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ABSTRACT

This paper studies the use of deep learning models to model the complex effects of multipath propagation on
GNSS correlation outputs. Particularly, we aim at substituting standard correlation schemes (that are optimal
under nominal conditions) with Neutral Network (NN)-based correlation schemes, that are able to learn multipath
channels, otherwise challenging to be captured by physics-based models. The solution involves the use of a Deep
Neural Network (DNN) structure, which exploits the optimality of standard correlation schemes at the same time
that adjusts its behavior to better model multipath. The proposed solution can be used in substitution of standard
correlation, then seamlessly plugged on acquisition and tracking receiver blocks. Results on the currently trained
model show promising time-delay tracking performances, when compared to standard correlation processing.

INTRODUCTION

Global Navigation Satellite System (GNSS) has been widely used in position-based applications with high accuracy
and precision needed [2, 7, 8]. The growing dependence on GNSS within critical infrastructures has posed some
concerns about the potential threats to GNSS. Therefore, techniques have been studied for years to mitigate the
influence of a variety of error sources such as multipath propagation or interference-rich environments [12, 16, 17].
In GNSS processing, tracking block is applied to follow the evolution of the signal synchronization parameters.



In the tracking block, correlation between GNSS signal and local replicas of satellite’s pseudo-random codes is a
fundamental component that is used to build the so-called Cross Ambiguity Function (CAF), which the receiver
aims at optimizing. The described correlation approach used to compute the CAF is i) mathematically simple to
implement, but computationally intensive; and i) optimal under white-Gaussian noise, but easily spoiled in non-
nominal situations, such as in the presence of outliers for instance due to multipath conditions. Focusing on distortions
due to multipath propagation, as an example, the type of distortions caused in the CAF are such that time-of-arrival
estimates become positively biased due to the induced extra propagation path [13]. This article proposes to train
NN to substitute standard correlation operations in a way that maintains high accuracy in outlier-rich environments,
where the traditional correlation-based method would degrade or even become unreliable.

Many methods have been proposed in the literature in order to mitigate those effects. Most of those works
are either studying 1) enhanced discriminator functions, such that the delay/phase lock loops (DLL/PLL) are less
sensitive to multipath effects. For instance, the Narrow Correlator [16], the Pulse Aperture Correlator (PAC) [10],
the Double Delta Correlator [12], the Earlyl/ Early2 (E1/E2) tracking technique [15] or the Multipath Elimination
Technology (MET) [14] are classical solutions within that approach; or 2) advanced receiver architectures that jointly
estimate the line-of-sight and multipath components for each satellite link, in a typically computationally complex
process. For instance, the Multipath Estimating Delay Lock Loop (MEDLL) [17], the Vision Correlator [9]te, the
Multipath Mitigation Technique (MMT) [18], or the use of particle filtering to discriminate among propagation
paths [6]. These methods can yield to robust correlation and tracking results, however, it is worth noting that
they heavily rely on accurate physics-based models and deviations from those might cause dramatic degradations
in performance. In real-world experiments, models might result inaccurate in a variety of situations. This article
proposes to substitute correlation-based CAF computations (which inherently rely on physics-based models), with
correlation schemes purely derived from a data-driven paradigm in which the complexity of the channel is learned
from data.

With the popularity of Artificial Intelligence, machine learning and deep learning begin to play an important
role in adapting traditional algorithms, especially when it comes to estimation and classification tasks. At a glance,
deep learning algorithms (for instance, the variety of Neutral Networks (NNs) architectures currently available) are
data-driven models that, instead of using complex-to-derive physics-based models, use vast datasets to learn the
correlations in the data. Therefore, a computer uses large datasets to train multiple layers of a neural network, in a
time-consuming process until acceptable accuracy performance is achieved. When physics-based models are available,
as is the case for the so-called correlation used in CAF computation, the use of NNs might seem redundant. However,
the appeal of such deep learning methods comes in situations where a physics-based model is either too complex to
use or not available at all. This is the case, for instance, of multipath channels. In the context of GNSS, Deep NN
(DNN) models have been recently considered in various contexts of the receiver design [1, 4].

In this article, DNN is applied for regression, which is a typical NN, as a regularized version of Multilayer
Perceptron (MLP). The input for DNN is usually an image and therefore we keep our input as 3D when training the
model. Similar to MLP, DNN also contains multiple hidden layers, especially the convolutional layer, pooling layer,
and fully connected layers. With those layers above, DNN can thus transform input (usually an image) layer-by-
layer from the elements to regression values. Particularly, considering the complex signal as the input to the neural
network, as well as Pseudo-Random Noise (PRN) number for the specific satellite, the length of the input variable is
2 x N x 1, where N is the length of the signal in samples (related to sampling frequency and the integration time).
The two columns correspond to the real and imaginary parts of the complex GNSS signal. Since the GNSS signal is
a complex signal, so are the CAF values, the real and imaginary part of correlation results are computed separately,
therefore, the output is a 2L x 1 vector containing the real and imaginary components of the CAF where L is now
the number of correlation outputs evaluated by the NN-based correlator scheme.

To test the performance of the trained model, in addition to the validation, the model is also applied in a
signal tracking task. The objective is to evaluate the performance of the tracking phase using the proposed NN-
based correlation approach. A standard tracking method using correlation-based CAF-computation is also used for
comparison over the same GNSS signal.

SIGNAL MODEL
The signal received by the antenna of a GNSS receiver can be modelled as:

y(t) = V2Cd(t — 7o)c(t — 7o) cos(2n(frr + fo)t + bo) + n(t) + M(t) (1)



where C' is the useful signal power, d(-) is the navigation message, ¢(-) is a pseudo-random code from a family of
quasi-orthogonal sequences. fy is the Doppler shift with respect to the nominal signal Radio Frequency (RF), frr,
and 79 and ¢o model the delay and phase shift introduced by the communication channel. 7(t) is a zero-mean
Additive White Gaussian Noise (AWGN). In the absence of multipath M(¢) is the dominating term and the reason
why y(t) follows a Gaussian distribution. Signal M(t) is the multipath term. In this article,we are considering a
single satellite in the model (1) since the proposed processing is also applied on a satellite-per-satellite basis.

After amplification, filtering, down-conversion and sampling at f, = %, the signal provided by the receiver
front-end is a baseband complex sequence:
y[n] = V2C d(nTs — 10)é(nTs — To)ej@”f“"T'*J”ﬁO) +npp[n] + Mpgn| (2)
zg[n)

where n is the time index, and square brackets are used to denote discrete time sequences. Notice that 8 =
(¢0,70, fo) T is a vector that gathers the parameters of the signal for the satellite of interest, namely its phase, delay,
and Doppler. The corresponding baseband waveform is then zg[n]. The subscript ‘BB’ is used to indicate filtered
signals down-converted to baseband. The symbol ~ indicates the impact of front-end filtering on the useful signal
component. npgln] is AWGN with independent and identically distributed (i.i.d.) real and imaginary parts, each
with variance o2, which together makes the total variance of the complex signal ngg[n] equal to 202. Commonly, o2
can be modeled as:

(72 = N()BRI (3)

where Bp, is the front-end one-sided bandwidth, and Ny is the Power Spectral Density (PSD) of the input noise,
n(t) in ().

Either in acquisition or tracking, the task of the receiver is to accurately estimate the parameters in 6. This is
typically accomplished through ML estimation (MLE), where it is typically assumed that the parameters in 6 are
piece-wise constant within the N samples of y = (y[0],...,y[N —1]) T and that the codes have ideal cross-correlation
properties so they can be processed independently at the receiver. It is known that the solution to such estimation
process results in the maximization of the correlation between the received signal and a locally generated code.
This correlation operation is encoded in the so-called Cross Ambiguity Function (CAF), which is nothing but the
correlation between y[n] and the spreading code of the i-th satellite, at a given delay/Doppler pair (in discrete-time):

N-1
Ci(t, fa) = % Z y[n] c;(nTs — 7) exp{—j2n fanTs} , (4)

n=0

Local replica

which can be expressed more compactly in vector notation after gathering N samples from the samples and the local
code as y,c; € C*N as

H
Ci(T, fd) = % . (5)

The CAF is crucial in the acquisition (and tracking) of the satellites’ signals. The MLE of 8 can be expressed in
terms of it as

(o.fo) = argmas {1c(r. fo)|*} ©)
Qo = ‘C(ﬁ),fo)‘ (7)
¢o = ZC(70, fo), (8)

where &g is the MLE for v/2C, the line-of-sight signal amplitude.
In the presence of a multipath signal, the CAF is distorted in a way that the MLE estimates of 6 are biased. The
baseband multipath signal, Mpg([n], is indeed a distorted version of transmitted GNSS signal is modeled as

Mpp[n] = Apzg[n — np] 9)

where Ay is the amplitude of transmitted signal after transmission loss and n, is the delay caused by multipath
propagation [5]. In standard GNSS signal processing, influence of multipath signal in normalized correlation result is
shown in Fig. 1, where we can observe how the correlation results are distorted, ultimately impacting the estimation
of LOS’ time-delay Tg.
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Figure 1: Normalized correlation result in the presence of a single multipath replica.

NEURAL NETWORK ARCHITECTURE

This section describes the architecture of the DNN used in this article. Deep learning involves training a model by
using a given dataset to the NN, that consists of a combination of neurons and layers. The neuron is nothing but
a mathematical function that computes weights for averaging incoming input, and then applies a predefined active
function. A collection of neurons forms a layer. The NN consists of an input layer, a output layer, and a number of
hidden layers. As shown in Fig. 2, a connection between neuron j in layer [ — 1 and neuron 4 in layer [ is given by

Layer | Layer I-1

Figure 2: General NN Architecture

éj, which represents the significance of the connection between layers, and a bias term is also applied

for output 2! to become [3]:

the weight w

oh=fbi+ Y what™) (10)

where f(-) is the activation function and D is the number of neurons in layer | — 1. Following (10), the output of
layer [ is:

a' = f(by+Wia'™!) = fi(xi-1) (11)
Thus, the entire NN can be expressed sequentially as:
y=fr(fir(-- fi(z))) (12)
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Figure 4: Architecture of the DNN model considered in this article.

where x is the input to NN and y denotes its output.

In this article, DNN is trained specifically to substitute correlation in tracking black as shown in Fig.3. Therefore,
the input of DNN is PRN code and GNSS signal, the output is a set of correlation values (for instance, a Prompt and
an arbitrary number of Early /Late samples). The main architecture of the proposed DNN for correlation is shown in
Fig. 4. In this DNN, the first convolutional layer is fixed with parameters based on PRN code to simulate standard
method for correlation. Then, the classical correlation result is send into MLP models for regression and classification.
Note that the classification block and regression block are training independently. In regression block, the output
is correlation results with no multipath affect, while the output of classification block is a binary label to classify
whether multipath occurs in Early-Late (E-L) spacing or not. To improve the NN performance, 61 correlators are
spreading from —2 chips to 2 chips, with 41 of them spread from —0.2 chips to 0.2 chips. With outputs of regression
and classification blocks, a weighted average is calculated to get the final output of the whole DNN model:

Yo = W1 X Y1 + W2 X Yz (13)

where y; is the classification correlation result, output of convolutional layer; ys is output of regression block, corre-
lation results with multipath affect removed; w; and ws are probabilities of estimated binary label by classification
block; y, is output containing 61 estimated correlation results, among which Early/Late/Prompt samples could be
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Figure 5: Noiseless Multipath Envelope with single multipath of Signal-to-Multipath Ratio (SMR)=5.2 dB.
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Figure 6: Noiseless Multipath Envelope with single multipath of SMR=3 dB.

SIMULATION RESULTS

In NN training, single multipath is generated with SMR as 3 dB, 5.2 dB and 0.97 dB, random relative delay between
GNSS signal and multipath varies from 0 to 6 chips, Doppler shift error is also initialized randomly from —1 kHz to
1 kHz. Global Positioning System (GPS) L1 signal is sampled at fs = 2 MHz, while CNOQ varies from 37 dB-Hz to
43 dB-Hz, and a special case C'/Ny = oo is considered in order to generate the so-called multipath error envelope.
The parameters of DNN in this simulation is shown in Table. 5. To test the performance of DNN, Early minus Late
Discriminator is applied to noiseless signal to acquire multipath envelope as shown in Fig.5, Fig.6 and Fig.7. In Fig.5,
SMR=5.2 dB, Early minus Late Discriminators with three different E-L spacing are applied to show the differenes
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Figure 7: Noiseless Multipath Envelope with single multipath of SMR=0.97 dB.
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Figure 8: Noisy Multipath Envelope with single multipath of SMR=5.2 dB.

between classical correlation method and NN-based correlation method, which is 1 chip, 0.2 chips and 0.1 chips. In
Fig.5, small disadvantage of NN-based method is shown around 0 chips relative delay, while NN-based method brings
a lower delay estimation error than classical one with all three E-L spacing, when multipath occurs. However, with
the decrease of E-L spacing, the advantage of NN-based method in estimation error also decreases. Besides, when
multipath goes beyond E-L spacing, NN-based method can still hold a similar performance as classical method. The
same trend can also be observed in Fig.6 and Fig.7, while the decreasing SMR causes a degrading performance in
NN-based method, which is obvious in Fig.7 with 0.1 chips as E-L spacing.

To further test NN-based method, noise is injected in GNSS signal with CN0=43 dB, and 50 Mante Carlo runs to
get noisy version of multipath envelope as shown in Fig.8, Fig.9 and Fig.10. In Fig.8, we can see a clear advantage of
NN-based method over classical method with E-L spacing as 0.5 chips, while NN-based methods with the other two
E-L spacing hold a similar level as classical methods. According to Fig.9 and Fig.10, increasing multipath amplitude
causes a clear degradation of NN-based method performance, while in Line-of-Sight (LOS) case (when multipath
goes beyond E-L spacing), NN-based methods perform similarly as classical method.
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Figure 9: Noisy Multipath Envelope with single multipath of SMR=3 dB.
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Figure 10: Noisy Multipath Envelope with single multipath of SMR=0.97 dB.

Additionally, MSE of delay estimation error by discriminator is shown as a functio of CNO in Fig. 11, Fig. 12 and
Fig. 13. In the three figures, we can find NN-based method holds lower MSE against classical method with E-L
spacing as 1 chip and 0.2 chips, while the two method with E-L spacing of 0.1 chips perform similarly in Fig. 11 and
Fig. 12. Note that classical method outperforms NN-based method in Fig. 13, while the difference is still small to
be acceptable.

Considering loss of efficiency in LOS case, Fig. 14 presents a comparison between NN-based method and classical
method with three different E-L spacing. In Fig. 14, the methods with three E-L spacing avoids loss of efficiency in
terms of MSE in high CNO, while small disadvantage of NN-based method shows when CNO varies from 35 dB to 37
dB, this can be exlained by the fact that DNN model is trained by dataset with CNO varying from 37 dB to 43 dB.
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CONCLUSIONS

This article studied the feasibility of a deep learning approach to enhance the correlation process in GNSS base-
band signal processing, potentially substituting classical correlation method with NN-based correlation methods.
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45

The objective of such scheme is to provide enhance robustness to the receiver in challenging environments where
physics-based models typically fail, for instance under multipath propagation, by training data-driven that can learn
the complex characteristics of the GNSS satellite-to-land channel [11]. It is observed that the investigated NN model
requires a multi-correlation scheme, thus involving an increased computational cost when compared to standard

10



Regression Block | Classification Block
Number of Layers 9 5
Active Function ReLu ReLu and Softmax
Initial Learning Rate (LR) le-4 le-4
Training Epochs 30 15
Training Dataset 2688000 2688000
Test Dataset 105000 105000
LR Optimization Method Adam Adam
Batch Size 1500 1500

Table 1: Parameters of DNN applied in simulation.

methods. The results in this article show an advantage of NN-based method in most cases, while several aspects re-
main under investigation such as the simulation against multiple multipath and improvement of NN-based correlation
method with narrow E-L spacing.
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