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INTRODUCTION TO BAYESIAN STATE ESTIMATION

The state of a system is a variable, which fully character-
izes the status of the system at a given time. Knowledge
of the state is, thus, essential for control or prediction of
the system’s future behavior. Unfortunately, the state of
the system is typically not directly measurable, ie., it is
not known. Instead, the state is indirectly observed via
measurement only which is somehow related to the state.
The measurements are, moreover, affected by the noise.
State estimation of stochastic dynamic systems deals
with the estimation of the time-varying state from noisy
measurements. State estimation has been a subject of con-
siderable research interest for more than five decades.’
Although its development was motivated by the needs of
tracking and navigation applications, state estimation
these days plays an indispensable role also in many other
technical and nontechnical fields such as automatic

!State estimation is a part of a general estimation theory of which
development can be dated back to the beginning of 19th century.
The development started with a design of the least-squares method
by C. F. Gauss and A-M. Legendre and it was motivated by
modeling planetary motion [1].
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control, speech and image processing, biology, economy,
weather forecasting, etc., [1], [2].

The goal of this article is to introduce selected meth-
ods of the state estimation, which are used in navigation
applications. In particular, the article is focused on naviga-
tion applications, which belong into the area of expertise
of the IEEE AESS Navigation Systems Panel’ (NSP), of
which the authors are members.

The article is organized as follows. In the rest of this
section, state-space modeling and Bayesian state estima-
tion are briefly reviewed. In the sections “State Estimation
Methods: An Overview™ and “State Estimation Methods:
Additional Topics,” an overview of state estimation meth-
ods, related terminology, and algorithms is given with
stress on topics relevant to NSP technologies. Selected
state-of-the-art applications falling within the scope of the
NSP are then described and discussed with emphasis on
sensor error sources in “Estimation in Navigation Sys-
tems.” Finally, concluding remarks are given.

SYSTEM STATE-SPACE MODEL

State estimation methods provide the state estimate on the
basis of the available measurements and a known state-space
model. In this article, the following discrete-time nonlinear
stochastic dynamic state-space model with additive noises

X1 = fr(xg, up) + wy (1)
z = hi(xi) +vi 2

is considered, where the vector x; € R"™ represents the
unknown state of the system at time instant k, the vectors
u; € R™ and z; € R™ represent the known input and
measurement at time instant k, the functions f;. : R™ x
R™ — R"™ and hi: R™ — R™ are inown state and

*The NSP webpage is http://ieee-aess.org/tech-ops/navigation-sys-
tems-panel
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measurement nonlinear vector transformations, and the
vectors wy., V. represent unknown state and measurement
noises with known descriptions in the form of the proba-
bility density functions (PDFs) p(wy.), p(vy), respectively.

The initial state PDF p(x;) is known and independent
of the noises. The state equation (1) models time behavior
of the state and the measurement equation (2) gives a rela-
tion between the sought state and available measurement.

In navigation applications, the system may refer to a
navigated vehicle, the state x;. to sought vehicle naviga-
tion information (i.e., vehicle position, velocity, attitude,
and heading), the input u;. to, e.g., the readings of an iner-
tial measurement unit (IMU), and the measurement z,
e.g., to the readings of a global navigation satellite system
(GNSS) receiver. Then, the nonlinear function fi(-) in (1)
stems from dynamic or kinematic laws, h(-) in (2) mod-
els a relation between the receiver output and state varia-
bles, and the state and measurement noise PDFs p(wy),
p(vy) are determined by the noise properties of the IMU
and GNSS receiver [3], [4].

STATE ESTIMATION AND BAYESIAN RECLRSIVE
RELATIONS

The goal of state estimation, or more precisely filtering, is
to find an estimate of the state x; on the basis of a
sequence of all measurements z* = [zj,2;,...,2;] up to
the time instant k& and the model (1), (2). In particular, in
the Bayesian formulation of state estimation, the goal is to
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Figure 1.
Tllustration of the Bayesian recursion.

DECEMBER 2020

Credit: Image I

o d by Ingram F

find the PDF of the state x;. conditioned on the measure-
ments zF, i.e., the estimate in the form of the conditional
PDF p(x;|z"), VE, is sought. The conditional PDF provides
a full description of the state estimate.

In the Bayesian framework, the general solution for
state estimation is given by the Bayesian recursive relations
(BRRs) for the computation of the conditional PDFs,? [5]

p(xe/z") Pz Y) 3)
P(xk+1|zk) =/p(xk+1|xk)p(xk|zk)dxk )

where p(x;|z") is the filtering PDF computed by Bayes’
rule (3) and p(xg|z¥~!) is the one-step predictive PDF
computed by the Chapman—Kolmogorov equation (4).
The PDFs p(x;+1|x;) and p(zi|x;) are the state transition
PDF and measurement PDF unequivocally obtained from
the model (1) and (2), respectively. The PDF

Pzl = [ POxklZ5 )z ) 5)

is the one-step predictive PDF of the measurement. The
Bayesian recursion (3), (4) starts from the system’s initial
condition p(xg|z~!) = p(x;). The Bayesian recursion is
illustrated in Figure 1.

STATE ESTIMATION METHODS: AN OVERVIEW

The BRRs are complex functional relations about which
exact solution is possible for a limited set of models only.
In other cases, an approximate solution to the BRRs must
be employed. These approximate methods can be divided,

3Considering the model (1), (2), the BRRs (3), (4) should be condi-

tioned also on available sequence of the input uy,, k. However, for
the sake of notational simplicity, the input signal is assumed to be
implicitly part of the condition and it is not explicitly stated, i.e.,
P [Xe) = P(pa [Xs we),  p(%e|zF) = p(xe|zF;u),  and
POX41[25) = p(xii |25 0F).

|EEE ABE SYSTEMS MAGAZINE 17

Authorized licensed use limited to: Northeastem University. Downloaded on May 24,2021 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.



State Estimation Methods in Navigation: Overview and Application

with respect to validity of the estimates, into local and
global methods [6]{8].

EXACT METHODS

The exact methods have been typically designed for a set of
the linear models. For this set, the solution to the BRRs
results in reproducible conditional PDFs, i.e., the condi-
tional PDFs at subsequent time instants share the same distri-
bution and, thus, recursive conditional PDF computation
reduces to recursive computation of conditional PDF param-
eters only. The exact methods are represented, e.g., by the
Kalman filter (KF) or the Gaussian sum filter (GSF) [5],
[94]. The KF, developed in the sixties, is an optimal® estima-
tor for the linear Gaussian models, i.e., for the linear model
(1), (2) with the state noise, measurement noise, and the ini-
tial condition described by Gaussian PDFs. The recursive
solution to the functional BRRs then collapses to the recur-
sive computation of the conditional mean and covariance
matrices only, which fully describe the Gaussian conditional
PDFs. The GSF is an optimal estimator for the linear Gauss-
ian sum models and can be imagined as a bank of concur-
rently rnunning KFs [94]. Consequently, the conditional
PDFs are in the form of Gaussian sums and the solution of
the BRRs, then, lies in computation of the weights, means,
and covariance matrices of the particular terms ofthe Gauss-
ian sum conditional PDF.

LOCAL METHODS

Local methods are based on two approximations; first, the
joint conditional predictive state and measurement PDF is
assumed to be Gaussian; second, the nonlinear functions in
(1)and (2) are linearized. The former approximation results
in a linear structure of a local filter (LF) with respect to the
measurement, and, together with the latter approximation,
it allows use of the (linear) KF design technique also for
nonlinear models. All LFs, therefore, share the same algo-
rithm structure, but they differ in which linearization of the
nonlinear functions in (1) and (2) is used. In particular, two
different types of linearization can be found in the litera-
ture: derivative-based and derivative-free.

The derivative-based LFs, developed in the seventies,
approximate the nonlinear function by the Taylor expansion
(TE). Whereas utilization of the first-order TE leads to the
extended Kalman filter (EKF) or the linearized KF (depend-
ing on the selection of the linearization point) [5], [9],
approximation based on the second-order TE results in the
second-order filter (SOF). In the literature, several versions
of the SOF have been proposed [9], [10], [12] and, also, utili-
zation of a higher order TE in the LF design has been
discussed [13].

“The term “optimal™ is, in this article, related to the exact solution to
the BRR.
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The derivative-fiee LFs appeared at the beginning of the
century. They are based either on a polynomial expansion of
the nonlinear functions or on the approximation of the state
estimate by a weighted set of deterministically or stochasti-
cally selected points. The former approximation in the LF
design is represented by Stirling’s interpolation (SI) of the
first or second order, which results in the divided difference
filters of the first or second order (DD1, DD2), respec-
tively [14], [15]. The SI can be understood as the TE, where
derivatives are substituted with differences [8]. The latter
approximation takes advantage of a different idea, where
the nonlinear function is preserved, but the conditional
(Gaussian-assumed) PDF is approximated by a set of
points. This approximation is represented by the unscented
transformation® (UT) [2], [9], [16], deterministic quadra-
ture and cubature integration rules [7],[11], [17]{19], and
stochastic integration rules [20], which results in the set of
the LFs including the unscented Kalman filter (UKF), cuba-
ture Kalman filter, the stochastic integration filter, or the
ensemble Kalman filter. Note that last mentioned filter,
propagating the set of randomly drawn samples instead of
the moments, is a suitable algorithm for a high-dimensional
state-space model [20], [98]. It is worth noting that
although the point-based approximations use a different
basic idea, they can be interpreted as examples of the statis-
tical linear regression of the nonlinear functions 8], [21].

Examples of approximation of a scalar nonlinear
function fi(z:) by the derivative-based first-order TE and
the derivative-free first-order Stirling’s interpolation are
shown in Figure 2. It can be seen that the TE-based linear-
ization fk(rk; ;) is more accurate in a close vicinity of
the linearization point £, whereas the Sl-based is better
in the wider vicinity. The reason can be found in the fact
that the derivative-free approximation is computed over
an interval defined by the set of (transformed) points.

Independent of which nonlinear function approxima-
tion is used, all the LFs provide estimates in the form of
the first two moments of an approximate Gaussian condi-
tional PDF, i.e., in the form of the conditional mean and
covariance matrix. The moments do not represent a full
description of the immeasurable state and are valid if and
only if the filter is working in the close vicinity of the true
state (thus, the name local), which is, however, not known
in practice. Therefore, significant attention has been
devoted to the theoretical analysis and monitoring of the
conditions under which a LF provides accurate® and

The UT should be understood as a class of approximations rather
than one single approach. In the literature, various versions of the
UT have been proposed with different strategies to point
selection [16].

The LFs can be divided into first-order filters (e.g., the EKF, DDI)
and SOFs (e.g., the SOF, DD2, UKF). The latter are expected to
provide more accurate estimates, but it is not a rule (due to
unknown impact of neglected terms in the nonlinear function
approximation).
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Illustration of derivative-based and derivative-free linearizations
used in the LF design.

consistent results [22]-{26]. Roughly speaking, the LFs
are expected to provide nearly optimal estimation perfor-
mance for a mildly nonlinear model with an accurate ini-
tial condition.

GLOBAL METHODS

As opposed to local methods, global methods provide
accurate and consistent estimates in the form of condi-
tional PDFs without any assumption of the conditional
distribution family. Global methods are capable of esti-
mating the state of a strongly nonlinear or non-Gaussian
system, but usually at the cost of higher computational
demands. Among these methods, the GSF [27], [28], the
particle filter (PF) [2], [29], and the point-mass filter
(PMF) [30], [31] have attracted considerable attention.

The GSF is based on the approximation of all condi-
tional PDFs by weighted mixtures of Gaussian’ densi-
ties [5], [32], [33] and an analytical solution to the BRRs.
Then, the GSF can be imagined as a bank of simulta-
neously running LFs (e.g., EKFs or UKFs), which are
weighted with respect to the available sequence of the
measurements. As a consequence, the GSF is a nonlinear
state estimator with respect to the measurement.

The PF and the PMF solve the integral BRRs (3), (4)
numerically. The PF, developed in the nineties, is a repre-
sentative of a statistical approach to solution of the BRRs.
The main idea of the PF is to compute the conditional

A PDF can be approximated with a sum (or a mixture) of Gaussian
PDFs with an arbitrary accuracy.
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PDF in the form of an empirical density, which consists of
a finite set of random samples (or particles) and corre-
sponding weights [29], [34], [35]. The central part of the
statistical approach is the importance sampling technique,
which uses an important function for drawing samples. The
samples are then associated with the computed weights so
that the samples and weights together correspond to the
conditional PDF. On the other hand, the PMF, which was
developed in the seventies, takes advantage of determin-
istic numerical integration rules. The fundamental step is
an approximation of the continuous state-space by a grid of
isolated points. Then, the conditional PDF is numerically
computed at these grid points only [36], [37]. As a conse-
quence, each point is associated with a computed condi-
tional PDF value and a mass, where the value is assumed to
be constant (thus, the name point-mass). Note that both the
PF and PMF have been continually developed to increase
the estimation quality and/or reduce computational com-
plexity. Important among recent advancements are the par-
ticle flow, homotopy, and tensor-based methods [90]-{92],
[99], [100].

Three typical approximations p(;|2¥) of a scalar state
variable conditional PDF p(zy|2F), ie., the mixture of
Gaussians (for the GSF), the empirical PDF given by the
samples (for the PF), and the PDF evaluated at a determin-
istically chosen grid of points (for the PMF), used in the
GF design are visualized in Figure 3.

STATE ESTIMATION METHODS: ADDITIONAL TOPICS

The state estimation overview, given in the previous
section, provides a high-level description of the main
research directions in the area. The research is, however,
much wider and some of the topics, often stemming from
application needs, are briefly mentioned below.

BAYESIAN VERSUS DPTIMIZATION-BASED ESTIMATOR
DESIGN

Besides the Bayesian approach to estimator design, there
is also the optimization-based approach. Derivation of the
optimization-based estimator starts with definition of the
criterion to be minimized (e.g., minimal state estimate
error) and possibly also with definition of the estimator
structure (e.g., linear w.r.t. measurement). The resulting
algorithm then provides estimates in the form of the condi-
tional moments rather than the conditional PDF. The opti-
mization-based estimators are represented, e.g., by the
linear minimum mean square error (LMMSE) estimator®
or the H,, filter [9], [23]. Although the Bayesian and opti-
mization-based designs are principally different, they can

®The KF was originally developed as the LMMSE estimator [38].
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Illustration of approximations used in the GF design; PDF approx. by Gaussian mixture (left plot), PDF approximation by empirical density

(middle plot), PDF evaluated at grid points (right plot).

result in estimators which have the same algorithms but
different assumptions.

FILTERING, SMOOTHING, AND PREDICTION

State estimation can be divided into the three subtasks; fil-
tering, where the conditional PDF p(x;|z") is sought, pre-
diction, where p(x+¢|z") is sought, and smoothing, where
p(xp—e|z¥) is sought for £> 1. The previous section
focused (explicitly) on the filtering and (implicitly) on the
one-step prediction (because of the structure of the BRRs).
However, all the filters mentioned have their multistep pre-
diction and smoothing counterparts [2], [5], [8], [29], [37].

CONTINUOUS VERSUS DISCRETE-TIME MODELS

In certain applications, navigation and tracking included,
the available state-space model is continuous-in-time. In
this case, the continuous model can be discretized and
used for the abovementioned discrete estimator design or
the purposely designed continuous-in-time estimators can
be used. The filters mentioned have their counterparts for
the continuous-in-time models [12], [23], [39], [40], [90],
[92]. Moreover, for certain classes of continuous time
nonlinear models, it is possible to find an exact state esti-
mator. Examples from within this class of the exact esti-
mators are the Bene§ or Daum filters [95]-{97].

GAUSSIAN VERSUS OTHER DENSITY SPECIFIC
ESTIMATORS

The LFs are designed under the assumption of a Gaussian
PDF for all random variables. The popularity of the
Gaussian PDF arises from several reasons: 1) a Gaussian
distribution appears quite often in nature, hence the statis-
ticians use the term normal distribution; 2) a Gaussian
PDF is fully characterized by the first two moments (thus,
solution to the functional BRRs reduces to the recursive
computation of the moments); 3) a Gaussian variable has

20 |EEE ABE SYSTEMS MAGAZINE

the largest entropy among all random variables of equal
variance (i.e., the Gaussian assumption is the most conser-
vative assumption in terms of entropy) [41]; 4) according
to the central limit theorem, the sum of independent ran-
dom variables approaches, under certain conditions, a
Gaussian density [42]; and 5) algorithms for the Gaussian
PDF can be relatively easily extended for a powerful
Gaussian sum PDF. Despite all that, the Gaussian assump-
tion may not be suitable for all applications and various
(non-Gaussian) density specific estimators have been pro-
posed. As an example, the following distributions have
been considered in an estimator design.

e Student’s t-distribution, which is a heavy tailed dis-
tribution suitable for modeling of uncertainties with
frequent occurrence of outliers, was used in a design
of the Student’s ¢-filters [43]{45].

e Rayleigh distribution, which is suitable for the for-
mulation of the bearings-only tracking, was used in
a design of the shifted Rayleigh filter [46].

e Circular, e.g., wrapped normal or von Mises, distri-
butions, which are convenient for the description of
angular quantities with bounded support, was used
in a design of the circular filters [47], [48].

e The Gaussian scale mixture family of distributions,
which is a family of distributions encompassing
many of the above. Considering a Gaussian distribu-
tion whose means and variances are themselves ran-
dom variables, one can account for a wide family of
distributions depending on the distribution of those
means and variances. This was exploited in [57]{59]
to design Gaussian filters that are able to deal with
non-Gaussian distributions.

CONSTRAINED ESTIMATION

The state estimation problem formulation typically assumes
that the state is a real valued variable. However, it may
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happen that the state domain is subject to certain constraints,
e.g., estimated pressure cannot be negative, estimated vehi-
cle position needs to be aligned with a road. Such constraints
(belonging to a priori knowledge) cannot be incorporated in
the state-space model to be straightforwardly used by the
introduced state estimators. Therefore, various purposely
designed approaches for constrained state estimation have
been proposed [9], [49].

MULTIPLE MODEL STATE ESTIMATION AND
PARAMETER ESTIMATION

The nonlinear functions fi(-) andhy(-) of the model (1), (2)
need not necessarily be smooth, but they can be viewed as a
set of possibly simpler functions. As an example, consider
(radar-based) tracking of aircraft, a highly manoeuvrable
object. Aircraft dynamics can be described by a set of mod-
els, where each is suitable for the description of a different
phase of flight (e.g., an almost constant velocity or acceler-
ation model, a constant turn-rate model). During tracking,
however, a suitable model can hardly be determined a pri-
ori as it is difficult to predict aircraft future manoeuvrers.
Therefore, the concept of the (interacting) multiple model
(MM) has been developed [23]. The MM approach is based
on the determination of a set of possible models of a system
under different “working conditions.” For each model,
then, a filter (typically an LF) is constructed and its likeli-
hood w.r.t. available measurements is computed. The out-
put of the MM filter can thus be either a weighted sum of
all particular local estimates or the estimate with the high-
est likelihood. Note that the MM filter is algorithmically
similar to the GSF. The MM approach has been signifi-
cantly developed over recent years and MM-based state
estimation approaches capable of tackling data association,
clutter measurements, and estimating set variables have
been proposed. Examples of these are the multiple hypoth-
esis tracking filter and probability hypothesis density fil-
ter [101]-{104].

The MM approach is also suitable for tasks, where the
state-space model contains parameter(s) that are unknown
but can acquire a value from an a priori known set. Then, a
set of filters is designed for each potential parameter value
and is used in the MM filter [5S0]. Note that alternative
approaches for concurrent estimation of the state and param-
eters are the joint and dual estimation approaches [51]. The
former approach is based on extension of the state vector
with the unknown parameters (resulting in the extended
state-space model) and their simultaneous estimation by,
typically, a nonlinear filter. The latter approach is based
on a definition of two filters, which are regularly
switched. The first one estimates the unknown states
under the assumption of given parameters and the second
one estimates the unknown parameters under the
assumption of a given state.

DECEMBER 2020
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SOFTWARE TODLS

An extensive number of state estimation algorithms have
been proposed so far. It is, therefore, a challenging task to
choose a suitable estimator for a given task or application.
Fortunately, many of the estimators have been implemented
and can be used for assessment (or prediction) of a filters’
performance. Most of the methods and toolboxes are
designed for the MATLAB environment. The estimators are
available in MATLAB proprietary toolboxes or in publicly
available toolboxes. The latter includes, e.g., the Nonlinear
Estimation Framework toolbox available at http://nft.kky.
zcu.cz/nef, the EKF/UKF Toolbox available at https://
github.com/EE A-sensors/ekfukf, or the DynaEst Toolbox
available at http://www.codeforge.com/article/41828. A
wide portfolio of routines for tracking is available in the
Tracking Component Library available at https:/github.
com/USNavalResearchlaboratory/TrackerComponentLi-
brary [93]. Besides the toolboxes for the MATLAB, there
are also early toolboxes in Python, a modern widely used
programming language. An example is the International
Society of Information Fusion (ISIF) StoneSoup initiative,
which can be found at https://stonesoup.readthedocs.io/en/
latest/index.htm]. Note that some books also come accompa-
nied with sample implementations, e.g., [2], [4], [23].

LITERATURE ON STATE ESTIMATION AND NAVIGATION

Because of the scope of this article, it was not possible to
mention, discuss, and address all topics, details, and recent
advancements in state estimation methods. Nevertheless, in
the literature, there is an extensive number of comprehen-
sive books and survey papers on state estimation and naviga-
tion system design, which offer an in-depth description of
these areas. To name a few, the following references focused
on estimation theory [1], [2], [5], [9], [12], [16], [29], [34],
[52] and navigation system design [3], [4], [23], [60], [105].

ESTIMATION IN NAVIGATION SYSTEMS

The origin of state estimation methods is closely associ-
ated with the development of navigation and tracking sys-
tems. Indeed, any modemn navigation system uses a state
estimation algorithm for optimal processing of data from a
variety of sensors. In this section, recent developments
and examples of application of state estimation methods
are provided with the stress on the area of expertise of the
AESS NSP members. Besides recent navigation applica-
tions, this section also discusses their expected level of
nonlinearity/non-Gaussianity and error sources of the sen-
sors and maps typically used in the navigation system.
Knowledge of the considered task nonlinearity/non-Gaus-
sianity and correct treatment of the sensor (or map) error
sources is essential for the selection of the appropriate
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state estimator and achievement of a high and consistent
navigation performance.

EXTENDED KALMAN FILTER IN ATTITUDE AND
HEADING REFERENCE SYSTEM

Anattitude and heading reference system (AHRS) is aniner-
tial-measurement-based navigation system providing an
estimate of the vehicle attitude (i.e., deviation of the vehicle
orientation from its tangential plane) and heading (ie., dif-
ference between vehicle heading and geographic north) [53].
Considering pure inertial AHRS and lower cost microelec-
tromechanical system (MEMS) inertial sensors without a
capability of gyro-compassing, the vehicle attitude and
heading are computed from two pairs of noncollinear vec-
tors. Typically, the vectors of gravity field and magnetic
field are considered. Then, the first pair consists of two vec-
tors of gravity field, where one vector is the gravity vector in
the body frame measured by the accelerometer and the other
is the expected gravity field vector in the navigation frame
computed on the basis of a model (e.g., the Earth Gravita-
tional Model EGM96). The second pair consists of the mag-
netic field vectors, where the magnetometer’s measured
vector is in the body frame and the other is the expected
magnetic field vector in the navigation frame computed on
the basis of a model (e.g., the International Geomagnetic
Reference Field model IGRF-13).

In [53], the EKF-based pure inertial AHRS was
designed. The AHRS was developed with the stress on the
adaptive elimination of nongravitational vehicle accelera-
tion, which can be considered as the main error source.
The proposed AHRS thus provides accurate and consis-
tent estimates even in highly dynamic trajectories. Note
that the AHRS performance was illustrated using synthetic
and real data following the RTCA DO-334 Minimum
Operational Performance Standard requirements. The
AHRS is further discussed and its performance is illus-
trated in [54].

In Figure 4, an AHRS system is qualitatively compared
in terms of the degree of nonlinearity and non-Gaussianity
of the corresponding technical challenges. Particularly, the
abscissa axis of the diagram represents the linearity/nonlin-
earity of the problem, and the ordinate axis shows the
degree of non-Gaussianity. For the AHRS, the majority of
the complications involve nonlinearities due to unavailable
magnetometer measurements or growing heading informa-
tion uncertainty.

PMF IN TERRAIN-AIDED NAVIGATION (TAN) SYSTEM

A TAN system is primarily designed for environments,
where the coverage of radio navigation systems (e.g., GNSS
or distance measuring equipment) is not expected to be
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Categorization of typical problems in AHRS and TAN systems.

sufficient or the transmission of the radio navigation systems
can be interfered with (e.g., by jamming or spoofing) [55].
Unlike radio navigation systems, the TAN systems deter-
mine the position of a land, air, or water vehicle on the basis
of on-board sensor measurements and a map of the terrain
covering the vicinity of the vehicle. As a consequence, TAN
systems do not rely on any information broadcast to the
vehicle from distant systems and thus they are much more
resistant to intentional or unwitting interference.

TAN systems are, in principle, highly nonlinear. As
such, global (and computationally demanding) estimation
algorithms are used for measurement and map processing.
In [55] and [56], a novel computationally efficient version
of the PMF, namely, the RaoBlackwellised PMF
(RBPMF), was proposed, which provides highly accurate
and consistent estimates for a class of conditionally linear
models, typically, appearing in the area of navigation. The
developed RBPMF was used in a TAN system and evalu-
ated using a set of synthetic and real data.

As can be seen in Figure 4, a TAN system is a highly
nonlinear estimation task, mainly due to the utilization of
the terrain map (terrain, as modeled in the state-space
model, can be viewed as a complex nonlinear function).
The degree of the non-Gaussianity depends on the data
source used for the map design (e.g., from satellite, air-
craft, or LIDAR based mapping).

GLOBAL NAVIGATION SATELLITE SYSTEMS

When available, satellite-based navigation is arguably the
solution for positioning, navigation, and timing (PNT) [62],
[63], [73]. The overarching technological name is GNSSs,
which encompasses GPS, GALILEO, GLONASS, Beidou,
and other regional and augmentation systems [60], [89]. All
these systems share the same principle: a constellation of
satellites transmit spread-spectrum signals that the receiver
uses to estimate its (pseudo-)distances to those satellites,
which are then used in solving a geometrical problem to
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compute position and timing with an accuracy that ranges
from a couple of meters to centimeters depending on the
type of signals, frequencies, and method (code/carrier) used
in such processing. Remarkably, a GNSS receiver leverages
state estimation in several of its building blocks, which are
briefly discussed hereafter.

Whereas acquisition of GNSS signals is typically con-
sidered as a detection (or classification) problem, the fine
estimation of the time-varying delay/Doppler parameters
of the signals is performed by the so-called tracking loops.
Those delay and phase lock loops (DLL and PLL, respec-
tively), as well as its different variants, can be considered
instances of a larger state estimation framework where the
gain is fixed (selected through the choice of a loop band-
width). For instance, Vila-Valls[64] provided a tutorial
review of KF-based carrier tracking techniques for GNSS
receivers, highlighting their relationship with legacy PLL
schemes. The use of state estimation to substitute standard
tracking loops was seen to be a promising tool in many
challenging scenarios such as in mitigating the effects of
ionospheric scintillation [65], [66], mitigating multipath
propagation [67], enabling resilient noncoherent tracking
of data-only channels [68], attenuating the effects of inter-
ference [70], coping with high, time-varying dynam-
ics [71], or in designing robust real-time kinematic (RTK)
solutions in harsh propagation conditions [72], to name a
few examples.

In the context of position, velocity, and time (PVT)
estimation, whereas estimation of x; (i.e., containing the
PVT variables) can be carried out on an epoch-per-epoch
basis if signals from four or more GNSS satellites are
observed, the use of state estimation techniques (mostly
KFs) typically improves the overall performance due to
two facts [87]. First, the use of f(-) from (1) to model the
receiver antenna motion constrains the degrees of freedom
of the unknown variable. In the case where an IMU is avail-
able, the filter state x; becomes the error of the inertial
strapdown computation and fi(-) becomes a system model
for those error states, thereby even further limiting the
degrees of freedom that need to be solved by the GNSS
observations (mainly IMU alignment and biases) [4]. Sec-
ond, the state vector can be tailored to include GNSS-spe-
cific artefacts, like carrier phase ambiguities. The state
estimation technique is additionally used to fuse informa-
tion from both code-phase (a.k.a. pseudorange) and carrier-
phase observables in a variety of ways. The resulting car-
rier-phase positioning techniques like carrier/Doppler-
smoothing, RTK or precise-point-positioning are then typi-
cally implemented by means of (more or less sophisticated)
versions of KF-like algorithms [85], [86].

GNSS, like many radio-navigation systems, provides
measurements through a correlation process [88] and
hy(-) in (2) ideally captures all aspects of this. In open-sky
conditions, DLL or PLL discriminators (plus the loop fil-
ters) provide good approximations via linearization of the
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Categorization of typical signal processing problems in GNSS
receiver design.

correlation functions and a linear hy(-) well approximates
the real circumstances. However, in adverse signal condi-
tions such as multipath, urban, or indoor scenarios, the
conventionally used discriminators do not provide accu-
rate approximations, and as a consequence the resulting
state estimates including the covariance are far from
reflecting the real distribution of the user’s position. To
circumvent these issues, Bayesian direct position estima-
tion (BDPE) uses the correlation values at several time-
delay/Doppler-shifts directly as measurements and hy(-)
is given by the signal’s correlation function and thus
becomes nonlinear [79]. To solve the resulting nonlinear
state estimation both Gaussian derivative-free filtering [80]
and PF [83] methods were considered in the literature. The
latter showed, in real-world adverse signal conditions, that
non-Gaussian (even multimodal) PDFs for the user posi-
tion may occur, thus the PF implementation provides
more realistic PDF estimates at the expenses of an
increased computational cost. BDPE (and DPE) was also
shown to provide higher sensitivity and resilience [81]
since it increases the effective signal-to-noise ratio by
combining the signals from different satellites as opposed
to legacy receivers [82]. However, BDPE is orders of
magnitude more computationally demanding than DLL/
PLL tracking plus KF-based PVT solvers. It is also more
difficult to tune and requires handling of satellite ephem-
eris or atmospheric errors as nuisance parameters [84].
Furthermore, modeling hy(-) via the correlation function
is still an approximation and a more complete formulation
requires stochastic modeling of propagation channel
parameters or inclusion of multipath reflection parameters
in the state vector xy.

A qualitative diagram of challenging GNSS areas canbe
observed in Figure 5, similarly to that in Figure 4 for AHRS
and TAN systems. In this case, we highlight that jamming
interference may cause saturation of the analog-to-digital
(ADC) converters, bringing non-Gaussianity to the measure-
ments. Implementing tracking using a discriminator-based
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approach allows for linear modeling of the resulting obser-
vations, but might yield to compromising the Gaussian
assumption. If a discriminator is not considered, the filtering
method needs to account for nonlinearities in the model. Ion-
ospheric scintillation is typically modeled through Gaussian
linear/nonlinear dynamics. Multipath modeling is either
nonlinear Gaussian if done at the sampled signal level, or
nonlinear/non-Gaussian if done at the observable level due
to the biases it produces on range estimates. As mentioned
earlier, DPE presents a challenging nonlinear problem that,
in turn, can be Gaussian or non-Gaussian depending on the
multipath conditions and other interfering sources. Fusion
of GNSS data and other sensors gives rise to a multitude of
architectures that, basically, can populate the four main
quadrants in Figure 5.

SPACE VEHICLE NAVIGATION

Accurate navigation of space vehicles is crucial for the
success of space missions. Precise position and velocity
information is essential for the insertion of a spacecraft
into an orbit, in-orbit station keeping, guidance, and
manoeuvring of satellites. The navigation system plays
an even more vital role in planetary reentry missions.
Precise orbit determination (POD), i.e., position estima-
tion with highest possible accuracy is essential for
synthetic aperture radar, altimetry, GNSS radio occulta-
tion, and gravimetry missions. Various state estimation
techniques are used to estimate position and velocity of
a space vehicle from various types of observations,
for example, dead-reckoning, range, range rate, point-
ing angle, angular measurements to known celestial
objects.

This task is nonlinear, so the EKF is a widely used
estimation algorithm for the space vehicle navigation. An
example of EKF-based low Earth orbit (LEO) satellite
navigation using GNSS code and carrier-phase observa-
tions can be found in [74]. Navigation of a spacecraft in
the lunar transfer trajectory using ground-based range,
range-rate, and angular observations can also be per-
formed using a sequential state estimator like the
EKF [75]. It should be noted that the EKF provides a sub-
optimal estimation solution due to the linearization in the
mean and covariance matrix propagation equations. For
this reason, the position solution of the EKF can be
degraded for reentry and launch vehicle navigation prob-
lems, where the dynamics of the space vehicles are highly
nonlinear [16], [76]. The UKF can be used in these state
estimation problems to obtain better navigation perfor-
mance. However, the UKF is more computationally
expensive due to multiple sample state vector propaga-
tions at each measurement interval and hence it is often
difficult to implement for real-time applications. The
single propagation unscented Kalman filter and the
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extrapolated single propagation unscented Kalman filter
have been developed [76] to address this issue. These esti-
mators can reduce the computation time of the UKF by up
to 90%[77]. In other words, the accuracy of the UKF can
be delivered with the computational complexity of the
EKF. Using a similar approach, a computationally effi-
cient PF has been proposed as well which can be used for
real-time navigation [78]. The accuracy of the PF can be
delivered using this algorithm with around 90% reduction
in computation time.

It should be noted that in the state estimation problem
for space vehicle navigation, the dynamics of the space
vehicle can be mildly nonlinear to highly nonlinear,
depending on the type of vehicle [105]. The process noise
and measurement noise are considered zero-mean Gauss-
ian in most cases [106]{110]. However, the process noise
for the space vehicle motion model arises from the unac-
counted perturbation forces, which is non-Gaussian in
nature [111]. Considering the process noise as Gaussian is
an approximation and results in a relatively less accurate
navigation solution. For high precision applications like
POD, all the perturbation forces need to be modeled care-
fully and then the process noise can be considered as
Gaussian [112]. The qualitative diagram is shown in
Figure 6 in this case.

TREATMENT OF ERROR SOURCES

Navigation systems use a wide range of sensors, which
provide measurements z; or data u; used for the state
measurement update [filtering step (3)] or the state time
update [prediction step (4)], respectively. Realistic model-
ing of sensors for the navigation filter algorithm design is,
therefore, essential to achieve high navigational perfor-
mance. However, at the same time, it is a complex task
requiring a deep knowledge of underlying physical princi-
ples and mathematical background that can often be ful-
filled only approximately. To at least partially capture this
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Table 1.

Character of Various Navigation Sensor (Including the Map) Error Sources

Dunik et al.

Linearity of PDF of stochastic Temporal /spatial
deterministic part of error model correlation of error
part of error
model
GNSS nominal satellite orbit errors linearity given | approximately highly correlated in time
satellite due to large Gaussian
distance
satellite-user
satellite orbit anomalies - - rarely occurring gross errors
(determination/upload gross
errors, unflagged maneuvers,
eclipsing, ...)
nominal satellite clock errors | linear approximately highly correlated in time
Gaussian
satellite clock anomalies - - rarely occurring gross errors
(clock drifts, jumps,..)
satellite payload failures nonlinear - nearly constant in time
resulting in signal waveforms
anomalies
satellite hardware delays linear - highly correlated in time
(dependent on payload
temperature)
GNSS tropospheric modelling linear approximately correlated in time and space
signal errors Gaussian (weather dependent)
propagation ionospheric modelling errors | linear approximately correlated in time and space
(single frequency user) Gaussian (space weather dependent)
residual ionospheric errors - non-Gaussian correlated in time (space
after compensation for dual weather dependent,
(or more) frequency user scintillations)
multipath impact at user side | nonlinear non-Gaussian correlated, depending of
geometry change
jamming at user side - zero-mean Gaussian | white
for low power, non-
Gaussian for high-
power
spoofing at user side - - gross ranging errors
GNSS thermal noise at user receiver |- zero-mean Gaussian | white
receiver (antenna, frontend)
nominal tracking loop noise - approximately correlated pending user
(thermal, transient, oscillator Gaussian dynamics, oscillator type and
jitter) tracking settings
erratic tracking loop response | unknown non-Gaussian approximately white
in harsh signal conditions
including cycle-slips
receiver hardware delays linear - correlated in time (dependent on
frontend/antenna temperature)
unmodelled antenna phase linear - highly correlated in time
center variations at user side depending on direction of arrival
to user antenna
Inertial bias (turn-on, run-to-run, linear Gaussian time-correlated (time constant
Sensors constant) depends on the IMU grade,
magnitude depends on the
quality of IMU laboratory
calibration)
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Table 1.

(Continued )

Linearity of PDF of stochastic Temporal/spatial
deterministic part of error model correlation of error
part of error
model
misalignment error (scale- linear - constant (magnitude depends on
factor, cross-coupling) the quality of IMU factory
calibration)
random noise (residual - Gaussian white
electrical noise, quantization,
vibration)
scale factor nonlinearity nonlinear - constant
Magnetometer additive magnetic field linear Gaussian/non- time-correlated
produced by e.g., by Gaussian based on
permanent magnet, electrical operation conditions
equipment (hard-iron bias)
distortion of magnetic field nonlinear Gaussian/non- time-correlated
by e.g., surrounding iron Gaussian
(soft-iron bias)
misalignment error linear - constant
(analogous to inertial
sensors)
random noise linear Gaussian white
Altimeter weather variation linear Gaussian time-correlated
Map (as an terrain (e.g., SRTM), linear Gaussian/non- typically spatially correlated,
aiding source or | magnetic field (e.g., IGRF-13, Gaussian properties depends on the map/
its part) WMM), gravity field (e.g., model design technology and
EGM96), ionosphere (e.g., source data
Klobuchar, NeQuick)

complexity Table 1 is provided, which gives an overview
for error sources of the sensors typically considered in the
four mentioned navigation systems.

In the case of GNSS, the impact of the error source on
range measurements (code or carrier observables) is dis-
cussed and it should be noted that the impact might have a
different characterization on raw signals or correlation
values. The GNSS satellite is considered in this context as
a sensor whose various error modes result in biased range
measurements. Gross errors can be handled via multiple
hypothesis filters. Errors with a deterministic impact on
the range are denoted with the symbol “~" in the “PDF”
column. Most noteworthy is the correct handling of tem-
poral or spatial correlations. Modeling of atmospheric
errors as range biases within the navigation filter is often
essential for utmost accuracy, but requires a simplified
treatment of atmospheric physics. Errors related to multi-
ple propagation paths and from the signal processing
within the GNSS receivers can be considered linear and
Gaussian for nominal open-sky conditions but become
highly nonlinear and non-Gaussian in adverse signal
conditions.

28 |EEE ABE SYSTEMS MAGAZINE

The INS processes the inertial measurement data (and
also measurements of other nonradiating sensors such as
the magnetometer or the barometric altimeter) nonli-
nearly, because the dynamic model of the time evolution
of the navigation parameters is nonlinear.” However, cer-
tain errors (such as biases) are modeled linearly (e.g., by a
Gauss—Markov process) and then just subtracted from the
measurements. The models are typically linear although
the error’s physical cause can be a nonlinear function of
the surrounding environmental effects. On the other hand,
for example, misalignment and scaling of a tri-axis sensor
can be dealt with by simply multiplying the true quantity
by typically a 3 x 3 matrix, which is a linear operation
from the physical perspective. Another issue is that certain
parameters of the sensors are calibrated offline potentially
by a nonlinear optimization and then these parameters are
used in the design of a linear error model [113}-[115].
Because of the multiple possible views on the sensor error
properties and their respective models, the table below

“The nonlinear model can be, for the purpose of the state estimation,
linearized.
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gives an overview of the dominant errors affecting the
sensor readings with the emphasis on the properties of the
error models used in the navigation filter. It should be also
noted that the error properties are closely tied with the sen-
sor grade and in the table higher sensor grades, as used in
navigation systems, are considered.

An insubstitutable component of any navigation
system is an explicit or implicit model (or map) of an
environmental feature. Of the former type, the terrain
map'® used as an aiding source of the TAN system is
worth mentioning here. The latter type includes for
example models of the gravity field"' (e.g., the
EGM96 [4]), magnetic field (e.g., the IGRF-13, the
world magnetic model (WMM) [4]), or of the iono-
sphere (e.g., Klobuchar, NeQuick [4]). Quality of such
maps and models determines, to a certain extent, the
overall performance of the navigation system and thus
their errors should be also carefully treated. The map
error is, therefore, included in the table for the sake of
completeness.

Finally, it is worth noting that the correct modeling of
the navigated vehicle dynamics within the state equation
and the function fi(-) is at least equally important as the
sensor modeling. However, due to the near endless variety
of vehicle motion patterns, it becomes nearly impossible
to present a concise overview in this table. Details and dis-
cussion on the models used in the navigation or tracking
can be found, for instance, in [3], [4], and [23] and refer-
ences therein.

CONCLUDING REMARKS

This article dealt with state estimation of the nonlinear
stochastic dynamic discrete-in-time systems. In particu-
lar, stress was laid on a high-level overview of the
state-of-the-art Bayesian state estimation methods and
description of their applications in the area of naviga-
tion and tracking system design. The field is steadily
growing with more efficient, generic, and robust filter-
ing methodologies, research mostly ignited by the
plethora of applications leveraging state estimation
developments.
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