kz−1,θ2Kz

]
=[

θ0 + iKω+1,θ
0 − iKω+1, . . . , θ

0 + iK ,θ
0 − iK

]
.

The different terms in F
(
θ0
)

are given by

Fω|θ
(
θ0
)

= Ey;θ0

[
∂ ln p

(
y;θ0

)
∂ω

(.)
>

]
, (11a)

H
(
θ0
)

= Ey;θ0

[
∂ ln p

(
y;θ0

)
∂ω

t>2Kz

]
(11b)

=
[

h
(
θ0,θ1

)
h
(
θ0,θ2

)
. . . h

(
θ0,θ2Kz

) ]
,

(11c)

MSz|θ
(
θ0
)

= Ey;θ0

[
t2Kzt>2Kz

]
− 12Kz1>2Kz

, (11d)

where t2Kz
is defined as

t2Kz , υθ0

(
y; {θ}2Kz

)
(11e)

=

p (y;θ1
)

p
(
y;θ0

) , p (y;θ2
)

p
(
y;θ0

) , . . . , p
(
y;θ2Kz

)
p
(
y;θ0

)
> . (11f)

Proof. First, notice that in the real-valued parameter
case, that is, if θ0

k ∈ R, and both g (θ) and p (y;θ) are
C1 at θ0

k, then, the constraints associated to the fol-
lowing two test points,

{
θ0 + ikdθk,θ

0 + ik (−dθk)
}

={
θ0 + ikdθk,θ

0 − ikdθk
}

,

Ey;θ0

 p(y;θ0+ikdθk)−p(y;θ0)
dθkp(y;θ0)

p(y;θ0−ikdθk)−p(y;θ0)
(−dθk)p(y;θ0)

(ĝ
(
θ0
)

(y)− g
(
θ0
))>

=


(

g(θ0+ikdθk)−g(θ0)
dθk

)>
(

g(θ0−ikdθk)−g(θ0)
(−dθk)

)>
 (12)

aim at the same single constraint in the limiting case where
dθk → 0, dθk 6= 0,

Ey;θ0

[
∂ ln p

(
y;θ0

)
∂θk

(
ĝ
(
θ0
)

(y)− g
(
θ0
))>]

=
∂g
(
θ0
)

∂θk

>

.

(13)
However, this phenomenon is unlikely to happen if θ0

k ∈ Z
in the limiting case where dθk → 0, dθk 6= 0, since (12)
then becomes

Ey;θ0

 p(y;θ0+ik)−p(y;θ0)
p(y;θ0)

p(y;θ0−ik)−p(y;θ0)
p(y;θ0)

(ĝ
(
θ0
)

(y)− g
(
θ0
))>

=

[ (
g
(
θ0 + ik

)
− g

(
θ0
))>(

g
(
θ0 − ik

)
− g

(
θ0
))>

]
, (14)

where
(
p
(
y;θ0 + ik

)
− p

(
y;θ0

))
/p
(
y;θ0

)
and(

p
(
y;θ0 − ik

)
− p

(
y;θ0

))
/p
(
y;θ0

)
are unlikely to

be linearly dependent (i.e., notice that F̃
(
θ0, dθ

)
in (5b)

must be invertible to compute the CRBg|θ
(
θ0
)

in (6a)).
Therefore, in most cases, the combination of LCs (13) and

4



(14) yields, from Lemma 1 in [29], the general definition
(7) of CRBg|θ

(
θ0
)

where the different terms in F
(
θ0
)

are given by

Fω|θ
(
θ0
)

= Ey;θ0

[
∂ ln p

(
y;θ0

)
∂ω

(.)
>

]
, (15a)

H
(
θ0
)

= Ey;θ0

[
∂ ln p

(
y;θ0

)
∂ω

(t2Kz
− 12Kz

)
>

]
,

(15b)

MSz|θ
(
θ0
)

= Ey;θ0

[
(t2Kz

− 12Kz
) (t2Kz

− 12Kz
)
>
]
,

(15c)

and where H
(
θ0
)

and MSz|θ
(
θ0
)

can also been expressed
as (11b) and (11d).

Corollary 1. If g (θ) = θ, matrix Λθ
(
θ0
)

in Theorem 1
simplifies to

Λθ
(
θ0
)

=
[
i1 . . . iKω iKω+1 −iKω+1 . . . iK −iK

]
=

(Kz=3)


IKω 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

 .

(16)

3.2. The Gaussian Observation Model

Let us consider an M -dimensional Gaussian real vec-
tor y with mean my = m (θ) and covariance matrix
Cy = C (θ): y ∼ NM (m (θ) ,C (θ)) and p (y;θ) =
p (y; m (θ) ,C (θ)) such that

p (y; m (θ) ,C (θ)) =
e−

1
2 (y−m(θ))>C−1(θ)(y−m(θ))

√
2π

M√|C (θ)|
. (17)

If we define

Cij =
[
C
(
θi
)−1

+ C
(
θj
)−1 −C

(
θ0
)−1
]−1

, (18a)

mij = C
(
θi
)−1

m
(
θi
)

+ C
(
θj
)−1

m
(
θj
)
−C

(
θ0
)−1

m
(
θ0
)
,

(18b)

δij = m
(
θi
)>

C
(
θi
)−1

m
(
θi
)

+ m
(
θj
)>

C
(
θj
)−1

m
(
θj
)

−m
(
θ0
)>

C
(
θ0
)−1

m
(
θ0
)
, (18c)

then we can obtain the different components required to
compute the CRB (7) (see Appendix B for detailed deriva-
tion of MSz|θ

(
θ0
)

and h
(
θ0,θj

)
) as

[
MSz|θ

(
θ0
)]
i,j

=

√
|Cij ||C(θ0)|
|C(θi)||C(θj)|e

1
2

[
(mij)

>
Cijmij−δij

]
− 1,

(18d)

[
h
(
θ0,θj

)]
k

=


1
2 tr

(
∂C(θ0)

−1

∂ωk

(
C
(
θ0
)
−C

(
θj
))
− ∂C(θ0)

−1

∂ωk

×
(
m
(
θj
)
−m

(
θ0
)) (

m
(
θj
)
−m

(
θ0
))>)

+
∂m(θ0)
∂ωk

>
C
(
θ0
)−1 (

m
(
θj
)
−m

(
θ0
))


(18e)

[
Fω|θ

(
θ0
)]
k,l

=
∂m

(
θ0
)

∂ωk

>

C−1
(
θ0
) ∂m

(
θ0
)

∂ωl

+
1

2
tr

(
C−1

(
θ0
) ∂C

(
θ0
)

∂ωk
C−1

(
θ0
) ∂C

(
θ0
)

∂ωl

)
,

(18f)

where (18f) is the Slepian-Bangs formula [31, p.47].
In the following, for sake of legibility, θ denotes either

the vector of unknown parameters or a selected vector

value
(
θ0
)>

= [
(
ω0
)>
,
(
z0
)>

].

3.3. Asymptotically Efficient Estimators for the Gaussian
Linear Conditional Observation Model (g (θ) = θ)

A case of particular interest is the Gaussian linear condi-
tional signal model, also known as the mixed-integer model
[1, Ch. 23],

y = Bω + Az + n, n ∼ NM (0,Cn) ,

θ> = [ω>, z>], ω ∈ RKω , z ∈ ZKz , (19)

where the noise covariance matrix Cn is known and the
parameter vector of interest is g (θ) = θ. For instance,
in GNSS RTK precise positioning, the M -vector y con-
tains the pseudorange and carrier-phase observables, the
Kz-vector z the integer ambiguities, and the real-valued
Kω-vector ω the remaining unknown parameters, such as,
for example, position coordinates, atmospheric delay pa-
rameters (troposphere, ionosphere) and clock parameters.
The theory that underpins the resolution of (19) in the
maximum likelihood sense is the theory of integer infer-
ence [2][3][1, Ch. 23]. The search for the MLE of a selected
value θ for the mixed-integer model (19) can be cast as a
minimization problem over mixed integer-real parameters,

θ̂ = arg min
ω∈RKω , z∈ZKz

‖y − Dθ‖2Cn
, D =

[
B A

]
. (20)

A closed-form solution to (20) is not known, due to the
integer nature of z. Instead, a three-step decomposition of
the problem is typically considered [32], and the resulting
minimization problems are sequentially resolved as [33]

min
ω∈RKω , z∈ZKz

‖y − Dθ‖2Cn
=

∥∥∥∥y − D
(
ω̄

z̄

)∥∥∥∥2

Cn

(21a)

+ min
z∈ZKz

‖z̄− z‖2Cω̄ (21b)

+ min
ω∈RKω

‖ω̂ (z)− ω‖2Cω̂(z)
,

(21c)
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where ω̂ (z) = ω̄ −Cω̄,z̄C
−1
z̄ (z̄− z). The first term (21a)

corresponds to the MLE solution where z is treated as a
real valued vector (instead of an integer valued vector).

The output of this estimate θ̄
>

= [ω̄>, z̄>] is referred to
as float solution and its associated covariance matrix is

Cθ̄ =

[
Cω̄ Cω̄,z̄

Cz̄,ω̄ Cz̄

]
=
(
D>C−1

n D
)−1

,

which, by exploiting the four-blocks matrix inversion ex-
pression [28], leads to

Cω̂(z) = Cω̄ −Cω̄,z̄C
−1
z̄ Cz̄,ω̄ =

(
B>C−1

n B
)−1

.

The second term (21b) in the decomposition corresponds
to the integer-least-square (ILS), for which an integer so-
lution ẑ is found. Finally, the third term (21c) is the fixed
solution, consisting on enhancing the estimates ω̄ upon the
estimated integer vector ẑ

ω̂ = ω̂ (ẑ) = ω̄ −Cω̄,z̄C
−1
z̄ (z̄− ẑ) . (22)

The improvement in ω̂ accuracy is due to constraining the
float solution z̄ to a more restrictive class of estimators.
Three different classes of estimators have been developed
for mixed integer models [34], and for each one the opti-
mal estimators have been identified: i) the class of integer
(I) estimators [35]; ii) the class of integer-aperture (IA)
estimators [36]; and iii) the class of integer-equivariant
(IE) estimators [37]. The first class is the most restric-
tive class. This is due to the fact that the outcomes of
any estimator within this class are required to be inte-
gers. Well-known examples of estimators from this class
are integer rounding (ẑR), integer bootstrapping (ẑB) and
the optimal solution so-called integer least-squares (ẑLS)
which is the MLE. The most relaxed class is the class of
IE-estimators. These estimators are real-valued, and they
only obey the integer remove-restore principle. An impor-
tant estimator in this class is the best IE-estimator (ẑBIE)
since it has the smallest variance, even smaller than the
variance of the float solution. The class of IA-estimators
is a subset of the IE-estimators but it encompasses the
class of I-estimators. The IA-estimators are of a hybrid
nature in the sense that their outcomes are either integers
or real. It is also worth noting that distributional results
are readily available [25][38]. Interestingly enough, integer
rounding, integer bootstrapping, and integer least-squares
estimators (ẑR, ẑB , ẑLS) are uniformly unbiased [39] un-
der Gaussian additive noise (19), leading to an uniformly
unbiased estimator ω̂ (22), since then E [ω̂] = E [ω̄] = ω.
Thus the proposed CRBθ|θ (θ) (7) is a relevant LB for the
Gaussian linear conditional signal model (19) and

Cω̂ = Cω̂(ẑ) ≥ CRBω|θ (θ) , ẑ ∈ {ẑR, ẑB , ẑLS} .

Firstly, as [1, (23.54)] P (ẑLS = z) ≥ P (ẑB = z) ≥
P (ẑR = z), and [1, (23.23)] lim

tr(Cn)→0
P (ẑR = z) = 1, then

lim
tr(Cn)→0

CẑLS
= lim
tr(Cn)→0

CẑB
= lim
tr(Cn)→0

CẑR
= 0.

Thus, for any ẑ ∈ {ẑR, ẑB , ẑLS}, since [25, (29)] Cω̂(ẑ) =

Cω̂(z) + Cω̄,z̄C
−1
z̄ CẑC

−1
z̄ Cz̄,ω̄,

lim
tr(Cn)→0

Cω̂(ẑ) =
(
B>C−1

n B
)−1

.

Secondly, since it is well known that adding unknown pa-
rameters leads to an equal or higher CRB, then (25a)

Cω̂(ẑ) ≥ CRBω|θ (θ) ≥ F−1
ω|θ (θ) =

(
B>C−1

n B
)−1

.

Therefore, for any ẑ ∈ {ẑR, ẑB , ẑLS} ,

lim
tr(Cn)→0

Cω̂(ẑ) = lim
tr(Cn)→0

CRBω|θ (θ) =
(
B>C−1

n B
)−1

,

which proves that ẑR, ẑB and ẑLS are asymptotically effi-
cient estimators. Last, since ẑBIE is also uniformly unbi-
ased with a MSE less than or at the most equal to the MSE
of ẑLS [37, (24)], it is an asymptotically efficient estimator
as well.

3.4. Generalizations and Outlooks

The proposed CRB for mixed parameter vectors (7)
has been derived in the context of “standard” deter-
ministic estimation problems for which a closed-form ex-
pression of p (y;θ) is available. In the context of “non
standard” deterministic estimation problems (see [40] and
references therein), p (y;θ) results from the marginal-
ization of an hybrid p.d.f. depending on both ran-
dom

(
θr ∈ RPr

)
and deterministic (θ) parameters, i.e.,

p (y;θ) =
∫
RPr

p (y,θr|θ) dθr, which is mathematically
intractable and prevents from using the proposed stan-
dard CRB (7). Fortunately, any LB deriving from the
MSB, as for instance (7), can be transformed into two
variants, namely the so-called “modified” LB [40, Sec-
tion III] and “non-standard” LB [40, Section IV] fitted to
non-standard deterministic estimation. Thus, two CRB
variants for mixed parameter vectors can be readily in-
troduced in the context of “non standard” deterministic
estimation. Since the proposed CRB (7) can also be re-
garded as a CRB dealing with restricting the set of possi-
ble values of some of the unknown parameters, namely the
integer-valued parameters, it is worth noticing that (7) can
also take into account continuous restriction on the set of
possible values of the real-valued parameters. When the
continuous restriction is described by a set of P equality
constraints, f (ω) = 0 ∈ RP , 1 ≤ P ≤ Kω − 1, where
the matrix ∂f (ω) /∂ω> ∈ RP×Kω has full row rank (P ),
which is equivalent to requiring that the constraints are
not redundant, it leads to the so-called constrained CRB
[41, 42, 43, 44]. In the case of mixed parameter vectors, it
amounts to replace the LCs (13) with [29]

Ey;θ

[(
U (ω)

> ∂ ln p (y;θ)

∂ω

)(
ĝ (θ) (y)− g (θ)

)>]
=

(
∂g (θ)

∂ω>
U (ω)

)>
,
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where U (ω) ∈ RKω×(Kω−P ) is a basis of ker
{
∂f(ω)
∂ω>

}
,

which leads to update the definition of Fω|θ (θ) (11a),
H (θ) (11b) and Λg (θ) (8) as follows: Fω|θ (θ) →
U (ω)

>
Fω|θ (θ) U (ω), H (θ)→ U (ω)

>
H (θ), and

Λg (θ) =
[
∂g(θ)
∂ω>

U(ω) g
(
θ1
)
− g(θ0) . . . g(θ2Kz )− g(θ0)

]
.

4. Example of Gaussian Linear Regression Prob-
lem: GNSS RTK Precise Positioning

In this section, we exemplify the aforementioned results
with a particular example of Gaussian linear conditional
signal model, aka the linear regression problem with mixed
real and integer parameters, that is the GNSS RTK precise
positioning problem.

4.1. Signal Model for GNSS RTK Precise Positioning

RTK is a GNSS-based relative positioning method,
where the position of a target is determined with respect to
a base station of known coordinates [45]. RTK exploits the
use of code and carrier-phase pseudorange observations.
Carrier-phase observations are characterized by a noise
(typically) two orders of magnitude lower than code pseu-
dorange measurement, but they are ambiguous by an un-
known number of integer ambiguities. Thus, the achieve-
ment of high precision positioning requires the estimation
of the dynamical parameters of the target along with the
unknown integer ambiguities within a process referred to
as Integer Ambiguity Resolution (IAR) [33]. We assume
that M + 1 satellites are tracked simultaneously by the
base and target GNSS receivers. First, single-differencing
the observations, i.e., subtracting the observations at the
target from the base stations, eliminates the atmospheric
and satellite-related delays. Then, the process of double-
differencing, i.e., subtracting the single-difference obser-
vations with respect to a reference satellite, removes the
effects of receivers clock offsets. The resulting GNSS RTK
model can be modeled as y ∼ NM (m(θ),Cn) with

m(θ) = D
[
ω

z

]
, D = [B A],

B =

[
B

B

]
, A =

[
A

0

]
, Cn =

[
Cφ 0
0 Cρ

]
, (23)

where y> =
[
φ>,ρ>

]
is the observation vector, composed

by the double-difference carrier-phase and code observa-
tions, denoted as φ,ρ ∈ RM respectively, whose corre-
sponding covariance matrices are Cφ and Cρ. ω ∈ R3 is
the target receiver to base station baseline vector; and
z ∈ ZM is the vector of unknown integer ambiguities.
The matrix B is the so-called geometry matrix which is
composed of the unit line-of-sight vectors pointing from
the receiver to each satellite. A is the diagonal matrix
with the wavelength of the carrier-phase measurements
[32, 46]. The covariance matrices Cφ and Cρ are defined
as Cφ = 2σ2

φTW−1T> and Cρ = 2σ2
ρTW−1T>, where

σφ and σρ are the zenith-referenced undifferenced phase
and code standard deviations [46], T = [IM − 1M ] is the
double-differencing matrix, W = diag (w1, . . . , wM+1) is a
diagonal values and wi is the satellite elevation-dependent
weight. As it is formulated, the RTK problem can be seen
to fit the linear regression problem discussed earlier in Sec-
tion 4. In practice, the solution for the mixed real and
integer model (20) is generally solved via the mixed real-
integer regression (21a-21c). Thus, the RTK positioning
model constitutes a practical example of Gaussian linear
regression with mixed real- and integer-valued parameters.

4.2. CRB for GNSS RTK Precise Positioning

As aforementioned, in the RTK problem, the Gaussian
linear observation model reads

y =

[
φ

ρ

]
= Dθ + n, n ∼ NM (0,Cn) ,

B = [b1 . . .bKω
] ,A = [a1 . . . aKz

] . (24)

From the results presented in Section 3.1, we recall that
the CRB, referred to as CRBReal/Integer in the following,
is given by

CRBθ|θ (θ) = Λθ (θ) F (θ)
−1

Λ>θ (θ) ,

F (θ) =

[
Fω|θ (θ) H (θ)

H (θ)
>

MSz|θ (θ)

]
,

where Λθ (θ) is given by (16), and we have to compute
F (θ) using the general Gaussian model equations given in
Section 3.2. Since Cn does not depend on θ, (18a-18c)
become

Cij = Cn, mij = C−1
n

(
m
(
θi
)

+ m
(
θj
)
−m (θ)

)
,

δij = m
(
θi
)>

C−1
n m

(
θi
)

+ m
(
θj
)>

C−1
n m

(
θj
)

−m (θ)
>

C−1
n m (θ) ,

[MS]i,j = e(m(θ)−m(θi)−m(θj))
>

C−1
n m(θ)+m(θi)

>
C−1

n m(θj) .

These equations allow computation of the elements in the
CRB formula. Particularly, computing Fω|θ (θ) for 1 ≤
k, k′ ≤ Kω becomes

[
Fω|θ (θ)

]
k,k′

=
∂m (θ)

∂ωk

>
C−1

n

∂m (θ)

∂ωk′
=

[
bk
bk

]>
C−1

n

[
bk′
bk′

]
,

such that

Fω|θ (θ) = B>C−1
n B . (25a)

Let θj = θ + (−1)
j−1

iKω+b j+1
2 c and

θi = θ + (−1)
i−1

iKω+b i+1
2 c. Then,

[
MSz|θ (θ)

]
i,j

= e(θ−θ
i−θj)

>D>C−1
n Dθ+(θi)

>D>C−1
n D(θj) − 1,

(25b)
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and for 1 ≤ k ≤ Kω, we have that

[
h
(
θ,θj

)]
k

=
∂m (θ)

∂ωk

>
C−1

n

(
m
(
θj
)
−m (θ)

)
=

[
bk
bk

]>
C−1

n D
(
θj − θ

)
,

which leads to

H (θ) = B>C−1
n D

[
iKω+1 −iKω+1 . . . iK −iK

]
.

(25c)
It is worth remembering that relaxing the condition on the
integer-valued part of the parameters’ vector, and assum-
ing that both parameters are real-valued, ω ∈ RKω , z ∈
RKz , then the standard CRB is given by the inverse of the
following FIM,

Fθ|θ (θ) = D>C−1
n D, (26)

and is referred to as CRBReal in the following.

4.3. Illustrative Example

To illustrate the validity of the proposed LB, a realistic
GNSS RTK experiment was simulated. Particularly, the
receiver-satellite geometry considered is illustrated in Fig.
1 (M + 1 = 13 satellites), under a wide range of precision
levels for the undifferenced code observations –preserving
the noise of carrier-phase (φ) measurements two orders of
magnitude lower than code (ρ) observable –. To evaluate
the LS performance, the root (total) MSE (RMSE), ob-
tained from 104 Monte Carlo runs, for both 3D position
and the 12 (M) integer ambiguities was considered as a
measure of performance.

Figure 1: Skyplot of the simulated GNSS receiver-satellite geometry.

Fig. 2 (left) shows the 3D position (ω) RMSE over
the standard deviation of code observations σρ, as well as
the square-root of the corresponding (total) CRBs, with
a zoom of the low noise region given in Fig. 2 (right).
First, notice that the standard LS (equivalent to the MLE)
RMSE, as expected, coincides with the CRBReal for the

range of tested σρ values, which gives the ultimate achiev-
able performance with both code and phase observables
if no integer constraint is imposed for ambiguities z. Sec-
ondly, the ILS performance, considering that the float posi-
tion estimate is always corrected by the output ambiguities
of the IAR, clearly depends on the noise level. Three re-
gions of performance can identified: i) large noise regime:
the ILS coincides with both standard LS and CRBReal,
which is clear from the ILS success rate shown in Fig. 3,
where we can see that for σρ > 5 [m] a correct integer
solution is never found, then, on average, is as if no inte-
ger constraint was imposed; ii) low noise regime: the IAR
obtains the correct ambiguity solution with high proba-
bility, then the ILS coincides with the so-called Correct
ILS (which only considers the successful outputs of the
IAR) and the CRBReal|Integer, which shows that the ILS
is asymptotically efficient; and iii) threshold region: below
the so-called threshold point (in this case, σρ > 0.1 [m]),
the ILS RMSE departs from the CRBReal|Integer and rises
towards the CRBReal, with even a small region where the
RMSE overpasses the performance of a standard LS (in
this case, for 1 < σρ < 10 [m]). This region describes the
behaviour of the ILS, which abandons its asymptotic effi-
ciency and ambiguous errors occur due to the (partially)
wrong estimation of the integer ambiguities. The thresh-
old point varies with the satellite geometry, number of
observations (i.e., number of frequencies tracked) and ob-
servation noises. Therefore, the precise prediction for the
transition point remains an open challenge. Finally, if we
considered only the successfully fixed ambiguities, the Cor-
rect ILS would coincide with the CRBReal|Integer. How-
ever, the correct solution to the ILS problem cannot be
guaranteed outside the asymptotic region.

Regarding the CRBReal|Integer and CRBReal compari-
son, it is clear that considering the integer nature of a
part of the vector to be estimated has a strong impact on
the achievable performance, and therefore, highlights the
interest of the estimating the so-called integer ambiguities.
As a byproduct, this highlights the importance of the LB
proposed in this contribution. Obviously, restricting the
set of possible values (integer instead of real) leads to a
LB such that CRBReal|Integer ≤ CRBReal. For this bound
there exists also a noise threshold region from where the
real/integer parameters bound meets the real parameters
bound. This implies that in such high noise region the in-
teger constraint does not improve the estimates of the real
parameters.

Fig. 4 (top) shows the ambiguity (z) RMSE as a func-
tion of the standard deviation of the code observations σρ
(recall that σφ is always set two orders of magnitude lower
than σρ in these simulations), as well as the square-root
of the corresponding CRBs, with a zoom of the low noise
region given in Fig. 4 (bottom). Again, we can iden-
tify the same behaviour as for the position estimate: i)
the standard LS ambiguity estimation coincides with the
CRBReal; ii) in the high noise region, the IAR output (i.e.,
all ambiguities) coincides with the real ambiguity case; and
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Figure 2: Positioning RMSE and square-root of CRBs as a function of the standard deviation of observation noise σρ.

Figure 3: Success rate for the integer parameter estimation of the
RTK positioning problem.

iii) when the success rate increases (i.e., for 1 > σρ > 0.2),
the ILS ambiguity RMSE tends to decrease until the point
where all the ambiguities are correctly fixed (σρ ≤ 0.2) and
then the RMSE coincides with the CRBReal|Integer = 0,
being in the asymptotic efficiency region. The Correct ILS
is not shown because both RMSE and CRBReal|Integer are
equal to 0. Together with the previous results for the po-
sition estimate, this shows the validity and interest of the
mixed real/integer bound, and the consistency of the re-
sults related to the ambiguity fixing capabilities (i.e., suc-
cess rate).

5. Conclusions

The main object of this contribution was the deriva-
tion of LBs on the estimation of mixed real- and integer-
valued parameter vectors. A closed-form Cramér-Rao
bound (CRB) for this problem was provided, which lever-
ages the general CRB expression as the limiting form of

the McAulay-Seidman bound. The general CRB expres-
sion for mixed parameter vectors was particularized for
the Gaussian observation problem. To show the validity
of the bound derived in the article, results for a representa-
tive carrier phase-based precise positioning example were
provided. It was shown that the CRB expression is able
to predict the RMSE performance of the MLE, and that
an asymptotically efficient estimator for mixed parameter
vectors exists in linear regression model with known noise
covariance matrix.

Appendix A. Proof of (5a)-(5c)

Let εg

(
y;θ0

)
= ĝ

(
θ0
)

(y)− g
(
θ0
)
. From Lemma 3 in

[29], the set of linear constraints

Ey;θ0

[
υθ0

(
y; {θ}1+K

)
ε>g
(
y;θ0

)]

=


0>(

g
(
θ0 + i1dθ1

)
− g

(
θ0
))>

...(
g
(
θ0 + iKdθK

)
− g

(
θ0
))>

 = V, (A.1)

are equivalent to

T>Ey;θ0

[
υθ0

(
y; {θ}1+K

)
ε>g
(
y;θ0

)]
= T>V,

where (weighted subtraction of the first constraint)

T> =



1 0 0 . . . 0
−1/dθ1 1/dθ1 0 . . . 0

−1/dθ2 0 1/dθ2 0
...

...
... 0

. . . 0
−1/dθK 0 . . . 0 1/dθK

 ,
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Figure 4: Ambiguity RMSE and square-root of CRBs as a function of the standard deviation of observation noise σρ.

that is

Ey;θ0




1

p(y;θ0+i1dθ1)−p(y;θ0)
dθ1p(y;θ0)

...
p(y;θ0+iKdθK)−p(y;θ0)

dθKp(y;θ0)

 ε>g
(
y;θ0

)


=



0>(
g(θ0+i1dθ1)−g(θ0)

dθ1

)>
...(

g(θ0+iKdθK)−g(θ0)
dθK

)>


. (A.2)

Moreover, since

Ey;θ0

1×


p(y;θ0+i1dθ1)−p(y;θ0)

dθ1p(y;θ0)

...
p(y;θ0+iKdθK)−p(y;θ0)

dθKp(y;θ0)




=


1
dθ1

(
Ey;θ0

[
p(y;θ0+i1dθ1)

p(y;θ0)

]
− 1

)
...

1
dθK

(
Ey;θ0

[
p(y;θ0+iKdθK)

p(y;θ0)

]
− 1

)


= 0,

we can apply Lemma 2 in [29] to assert that (A.1) and
(A.2) are equivalent to

Ey;θ0




p(y;θ0+i1dθ1)−p(y;θ0)
dθ1p(y;θ0)

...
p(y;θ0+iKdθK)−p(y;θ0)

dθKp(y;θ0)

 ε>g (y;θ0
)


=



(
g(θ0+i1dθ1)−g(θ0)

dθ1

)>
...(

g(θ0+iKdθK)−g(θ0)
dθK

)>

 . (A.3)

Q.E.D.

Appendix B. Derivation of (18a)-(18d)

Let us consider an M -dimensional Gaussian real vec-
tor y with mean my = m (θ) and covariance matrix
Cy = C (θ): y ∼ NM (m (θ) ,C (θ)) and p (y;θ) =
p (y; m (θ) ,C (θ)) as in (17). The derivation of the com-
ponents MSz|θ and Hθ of the CRBg|θ

(
θ0
)

in (7-11d) is
based on the following factorization property of the Gaus-
sian real pdf,

p(y;θi)p(y;θj)

p(y;θ0)
=
p
(
y; m(θi),C

(
θi
))
p
(
y; m

(
θj
)
,C
(
θj
))

p
(
y; m

(
θ0
)
,C
(
θ0
))

= [MS]i,j p
(
y; Cijmij ,Cij

)
, (B.1)
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where

Cij =
[
C
(
θi
)−1

+ C
(
θj
)−1 −C

(
θ0
)−1
]−1

, (B.2a)

mij = C
(
θi
)−1

m
(
θi
)

+ C
(
θj
)−1

m
(
θj
)

−C
(
θ0
)−1

m
(
θ0
)
, (B.2b)

δij = m
(
θi
)>

C
(
θi
)−1

m
(
θi
)

+ m
(
θj
)>

C
(
θj
)−1

m
(
θj
)

−m
(
θ0
)>

C
(
θ0
)−1

m
(
θ0
)
, (B.2c)

[MS]i,j =

√
|Cij |

∣∣C (θ0
)∣∣∣∣C (θi)∣∣ ∣∣C (θj)∣∣e 1

2

[
(mij)

>
Cijmij−δij

]
,

(B.2d)

which suggests a breakdown into items([
MSz|θ

(
θ0
)]
i,j
,h
(
θ0,θj

))
depending only on

the selected value θ0 and a couple of test points{
θi,θj

}i,j∈[0,2KZ ]
, as detailed in (11b-11d). Indeed,

denoting

Eijy [g (y)] =

∫
g (y) p

(
y; Cijmij ,Cij

)
dy, (B.3a)

then

[MS]i,j = Ey;θ0

[
p
(
y;θi

)
p
(
y;θ0

) p (y;θj
)

p
(
y;θ0

)]

= [MS]i,j

∫
p
(
y; Cijmij ,Cij

)
dy (B.3b)

h
(
θi,θj

)
= Ey;θ0

[
∂ ln p

(
y;θi

)
∂θ

p
(
y;θi

)
p
(
y;θ0

) p (y;θj
)

p
(
y;θ0

)]

= [MS]i,j Eijy

[
∂ ln p

(
y;θi

)
∂θ

]
(B.3c)

Therefore in the following we consider the representa-
tion y ∼ NM

(
Cijmij ,Cij

)
, where Cij , mij are given

by (B.2a-B.2d). To compute the missing expectations,

let us recall that p (y;θ) = e−
1
2φ(y;θ)/

(√
2π

M√|C (θ)|
)

where φ (y;θ) = tr
(
C (θ)

−1
Ĉ (θ)

)
and Ĉ (θ) =

(y −m (θ)) (y −m (θ))
>

and that

∂C (θ)
−1

∂θk
= −C (θ)

−1 ∂C (θ)

∂θk
C (θ)

−1
,

∂ ln |C (θ)|
∂θk

= −tr

(
∂C (θ)

−1

∂θk
C (θ)

)
.

Then,

∂φ (y;θ)

∂θk
= −2

∂m (θ)

∂θk

>
C (θ)

−1
(y −m (θ))

+ (y −m (θ))
> × ∂C (θ)

−1

∂θk
(y −m (θ)) ,

(B.4)

∂ ln p (y;θ)

∂θk
=

1

2
tr

(
∂C (θ)

−1

∂θk

(
C (θ)− Ĉ (θ)

))

+
∂m (θ)

∂θk

>
C (θ)

−1
(y −m (θ)) . (B.5)

From (B.5), we have that

Eijy
[
∂ ln p (y;θ)

∂θk

]
=

1

2
tr

(
∂C (θ)

−1

∂θk

(
C (θ)− Eijy

[
Ĉ (θ)

]))

+
∂m (θ)

∂θk

>
C (θ)

−1 (Eijy [y]−m (θ)
)
,

(B.6)

where

Eijy
[
Ĉ (θ)

]
= Cij +

(
Eijy [y]−m (θ)

) (
Eijy [y]−m (θ)

)>
.

(B.7)
Finally,

[MS]i,j =

√
|Cij |

∣∣C (θ0
)∣∣∣∣C (θi)∣∣ ∣∣C (θj)∣∣e 1

2

[
(mij)

>
Cijmij−δij

]
,

(B.8a)

[
h
(
θi,θj

)]
k

= [MS]i,j
[
α
(
θi
)]
k
, (B.8b)

where

[
α
(
θi
)]
k

=


1
2 tr

(
∂C(θi)

−1

∂θk

(
C
(
θi
)
−Cij

)
− ∂C(θi)

−1

∂θk

×
(
Cijmij −m

(
θi
)) (

Cijmij −m
(
θi
))>)

+
∂m(θi)
∂θk

>
C
(
θi
)−1 (

Cijmij −m
(
θi
))

 .

Moreover, since C0j = C
(
θj
)
, m0j = C

(
θj
)−1

m
(
θj
)
,

C0jm0j = m
(
θj
)

and δ0j = m
(
θj
)>

C
(
θj
)−1

m
(
θj
)
,

then [MS]0,j = 1, and h
(
θ0,θj

)
= α

(
θi
)
.
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