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Abstract
This article investigates new strategies to compute accurate low‐complexity log‐likelihood
ratio (LLR) values based on the Bayesian formulation under uncorrelated fading channels
for both antipodal and code shift keying modulations when no channel state information
(CSI) is available at the receiver. These LLR values are then used as input to modern
error‐correcting schemes used in the data decoding process of last‐generation Global
Navigation Satellite System signals. Theoretical analysis based on the maximum achievable
rate is presented for the different methods in order to evaluate the performance degra-
dation with respect to the optimal CSI channel. Finally, the frame error rate simulation
results are shown, validating the appropriate performance of the proposed LLR
approximation methods.

1 | INTRODUCTION

Reliable and precise position, navigation and timing informa-
tion is fundamental in safety‐critical applications such as
intelligent transportation systems, automated aircraft landing
or autonomous unmanned ground/air vehicles (robots/
drones), to name a few. The main source of positioning in-
formation is provided by Global Navigation Satellite Systems
(GNSS) [1], a technology which has attracted great interest in
the last decade. Although most of the research has been in the
signal processing aspects [2], in order to overcome the system
limitations under non‐nominal conditions [3,4], and data
fusion strategies with alternative ranging technologies [5–8], a
key part of GNSS receivers is the data demodulation stage
which allows recovery of essential information. The latter has
been long disregarded but may be a critical point in harsh
environments, which is the main aim of this contribution.

In the last generation of GNSS signals, modern error‐
correcting codes (i.e. such as low‐density parity check [LDPC]
or convolutional codes) were considered in the GNSS signal
design in order to enhance the data demodulation perfor-
mance, especially over harsh scenarios [9,10]. The inputs to the

corresponding soft decoding algorithms are the so‐called log‐
likelihood ratio (LLR) values [11,12], which represent a sta-
tistical test to compare the goodness‐of‐fit between probabil-
ities of receiving a positive or negative logic bit. These LLR
values can be shown to be sufficient statistics for the decoding
and detection processes [13]. Typically, in order to compute the
LLRs, the entire knowledge of the propagation channel
behaviour referred to as perfect channel state information
(CSI) is considered. However, this assumption does not hold
necessarily true in real‐life applications since the CSI might not
be fully available at the receiver [14], yielding a possible
decoding loss due to the incorrect information at the decoding
input. This situation can be further aggravated under urban
environments where effects such as shadowing or multipath
reduce the channel capacity at the receiver.

In this work, we focus on the uncorrelated fading channel
[11] which is commonly used to model phenomena such as
shadowing or multipath. This channel is modelled by a fading
gain hn and an additive Gaussian noise with variance σ2. Note
that if these parameters are perfectly known at the receiver (i.e.
perfect CSI), the LLR has a well‐known closed‐form expres-
sion [11]. Otherwise, the LLR expression is unknown and LLR
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approximations are required. Indeed, when no CSI is available
at the GNSS receiver, only one method to compute such LLR
approximation is available in the literature [11], which has
several limitations: (1) this method can only be used with
antipodal modulations, and it is not valid for M‐ary modula-
tions, such as the code shift keying (CSK) modulation [15], and
(2) it requires a high decoder complexity in order to compute
the LLR approximation, which may not be useful in practice.

Bearing in mind the lack of practical solutions in the litera-
ture, the goal of this contribution is to provide new strategies to
compute low‐complexity closed‐form LLR approximation ex-
pressions for both antipodal and CSKmodulations, considering
the uncorrelated fading channel and with no CSI available at the
receiver. Thus, the article focuses on the following cases:

� Antipodal modulation and GNSS pilot signal (3): Most of
the new‐generation GNSS signals are composed of a data
and a pilot component; therefore, two LLR approximation
methods are presented first considering the GNSS pilot
signal case, which allows estimation of some channel pa-
rameters at the receiver. The first method was proposed in
Ref. [11], based on Ref. [16], which maximizes the mutual
information between the transmitted symbol and the LLR,
and is given for completeness. This method provides a good
LLR approximation at the expense of a high complexity
burden. To reduce the computational complexity, and
resorting to a Bayesian formulation, a second method based
on our previous work [17] is presented. This method not
only reduces the complexity but also provides similar LLR
values. In order to evaluate the performance with respect to
the perfect and statistical CSI solutions, a study of the ca-
pacity is also provided.

� Antipodal modulation and GNSS data signal (4): Legacy
GNSS signals may not have a pilot component and/or simple
receiver implementationsmay only track the data component.
In that context, and with respect to the pilot signal case in
Section 3, new alternatives must be studied. We propose two
Bayesian approximations considering an uncorrelated fading
channel, no CSI and a data signal component. Again, we also
provide the channel capacity performance analysis of the
proposed methods, with respect to the perfect CSI case and
the Bayesian approximation with a pilot signal component.

� M‐ary CSK modulation and GNSS pilot signal (6): The
CSK is a M‐ary modulation that can increase the data rate
without losing synchronization performance, thus being a
suitable signal candidate for future GNSS applications [15].
We derive a new low‐complexity LLR approximation
expression that can be used over uncorrelated fading
channels when no CSI is available at the receiver. Moreover,
since this modern signal is expected to be transmitted as a
data component [12,18] along with a GNSS pilot compo-
nent, the latter can be exploited to infer some of the channel
parameters. Finally, we also provide the channel capacity
performance analysis of the proposed methods.

The article is organized as follows: the system model for
the antipodal modulation and background on LLR expressions

considering both perfect CSI and statistical CSI [17,19] are
provided in Section 2; LLR approximations for an antipodal
modulation without CSI considering a GNSS pilot signal are
provided in Section 3, and without a pilot signal in Section 4;
the system model for the CSK modulation and background on
LLR expressions considering perfect CSI are provided in
Section 5; the LLR approximations for the M‐ary CSK mod-
ulation without CSI considering a GNSS pilot signal are pro-
vided in Section 6; the results are analysed for two uncorrelated
fading channels in Section 7 and conclusions are drawn in
Section 8.

2 | SYSTEM MODEL FOR THE
ANTIPODAL MODULATION AND LLR
WITH PERFECT/STATISTICAL CSI

2.1 | System model and LLR with perfect
CSI

Current GNSS signals transmit binary data information; we
assume the transmitted message as a binary vector u = [u1, …,
uK] of K bits. This message is encoded into a codeword c = [c1,
…, cN] of length N > K and mapped to antipodal symbols (e.g.
binary phase‐shift keying) xn = μ(cn) ∈{−1, 1}, where we
impose μ(0) = 1 and μ(1) = −1. Each symbol xn is then spread
using a pseudo‐random noise (PRN) sequence that can be
expressed in vector form as pn ∈ RL, where L corresponds to
the number of chips of the PRN sequence. Then, the trans-
mitted symbol per coded bit is given as

xn ¼ xn ⋅ pn ∈ RL; n¼ f1;…;Ng ; ð1Þ

where convention vectors are defined as column vectors. Then,
chip‐level rectangular pulse shaping is used before trans-
mission. Considering the data demodulation stage of a GNSS
receiver, a key task is to obtain the posterior probability of a
transmitted code symbol cn given the observed sample yn. The
received signal models for two relevant (open sky and fading)
scenarios are discussed in this subsection, after relevant LLR
concepts are reviewed.

The information in yn is used to compute the LLR value,
defined for the nth symbol as

L n ¼ ln
pðcn ¼ 0∣ynÞ

pðcn ¼ 1∣ynÞ

� �

¼ ln
pðxn ¼ 1∣ynÞ

pðxn ¼ −1∣ynÞ

� �

ð2Þ

This LLR can be used to feed the input of a Soft Input–Soft
Output (SISO) error correction decoder [13]. Assuming that cn
are identically anduniformlydistributed (i.u.d.) [13]∀n= 1,…,N,
Equation (2) can also be written as

L n ¼ ln
pðyn∣xn ¼ 1Þ

pðyn∣xn ¼ −1Þ

� �

; ð3Þ
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where equiprobable symbols are assumed. Note that p(yn|xn)
represents the likelihood distribution given a transmitted
symbol, which directly depends on the transmission channel.

2.1.1 | Open sky environment

Standard techniques typically assume an additive white
Gaussian noise (AWGN) propagation model. Assuming per-
fect time and frequency synchronization, the received base-
band symbol sequence at the chip‐level can be written as

yn ¼ xn þ wn ∈ RL; n¼ f1;…;Ng ; ð4Þ

where wn ∼ N ð0;L2 ⋅ σ2ILÞ with IL being the identity matrix
of size L. Thus, we denote the normalized output of the
matched filter as yn ¼

y⊤
n pn
L ∈ R. Then, the normalized received

symbol sequence is

yn ¼ xn þ wn ∈ R; n¼ f1;…;Ng; ð5Þ

where wn ∼ N ð0; σ2Þ and σ2 are known. In a standard GNSS
receiver, this is the symbol model at the output of the
prompt correlator, for which the channel is considered to be
static over a symbol period. Note that all symbols yn are
affected by the same noise statistics, then the Gaussian
likelihood p(yn|xn) is

pðyn∣xnÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
yn−xnð Þ

2

2σ2 ; ð6Þ

and considering equiprobable symbols, the LLR can be
computed as

L n ¼
2yn
σ2

: ð7Þ

2.1.2 | Fading environment

If we consider now a GNSS environment characterized by
effects such as shadowing or multipath, the detection function
typically used in this context corresponds to an uncorrelated
fading channel with additive real‐valued AWGN. Again,
assuming perfect time and frequency synchronization, the
received baseband symbol sequence at the chip‐level can be
written as

yn ¼ hn ⋅ xn þ wn ∈ RL; n¼ f1;…;Ng ; ð8Þ

where hn denotes the fading gain per chip and
wn ∼ N ð0;L2 ⋅ σ2ILÞ, with IL being the identity matrix of size
L. Thus, we denote the normalized output of the matched filter

as yn ¼
y⊤
n pn
L ∈ R. Then, the normalized received symbol

sequence is

yn ¼ hn ⋅ xn þ wn ∈ R; n¼ f1;…;Ng; ð9Þ

where both wn and hn are independent random processes. wn
are i.i.d. centred Gaussian random variables with variance σ2,
that is, wn ∼ N ð0; σ2Þ. hn are also i.i.d. random variables with
an associated probability density function (pdf) given by p(h),
that is, hn ∼ p(h). It is assumed that hn ≥ 0 and change
independently from one sample to another. All the symbols are
again affected by the same noise statistics and the LLR sim-
plifies to [16]

L n ¼
2
σ2
hn ⋅ yn; ð10Þ

which explicitly implies perfect CSI, that is, hn and the variance
σ2 are assumed known. In practice, this assumption does not
hold and even if σ2 can be precisely estimated, the fading gain
remains unknown in most of the situations.

2.2 | LLR with statistical CSI

A relaxation of the perfect CSI situation is to consider that full
statistical CSI is available at the receiver, that is, σ2 is assumed
known or accurately estimated and hn is an unknown random
quantity whose pdf and parameters are well characterized.
Additionally, we consider a binary input memoryless channel
where symbol xn is unknown. From a Bayesian perspective
[20], since both xn and hn are unknown quantities, it is
approriate to consider them as random variables. All the sta-
tistically relevant information about these variables is con-
tained in their joint posterior distribution p(xn, hn|yn).
Assuming that xn and hn are independent,

pðxn; hn∣ynÞ ∝ pðyn∣xn; hnÞpðxn; hnÞ

¼ pðyn∣xn; hnÞpðxnÞpðhnÞ;
ð11Þ

where the first term corresponds to the likelihood of obser-
vations given the unknowns and the second term represents
the a priori knowledge on xn and hn. From Equation (9), the
likelihood distribution is

pðyn∣xn; hnÞ ∼ N ðμ; σ2Þ; ð12Þ

with mean μ = hn ⋅ xn and known variance σ2. According to
the LLR definition (2), we are interested in the marginal
distribution

pðxn∣ynÞ ¼

ð∞

−∞

pðxn; h∣ynÞdh; ð13Þ
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which leads to

L n ¼ln
∫ ∞

−∞ pðxn ¼ 1; h∣ynÞ dh
∫ ∞

−∞ pðxn ¼ −1; h∣ynÞ dh

 !

ð14Þ

¼ln
∫ ∞

−∞ pðyn∣xn ¼ 1; hÞpðhÞ dh
∫ ∞

−∞ pðyn∣xn ¼ −1; hÞpðhÞ dh

 !

: ð15Þ

since xn are equiprobable. In order to model a GNSS urban
environment, it is common practice to use the two‐state Prieto
model [21]. Nevertheless, this model does not have a closed‐
form expression for the channel gain pdf p(h). An alternative
proposed in Ref. [12] is to consider a Rice distribution.
However, as noted in Ref. [12], the LLR has no closed form,
and in practice, its use is computationally too complex. In
addition, the statistical CSI required to compute the LLR may
not be available; therefore, different alternatives must be
accounted for, which is the objective of the rest of the article.

3 | ANTIPODAL GNSS DATA
DEMODULATION WITHOUT CSI FOR A
PILOT SIGNAL COMPONENT

In this section, we present two methods to compute the LLR
approximation when no CSI is available at the receiver, but
some channel parameters can be inferred by means of a GNSS
pilot component, which is typically available in new‐generation
GNSS signals. For instance, the GPS L1C signal is composed
of two different components: a data component used to
transmit the C/NAV‐2 message [22] and a pilot component
which transmits a secondary known code [22]. This secondary
code can be used as a learning/training sequence as described
in this section.

3.1 | Best linear LLR approximation

For completeness we introduce the method proposed in Ref.
[16] and used for a GNSS data component in Ref. [12].
Motivated by Equation (10), this method computes the coef-
ficient α that provides the best linear approximation of the
LLR as

L n ¼ αyn: ð16Þ

The scaling factor α is obtained by maximizing the mutual
information I L ;Xð Þ between the transmitted symbol X and
the detector input L , both being random variables whose
realizations xn and L n are observed at the receiver:

α ¼ argmaxαI L ;Xð Þ; ð17Þ

where the mutual information is defined as

I L ;Xð Þ ¼H Xð Þ −H X∣Lð Þ; ð18Þ

with H Xð Þ and H X∣Lð Þ the entropy of X and the conditional
entropy of X given L , respectively. When considering a
memoryless binary input symmetric output channel and
consistent LLR values, this expression can be expressed as a
function of the LLR pdf at the receiver input [23], considering
{X = + 1}:

I L ;Xð Þ ¼ 1 −
ð∞

−∞

log2 1 þ e−L
� �

p L ∣X ¼ þ1ð ÞdL : ð19Þ

This approximate criterion is derived from the capacity asso-
ciated with a binary input memoryless channel,
C ¼ I L ;Xð Þ ¼ 1 − EL ∣X¼þ1 log2ð1 þ eL Þ

� �
, for which the

conditional pdf of the true LLRs has been replaced by the
conditional pdf of the approximated ones. When considering
C ¼ I L ;Xð Þ, it can be shown that the conditional pdfs given
the true LLRs are both symmetric and consistent (see [16]).

The latter condition is not necessarily fulfilled for p cL ∣X
� �

and the quantity bI cL ;X
� �

cannot be interpreted as a true
mutual information quantity. However, this quantity can be
used as a good approximate measure, as proved in [16], where
this quantity is maximized for the best linear LLR approxi-
mation (BLA). Notice that the proposed optimization method
[16] assumes the knowledge of the linearly approximated LLRs
conditional pdf. However, in real scenarios, this is unknown at
the receiver and one has to resort to a numerical resolution
(which is often computationally demanding) in order to esti-
mate the approximated LLRs conditional pdf. To overcome
this limitation, one can resort to the corresponding empirical
mean estimator as done in Ref. [11,12] through the time
average estimation proposed in Ref. [24]:

bI cL ;X
� �

≈ 1 −
1
K

∑
K

k¼1
log2 1 þ e−xk bL k

� �

; ð20Þ

where K is the number of samples used to estimate bI cL ;X
� �

.
Notice that this method needs a learning sequence (i.e. known
values xk). This information can be directly obtained through
the symbols of the GNSS pilot component. Finally, in order to
compute α, one can apply a one‐dimensional search method
[25] based on the objective function (20). We underline that
this method does not require knowledge of σ2; therefore, no
CSI is required.

3.2 | Bayesian LLR linear approximation

Recall from Section 2.2 that the problem of computing the
LLR values involves solving the integrals in Equation (14),
for which we have to select a prior distribution for hn. In
[11], the pdf p(h) was selected to be a Rice distribution,
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leading to a complex LLR expression for practical applica-
tions. In Bayesian inference, a common approach is to select
a prior distribution to be a conjugate of the likelihood
distribution, which results in a posterior distribution that is
of the same family as the a priori, where only the param-
eters need to be updated [26]. This idea was exploited in
[17] to provide a simple low‐complexity closed‐form LLR
approximation for M‐ary modulations over uncorrelated
fading channels. Given that the likelihood (12) is Gaussian,
the conjugate prior distribution for hn in Equation (11) is
also Gaussian [20]:

hn ∼ N ðμh; σ2hÞ; ð21Þ

where the pdf parameters (i.e. μh and σ2h) need to be adjusted
according to the unknown parameters' uncertainty. The mar-
ginal distribution in Equation (14) is obtained by solving the
integral

pðxn∣ynÞ ∝ ∫
∞

−∞
e−

yn−hxnð Þ
2

2σ2 e
− h−μhð Þ

2

2σ2
h dh; ð22Þ

which can be shown to be another Gaussian (refer to [17]):

pðxn∣ynÞ ∝ e

− xn−yn=μhð Þ
2

2
σ2þσ2

h
μ2
h

� �

∝ N
yn
μh

;
σ2 þ σ2h
μ2h

 ! !

; ð23Þ

and the corresponding LLR are

L n ¼
2ynμh

σ2 þ σ2hn
� �; ð24Þ

where similar to Equation (16), the resulting LLR approxi-
mation is a linear function of yn. Additionally, we underline
that under the AWGN channel (i.e. μh = 1 and σ2h ¼ 0) the
LLR in Equation (24) reduces to the Gaussian LLR solution in
Equation (7). Notice that Equation (24) requires the knowl-
edge of σ2, as well as μh and σ2h. The latter values can be
obtained by resorting to the maximum likelihood (ML) esti-
mates [17]:

bμh ¼
1
K

∑
K

k¼1
ykxk ; bσ2h ¼

1
K

∑
K

k¼1
ykxk − bμh
� �2 − σ2: ð25Þ

where K is the number of samples used to estimate μh and σ2h,
xk is the kth symbol of a binary learning sequence (i.e. the
known secondary code from the GNSS pilot component) and
yk is the kth received pilot symbol. Finally, the Bayesian LLR
linear approximation is given as

L n ¼
2ynbμh

1
K ∑K

k¼1 ykxk − bμh
� �2

� �: ð26Þ

Figure 1 summarizes the different approaches in Section 3.

3.3 | Performance of the LLR
approximation methods for the antipodal
modulation and a pilot signal

In this section, we evaluate the LLR approximations over well‐
known uncorrelated fading channels in order to compare the
channel capacity performance with the perfect CSI and sta-
tistical CSI cases.

3.3.1 | Normalized Rayleigh fading channel

The normalized Rayleigh fading channel [27] is typically used
to describe phenomena such as shadowing or multipath, and it
is well‐known to provide a closed‐form solution of the LLR
(14), that is, when full statistical CSI is considered. As a
consequence, we can obtain an upper bound for the LLR
approximation performances. Following [27], the LLR
expression (14) when considering a normalized Rayleigh fading
channel is

L n ¼ log
Φ y

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2ð1 þ 2σ2Þ

p� �

Φ −y
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ2ð1 þ 2σ2Þ
p� �

0

@

1

A; ð27Þ

where ΦðzÞ ¼ 1 þ
ffiffiffi
π

p
zez2 erfcð−zÞ and erfc(⋅) represent the

complementary error function. We evaluate the upper bound
of the maximum achievable rate R0 [28] of the LLR linear
approximations as well as the LLR expression with full sta-
tistical CSI (27) and perfect CSI (7), (10). To compute such
maximum achievable rate, we follow the methodology pro-
posed in [24] based on the extrinsic information transfer chart
analysis.

Figure 2 (top plot) illustrates the open sky R0 upper bound,
that is, AWGN channel, for (i) the perfect CSI case (7), and (ii)
the Bayesian LLR linear approximation (26) when 12 s of pilot
symbols are retrieved. Moreover, considering the normalized

F I GURE 1 Linear log‐likelihood ratio approximations: (top)
estimating IðL ;XÞ through time average, and (bottom) the Bayesian
approach.
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Rayleigh channel, the R0 upper bound is shown for (iii) perfect
CSI (10), (iv) full statistical CSI (27), (v) Bayesian LLR linear
approximation (26), and (vi) the LLR approximation (16),
considering that the mutual information I L ;Xð Þ in Equa-
tion (17) is computed from Equation (19) when 12 s of pilot
symbols are retrieved. We can observe that:

(i) Channel capacity loss caused by the fading effect:
Considering an ideal coding scheme of rate R = 1/2, the
channel capacity loss between the AWGN channel and the
normalized Rayleigh channel (when perfect CSI solutions
are assumed) is around 1.6 dB. Notice that this loss can be
reduced when applying lower rate channel coding schemes.
As an example, the channel capacity difference with a
channel coding scheme of rate R = 1/3 is around 0.9 dB.

(ii) Channel capacity loss due to channel uncertainty:
Considering an ideal coding scheme of rate R = 1/2, the
channel capacity loss is around 0.8 dB between the full
statistical CSI solution and the perfect CSI solution.
Moreover, the best and Bayesian LLR linear

approximations provide the same channel capacity than
the full statistical CSI solution, proving that when no
perfect CSI is available, only the first‐ and second‐order
moments of the fading distribution are required to achieve
an optimal solution. Finally, when the transmission channel
is characterized by an AWGN, the Bayesian solution (26)
converges to the perfect CSI solution (7).

3.3.2 | Two‐state Prieto channel

In a second scenario, we propose to evaluate the performance
in a more realistic GNSS urban scenario. We consider a two‐
state Prieto channel model [21] for a vehicle speed of 50 km/h
and a satellite elevation angle of 40°. In this example, we
consider the data component of the signal GPS L1C which is
characterized by a symbol rate of 100 symbols/s and a PRN
code of length 10,230 chips. The results are shown in Figure 2
(bottom plot), where we illustrate again the upper bound of the
maximum achievable rate.

In this case, considering perfect CSI and a coding scheme of
rate 1/2, the channel capacity loss is around 6 dB with respect to
theAWGNscenario.Notice that for this type of scenarios, error‐
correcting schemes with lower rates are highly recommended.
On the other hand, we verify that the best and Bayesian linear
approximations, Equations (16) and (24)) almost converge to the
perfect CSI solution (loss around 0.8 dB), proving the validity of
such approximations. Finally, we underline that no full statistical
CSI expression is available since p L ∣X ¼ þ1ð Þ has no closed
form and is unknown at the receiver.

To conclude, we provide a brief comment on the
complexity of the LLR linear approximation methods (refer to
Figure 1): (1) the first method requires an online estimation
technique which needs to resort to an iterative one‐dimen-
sional search method, based on a cost function involving log/
exp function evaluations. Note that the complexity of this
method directly depends on the number of samples K to es-
timate bI ðcL ;XÞ; (ii) the second method avoids to compute the
one‐dimensional search, but instead the first‐ and second‐order
moments of the fading distribution have to be estimated. Note
from Equation (25) that only simple arithmetical operations are
required. Again, the complexity of the method depends on the
number of samples K used to estimate μh and σ2h, but for equal
number of samples, the Bayesian solution is computationally
less expensive than the best linear one.

4 | ANTIPODAL GNSS DATA
DEMODULATION WITHOUT CSI FOR A
DATA SIGNAL COMPONENT

The previous section focused on LLR approximations when a
pilot component (i.e. training sequence) is available. However,
legacy GNSS signals may not have a pilot component; therefore,
different alternatives must be accounted for. In the sequel, we
introduce data demodulation strategies considering an uncor-
related fading channel, no CSI and a data signal component.

-10 -5 0 5 10 15 20
Es/N0 (dB)

0.2

0.3

0.4

0.5

0.6

0.8

1
M

ax
im

um
 A

ch
ie

va
bl

e 
R

at
e 

R
0

AWGN perfect CSI (7)
Rayleigh perfect CSI (10)
Rayleigh Full Stats CSI (27)
Rayleigh Bayesian Approx Pilot  (26)
Rayleigh Best Linear Approx Pilot (16)
AWGN Bayesian Approx Pilot (26)

1.6dB

-10 -5 0 5 10 15 20
Es/N0 (dB)

0

0.2

0.4

0.6

0.8

1

1.2

M
ax

im
um

 A
ch

ie
va

bl
e 

R
at

e 
R

0

AWGN perfect CSI (7)
Urban perfect CSI (10)
Urban Bayesian Approx pilot (26)
Urban Best Linear Approx pilot (16)

F I GURE 2 Antipodal modulation, no channel state information and
pilot signal: upper bounds of maximum achievable rate R0 for (top) a
normalized Rayleigh channel, and (bottom) a two‐state Prieto channelmodel.

118 - ORTEGA ET AL.



4.1 | Bayesian LLR approximation without
training data: MLE of μh and σ2h through
expectation–maximization

In contrast with Section 3.2, where the underlying pilot signal
assumption allowed to compute the ML estimates in (25)
which are in turn used to compute the LLR approximation
(26), in this case, we do not have access to such training
sequence. Therefore, we propose a method to derive the μh
and σ2h ML estimates when no learning sequence is available.
The marginal likelihood p(yn) = p(yn|xn = 1)p(xn = 1) + p
(yn|xn = −1)p(xn = −1) is a mixture of two Gaussian
distributions:

yn ∼N ðμhxn; σ2h þ σ2Þpðxn ¼ þ1Þ

þN ðμhxn; σ2h þ σ2Þpðxn ¼ −1Þ

¼
1
2
N ðμh; σ2h þ σ2Þ þ

1
2
N ð−μh; σ2h þ σ2Þ

¼
1
2
N ðμh; σ2aÞ þ

1
2
N ð−μh; σ2aÞ;

ð28Þ

with σ2a ¼ σ2h þ σ2. Thus, we can compute
Λðyn; μh; σ2aÞ ¼ logpðy1;…; yNÞ as

log Λð Þ ¼ ∑
N

n¼1
log

1
2
ffiffiffiffiffiffiffiffiffiffi
2πσ2a

p e
− yn−μhð Þ

2

2σ2a þ e
− ynþμhð Þ

2

2σ2a

 ! !

; ð29Þ

and obtain the ML estimates of μh and σ2a as the roots of the
partial derivatives with respect to μh and σ2a. The partial de-
rivative with respect to μh is

dlog Λð Þ

dμh
¼ ∑

N

n¼1

ynþμh
σ2a

� �
e
ynμh

σ2a − yn−μh
σ2a

� �
e

−ynμh
σ2a

e
ynμh

σ2a þ e
−ynμh

σ2a

0

B
@

1

C
A; ð30Þ

and we have to solve for dlog Λð Þ

dμh
¼ 0, which has no analytical

solution. However, conditional on a specific realization of the
latent variables xn we could use the μh estimate from Sec-
tion 3.2. We first obtain the (discrete) posterior distribution of
xn given the observations:

γx1 ¼ pðxn ¼ 1∣ynÞ ¼
pðyn∣xn ¼ 1Þpðxn ¼ 1Þ

pðynÞ

¼

1
2
N ðμh; σ2aÞ

1
2
N ðμh; σ2aÞ þ

1
2
N ð−μh; σ2aÞ

¼
e
ynμh

σ2a

e
ynμh

σ2a þ e
−ynμh

σ2a

;

ð31Þ

and

γx−1
¼ pðxn ¼ −1∣ynÞ ¼

pðyn∣xn ¼ −1Þpðxn ¼ −1Þ

pðynÞ

¼

1
2
N ð−μh; σ2aÞ

1
2
N ðμh; σ2aÞ þ

1
2
N ð−μh; σ2aÞ

¼
e

−ynμh
σ2a

e
ynμh

σ2a þ e
−ynμh

σ2a

:

ð32Þ

Then, Equation (30) can be expressed as

dlog Λð Þ

dμh
¼ ∑

N

n¼1
γx1
yn þ μh

σ2a
− γx−1

yn − μh
σ2a

� �

; ð33Þ

and we can estimate μh as

bμh ¼
1
N

∑
N

n¼1
γx1yn − ∑

N

n¼1
γx−1
yn

� �

: ð34Þ

Similarly, we can proceed to estimate σ2a:

dlog Λð Þ

dσ2a
¼

∑
N

n¼1

yn þ μh
� �2

2 σ2a
� �2

 !

e
ynμh

σ2a þ
yn − μh
� �2

2 σ2a
� �2

 !

e
−ynμh

σ2a

e
ynμh

σ2a þ e
−ynμh

σ2a

−
1
2σ2a

0

B
B
B
B
@

1

C
C
C
C
A

¼ ∑
N

n¼1

yn þ μh
� �2

2 σ2a
� �2 γx1 þ

yn − μh
� �2

2 σ2a
� �2 γx−1

−
1
2σ2a

 !

;

ð35Þ

and obtain σ2a as (i.e.
dlog Λð Þ

dσ2a
¼ 0),

bσ2a ¼
1
N

∑
N

n¼1
γx1 yn − bμh
� �2

þ ∑
N

n¼1
γx−1

yn þ bμh
� �2

� �

: ð36Þ

Notice that in the previous equations, it was not taken into
account that γx1 and γx−1

depend on the unknown parameters.
An iterative expectation–maximization (EM) algorithm can be
used in order to estimate bμh and bσ

2
a. The resulting EM algo-

rithm is as follows:

1. Initialize μh and σ2a and evaluate the log‐likelihoods.
2. E‐step: Evaluate the posterior probabilities γx1 and γx−1

using the current values of μh and σ2a with Equations (31)
and (32).

3. M‐step: Estimate the new parameters bμh and bσ
2
a with the

updated values of γx1 and γx−1
using Equations (34) and (36).
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4. Evaluate the log‐likelihoods with the updated parameter
estimates. If the log‐likelihood change is below a given
small threshold ϵ, stop. Otherwise, go back to the E‐step.

Finally, the resulting expression for the LLR values with no
CSI and a data channel signal is

L n ¼
2ynbμh
bσ2a

: ð37Þ

4.2 | Bayesian LLR approximation without
training data: rough estimation of μh and σ2h

To avoid the iterations in the previous EM‐based solution, a
simpler low‐complexity approach to derive μh and σ2h ML es-
timates is proposed. The ML estimates in Equation (25) can be
approximated as

bμh ¼
1
N

∑
N

n¼1
∣yn∣ ; bσ2h ¼

1
N

∑
N

n¼1
∣yn∣ − bμh
� �2 − σ2: ð38Þ

where yn is the nth received symbols, and N is the number of
received symbols used to estimate μh and σ2h. The corre-
sponding LLR expression without CSI and a data signal is

L n ¼
2ynbμh

1
N ∑N

n¼1 ∣yn∣ − bμh
� �2

� �: ð39Þ

Notice that the approximated ML estimates in Equation (38)
are biased, in contrast to the true ones in Equation (25). As
expected, this bias is made apparent only at low signal‐to‐noise
ratio (SNR) values. As shown in Section 4.3, this has a minor
impact on the maximum achievable rate R0 with respect to the
perfect CSI case, but a clear impact is present at low SNR for
the fading distribution first and second order estimation per-
formance (refer to Figure 4). The fact that such bias has almost
no impact on the maximum achievable rate translates into a
marginal impact in the frame error rate (FER) analysis shown
in Section 7.1.

4.3 | Performance of the LLR
approximation methods for the antipodal
modulation and a data signal

As described in Section 3.3 for the pilot signal scenario, we can
assess the upper bound of the maximum achievable rate R0 for
approximations (37) and (39); the results are shown in Figure 3.
The two approximations are compared to the perfect CSI case
for both AWGN and Rayleigh channel, as well as to the
Bayesian LLR linear approximation (26) considering a pilot
signal.

Notice that all the LLR approximation methods converge
to the same solution. However, it is well‐known that the
finite length codes used in real coding schemes are not
optimal, thus it is likely that in real scenarios, these methods
will not be equivalent. Then, in order to evaluate this issue,
we illustrate in Figure 4 the estimation accuracy of the first‐
and second‐order moments of the fading distribution when
12 s of signal are retrieved (i.e. obtained from 2000 Monte
Carlo runs). Note from these results that when a pilot is
available at the receiver, an accurate estimation of the first‐
and second‐order moments is achieved independently of the
SNR. On the other hand, when no pilot is available, the EM‐
based method does not correctly estimate the parameters in
low SNR regimes. In addition, the estimation accuracy using
the rough approximation (38) is significantly degraded and
only performs well for high SNR. Thus, it is expected that
the error‐correcting performance of real channel coding
schemes when considering both LLR approximations (37)
and (39) will be degraded with respect to the Bayesian
approximation exploiting a pilot signal (26). Because the EM‐
based solution performs better than (38), we expect the error
correction performance using the former (37) to be better
than with the latter (39).

5 | SYSTEM MODEL FOR THE M‐ary
CSK AND LLR WITH PERFECT CSI

The CSK modulation [29] is a M‐ary orthogonal modulation
which was first proposed as a GNSS signal candidate in [15].
Each symbol CSK xℓ corresponds to a different circular shift
of a unique PRN sequence c. Let Sℓ = {ℓ, 1 ≤ ℓ ≤ 2Q =M} be
the set of data symbols, with Q the number of bits to be
transmitted, then the PRN sequence cℓ associated to the
symbol xℓ, ℓ ∈ Sℓ, satisfies the following rule:
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F I GURE 3 Antipodal modulation, no channel state information and
data signal: upper bounds of the maximum achievable rate R0 for a
normalized Rayleigh channel.
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cℓðiÞ ¼ cðmodði −mℓ;LÞÞ; ∀ℓ ∈ ½1; 2Q�; ∀i ∈ ½1;L�; ð40Þ

where i represents the PRN chip, mℓ is the integer number
corresponding to the ℓth symbol shift, L is the number of
chips in the PRN sequence and mod(x, y) is the modulus
operation. As an example, in Figure 5, it is illustrated the PRN
sequences associated to the 4‐ary CSK modulation with a
number of chips L = 10,230.

At the transmitter, the information bits are usually encoded
by an error correction code, generating a codeword of length
N bits. Then, the N codeword bits are grouped in N/Q CSK
symbols of Q bits. Finally, the M‐ary CSK associates each CSK
symbol xℓ to a PRN sequence cℓ by right shifting the funda-
mental PRN sequence c.

5.1 | CSK data demodulation in open sky
environments

As presented in Section 1, an open sky environment can be
modelled by an AWGN channel. Then, assuming an AWGN
channel and perfect time and frequency synchronization, the
nth received sequence yn corresponding to the transmitted
CSK PRN sequence cn,ℓ associated to the vector sequence [b1,
b2, …, bQ] and the CSK symbol xℓ can be expressed as

yn;i ¼ cn;i;ℓ þ nn;i; ð41Þ

where i represents the PRN chip, nn;i ∼ N ð0; σ2Þ are zero‐
mean i.i.d. Gaussian noise samples with variance σ2 = N0/2.
Note that coherent reception is a valid assumption since a
GNSS receiver capable to demodulate the CSK signal is also
tracking in parallel the pilot signal component, which may

provide a precise phase estimation. Let us now define xj,
1 ≤ j ≤ 2Q−1 the transmitted symbol if bq = 1, and xt,
1 ≤ t ≤ 2Q−1 the transmitted symbol if bq = 0. Therefore,
considering perfect synchronization and following the LLR
derivation in [18], the LLR expression for the bit bq is given
as

L n;bq ¼ log
∑∀j e

1
σ2

1
L∑

L
i¼1yn;icn;i;xj∏z≠qPðbj;zÞ

� �

∑∀t e
1

σ2
1
L∑

L
i¼1yn;icn;i;xt∏z≠qPðbt;zÞ

� �

0

B
@

1

C
A; ð42Þ

where P(bj,z) denotes the probability of bj,z which is zth bit
of the transmitted symbol xj and P(bt,z) denotes the prob-
ability of bt,z which is the zth bit of the transmitted symbol
xt. Moreover, the term 1

L ∑L
i¼1 yn;icn;i;xl corresponds to the

normalized correlation between the nth transmitted and nth
received PRN sequences. When a Bit Interleaver Coded
Modulation (BICM) scheme [18,28] is implemented at the
receiver and equiprobable transmission bits are assumed, the
LLR can be simplified to

L n;bq ¼ log
∑∀j e

1
σ2

1
L∑

L
i¼1yn;icn;i;xj

� �

∑∀t e
1

σ2
1
L∑

L
i¼1yn;icn;i;xt

� �

0

B
@

1

C
A: ð43Þ

5.2 | CSK data demodulation in fading
environments with perfect CSI

Assuming the uncorrelated fading channel defined in Section 2,
the received sequence can be written as

yn;i ¼ hn ⋅ cn;i;ℓ þ nn;i; ð44Þ

where nn;i ∼ N ð0; σ2Þ are zero‐mean i.i.d. Gaussian noise
samples with variance σ2 = N0/2 and hn is the fading gain,
which is assumed to be invariant within the symbol, and is also
defined as an i.i.d. random variable with associated pdf give p
(h) and h ≥ 0. Again, coherent reception and perfect syn-
chronization are assumed. The LLR expression for the bit bq
over the uncorrelated fading channel can be derived from
Equation (42) as

L n;bq ¼ log
∑∀j e

1
σ2

1
L∑

L
i¼1yn;ihncn;i;xj∏z≠qPðbj;zÞ

� �

∑∀t e
1

σ2
1
L∑

L
i¼1yn;ihncn;i;xt∏z≠qPðbt;zÞ

� �

0

B
@

1

C
A ð45Þ

where hn is considered known at the receiver. Note that the
previous equation can be simplified considering a BICM
scheme:

F I GURE 4 Fading distribution of first‐order (top) and second‐order
(bottom) moment estimation, using the Bayesian log‐likelihood ratio
approximation methods with pilot and data signal components.
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L n;bq ¼ log
∑∀j e

1
σ2

1
L∑

L
i¼1yn;ihncn;i;xj

� �

∑∀t e
1

σ2
1
L∑

L
i¼1yn;ihncn;i;xt

� �

0

B
@

1

C
A; ð46Þ

where perfect CSI is assumed in order to compute the LLR.

6 | A BAYESIAN APPROACH TO CSK
DEMODULATION IN FADING
ENVIRONMENTS WITHOUT CSI

In this sequel, we derive the LLR values for a CSK modulation
considering that no CSI is available at the receiver. In that
perspective, we adapt the Bayesian method in Section 3.2 to
compute a closed‐form LLR expression. From the definition
of the LLR in Equation (3), we redefine the LLR expression
for the bit bq over the uncorrelated fading channel as

L n;bq ¼ log
pðyn∣bq ¼ 1; hnÞ

pðyn∣bq ¼ 0; hnÞ

� �

; ð47Þ

where

pðyn∣bq ¼ 1; hnÞ ¼ ∑
∀j
pðxjÞ ∫

∞

−∞
pðyn∣xj; hÞpðhÞdh ð48Þ

pðyn∣bq ¼ 0; hnÞ ¼ ∑
∀t
pðxtÞ ∫

∞

−∞
pðyn∣xt; hÞpðhÞdh ð49Þ

We follow the approach in [17] and consider a conjugate prior
distribution for hn:

hn ∼ N ðμh; σ2hÞ; ð50Þ

whereas in Equation (21), μh and σ2h need to be adjusted ac-
cording to the channel uncertainty. From Equations (48) and
(49), we are interested in

∫
∞

−∞
pðyn∣xj; hÞpðhÞdh ∝ ∫

∞

−∞
∏L

i¼1e
−

yn;i−hcn;i;xj

� �2

2σ2 e
− h−μhð Þ

2

2σ2
h dh

ð51Þ

∫
∞

−∞
pðyn∣xt; hÞpðhÞdh ∝ ∫

∞

−∞
∏L

i¼1e
−

yn;i−hcn;i;xtð Þ
2

2σ2 e
− h−μhð Þ

2

2σ2
h dh

ð52Þ

In order to compute the LLR expression, we only need to
compute those terms which depend on cn;i;xj and cn;i;xt (refer to
Appendix 9):

κn;1 ¼ −
2μh

1
L

∑L
i¼1 yn;icn;i;xj þ

σ2h
σ2

1
L

∑L
i¼1 yn;icn;i;xj

� �2

2 σ2 þ σ2h
� � ;

ð53Þ

κn;2 ¼ −
2μh

1
L

∑L
i¼1 yn;icn;i;xt þ

σ2h
σ2

1
L

∑L
i¼1 yn;icn;i;xt

� �2

2 σ2 þ σ2h
� � :

ð54Þ

Finally, Equation (47) is given by

L n;bq ¼ log
∑∀je−κn;1PðxjÞ
∑∀te−κn;2PðxtÞ

� �

: ð55Þ

Considering that the qth bit of the symbol xj is always equal to
1 and the qth bit of the symbol xt is always equal to 0, then
Equation (55) is written as

L n;bq ¼ log
Pðbq ¼ 1Þ∑∀je−κn;1∏z≠qPðbj;zÞ
Pðbq ¼ 0Þ∑∀te−κn;2∏z≠qPðbt;zÞ

� �

: ð56Þ

Considering that a BICM scheme is implemented at the
receiver, the previous expression can be written as

L n;bq ¼ log

∑
∀j
e

2μh
1
L∑L

i¼1
yn;i cn;i;xj

þ
σ2
h

σ2
1
L∑L

i¼1
yn;i cn;i;xj

� �2

2 σ2þσ2
hð Þ

∑
∀t
e

2μh
1
L∑L

i¼1
yn;i cn;i;xtþ

σ2
h

σ2
1
L∑L

i¼1
yn;i cn;i;xtð Þ

2

2 σ2þσ2
hð Þ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

: ð57Þ

F I GURE 5 Code shift keying symbol
waveform example
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Notice that to compute Equation (57), several exponential
operations are required. A useful metric to reduce the
computational complexity is the log‐sum approximation [30],
and the LLR approximation is

L n;bq ¼ log
maxxje

2μh
1
L∑L

i¼1
yn;i cn;i;xj

þ
σ2
h

σ2
1
L∑L

i¼1
yn;i cn;i;xj

� �2

2 σ2þσ2
hð Þ

maxxte

2μh
1
L∑L

i¼1
yn;i cn;i;xtþ

σ2
h

σ2
1
L∑L

i¼1
yn;i cn;i;xtð Þ

2

2 σ2þσ2
hð Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð58Þ

The previous expression avoids the use of log/exp function
evaluations, reducing the computational burden at the receiver.
Notice that the first‐order μh and second‐order σ2hmoments of p
(h) are assumed to be known, that is, partial statistical CSI is
assumed. However, these parameters might not be available at
the receiver and therefore they must be estimated online.
Assuming a binary learning sequence (e.g. symbols of a pilot
component), we can infer μh and σ2h as in Equation (25).
Moreover, this LLR approximation considers σ2 known at the
receiver, as typically done in the literature [17,27], a result which
also holds true in those scenarios where σ2 was precisely esti-
mated before the fading effect. In any case, if one wants to avoid
the knowledge of σ2 and provide anLLRwithoutCSI close‐form
expression, Equation (58) can be replaced by

L n;bq ¼ log
maxxje

2bμh 1L∑L
i¼1

yn;i cn;i;xj
þβ⋅ 1

L∑L
i¼1

yn;i cn;i;xj

� �2

2 1
K∑Km¼1 ykxk−bμh

� �2
� �

maxxte

2bμh 1L∑L
i¼1

yn;i cn;i;xtþβ⋅ 1
L∑L

i¼1
yn;i cn;i;xtð Þ

2

2 1
K∑Km¼1 ykxk−bμh

� �2
� �

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

: ð59Þ

where bμh is estimated as in Equation (25), K is the number of
pilot symbols used to estimate the channel fading parameters and
β is a coefficient which weighs the second term in Equations (53)
and (54).Notice thatβ = 0 involves neglecting the second term in
Equations (53) and (54) and provides an LLR approximation
based on the metric obtained in Equation (24), where the
observed symbol is the output of the matched filter of the CSK
demodulator 1L ∑L

i¼1 yn;ici;xl . On the other hand, high values of β
can mask the information provided by the first term in Equa-
tions (53) and (54), generating an inaccurate LLR approximation.
Based on simulations, we have found that β = 1 is the optimal
value, yielding Equation (59) finally to

L bq¼ α maxxj ∑
L

i¼1
yn;ici;xj þ

1
2L

∑
L

i¼1
yn;ici;xj

� �2
 !" #

−α maxxt ∑
L

i¼1
yn;ici;xt þ

1
2L

∑
L

i¼1
yn;ici;xt

� �2 !" #

;

ð60Þ

where α ¼
bμh

L
K∑K

m¼1 ykxk−bμhð Þ
2.

6.1 | Performance of the LLR approximation
methods for the CSK modulation

As seen in Section 3.3, we compute the maximum achievable
rate of the Bayesian LLR approximation method (60) for
different CSK modulation orders Q = {2, 4, 6}, considering a
BICM CSK demodulator, and for both uncorrelated normal-
ized Rayleigh fading channel and two‐state Prieto channel.
These results are summarized in Figure 6. The new Bayesian
CSK demodulation is compared to the perfect CSI cases given
by Equations (43) and (46). Both fading scenarios are also
compared to the LLR approximation case (58), where partial
statistical CSI is available at the receiver (i.e. where μh, σ2h and
σ2 are assumed to be known).

6.1.1 | Normalized Rayleigh fading channel

As seen in Section 3.3, two different effects can cause a
channel capacity loss. In Figure 6 (top), we can first see the
impact of the fading channel, which induces for an ideal
coding scheme of rate R = 1/2 a loss of 1.2, 1.3 and
1.4 dB for modulation orders of Q = 2, Q = 4 and Q = 6,
respectively, with respect to the AWGN case. Moreover, an
additional 0.5 dB is lost due to channel uncertainty. Note
that the channel capacity loss can be reduced by using
coding scheme of lower rates. The latter is highly recom-
mended for modulation orders greater than Q = 2, because
transmitting more bits in one symbol increases the demod-
ulation threshold.

6.1.2 | Two‐state Prieto channel

Results for the maximum achievable rate considering a two‐
state Prieto channel model, for a vehicle speed of 50 km/h
and a satellite elevation angle of 40°, are shown in Figure 6
(bottom). As an example, we consider the data component
of the GPS L1C signal which is characterized by a symbol
rate of 100 symbols/s and a PRN code of length 10,230
chips. With respect to the Rayleigh fading channel, we can
see a channel capacity loss which is further degraded. For
an ideal channel coding scheme of rate R = 1/2, a loss of
around 6 dB is found for the CSK modulation scheme of
order Q = 2, Q = 4 and Q = 6. Moreover, an additional
1 dB is lost due to the channel uncertainty. Note that in
this limit fading channel scenario, high‐order CSK modu-
lations are not recommended without low‐rate channel
coding schemes. Furthermore, due to the bad channel
quality, specific channel coding structures such as rate
compatible Root‐LDPC codes [9], which allows retrieving
the entire diversity of the channel, are also highly
recommended.
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7 | RESULTS: FER PERFORMANCE FOR
THE CED WITH THE GPS L1C SIGNAL
AND LDPC CODES

In this section, we compare soft decoding performance cor-
responding to the different LLR approximations introduced in
the previous sections. Particularly, as an example, we provide
the FER (i.e. with respect to the carrier‐to‐noise density [C/
N0]) performance for the clock and ephemeris data (CED)
considering the GPS L1C signal [31] with irregular LDPC
codes, decoded with a sum‐product algorithm [23].

7.1 | Results for antipodal GNSS
modulations

First, we consider a normalized Rayleigh fading channel and a
channel coding scheme based on the standard irregular LDPC
code of rate 1/2 used to encode the GPS L1C subframe 2 [31].
The FER results are summarized in Figure 7, where the

performance of the LLR approximation in Section 3 is shown,
(16) (best LLR linear approximation [BLA]) and (26)
(Bayesian), when 12 s of pilot symbols are retrieved. For
comparison, we also show the FER results corresponding to
the perfect CSI LLR (10) (Perfect CSI) and the full statistical
CSI LLR (27) (Stats CSI). From the FER results we can see
that both BLA and Bayesian approximation methods show a
similar data demodulation performance w.r.t the statistical CSI
case, which proves that when no CSI is available only a good
estimation of the first and second order moments of the fading
distribution are required. Moreover, when the channel trans-
mission is characterized by an AWGN channel, the LLR
approximation in (26) converges to the perfect CSI LLR so-
lution (7). Figure 8 shows the same comparison but for a data
signal component. For comparison, we show the FER results
corresponding to the LLR approximation with a pilot
component (i.e., with a learning sequence and 12 s of pilot
symbols retrieved) (26). Considering that no pilot sequence is
available, we show the FER performance for the approxima-
tions introduced in Section 4, (37) (No Pilot EM) and (39) (No
Pilot Approx). Notice first that the method which estimates the
first and second order moments of the fading distribution
through the EM algorithm provides a FER very similar to the
one obtained with the pilot case (26), with only a 0.1 dB
performances loss. On the other hand, the simpler method
which estimates the corresponding first and second order
moments of the fading distribution based on the absolute value
of the received symbol reduces the data demodulation per-
formance to around 0.4 dB. Note from Figure 4 that the LLR
values from the methods in Section 4 were expected to provide
lower error correction performance than the method obtained
with the pilot case (26).

As a second scenario, we consider a two‐state Prieto
channel model for a vehicle speed of 50 km/h and a satellite
elevation angle of 40°. We show the FER results again for the
GPS L1C data within subframe 2, but in this case with a
regular rate compatible Root LDPC codes of rate R = 1/3
(proposed in [9] to reduce the demodulation threshold)
channel coding scheme. The comparison of the different
methods with and without a pilot signal is illustrated in
Figure 9. Notice that the EM‐based method provides a FER
very similar to the one obtained with the pilot case (26). In
addition, a very low performance loss is observed with respect
to the perfect CSI case. On the other hand, the simpler
approximation (39) reduces the data demodulation perfor-
mance around 1 dB with respect to the EM‐based solution.

7.2 | Results for M‐ary CSK modulations

As in the previous subsection, we first consider a normalized
Rayleigh fading channel, with a channel coding scheme based
on the standard irregular LDPC used to encode the GPS L1C
subframe 2. The FER results for the CSK modulation with
Q = {2, 4, 6, 8, 10} are summarized in Figure 10, where we
show the performance of the LLR approximations in
Section 6: (i) with partial statistical CSI (58), and (ii) when 12 s

F I GURE 6 Upper bounds of maximum achievable rate R0 for a code
shift keying modulation with Q = 2, 4, 6: (top) normalized Rayleigh
channel, and (bottom) two‐state Prieto channel.
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of pilot symbols are retrieved (60). For comparison, we also
show the FER results corresponding to the perfect CSI LLR
(46) and the perfect CSI LLR values under AWGN channel
(43). From the FER results, we can see that both partial sta-
tistics CSI (58) or no CSI (60) achieve a similar data demod-
ulation performance, independently of the CSK modulation
order. On the other hand, we can appreciate a FER perfor-
mances loss in the order of 0.6–0.8 dB due to the channel
uncertainty. The channel uncertainty impact seems to increase
along with the CSK modulation order. Finally, we can see a
significant FER performance loss due to the fading effect, that
is, in the order of 2–4 dB. Again, this loss of performances is
related to the modulation order. From these results, we suggest
the use of channel coding schemes of a lower rate for higher
order CSK modulations.

The results for a second scenario, considering a two‐state
Prieto channel model for a vehicle speed of 50 km/h and a
satellite elevation angle of 40°, and a channel coding scheme
based on rate compatible Root LDPC codes of rateR= 1/4, are
summarized in Figure 11.We show the FERperformance results
for CSK modulations with Q = {2, 4, 6}* and the different ap-
proximations in Section 6: (i) partial statistical CSI (58), and (ii)
when 12 s of pilot symbols are retrieved (60). For comparison, we
also show the FER results corresponding to the perfect CSI LLR
case (46). From the FER results, we can see that both (58) and
(60) achieve almost a similar data demodulation performance
independently of the CSKmodulation order, as for the previous
normalizedRayleigh fading channel scenario.On the other hand,
we can appreciate an FER performance loss in the order of 1.5–
2 dB due to the channel uncertainty. Again, these results suggest
that a low‐rate error correcting schemes should be considered in
order to reduce the demodulation threshold.

F I GURE 7 Frame error rate of standard GPS L1C clock and
ephemeris data over a normalized Rayleigh channel for antipodal
modulations and a pilot signal component.

F I GURE 8 Frame error rate of standard GPS L1C clock and
ephemeris data over a normalized Rayleigh channel for antipodal
modulations and a data signal component.

F I GURE 9 Frame error rate GPS L1C clock and ephemeris data with
a regular rate compatible Root‐LDPC code of rate R = 1/3 over a two‐state
Prieto channel, for antipodal modulations.

F I GURE 1 0 Frame error rate of the clock and ephemeris data for the
GPS L1C data component over a normalized Rayleigh channel, for the
code shift keying modulation.
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8 | CONCLUSION

This article addressed the problem of GNSS data demodula-
tion over fading environments, for which no practical solutions
existed in the literature when no CSI is available at the receiver.
In this perspective, we derived several closed‐form LLR ap-
proximations for both state‐of‐the‐art antipodal GNSS mod-
ulations and new GNSS candidate CSK modulations.
Regarding the former, both pilot and data signals were
considered. Since modern GNSS signals always have a pilot
component only this case was considered for the CSK
modulation.

If a pilot component is available at the receiver, some
channel parameters can be inferred. For antipodal modula-
tions, two LLR approximation methods were introduced, the
first one being the state‐of‐the‐art for GNSS data demodula-
tion without CSI but computationally too expensive. There-
fore, a second low‐complexity Bayesian LLR approximation
was also presented. The results for two uncorrelated fading
channels showed that both methods converge to the full sta-
tistical CSI method thus being optimal. For the data signal case
(i.e. no training sequence available), two Bayesian LLR ap-
proximations were derived, the first one using an EM‐based
algorithm to estimate the first‐ and second‐order moments of
the fading distribution, and the second one being a low‐
complexity alternative. The results for two uncorrelated fading
channels showed that the EM‐based method data demodula-
tion performance is very close to the pilot signal case, which
validated its good behaviour. The low‐complexity alternative
was shown to perform well only at high SNR.

Regarding the CSK modulation, we derived a Bayesian
LLR approximation without CSI and a pilot component being
tracked. The maximum achievable rate over two uncorrelated
fading channels was presented to provide the performance
degradation with respect to the AWGN channel. Simulation
results showed the good performance of the proposed
method, which is a promising data demodulation solution.
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APPENDIX

DERIVATION OF ∫ ∞
−∞ PðY ∣xj; hÞpðhÞdh TO

COMPUTE THE CLOSED ‐FORM CSK LLR
APPROXIMATION
In this Appendix, we are interested in the computation of the
integrals ∫ ∞

−∞ PðY ∣xj; hÞpðhÞdh in Equations (51) and (52);
therefore, we want to obtain

∫
∞

−∞
∏N

i¼1e
−

yn;i−hcn;i;xj
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2σ2 e
− h−μhð Þ

2

2σ2
h dh∝
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e

− 1
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where β1 ¼
σ2h

2σ2σ2h
and β2 ¼ σ2

2σ2σ2h
. Since the product of two

Gaussian distributions is in turn a Gaussian distribution, we
proceed by finding the resulting mean (μa) and variance
(σ2a) as

h − μað Þ
2
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where κn is an auxiliary constant, and after identifying terms on
both sides of Equation (62),

1
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Then, the constant κn can be computed as
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and β21
β1þβ2
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. Finally, Equa-

tion (61) yields to
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where the pdf definition is applied [17]. Note that in order to
compute the LLR expression, we are only interested in those
terms which depend on cn;i;xj . Then, we define the constant
κn,1 as those values of κn which depends on cn;i;xj ,

κn;1 ¼ −
2μh 1N ∑N

i¼1 yn;icn;i;xj þ
σ2h
σ2

1
N ∑N

i¼1 yn;icn;i;xj
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and the correspondingκn,2 for cn;i;xt (seeEquations (53) and (54)).
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