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Abstract: Global navigation satellite systems (GNSSs) play a key role in intelligent transportation
systems such as autonomous driving or unmanned systems navigation. In such applications, it is
fundamental to ensure a reliable precise positioning solution able to operate in harsh propagation
conditions such as urban environments and under multipath and other disturbances. Exploiting
carrier phase observations allows for precise positioning solutions at the complexity cost of resolving
integer phase ambiguities, a procedure that is particularly affected by non-nominal conditions.
This limits the applicability of conventional filtering techniques in challenging scenarios, and new
robust solutions must be accounted for. This contribution deals with real-time kinematic (RTK)
positioning and the design of robust filtering solutions for the associated mixed integer- and real-
valued estimation problem. Families of Kalman filter (KF) approaches based on robust statistics and
variational inference are explored, such as the generalized M-based KF or the variational-based KF,
aiming to mitigate the impact of outliers or non-nominal measurement behaviors. The performance
assessment under harsh propagation conditions is realized using a simulated scenario and real data
from a measurement campaign. The proposed robust filtering solutions are shown to offer excellent
resilience against outlying observations, with the variational-based KF showcasing the overall best
performance in terms of Gaussian efficiency and robustness.

Keywords: GNSS; RTK; precise positioning; multipath; Kalman filtering; robust filtering

1. Introduction

Modern intelligent transportation systems and other safety-critical applications re-
quire reliable, continuous, and precise positioning, navigation, and timing (PNT) infor-
mation for their successful operation and implantation in the market. Global navigation
satellite systems (GNSSs) constitute the backbone and main information supplier of PNT
data [1-3], and this dependence can only grow in the future [4]. Despite offering a fairly
good open sky positioning performance, standard code-based GNSS techniques can solely
achieve metre-level accuracy, which is insufficient for a plethora of applications that re-
quire high precision. Instead, the use of carrier phase measurements enables us to reach
decimeter to centimeter level accuracies. Two distinct techniques exploit carrier phase
observations, namely precise point positioning (PPP) [5] and real-time kinematic (RTK) [6].
In this work, we focus on RTK, a relative positioning procedure for which the position of
a moving receiver is determined with respect to (w.r.t.) a nearby base station of known
geolocation. Although accuracies of up to the centimeter level can be reached almost imme-
diately, RTK requires a dense network of reference stations and a sufficient communication
channel [7]. This work deals with RTK positioning and its challenges in urban scenarios,
where multipath effects can heavily deteriorate the navigation solution.
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With respect to standard GNSS code solutions, RTK involves a more complex estima-
tion process [8], since a vector of double-difference integer ambiguities is estimated along
with the target receiver position. Given the integer nature of such ambiguities, the most
common solution consists of a three step approach [9]. These are applied sequentially: (i)
float solution determination, (ii) integer ambiguity resolution, and (iii) state reconstruction
or fixed solution estimation. In the initial float estimation step, either a least-squares (LS) or
KF-type method is considered, where the ambiguities and other unknowns are estimated as
real numbers (which is the reason why the results are often referred to as the float solution).
Then, the estimated float ambiguities and the corresponding covariance matrix are used
to obtain the integer ambiguity estimates. Finally, the computed integer ambiguities are
used to improve the positioning solution. Such an estimate is typically implemented, again,
within the LS framework in order to obtain the so-called fixed solution.

The standard RTK three-step approach described above is known to provide a good
estimation performance under nominal line-of-sight (LOS) conditions. Unfortunately, this
is not the case for urban environments, typically affected by multipath and non-line-of-sight
(NLOS) propagation conditions. Indeed, the phase observables” quality is directly linked
to the corresponding code-based delay observables. In the maximum likelihood sense,
the phase estimate is given by the argument of the cross-ambiguity function evaluated
at the corresponding delay/Doppler estimates. Therefore, a worse delay estimate (i.e.,
induced by multipath conditions) has a direct impact on the phase estimate, and this
drives the phase observable achievable performance/quality [10]. Because of the very
low ultimate positioning precision exploiting phase measurements, the impact of worse
phase observables is much more critical than that for a code-based solution. Therefore,
these harsh propagation conditions are the main source of errors for precise navigation,
since the locality of the effect prevents augmentation systems from assisting meaningfully
against such channel effects. As a consequence, counter measuring signal reflections can be
performed locally at the receiver in either the baseband processing (i.e., in the calculation
of observables) or the navigation side (i.e., when producing the PVT solution).

The use of robust approaches based on either robust statistics or on variational infer-
ence has been extensively applied for different purposes within the context of GNSS-based
positioning. Table 1 summarizes the state-of-art on robust estimation for GNSS applica-
tions. In this work, we explore the use of robust solutions in order to improve RTK-based
precise positioning at the last receiver stage (i.e., navigation solution), enhancing the usual
RTK pipeline to provide robustness to local effects. Several robust Kalman filters (KF) are
considered, providing a meaningful comparison of existing techniques and a new robust
RTK approach that is resilient to, for instance, multipath conditions. The key point is to im-
prove the performance of float solution estimation, where multipath-contaminated satellite
links are detected, enabling the guidance of an integer ambiguity search and enhancing
its success ratio, being the most critical point in harsh conditions. To achieve such a goal,
we propose to use and analyse a set of different robust KFs with outlier detection and
rejection capabilities: (i) four robust information filters (RIFs) using different robust cost
functions or a 3¢ rejection rule, (ii) a generalized M-estimate robust regression KF, and (iii)
two variational Bayesian inference-based robust KFs.

Table 1. Overview on robust estimation for global navigation satellite system (GNSS) applications.

Framework Processing stage Application References
Baseband processing Interference mitigation [11-14]
Robust Statistics Snapshot code-based positioning [15-19]
PVT processing Recursive code-based positioning [20-22]
Recursive RTK/PPP [23,24]
Baseband processing Adaptive phase tracking [25,26

Variational Inference

]
PVT processing Recursive code-based positioning [27,28}

Recursive RTK/PPP [29,30
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The different robust filter performances are assessed using both synthetic and real data
on challenging propagation environments. The simulated scenario allows us to characterize
the estimators in terms of Gaussian efficiency, i.e., how good their performance is under
nominal noise conditions, and robustness based on Monte Carlo experimentation. The real
data was collected on board of a vessel that travelled through a river with several bridges
and a waterway lock and then was affected by severe multipath and NLOS conditions.
The evaluation is comprises of the positioning accuracy of the robust RTK solution for
the different methods, alongside the corresponding fixing rates. The fixing rate defines
the probability of finding the correct set of integer ambiguities based on validation tests
from the Integer Aperture (IA) framework to decide whether the estimated set of integer
ambiguities can be considered sufficiently more likely than the best counter-hypothesis [31].
The reported results show the improved robustness, both in terms of positioning precision
and fixing rate, when adding a robust KF in the RTK pipeline, providing a promising
solution for real-time robust RTK in harsh propagation conditions.

2. Background on GNSS RTK Precise Positioning

RTK is a relative positioning procedure, where the unknown position of a moving
rover station is determined with respect to a stationary base station of known coordinates.
Figure 1 (left) illustrates the working principle. Due to observation single-differencing,
the satellites” position and clock errors are completely eliminated while the satellite orbit
error and the atmosphere-related delays can be reduced significantly depending on the
distance between the base and rover positions (pp and pr respectively). Then, a pivot
satellite (hereinafter referred to using the superscript r) is chosen for double-differencing,
cancelling the delays from the receivers’ clock offsets. Let us consider n 4+ 1 GNSS satellites
(i.e., n satellites plus the pivot) tracked simultaneously by the rover and base receivers.
The observations for code and phase pseudoranges from the ith satellite are given by the
following:

of = llp" = pll + 1+ T+ c(dt —ar) +¢ (1)
® = ||p' — pll = '+ T+ c(dt — dt') + AN' 4 € 2)
where
p’ and &' are the code and phase observations (m), respectively;
p' and p are the positions of the ith satellite and the GNSS receiver, respectively;
I' is the ionospheric error (m);
T' is the tropospheric error (m);
c is the speed of light (299,792,458 m/s);
dt' and dt are the satellite and receiver clock offsets (s), respectively;
A is the carrier phase wavelength (m);

N is an unknown number of cycles between the receiver and the satellite; and
¢ and €' are the remaining unmodelled errors for the code and phase observations,

respectively.
i satellite 6@9 pivot Float solution Fixed solution
o \ﬂ\%\, oy i . R Real-valued Integer Solution
s g\ PR Pp \\ GNSS Least Squares Least Squares Enhancement
BN NS observations 4] [P Py A
& T s L e 2Dl a=2@) = M) =
base ¢~ 5 o TOVer ‘ [

Figure 1. On the (left), a scheme for the real-time kinematic (RTK) procedure. On the (right),
the workflow for the ambiguity resolution process.
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Then, the double-difference (DD) code and phase observations results are

DDp' = pg — 0 — (PR — ) )
= llp" = prl® = llp" = p5l* = lp" = prI? + 1p" = pBI* + €K,

DD®' & of, — Pl — (P} — DY) W
=lp" = prl* = ¢’ = psl* = lIp" = prl® + p" = p5l* + Ad + €7},

where the first lines in Equations (3) and (4) correspond to the actual observation combi-
nation and the second lines relate to the observation model (the relationship between the
observations and the unknown parameters). The vector y gathers the DD observations as

y = [DD®!,...,DD®", DDp,...,DDp"] ', y € RZ"1, ")
The resulting positioning observation model is typically linearized and expressed as

with a € Z" is the vector of DD ambiguities, b is the baseline vector between rover and
base positions b = pr — pp, and # is the zero-mean noise term with covariance R such that
71 ~ N (02,1, R). The design matrices are described by

A Y(‘)I]B:[g]G: - %
-

where I, and 0, denote, respectively, the n-dimensional unit and null matrices. The ge-
ometry matrix G is composed of the satellite steering line-of-sight vectors w.r.t. the base
position u'. The observation covariance matrix R is generally defined based on stochastic
models dependent on satellite elevation and/or carrier-to-noise density ratio [32,33]. Next,
solving the RTK positioning problem in (6) is discussed for snapshot (memoryless) and
recursive estimation.

2.1. A Least-Squares Approach

The RTK positioning problem is also known under the mixed model estimation prob-
lem, given that both real- and integer-valued parameters are to be estimated. The related
optimization problem is formulated as

{a,b} = arg min|ly — Aa — Bb|%. ®)
beR?

Provided that no analytical solution exists for the minimization (8), its decomposition
into a series of three consecutive LS adjustments was proposed [9], written as

~12 N 2
min||y — Aa — Bb||} = minHy—Aﬁ—BbH +min||171—a||%,M—I—ming|a—bH . 9)
ac acR" R acZr a0 peRs P,
beR® beR3 T

- fix solution
float solution

The overall three-step procedure is illustrated in Figure 1 (right). The first term
corresponds to the so-called float estimation, an LS adjustment where the integer constraints
on a are disregarded. The distribution of the float solution is

a a] [Paa Py
i~ () e ) a
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where P is the associated covariance matrix that gathers the uncertainty of the float esti-
mates @ and b and their cross-correlation.

The second step, known as integer ambiguity resolution (IAR), incorporates the integer
constraints into the previously estimated float ambiguities. Thus, real-to-integer mapping
Z :R" — Z" is the process that assigns the float ambiguity vector to an integer one a € Z",
such that a = Z(a). While different estimators have been proposed, the integer least
squares (ILS) provides the optimal performance [34-36]. Integer estimators that include
a validation step belong to the Integer Aperture (IA) framework [37]. The latter allows
us to discern whether an integer solution can be accepted based on a predefined failure
rate [38].

Finally, the third minimization problem improves the positioning estimate with knowl-
edge of the integer ambiguities a, driving a highly accurate position solution, denoted as
the fixed solution. The mean b and covariance Py, of the fixed estimate are based on the
projection of the estimated integer ambiguities on the position domain as

b=b-P,,P, .} (a—a), (11)
-1
Pyp = Pyj — Pya P Py (12)

A relevant remark is that, whenever the estimated integer ambiguities do not match
the true ones, the fixed solution will be biased. The precision of the solution improves only
when the correct ambiguities are estimated.

2.2. A Kalman Filter Approach

To exploit recursive estimation in navigation problems, the KF and its nonlinear exten-
sions, i.e., the Extended and Sigma-Point Gaussian Filters (EKF and SPGEF, respectively),
are typically applied. This work focuses on the EKF (notice that a typical RTK observation
model in Equation (6) is implicitly a linearized version) and its application to RTK, leading
to the approximation of the following marginal posterior distribution:

. T
p(xilyre) = N (x63 Py ), withx = [b] 0], a] ], (13)

where x; is the random variable that we aim to estimate, and x;; and Py, are the estimated
posterior mean and covariance, respectively. The time evolution of the state estimate is
dictated by the process and measurement functions, f(-) and h(-), respectively, also known
as the prediction and correction models:

xt = f(xi—1) +wy, (14)
yr = h(xt) +m1, (15)

where the process and observation noises are assumed to follow normal distributions
wi ~ N(0,Q:), 7 ~ N (0,R;). With regards to the dynamic process, the rover is generally
assumed to follow a constant velocity model [39] (unless the vehicle is equipped with
inertial sensing capabilities) while the ambiguities are assumed to remain constant over
time as long as no cycle slip or signal reacquisition occurs.

The observation model integrates the DD observations in (5). As for the afore-
described LS approach, KF-based RTK resorts to the mixed model parameter estimation.
Adding the discrete time dependency and the velocity estimation, the observation model (6)
can be expressed as

G 0,3 /\In:| [Gt 0, 3:| l:bl‘:|
= ¢ + 1 = Ara; + ¢ +n;. 16
Yt [ G 0,3 0, Xt T Ht tat G 0,3 |0t 1t (16)

Hf Bt bt
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The classical KF correction procedure follows the well-known expression
T T -1
Ki = Py H (HiPy_H +R:) (17)
Xy = X1 + Ky (yt - h(xt\t—1)>/ (18)
Pt|t = Pt|t—1 - KthPt|t—1/ (19)
or equivalent on its LS adjustment form [21]:

N S

Xe|t = <HtTRt 1Ht) tTRt lyt/ (20)
e ot

Py = <H:Rf1Ht) ’ (21)

where the ~ is used to refer to augmented vectors and matrices and (-)' is the Moore—
Penrose inverse. Hence, the augmented observation vector #; includes the predicted state
x¢;—1, and the measurements’ covariance matrix and the observation Jacobian matrix H;
change consequently as follows:

| oy =~ |R: } o [Ht]
= , Ry = , H = . 22
v [xt|t1] ! [ Py ! I )

When dealing with recursive RTK, using the augmented model in (20) and (21) is more
convenient than the classical formulation (17)—(19), since we can resort to a minimization
problem which resembles (9):

=~ . - = = 2
{a;, bt} =arg min Hyt — Aa; — BtthR ) (23)
a; €7, b, cR6 t

The optimization problem (23), which includes prior knowledge on the state estimate,
is solved following exactly the same three-step decomposition in (9), as described in
Section 2.1. While still sensitive to wrong integer ambiguity estimations, recursive RTK
exploits knowledge from previously estimated ambiguities and provides an overall better
navigation solution.

3. Robust Kalman Filtering Approaches

The standard RTK EKF-ILS solution is close to optimal (i.e., the EKF is an approx-
imation to the nonlinear filtering problem) under nominal LOS propagation conditions.
However, its performance is expected to clearly degrade if affected by multipath/NLOS
conditions. From the maximum a posteriori estimation point-of-view, the KF update stage
relates to the following minimization problem [40]:

: 24
o) 24

Whenever the noise distribution is perfectly known and normally distributed, EKF
provides a quasi-optimal solution—Ilater referred to as an ideal EKF in Section 4. In contrast,
real-world situations often imply unknown noise statistics and the presence of spurious
observations. In such scenarios, EKF operates suboptimally and the influence of the outliers
can completely spoil the estimation.

Despite the mixture of integer- and real-valued estimation in RTK, robust integer
estimators are not known. Thus, the key to robustifying RTK lies in improving the perfor-
mance of the float solution estimation. To do so, multipath-contaminated satellite links
are detected and their impact on the estimation is mitigated, enabling the guidance of
the integer ambiguity search and enhancing its success ratio. Such an improvement is ob-
tained by resorting to different robust KF techniques, which replace the standard first-stage

2
X = argmin th—xt“,lH + Hyt —h(xt)‘
i Py
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EKEF in Figure 1 (right). In the sequel, two categories of filters are discussed: solutions
based on the robust statistical framework and approaches based on variational Bayesian
inference techniques.

3.1. Robust Statistics-Based Filtering

Robust statistics provide alternative loss functions, which appropriately penalize
outliers in the measurements in optimization problems [41,42]. For instance, filtering
problems such as (24) are instead expressed as

’ 25
&) (25)

where R; is the estimated covariance matrix of the observations based on certain weighting
functions and formulated as

2

.

x; = argmin| ||x; — x4
t g Xt (H f tlt 1’1)!‘[71

R; = R;/*W, 'R/ "?, (26)

where R}/ 2 is obtained from the Cholesky factorization of R; and W, is the weighting
matrix given by

W, = diag [w(Rt_l/2 (yt — h(xt)))}, (27)

where w(-) is a certain weighting function derived from its robust score function ().
A wide family of score functions exists and are classified in monotone or redescending accord-
ing to their shape. The idea is to down-weight or nullify (for redescending functions) the
effect of observations not fitting the underlying noise model. Figure 2 illustrates some well-
known score and weighting functions, such as the £, norm (the standard KF score function),
the monotone Huber ([43] Equation (1.21)), the bisquare Tukey ([43] Equation (1.23)), and
the Institute of Geodesy and Geoinformation (IGG) ([44] Equation (7)) functions. These
functions present a tuning parameter that controls efficiency in the normal case (i.e., when
all the observations are normally distributed) or, in other words, their sensitivity in detect-
ing outliers. An interested reader might refer to [19,42] for more details on classical and
modern robust functions.

Figure 2. Illustration of the score (left) and weighting (right) functions for conventional LS (¢,) and
robust estimators: here, the families of Huber, Tukey, and IGG functions are depicted with parameters
a =1.345and c = 4.685, kg = 1.5, and k; = 2.5 respectively.

Within the robust statistics-based filtering solutions, one can distinguish between
resilience against outliers in the correction step (for robust information filters) or against
outliers in both the prediction and correction steps (for the generalized M-estimator KF).
Next, two approaches are described:

*  Robust Information Filters (RIF). The information filter (IF) is an algebraically equiv-
alent form of the KF, where instead of the state vector and covariance matrix, the filter
propagates the so-called information vector, z; = Pflxt, and information matrix,
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Z; = Pt_l. Instead of the standard IF recursion [45,46], the framework of RIF itera-
tively performs the following procedure until the convergence is reached:

T2 ~1/2
zy = zy1 + HY R, 2 W, R;?H, (yt —h(xy-1) + fot\t—l) (28)

Zyi=Zy+H'R; 2 W, R{V?H,. (29)

This formulation is particularly interesting in the context of robust filtering. Indeed,
the use of redescending loss functions (where the weight functions go to zero), may
cause numerical issues within the standard robust regression KF (i.e., the weight
functions must be inverted). Using the IF formulation, it is possible to avoid these
numerical issues and to exploit redescending cost functions. The generic robust
information filter (RIF) formulation for nonlinear/Gaussian state-space models was
proposed in [44]. During Section 4. Four representative robust functions are used as
RIFs: (i) a RIF using a Huber function, (ii) a RIF using a Tukey function, (iii) a RIF
using IGG weighting, and iv) a RIF using a simple 3¢ rejection rule ([43] Chapter 7).
¢  Generalized M-estimator KF (GMKEF). The LS form of the KF correction in (20) and (21)

is exploited by the GMKEF to offer robustness against outlying observations and in-
novation outliers from the prediction step. For RIF, GMKEF consists of an iterative
process until convergence of the solution is reached:

~ ~ ~ ~ ~ t ~ = < N — ~
X = (HtTRt 2 WiR, V2 Ht) HtTRt e WyR, V2 Yu (30)

where Wy is estimated using Equation (27) over the augmented vector of observations
7. Once the convergence is reached, the covariance matrix of the associated estimate is

R . AT
Py = (AR T2 WyR V2 ) (31)

Unlike RIF, GMKEF involves realizing the inverse operations over the weighting ma-
trix, leading to potential numerical issues upon the use of redescending functions.
Moreover, since more “observations” (the actual observations and the predicted state
estimate) are weighted, the search space for the robust mechanism grows and leads
to a slight poorer performance for the case when outliers are present only during
the correction stage. A case disregarded in this work relates to protection against
structural errors (i.e., wrong observation and/or prediction models), for which a
similar GMKF was introduced in [47].

3.2. Variational-Based Filtering

A fundamentally different approach with respect to robust statistics-based filtering is
to resort to variational Bayesian (VB) inference techniques [48,49] to detect and mitigate
the impact of outliers. This was originally proposed in [50] and further extended and
analyzed in [29,30]. The underlying idea is to recursively estimate the probability of having
outliers and to then exclude the corrupted observations. The state-space formulation of the
problem is as follows:

Xt = f(xtfl) + €t (32)
_ [ h(x) +m , under M
"= { h(x;) + 1t + o , under M (33)

where we have an observation model under nominal conditions (Mj) and one with
additional outliers under non-nominal conditions (M). Again, x; is the state estimate; y; is
the vector of observations; €; is the process noise; #7; ~ N (0, R;) is the measurement noise;
o € R represents outliers on some or all observations in y; of an unknown distribution;
and n, = 2n is the total number of double-difference code and carrier-phase measurements.
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Taking into account this state-space model, the methods in [29,30,50] propose to use an

outlier indicator vector {; € Z = {0,1}", such that { t(i) = 0 if there is an outlier on the ith
(corrupted) element of y;, i.e., ygl), and ¢ El) = 1 if the ith element is otherwise clean (not
corrupted). In the latter, the nominal Gaussian modeling would be applied, whereas in
the former, the wrong information brought by ygl) must be down-weighted. Then, instead
of approximating the usual posterior distribution p(xt|y:), these methods provide an
approximation of the augmented posterior p(x, {t|y;). Such an approximation is obtained

by resorting to VB inference techniques. We can distinguish two cases of interest:

e  Scalar VB Kalman filter (S-VKF): a scalar outlier indicator {; is used for all observa-
tions gathered in y; [50]. In the problem at hand, this may have strong implications
because, if a single outlier is detected, then the complete set of observations is disre-
garded. The following model is considered:

p(yelxe, &) = N(yt;h(xt),Rt)gf (34)

where (; is an outlier indicator that assists in detecting and mitigating the impact of
outliers. Particularly, when {; = 1, the model assumes that there are no outliers and
that the measurements are Gaussian distributed; if {; = 0, the outliers are considered
and the correction step is not realized. In practice, the outliers might differently affect
the elements in y;, which motivates the use of the second solution.

¢ Independent indicator VB Kalman filter (I-VKF): a complete vector ; is considered,
such that for each measurement an independent indicator is assigned [29,30]. Then,

the model is
Y N (0
p(yelx, @) = [IN W00 (x), [R5 (35)
i=1

where gi) is an indicator for each code or carrier-phase observation. For the complete
derivation and implementation details, refer to [29,30].

4. Validation and Experimentation

To evaluate the performance of the proposed robust RTK navigation algorithm, we
considered first a synthetic scenario to statistically characterize the different methods
and, then, we assessed their performance using real data from a measurement campaign.

4.1. Simulation Results

The duration of the synthetic scenario is 2000 s, with the observation step triggering
at a 5 Hz rate (At = 0.2 s). The rover moves following a constant velocity model and the
uncertainty about the state transition is described by a white Gaussian random process
w; ~ N (03,13), as described in Section 2.2. Indeed, the simulation setup resembles the
example on target tracking in ([43] Ex. 16) for an LOS/NLOS environment, with the ob-
servations corresponding to the RTK model described in Section 2. Within the simulated
trajectory, we defined two types of behaviours, a nominal one and a corrupted one (indi-
cated as shaded gray areas in upcoming figures). In the corrupted grey zones and at every
epoch, each satellite was randomly decided to be clean or an outlier, with a probability
equal to 40% (« = 0.40). If a satellite is resolved to be an outlier, the phase noise distribution
does not change (i.e., it remains as in (37)) but it is affected by a cycle slip. Three different
scenarios were considered based on the noise conditions of the observations. Recall that
the ith satellite code and carrier phase pseudorange noises are ¢ and €, respectively.

e  Case 0: Nominal. The noise distribution corresponds to the nominal case, for which

&~ N(0,(0)%), 75 =05- (1+1/sin(elev’)), (36)
e ~ N(0,(0)?), 0 = 0,/100. (37)
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31

: .5 9 ;Mw
.””‘_‘.T’t?‘.t .. [ I

with elev’ as the ith satellite elevation.
e (Case 1: Symmetric heavy-tailed. In this case, the noise distribution for the observations
is described by

e~ (1= a)N(0,(c))?) +aN (0, (100 - 0})?). (38)

which corresponds to a symmetric heavy-tailed noise scenario.
*  Case 2: Skewed heavy-tailed. During the “corrupted” time periods, the noise distribu-
tion is as follows:

e ~ (1—a)N(0,(c))?) +aN (10, (10- 0})?). (39)

This corresponds to a skewed heavy-tailed noise scenario, where the second term has
a positive mean and accounts for possible multipath conditions.

An example of the scalar noise distributions for the three scenarios is shown in Figure
3 (right plot). In addition, the left plot shows the considered skyplot, being the same for
the three scenarios.

Nomlnal
—— Symmetric heavy-t;alled
Skewed heavy-tailed |\

pdf

-100 -50 50 100
noise dlstrlbutlon (m)

Figure 3. Skyplot and noise distributions for the different scenarios.

A total of seven filters were evaluated, which we can categorize as (a) conventional
EKF, which include ideal EKFs (i.e., a filter with information on which observations are
outliers and sets the best possible solution) and EKFs (i.e., a classical filter heavily affected
by the presence of outliers); (b) robust statistics-based filters, which include RIFs based
on Huber, Tukey, IGG, and 3¢ score functions and GM-KF based on Huber score function;
and (c) variational-based filters, which include scalar and independent indicator VFKs.
The above-listed methods are described in Section 3, and the tuning parameters correspond
to a = 1.345 (Huber), c = 4.685 (Tukey), and kg = 1.5,k1 = 2.5 (IGG).

The evaluation metrics were (i) the root mean squared error (RMSE) for the float
solution, i.e., how good the float estimation is; (ii) the mean ambiguity success rate (MASR),
i.e., the percentage of Monte Carlo runs for which the vector of integer ambiguities are
correctly estimated; and (iii) the cumulative distribution function (CDF) for the positioning
errors during the float solution estimation. We opted for studying solely the precision
for the float baseline positioning instead of the fixed solution, provided that the precision
of fixed solution does not vary from method to method if the ambiguities are correctly
estimated. Moreover, for case 0 (nominal case), the efficiency of the robust filters at the
float estimation was addressed. The efficiency was defined as the relative performance of a
particular estimator with respect to the optimal ML estimator (which corresponds to the
EKF) under normal-distributed noise ([43] Chapter 1).
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4.1.1. Case 0: Nominal Gaussian Scenario

First, we considered the nominal Gaussian noise case. This is fundamental to assess
the so-called efficiency or loss of efficiency in the different robust methods [51]. That is,
when designing robust solutions, they are expected to perform close-to-optimal under
nominal conditions, which is given by an efficiency close to 1. The results are shown in
Figure 4. On the left, we show the relative efficiency obtained with the different methods,
and on the right, we show the position RMSE for the float solution over time. The results
on the percentage of successful ambiguity fixing is showcased in Table 2.

e
o0

efficiency
© e
~ >

&

T T T ml

- =EKF
RIF-Huber| -
—— RIF-Tukey

RIF-IGG | -
——RIF-30
——GM-KF =

S-VKF
——I-VKF

0 500 1000 1500 2000
time (s)

& & &
N

Figure 4. Efficiency and errors over time for the nominal Gaussian-distributed noise of case 0.

In these results, we can see the general good behavior of all the filters, with two
interesting points: (i) the two variational-based robust KFs are the only ones that achieve
an efficiency equal to 1 and (ii) the performances obtained with the RIF-IGG and GM-KF
are slightly degraded w.r.t. the other filters. We also observe that all the filters manage to
have the best possible success at ambiguity fixing, which in turn, grants a high precision for
the fixed solution, regardless of their efficiency at the float estimation solution. However,
posing good float estimates (i.e., having a high efficiency) remains a relevant factor to
characterize the estimators, since it will condition the performance under more challenging
scenarios, as we will observe next.

4.1.2. Heavy-Tailed Noise Scenarios

Having assessed the performance of the different filters under nominal conditions,
the next step is to analyze their behavior under the non-nominal heavy-tailed noise sce-
narios for cases 1 and 2. First, the float position RMSEs for both cases are shown in
Figure 5. The EKF performance is significantly degraded when some satellites are affected
by outliers (grey zones). The S-VKF presents the worst positioning performance among
the estimators, the reason being that all observations are rejected during the gray areas,
with the positioning solution being dictated by the prediction model. Thus, S-VKF might be
interesting only whenever outliers are expected for very short time spans. On the contrary,
the I-VKF allows for an almost ideal detection of the outliers, with a performance close
to that of the Ideal EKF. This means that the burden of estimating the hyperparameters
required for the variational inference does not penalize the overall performance. Indeed,
the I-VKF showcases the overall best performance among the robust filters, both in terms of
successful ambiguity fixing and RMSE for the float position estimates. For the skewed case
2, the performance obtained with the I-VKF is similar to the one provided by the RIF-Tukey
and RIF-IGG. In both cases, the GM-KF and the RIF-Huber performances are slightly worse,
and interestingly, the RIF with a simple 3¢ rejection rule also performs quite well.
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Figure 5. Root mean squared error (RMSE) for the float positioning results over time for cases 1 (top) and 2 (bottom).

These performance results can also be seen in Figure 6, where we show the mean ambi-
guity success rate (MASR) over time. It is clear that, almost as soon as the NLOS/multipath
periods start (shaded gray areas), the EKF becomes completely unable to successfully
fix its ambiguities due to the influence of the outliers on its float estimates. The robust
statistics-based filters present a higher resilience against such outliers, especially those
with redescending functions (e.g., the RIF-Tukey, RIF-IGG, and RIF-3c) since they can
nullify the effect of the outliers. However, the detection capability offered by robust score
functions is significantly worse than that of the variational-based filters. Naturally, the S-
VKEF is completely unable to fix any ambiguity during the contamination times, since
all the observations are rejected and ambiguity cycle slips still occur during this time.
On the other hand, I-VKEF offers a performance almost identical to that of the ideal EKF
for the case of symmetric heavy-tailed noises while being more sensitive to the skewed
noise distributions.

To further complete these results, we show the empirical cumulative distribution
function (CDF) in Figure 7 and the fix ratio (%) in Table 2. Again, we can see that the best
solution both in terms of RMSE positioning performance and fix ratio is given by the I-VKEF,
which from this statistical analysis is the method of choice. However, this recommendation
needs to be verified with real data in order to see the impact and mitigation capabilities in
a real system. This analysis is provided in the sequel.
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Figure 6. Mean ambiguity success rate (MASR) over time for cases 1 (top) and 2 (bottom).
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Figure 7. Empirical cumulative distribution function (CDF) of the float positioning errors for cases 1 (left) and 2 (right).

Table 2. Percentage of successful fixed solutions (%).

Conventional EKF Robust Statistics-Based Variational-Based

Ideal EKF EKF RIF-Huber RIF-Tukey RIF-IGG RIF-30 GM-KF S-VKF I-VKF
Case 0 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.96
Case 1 92.74 16.20 76.63 85.42 80.41 84.19 75.38 54.46 91.82

Case 2 92.47 39.89 61.42 83.62 81.47 82.45 56.31 54.60 83.22
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4.2. Real Data Experimentation

Performance characterization of the proposed robust RTK architecture is addressed
for the navigation of a vessel navigation in an inland waterway channel. The measurement
campaign was conducted in Koblenz (Germany) on 16 May 2017 (DOY 136, UTC 09:00-
14:00), with the tracked vehicle being the MS Bingen, a multi-purpose research vessel of
the German Waterway authorities. The scenario is shown in Figure 8, where the upper left
plot depicts the number of satellites tracked as well as the position dilution of precision
(PDQOP). The trajectory followed by the vessel is illustrated in the bottom plot. Notice that
the vessel performs several turns around the three consecutive bridges, which block the
reception of satellite signals and induce multipath/NLOS conditions, leading to multiple
cycle slips/losses in tracking.

Google Earth

Figure 8. On the upper left, the number of tracked satellites and associated position dilution of precision (PDOP). On the

upper right, a skyplot of the scenario, with the colorbar indicating the C/Njy. At the bottom, the trajectory followed by the

tracked vessel during bridge passing, estimated using laser technology.

The reference trajectory of the vessel was obtained based on optical technology, using a
total station on land and an active reflector mounted under the GNSS antenna for automatic
target tracking. This technology ensures a positioning accuracy of around one centimeter,
for which the error pattern is independent from GNSS, and its availability is ensured even
during maneuvers realized around bridges.

In this analysis, we considered the standard EKF compared solely to the RIF-Tukey,
GM-KEF, and I-VKE, which are the most promising robust techniques. The positioning error
is shown in Figure 9 (left), and the corresponding CDF is shown in Figure 9 (right). First,
notice that, in this scenario, the RIF-Tukey is not a good solution, with its performance
being very close to the non-robust EKF. This is due to the low number of observations
during bridge passing and the Huber function being monotone, meaning that the detected
outliers are not fully eliminated from the estimation process. In contrast, both the I-VKF
and GM-KF perform very well, with the I-VKF providing the lowest positioning error. This
confirms the validity of the previous synthetic data results, where the I-VKF performance
is always superior. However, it is also worth pointing out that the GM-KF is not a solution
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positioning errors (m)

to be disregarded in practice in contrast with the previous results in Section 4.1.2. Indeed,
the GM-KEF is the only method that accounts for possible errors in the KF prediction stage,
and therefore, using real dynamics that may not exactly follow the assumed dynamic
model, this may be a critical point. For completeness, the fix ratio is given in Table 3, where
we can see that the ratios are low compared to the synthetic data scenario. This is due to
two main reasons: (i) even if the float solution is good using the robust methods, there are
not enough observations to ensure a high fix ratio, and (ii) the bridges induce multiple
cycle slips, which degrade the system observability.
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Figure 9. (Left) Positioning errors; (right) cumulative distribution function (CDF) for the different methods.

Table 3. Percentage of fixed solutions (%).

Estimator

EKF RIF-Tukey GM-KF I-VKF

Fix ratio (%) 53.22 46.74 58.27 53.46

5. Conclusions

It is well known that GNSSs play a key role in a plethora of intelligent transportation
system applications, where reliable precise positioning solutions are fundamental. A great
challenge for precise carrier phase-based positioning techniques, such as PPP and RTK,
relates to their applicability in harsh propagation conditions. Indeed, a key step of these
techniques is the phase ambiguity resolution, which is particularly affected by such harsh
conditions. Thus, new robust filtering solutions must be developed to enable the use of
RTK in scenarios involving non-nominal measurement errors, such as multipath in urban
canyons. In this contribution, we explored the use of robust filtering techniques to mitigate
the impact of outliers. The driving idea is to replace the first stage of a standard EKF
of the RTK pipeline with a robust filter to obtain a robustified float solution. Kalman
filtering solutions based on the frameworks of robust statistics and variational inference
are presented, and some basic theoretical concepts from both schemes are introduced.
Different robust filters to replace the original RTK float estimation were proposed, namely
the RIF based on distinct score functions, the KM-KF, or the Independent indicator VKEF. It
was shown, with both synthetic and real data, that using such a robust RTK architecture
significantly improves the overall system performance, being a promising solution for
precise positioning in harsh environments. Among the different robust filters available in
the literature, the I-VKF was found to provide the overall best performance. The GM-KF is
also worthy of an honorable mention, allowing coping with inaccurate dynamical models,
which is an interesting feature in scenarios with changing dynamics.
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