Privacy-preserving cooperative positioning

Guillermo Hernandez, FElectrical and Computer Engineering Dept., Northeastern University, Boston, MA, USA.
Gerald LaMountain, Electrical and Computer Engineering Dept., Northeastern University, Boston, MA, USA.
Pau Closas, Electrical and Computer Engineering Dept., Northeastern University, Boston, MA, USA.

BIOGRAPHIES

Guillermo Hernandez is a PhD candidate in the Department of Electrical and Computer Engineering at North-
eastern University, Boston, MA. His research interests include signal processing, applied cryptography, and GNSS
positioning.

Gerald LaMountain is a PhD candidate and Dean’s Fellow in the Department of Electrical and Computer Engi-
neering at Northeastern University, Boston, MA. His current research involves building upon traditional probabilistic
techniques for dynamic state estimation and applying those techniques to problems with applications in positioning
and localization.

Pau Closas is Assistant Professor at Northeastern University, Boston, MA. He received the MS and PhD degrees in
Electrical Engineering from UPC in 2003 and 2009. He also holds a MS in Advanced Mathematics from UPC, 2014.
His primary areas of interest include statistical signal processing, robust stochastic filtering, and machine learning,
with applications to positioning systems and wireless communications. He is the recipient of the 2014 EURASIP
Best PhD Thesis Award, the 9th Duran Farell Award, the 2016 ION Early Achievements Award, and a 2019 NSF
CAREER Award.

ABSTRACT

We address the issue of user privacy in the context of “collaborative” positioning, wherein information is passed
between and processed by multiple cooperative agents with the goal of achieving high levels of positioning accuracy.
In particular, we evaluate the feasibility of applying a layer of encryption to a linear least squares (LS) algorithm for
providing position, velocity, and time (PVT) estimates to a user based on information exchanged between neighboring
receivers. The goal of such a scheme is to facilitate the requisite transfer and processing of GNSS measurements
to achieve improved performance over single-user positioning, as demonstrated in the literature, for instance in
mitigating errors induced by ionospheric propagation. Additionally, we wish to maintain that other agents or outside
observers do not have access to the information required to locate a given user. We accomplish this by employing
“homomorphic encryption” methodologies, in which fundamental mathematical operations may be performed on
encrypted data to produce encrypted outputs, without providing access to either input or output to the agent
performing the operation. The performance of the LS collaborative positioning methodology is evaluated both with
and without encryption, and the results compared to each other as well as to the output of “single-user positioning”
where information from other receivers is not used to mitigate the effects of atmospheric interferences. We show
that the application of cooperative methodology results in an increase in performance under interference conditions,
as compared to the single-user approach, and additionally that the application of homomorphic encryption to this
LS approach yields little or no loss in estimation performance over the traditional, unencrypted cooperative LS
algorithm.

INTRODUCTION

Among the ever expanding toolbox of methods for providing positioning in modern technology, few are as continually
prevalent as Global Navigation Satellite System (GNSS) [11]. As the research community in GNSS continues to
expand and investigate innovative ideas to increase the availability, precision and reliability of these systems [1, 3, 4],
one technique that has been gaining traction is so-called “collaborative” positioning [5, 9, 10, 12]. In collaborative

positioning, information is passed between and processed by multiple agents, or collaborators, with the goal of
minimizing interference and achieving high levels of positioning accuracy for each or some of the collaborators. One
issue which may arise under such a scheme is that of user privacy [2]. Although these techniques may be desirable
for the precision which they might provide, it may not always be possible or desirable to expose information which
might be used to identify a user’s location to collaborators. Of research interest, then, is the task of keeping a user’s
location private while performing the computations necessary to determine the user’s position at a remote location
from GNSS observables.

One approach to the task of securing user information is by employing encryption: encrypted data can be broad-
cast to one or more collaborators without compromising the details of the message, thus preventing any collaborator
or outside observer from obtaining information about another user. Of particular interest to the application of en-
crypted collaborative positioning are so-called “homomorphic” encryption schemes. Homomorphic is a term used to
describe encryption schemes wherein mathematical operations may be performed on encrypted data, or cyphertext,
resulting in an encrypted output which, when decrypted, is identical to that which would have been computed had
encryption not been employed. The benefit of this property is that the manipulations required for collaboration are
possible in a way that doesn’t expose the details of the operation, either at the input or the output, to the agent
performing the manipulations. Each agent in the encryption, then, can contribute the information that they need to
the scheme, and receive the benefits of cooperative positioning, without exposing the details of their own position to
any other user.

Homomorphic encryption schemes fall broadly into three categories: Partially Homomorphic Encryption (PH),
Somewhat Homomorphic Encryption (SWHE), and Fully Homomorphic Encryption (FHE). The distinctions between
each of these categories are based on the type and number of operations that may be performed on a piece of
encrypted data before a loss of computational fidelity occurs. Namely, a Partially Homomorphic Encryption (PHE)
scheme limits an encryption scheme to only one operation performed over ciphertexts; addition or multiplication.
A Somewhat Homomorphic Encryption (SWHE) scheme, by contrast, limits the number of operations performed,
but allows both addition and multiplication to be performed over ciphertexts. Finally, in many ways combining the
best of both PHE and SWHE, are Fully Homomorphic Encryption (FHE) schemes which can be used to perform
an unlimited number of both addition and multiplication operations over ciphertexts. Research on the topic of
FHE schemes has expanded immensely since the first functional scheme introduced by Gentry [6]. FHE in general
are computational expensive and complex during a multiplication operation. Within the FHE scheme category
we looked at a Learning with Error (LWE)-based encryption Approximate Eigenvector Method scheme [7]. This
scheme addresses the computation complexity for a multiplication operation performed over ciphertexts. In addition,
previous FHE schemes, users have an additional evaluation key, where an evaluator required those keys to perform
any operation. The Approximate Eigenvector scheme eliminated the existence of any evaluation key which allows
third-party device to act as an evaluator to directly perform the desired operations to the ciphertexts.

In this contribution, we evaluate the feasibility of applying a layer of homomorphic encryption to a linear least
squares (LS) algorithm for providing position, velocity, and time (PVT) estimates to a user, based on information
exchange from neighboring receivers. This methodology will leverage a single pseudorange difference that cancels
the effects of the certain impairments (i.e. tropospheric delay and ionospheric delay) between two receivers [§]. Each
user will then independently compute each other’s positions in an encrypted domain, before returning the result of
this computation to the other user for decryption and fusion to determine the final positioning result. The required
computations are performed locally at each receiver, leveraging others’ data, and as such, with respect to user privacy,
the variables involved in the LS should be encrypted (and thus not exposed) to the users responsible for computing
the PVT solution. Using the homomorphic encryption methodology in a least square problem, in this case the PVT
computation, the results are expected to be the same compared to the least square problem with no encryption
scheme in place. The results will establish a concrete understanding that having a secure protocol will not have
any effect in terms of performance degradation while it adds an important layer of privacy to the user accessing the
service. Parallel to this idea, the problem with no encryption will serve as a base to compare the results to the case
where the homomorphic encryption was implemented.

This paper is categorized into three main sections. The first section details a Cooperative Positioning (CoPo)
scheme and implementation that preserves privacy between collaborating peers. A second section provides some
technical background on Fully Homomorphic Encryption, which is required in order to implement the Private CoPo
scheme. This is followed by the third section where some results are discussed to validate the proposed solution.

COOPERATIVE POSITIONING

We describe a positioning algorithm where two arbitrarily close receivers exchange GNSS observables (code phase
in this article) such that they can remove atmospheric errors by combining those measurements. Under such a
scheme pseudoranges measured by two receivers (n and m) are substracted, in the vein of standard differential GNSS
(DGNSS) schemes, with the particularity that none of those receivers has accurate knowledge of its position and is
benefiting from the process (i.e. no base station is present). The rest of the paper leverages this algorithm to propose
a scheme that preserves privacy among users, that is, the CoPo can be implemented without the n-th receiver being
able to infer the position of the m-th receiver, and vice versa.

Differential GNSS as a cooperative positioning scheme

A GNSS receiver processes signals to compute the so-called observables, namely pseudorange and carrier-phase
measurements to L visible satellites. These observables are related to position, velocity, and time (PVT) unknown
quantities of the receiver, so they are typically used to solve for those. Let’s assume that two nearby receivers (n
and m) are able to compute those observations, the pseudorange observable for the n-th is modeled as

PV = [lp™ — pill + (8t — 5t;) + T; + I + €, (1)
such that p(") denotes the position vector of the n-th receiver; p; the position of the i-th satellite with i = {1,...,L};
6t and 6t; are the clock offsets of the receiver (unknown) and the satellite (known), respectively; c is the speed
of light; T; and I; are delay errors due to the troposphere and the ionosphere, respectively; and 61(”) ~ N (O,me-)
is a random variable representing the pseudorange estimation error as well as other unmodeled terms. The joint

covariance matrix is then R(™ = diag(U?Ll, e ,0’72“ .)- In vector form, the L pseudoranges can be gathered in
p™ = (™. p)T (2)

Through differencing pseudoranges from two neighboring receivers, a new observable can be obtained that is free
of the common tropospheric and ionospheric associated delays. That is,

Ap"™ = pf = pi™ = [p™ = pill = [P — pil| + (8t — 51 4y (3)

7

does not have the contributions of 7; and I;. The random term is then n(n’m) =™ egm) ~ N(0, a,Qm- +02,.:)

7 %

whose variance is clearly increased as a consequence of the processing. In vector form:
Ap(n’m) — (Apg"’m), e ’Ap(L":m))T (4)

In general, we have that the combined pseudoranges are modeled as a nonlinear function of the unknown position
and clock offset of the receivers:
Ap™™ = h(z™, 2™) + 7 (5)

T
with n = (n%"’m),~~ ,n(Ln’m)) . (™ a vector gathering p(™ and ¢5t(™; h : R* x R* — R’ is a mapping from

position and time unknowns to combined pseudoranges, which makes this a difficult problem to solve in general.
However, the mapping is known and given by!

(@™, 2™)] = p® — pif| = [P — pyl| + (3" ~ 510 (©)

and one can take a first order Taylor expansion to linearize the problem at some arbitrary points [,L(()n) and u(()m):

h(z™, &™) = h(ug"”, ug"™) + Voh(ug"”, n§™) (@ — o) (7)
where x gathers both (™) and (™ and H 2 V h(-) denotes the derivative of h(-) with respect to 2, which can be
computed as H = [H™, —H™)], with

—u (™) 1
H™ = : | (8)

—uf@®) 1

1[a]; denotes the i-th element in vector a. [A]; denotes the {4,j}-th element in matrix A.

Then, once the problem in (5) is linearized, it can be easily solve analytically through an iterative least squares
procedure. To do so, we rearrange the term as

y"m = Ap™™ - Hyo — h(ug”, p™))
[, 1§™)] = 6" = pill + 3t ~ Ipg™ = pil| = o™ (10)
(i) (g™,

p™

nom cot(m)
y"m ~ H ptm | 7 (11)

cot(™)

(n) (m)
_ g™ [P g | P

H [Cdt(n):| H L&(m)] +n, (12)

where H = [H™, —H(™)] can be splitted in the terms associated to each receiver. Solving for &(™) in (12) as a
least squares (LS) problem, and assuming that the n-th receiver has an estimate of (™), a LS estimate for the m-th
receiver can be readily computed as

&m) = (H™ gL gm T (M gn) _ ynm) (13)
m m) " m)\— m) " n,m n) 4 (n m m
= pi™ — (H™ 7)) (yem) _ gy grem ,my (14)
and similarly
& = (H™ HM)" LM (ym) 4 ppim) gm)) (15)
_ u(()n) + (H(n)TH(n))—lH(n)T(y(n,m) + Hmgm) _ H(n)u(()n)) 7 (16)

for the other unknown vector.

Privacy-aware cooperative positioning

We propose a "privacy-aware" modification to the CoPo scheme previously described, wherein each receiver can obtain
an enhanced PVT solution after pseudorange combination by solving (13) and (15). The proposed scheme leverages a
particular class of encryption methodologies that have homomorphic properties. That is, we consider crypto systems
that allow certain operations (addition and multiplication) in the ciphertext without leaking information about the
actual information.

The proposed scheme involves a key encryption method (an explanation of which is provided in the next section),
where the n-th receiver generates a public and private key and encrypts its information to be transferred to the m-th
user, along with the public key Pk(™). Then m-th receiver is then in charge of solving part of (15) in an encrypted
manner without leaking information about the n-th user, which is then only able to decipher the encrypted version
of (™. An analogous scheme would be required for computing (13) privately. It is important to note that the
distribution of public key (Pk:(")) occurs once, as shown in Figure 1. There is no need to redistribute the public key;
the public keys are required to return any desired data.

PK®
n-th user m-th user

Figure 1: n-th user shares its own public key (Pk(™)

Denoting the encryption operation with Enc(-), which will be discussed in more detail in the next section, the
scheme is such that the m-th receiver computes part of (15). In particular this expression can be rearranged as

2 = AWM _ A (m) _ prom) gm) (17)

———
n-th receiver m-th receiver
with
y(n,m) — o) _ 5,(m) (18)
y(n) _ p(n) + H(n)u(()") _ h(ué")) (19)
) = pt™ 4+ HO g™ — (™) (20)
AM = (g™ gy g’ (21)

where the two 4-dimensional vectors in (17) only carry information of the corresponding user. As a consequence, it
is possible to implement an homomorphic encryption scheme such that decrypting

Enc(A™ . (3™ — H™ &™) gy () = Enc(A™) ppny - Enc((y™ — H™ &™)) (22)

will actually solve for the receiver dependent calculations in (15). To that aim, the n-th user transfers the public key
Pk for the m-th user to be able to encrypt its data as well as the other necessary

D = {Enc(A<">)} (23)

such that the operations (in the encrypted domain) at the m-th receiver involve a matrix/vector bit-wise product. As
shown in Figure 2, the n-th user encrypts its own set of data (23), while the m-th user encrypts its own corresponding
data using the n-th user’s public key. Once the m-th user receives the encrypted data from the n-th user, it performs
the encrypted calculations in the encrypted domain as shown in (22). The m-th user then returns the encrypted
result to the n-th user, shown in Figure 3. When n-th user receives the encrypted results, using its private key
Sk it decrypts the result and solves for (15). A similar manner is required to calculate (13). In this collaborative
process, each user computes the other’s position in a private manner and communicates it back to its peer in an
iterative process that mitigates the effect of atmospheric errors.

Enc(¥™ — H™ z(m) n
Enc(A(")),,k‘,.) &) pkm

n-th User m-th User

Figure 2: n-th and m-th users encrypted their corresponding data to calculate (22)

v

Enc(A™ . (M) — gm) Q(m)))Pk(n)

n-th User m-th User

Figure 3: m-th user returns encrypted calculated results to the n-th user

FULLY HOMOMORPHIC ENCRYPTION SCHEME AND OPERATIONS

This section provides some technical background details on the cryptosystem considered in this work. Namely, a
Fully Homomorphic Encryption (FHE) is considered, which shows homomorphism in addition and multiplication.

Homomorphic encryption is a term used to describe methods of data encryption that allow mathematical computation
to be performed on encrypted data, such that the result of the computation, when decrypted, matches the result of
the operations as though they had been performed without encryption. Typically, a homomorphic encryption system
will support one or more mathematical operations. In such a system the operator can be applied to the encrypted
form of a set of arguments and the desired result is attained by decryption. Specifically, denoting encryption by
Enc(-) and decryption by Dec(-), and some operator f(-,-), then [14] if homomorphic encryption is considered we
have that Dec(f(Enc(x),Enc(y))) = f(z,y) for two messages = and y. That is, the function can be applied to the
encrypted data, then decrypted, and yield the same result as when no privacy is considered. The types of functions
supported (typically multiplication and additions) depends on the considered cryptosystem [14], which is part of the
topic in this study.

FHE Scheme background

The Eigenvector FHE scheme described herein provides security, by adding noise to message (1). This noise is added
using a public key and removed using a private key; both of these keys are created from the same source (user).
The process of creating these keys are defined into three main sections: Key generation, Encryption and Decryption.
Descriptions of each are explained below. Once these keys are created, the public key is distributed to a secondary,
or any arbitrary number of devices where encrypted communication is desired. As an example, if Alice wants to
communicate with Bob, Alice requires Bob’s public key. This public key encrypts the message Alice sends to Bob.
To read the message, Bob uses his secret key to decrypt the message.
The Eigenvector FHE key generator is divided into three parts: the Setup, SecretKey, and PublicKey. [7]

e Setup: Choose a modulus ¢ of K = k(A L) bits, lattice dimension parameter n = n(\, L), and error distribution
X = x(\, L) appropriately for LWE that achieves at least 2* security against known attacks. Also, choose
parameter m = m(A, L) = O(nlogq). Let params = (n,q, X, m). Let £ = |logg] + 1 and N = (n+¢) - .

e SecretKey (params): Sample t, where t € Z'. Let sk = (1, —t1, —ts,...,—t,) € Z)T1.
Let v = Powersof(sk).

e PublicKey (params, sk): Generate a matrix B € Z™*" uniformly and an error vector e = x™. Set b= B -t + e.

Set A to be a (n + 1)—column matrix, where b is the first column followed by B. Public Key is A

As seen above, the secret and public keys are randomly constructed; if a third-party device obtains a public key, it
will be very difficult to obtain or determine the secret key to that specific public key. With the public key distributed
to the public, Alice can encrypt a message using Bob’s public key, without the worry of having a third-party user
corrupt the message.

The process to encrypt a message, using the Eigenvetor FHE scheme requires only the public parameters (params),
the public key, and the desired message (u). Additionally, the Eigenvector FHE contains an encryption Enc function
that encrypts p. The following is a brief explanation of the the Enc function.[7]

e Enc (params, Pk, p): To encrypt a message p € Z,, sample a uniform matrix R € {0, 1}Vx™

C = Flatten(u - Iy 4+ BitDecomp(R. - A)) € ZfZVXN

The Enc outputs the ciphertext(C'), where the largest magnitude is 1. As stated before, one of the reasons this is
secure contributes to the noise added to the public key, as we saw with the error vector (e). The noise is incorporated
through the BitDecomp function, which converts the values in the public key (A) to bits. The Flatten function,
ensures the magnitude of the ciphertext to be as most 1.

Lastly, the user with the secret key decrypts any incoming ciphertext through the use of its secret key and the
decryption function (Dec). [7] describes two methods of decryption. One decryption method describes Regev’s
method seen in, [13]|. The second decryption method, MDec function, is ideal when the modulo value (g) is a power
of 2. [7]

e MDec (params, Sk,C): Observe that (¢ = 2/~') and the first £ — 1 coefficients of v are (1,2,...,2¢72).
Recover LSB(p) from g - 272 + small, then recover the next LSB from (u—LSB(1))-2¢72 + small, etc.

The decryption procedure decrypts the message if the error inserted by the error vector(e) remains small;
C -v = ji-v + small. If the error is small, then the first £ — 1 coefficients of C - v are i1 - g + small, where g = (1,2,...,2¢72).

Properties
We can now analyze the FHE two operations performed on the ciphertext: addition and multiplication.

e To add ciphertexts Cy, C € Zy™"

(C14+Cs) v=pi-v+e +pus-v+ey (24)
= (p1 +p2) - v+ (e1 + ez2) (25)

As send in (24), a ciphertext is p - v + e. When adding two ciphertexts, the error value linearly increases. While the
total error value remains small, the two cipher are directly added to one another.

e To multiply a ciphertext C' € Zy*" by a know constant o € Z,. Let M, be the ciphertext of . Observe:

M, - C-v=M, - (p-v+e)=p-(My-v)+M, e (26)
=a-pu-v+M,-e (27)

Multiplying a ciphertext by a constant value («) requires « to go through a similar process of encryption. The
process requires « to convert its magnitude value to be at most 1. This is done by converting « into M, by setting
M, equal to Flatten(« - Iy), where Iy is an identity matrix.

e To multiply two ciphertexts Cy, Cz € Zy*". Observe:

C1-Cy-v=Cy-(ug-v+e)+puz-(u1-v+e)+Csi-e (28)
=p1-p2- v+ (u2-e1+Cy-e) (29)

Lastly, multiplying two ciphertexts together converts the error into us - e; + Cj - ea. This error will remain small,
assuming that Cy and ps are small. [7] provides more detail about setting tight bounds to ensure that the error
remains minimal.

Homomorphic Encryption Approach for CoPo

The CoPo scheme described consists of the Enc and MDec functions and the two operations capable of being perform
on the encryption layer. The CoPo scheme follows the same process of creating public and private keys from the
SecretKey and PublicKey functions. as well as converted a value into ciphertext matrix. The CoPo prepares the
encrypted package, send in (23). Note, any sent encrypted package is encrypted by the destination’s public key.
Once this set of variables arrives at the appropriate destination, the user encrypts its own information to perform
the following operations in the encryption layer.

The first homomorphic operation addressed in the CoPo scheme is addition. For notation purposes, let

u = Enc(A("))
w = Enc((y™ — H™ g(M))
Both of these vectors are composed of ciphertext matrices. where each matrix is of (N x N)- dimensional and each
matrix represents a binary value. The CoPo scheme algorithm adds each matrix as a element-by-element addition
operation, in order to directly perform the homomorphic operation.
U({1:0},N,N,0) + W({63NN) = Oy, T Ol (30)

The multiplication homomorphic operation implemented in the CoPo, follows a similiar process from the addi-
tional operation. For notation purposes, let B = Enc(A(™) and let z = Enc(y(m) — H(™ &™), The scheme divides
this operation to follow the multiplication format described in the previous section.

B({1.4y,8,8,1,1) - Z({1:0),N,N,1) T B{1:0),N,N,1,2) " Z{1:0},(N,N,2) T - - T B}, NN, 1,4) * Z({1:b},N,N,4)
B B{1:5y,8,N,2,1) " 2({1:0},N,N,1) T B({1:0},N,N,2,2) * 2{1:6},(N,N,2) T - - - + B({1:6),N,N,2,6) * Z({1:b},N,N,3) (31)
ez = .

B{1.6y,8,n,5,1) " Z({1:b},N,N,1) T B({1:8),8,8,5.2) * 2({1:6},N,N,2) T - - + B({1:6),N,N,j,i) * Z({1:b},N,N4)

This is achieved by having element-by-element multiplication. Same as before, since each element in Enc(A(”)) and
the outcome of Enc(y™ — H(™ &™) are a ciphertext of (N x N)- dimension; this element-by-element multiplication
converts to matrix-by-matrix multiplication.

B({lib}-,N’N-,l’l) " Z({1:b},N,N,1) = CB({l:b},l,l) : Cz({m}‘u (32)

SIMULATION RESULTS

The proposed CoPo scheme was validate through simulated data. Particularly, two static and cooperative receivers
(separated 1200 meters apart) were simulated in open-sky conditions. A Single Point Positioning (SPP) solution,
(i.e. no cooperation) was obtained as benchmark without any ionospheric error and a second SPP solution was with
ionospheric delay was also included; this ionospheric delay was modeled after Klobuchar’s ionospheric model. Those
were compared to the proposed CoPo scheme with and without encryption.

Figure 4 shows the results of the RMSE (root mean square error) for each scheme; SPP solutions, CoPo scheme,
and encrypted CoPo scheme, each with and without ionospheric delay, at different tracking error variance values.
As the tracking error variance value is relatively small, the ionospheric delay increases the RMSE value for the
benchmark. In the both CoPo schemes (encrypted and non-encrypted), the ionospheric delay impact to the RMSE is
almost negligible, due to the increase of the ionospheric delay variance between the two receivers and they both have
similar results to that of the SPP solution without any ionospheric delay. When the tracking error variance value
increases, the ionospheric delay is overlapped by the tracking error causing it to have no effect in the RMSE, yet the
results for all the schemes are similar. It is also important to note, the integer bit value chosen effects the RMSE
as well. At a smaller integer bit value, the RMSE for the CoPo (encrypted and non-encrypted) schemes, approaches
the RMSE value for the benchmark. This occurs since information is lost when the integer bit value decreases.

RMSE
Tracking Error Variance(m) 0.5 1 5 10
LS Solution (No lono Delay) (m) 2.1703 45888 21.914 44.059
LS Solution (lono Delay) (m) 4.0902 5.7442 21.849 44.208
CoPo Solution (No lono Delay) (m) 2.1703 4.5887 21.915 44,059
CoPo Solution (lono Delay) (m) 2.1703 4.5888 21.914 44.059
Encrypted CoPo Solution (No lono Delay) (m) 2.1703 45887 21.915 44.059
Encrypted CoPo Solution (lono Delay) (m) 2.1703 4.5888 21.914 44.059

Figure 4: RMSE Values at different tracking error variance

In addition to the RMSE values, the cost of implementing each schemes is significantly different, where the
encrypted CoPo with and witout ionospheric delay is much larger than the other schemes. Figure 5 displays the
number of operation during the convergence self-assessment per iteration. In the case for the CoPo scheme, (13)
and (15) require one operation each, while in the case for the encrypted CoPo scheme, (22) for the n-th receiver and
similar to the m-th receiver required a bit-wise multiplication operation, as shown in (31). In the worse-case O(spb?),
where b is the bit size, s is the number of satellites, and p are the unknowns parameters of the user (position and
clock offset).

Number of Operations Per Iteration

LS Solution (No lono Delay) 1
LS Solution (lono Delay) 1
CoPo Solution (No lono Delay) 2
CoPo Solution (lono Delay) 2
Encrypted CoPo Solution (No lono Delay) 4608
Encrypted CoPo Solution (lono Delay) 4608

Figure 5: Scheme operational cost per scheme

CONCLUSIONS

This paper proposed a cooperative positioning (CoPo) scheme that is inspired in Differential GNSS (DGNSS) schemes,
with the peculiarity that none of those collaborative receivers has exact knowledge of its location. The scheme
assumes that those receivers can exchange observables (pseudoranges in this work) which are then combined in order
to mitigate the effects of atmospheric errors that are common between closeby receivers. Additionally, the article
proposes the use of advanced crypto-schemes in order to compute the operations involved in the CoPo scheme in a
privacy-preserving manner. That is, in a way that no information regarding the position of the collaborative receiver
is leaked to the other user benefiting from it. The scheme leverages the so-called Fully Homomorphic Encryption,
allowing to perform certain operations like addition/multiplication in the encrypted messages. The article validates
the proposed privacy-preserving CoPo scheme through a set of simulation results. To the best of the authors’
knowledge, this is the first time a GNSS CoPo scheme is presented that features privacy-preserving properties.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foundation under Awards CNS-1815349 and ECCS-
1845833.

REFERENCES

[1] M. G. Amin, P. Closas, A. Broumandan, and J. L. Volakis. Vulnerabilities, threats, and authentication in satellite-based navigation
systems [scanning the issue]. Proceedings of the IEEE, 104(6):1169-1173, 2016.

[2] L. Chen, S. Thombre, K. Jarvinen, E. S. Lohan, A. Alén-Savikko, H. Leppékoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N. Ferrara,
S. Honkala, et al. Robustness, security and privacy in location-based services for future IoT: A survey. IEEE Access, 5:8956-8977,
2017.

[3] D. Dardari, P. Closas, and P. M. Djuri¢. Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular
Technology, 64(4):1263-1278, 2015.

[4] D. Dardari, E. Falletti, and M. Luise. Satellite and terrestrial radio positioning techniques: a signal processing perspective. Academic
Press, 2011.

[5] R. Garello, J. Samson, M. Spirito, and H. Wymeersch. Peer-to-peer cooperative positioning. Inside Gnss, 2012.

[6] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM symposium on Theory
of computing, pages 169-178, 2009.

[7] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Annual Cryptology Conference, pages 75—92. Springer, 2013.

[8] N. Gogoi, A. Minetto, and F. Dovis. On the Cooperative Ranging between Android Smartphones Sharing Raw GNSS Measurements.
In 2019 IEEE 90th Vehicular Technology Conference (VT C2019-Fall), pages 1-5, 2019.

[9] B. Huang, Z. Yao, X. Cui, and M. Lu. Dilution of precision analysis for GNSS collaborative positioning. IEEE Transactions on
Vehicular Technology, 65(5):3401-3415, 2015.

[10] B. Huang, Z. Yao, X. Cui, M. Lu, and J. Guo. GNSS collaborative positioning and performance analysis. In JON GNSS, pages
1920-1930, 2014.

[11] E. D. Kaplan, editor. Understanding GPS: principles and applications. Artech House, 2nd edition, 2006.

[12] A. Minetto, C. Cristodaro, and F. Dovis. A collaborative method for positioning based on GNSS inter agent range estimation. In
2017 25th European Signal Processing Conference (EUSIPCO), pages 2714-2718. IEEE, 2017.

[13] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 56(6):1-40, 2009.

[14] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 24-43. Springer, 2010.

https://www.researchgate.net/publication/344455227

	Abstract
	Introduction
	Cooperative Positioning
	Differential GNSS as a cooperative positioning scheme
	Privacy-aware cooperative positioning

	Fully Homomorphic Encryption Scheme and Operations
	FHE Scheme background
	Properties
	Homomorphic Encryption Approach for CoPo

	Simulation results
	Conclusions
	Acknowledgements

