PHYSICAL REVIEW A 102, 052615 (2020)

Atom-light entanglement for precise field sensing in the optical domain
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Macroscopic arrays of cold atoms trapped in optical cavities can reach the strong atom-light collective
coupling regime thanks to the simultaneous interactions of the cavity mode with the atomic ensemble. In a
recent work [R. J. Lewis-Swan, D. Barberena, J. A. Muniz, J. R. K. Cline, D. Young, J. K. Thompson, and
A. M. Rey, Phys. Rev. Lett. 124, 193602 (2020)] we reported a protocol that takes advantage of the strong
and collective atom-light interactions in cavity QED systems for precise electric-field sensing in the optical
domain. We showed that it can provide between 10 and 20 dB of metrological gain over the standard quantum
limit in current cavity QED experiments operating with long-lived alkaline-earth atoms. Here, we give a more
in depth discussion of the protocol using both exact analytical calculations and numerical simulations, and
describe the precise conditions under which the predicted enhancement holds after thoroughly accounting for
both photon loss and spontaneous emission, natural decoherence mechanisms in current experiments. The
analysis presented here not only serves to benchmark the protocol and its utility in cavity QED arrays but
also sets the conditions required for its applicability in other experimental platforms such as arrays of trapped

ions.
DOI: 10.1103/PhysRevA.102.052615

I. INTRODUCTION

Quantum sensing is emerging as an area with great
promise, particularly in the context of leveraging quantum
effects for real-world technological advances. Towards this
end, much of the effort in this field has been directed to
demonstrations of sensing beyond the standard quantum limit
(SQL), which bounds the sensitivity of classical devices with
respect to measuring or inferring small perturbations. Efforts
to surpass the SQL by harnessing quantum effects such as
entanglement and nonclassical correlations are taking place in
a diverse range of platforms and are allowing for improved
phase estimation in state-of-the art interferometers. A pio-
neering example is the use of squeezed states of light [1] for
gravitational wave detection in the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory experiment [2—4], for
axionlike dark matter searches in microwave cavities [5], and
also a proof-of principle experiment to sense small mechan-
ical displacements in a trapped ion system [6] (in this case
using phonons instead of photons). Similarly, demonstrations
of nonclassical atom-light states, including Schrodinger cat
states, have also been demonstrated in microwave cavities
using Rydberg atoms [7], superconducting qubits [8], and
phononlike trapped ion analogs [9].

A crucial limit to any quantum-enhanced technology is
decoherence due to undesirable coupling to an environment.
Specifically in the context of quantum metrology, states which
posses sub-SQL sensitivity are intrinsically fragile to deco-
herence. In fact, there is a delicate tradeoff between enhanced
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metrological utility and increased susceptibility to decoher-
ence, which can quickly degrade any quantum advantage [10].
To ensure that coherent or even dissipative processes respon-
sible for the creation of the nonclassical state are much faster
than any undesirable decoherence rates, experiments using
light-matter interactions with single qubits have been forced
to operate in the strong-coupling regime [11-13]. Here, the
atom-light interaction strength 2g is larger than the decay rates
of the qubit, y, and resonator «.

Optical cavities traditionally do not fall into this paradigm,
and much of the recent focus in this platform has been on
the generation of entangled atomic states [14—18] with efforts
directed towards their use for enhanced optical frequency
standards using long-lived clock states [19—-22]. However, one
of the key benefits of optical cavity platforms is that they can
potentially host a very large number of atoms that coherently
interact with a single electromagnetic mode. This effectively
causes a collective enhancement of the interaction strength
and can lead to the realization of strong collective coupling
g\/N >k, Y.

In Ref. [23] we predicted that strong collective coupling in
an optical cavity can be used to prepare entangled atom-light
cat states for quantum-enhanced sensing of weak fields in the
optical domain. We showed that collective atom-light inter-
actions can provide between 10 and 20 dB of metrological
gain over the standard quantum limit in current cavity QED
experiments operating with long-lived alkaline-earth atoms.
Moreover, we demonstrated that by generating the entangle-
ment via an interaction between two different subsystems,
combined with a readout protocol based on time reversal
of the entangling dynamics, one can extract nearly optimal
sensitivity using only readily accessible observables such as
atomic inversion.
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FIG. 1. Wigner function of an analogous bosonic generalized
cat state |p) er:{ifN/z Cm, le™m"y with ,,, = xm, at various
evolution times . Sensitivity to displacements increases from panel
(a) to panel (c) as it relates to the smallest scale structure observed in
the Wigner function.

In this companion paper we elaborate on these results in
detail. We also present a more generic treatment of the dy-
namics that is applicable in a broader parameter regime and
which extends beyond the scope of the simpler perturbative
approaches used in Ref. [23]. In Sec. II we introduce the dis-
persive atom-light interaction Hamiltonian that is the basis of
our protocol and describe how to use it to generate metrologi-
cally useful states. Further, we outline the basic time-reversal
protocol that underpins our proposed experimental realization.
Then, in Sec. III we outline how to engineer the dispersive in-
teraction from the fundamental Tavis-Cummings Hamiltonian
that describes the natural atom-light coupling in an optical
cavity. Finally, in Sec. IV we present a detailed analysis of the
experimentally achievable sensitivity in the presence of cavity
decay, atomic spontaneous emission, and relevant technical
noise. We also discuss a possible generalization of the time-
reversal protocol to counteract these effects.

II. ATOM-LIGHT QUANTUM SENSOR

Our aim is to use atom-light interactions in an optical
cavity to generate states that are useful for quantum-enhanced
sensing of small coherent displacements of the cavity field.
Specifically, we want to dynamically generate resource states
which are capable of sensing small displacements beyond the
SQL [24,25]. For clarity, we reiterate that we are referring to
the SQL of displacements of a bosonic system, in contrast
to the SQL of phase shifts, which is the more typical use
in the literature. In this context, the SQL is defined with re-
spect to the sensitivity attainable using quasiclassical states, in
particular a bosonic coherent state. Intuitively, the sensitivity
achievable with a coherent state is bounded by its rms width
o in phase space (see Fig. 1), corresponding to the vacuum
noise [1]. Hence, the SQL is given by (§8)*> > 1/0? = 1/4,
where 8 is the precision to which a displacement B can be
estimated. Numerous investigations have demonstrated that
by introducing correlations and nonclassicality the quantum
projection noise of a bosonic state can be manipulated to
achieve precision beyond the SQL to the so-called Heisenberg
limit [26-30], which typically scales as (88)> ~ 1/i where 7
is the average particle number of the state. It is also useful
to compare these bounds on bosonic displacements with the
analogous metrological bounds on phase shifts ¢. For the
latter, the SQL scales like (8¢)% ~ 1 /it while the Heisenberg

limit possesses the improved scaling (8¢)> ~ 1/i*. In fact,
under certain conditions the bounds on phase shifts and dis-
placements can be related using the relation (88)> ~ (v/78¢)?
[31].

It has previously been shown within the context of, e.g., mi-
crowave cavities and circuit QED, that dispersively coupling
a single qubit to a bosonic field can be used to dynamically
prepare superposition states which are highly sensitive to
small coherent displacements [7,31]. Here, we extrapolate to
the case of many qubits and consider a dispersive atom-light
coupling of the form

H = xa'as,, (1)

where a (a') is the destruction (creation) operator of a sin-
gle cavity mode, S‘X,y.z =(1/2) Z]jyzl 6){; y,z are collective spin
operators defined as the sum over individual Pauli operators
6){ y,z acting on atom j, and y characterizes the strength of
the atom-light interaction. Note we set 7 = 1 throughout this
paper. Furthermore, we remark that this Hamiltonian is not
exclusive of atom-light systems and can arise in, e.g., trapped
ion setups, where the center of mass of the ions takes the place
of the cavity mode.

Entangled atom-light states can readily be generated by
evolution under Eq. (1) starting from the initial product state:

Vo) = IN/2,) ® |at) 2

where |[N/2,) = fo/ ifzv /2 Cm, |m;) is a spin coherent state of
N spin-1/2s fully polarized along x, |m;) is a spin basis state
such that S, [m,) = m, |m,), and |) is a bosonic coherent state
with amplitude o € R. Since H is invariant under & — ae™®,
the choice o € R entails no loss of generality and in fact
defines the phase reference from which all other phases are
measured.

The dispersive interaction generates rotations of the initial
bosonic state at a rate set by the z spin projection of the initial
atomic state [23]:

W) = m, Ime) @ lae™ "), 3)

where w,,, = xm;.

The generated superposition state, Eq. (3), can be identified
as a generalized cat state [26,31,32]. Such states are appre-
ciated to have great metrological potential [26,33], because
they exhibit fine structure in phase space which makes them
quickly distinguishable upon perturbation. In particular, while
the spin degree of freedom is essential to the measurement
protocol outlined below, much of the metrological sensitivity
of the state |i;) can be understood by considering an anal-
ogous purely bosonic state |yp) ZZ/ ifzv/z cmzlae‘i‘“m:’).
The state |1{5) is meant to serve as a toy model of the full
state |v;), with the added benefit that visualization is much
simpler for |yp), as will be discussed in the next paragraph.
For clarity, we remark that |yg) is not obtained from |y;) by
tracing over the spin degrees of freedom. Here, we choose
to weight the superposition of bosonic coherent states by the
same coefficients c¢,, simply to make the analogy closer.

The structure of the state |y5) and corresponding metro-
logical utility can be best visualized using the associated
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Wigner function [34,35]:

2 2 . px
WB@):;ez'“ f d*B (—Blyp) (Y| B)e 2 FE—F O (4)

defined in a bosonic phase space with respect to the coherent-
state basis. In Fig. 1 we plot Wg(¢) at three different times ¢
for a simple example with « =4 and N = 10. At r = 0O the
Wigner function is that of the initial coherent state, which is
a Gaussian centered at { = « and with rms width o = 1/2
corresponding to the vacuum noise. For relatively short times,
t<1/x VN, we expect many of the coherent states in the
superposition of |yp) to have significant overlap. This is il-
lustrated for an example ¢ = 0.25(x N )~1, for which we see
the Wigner function appears to be composed of concentric
crescents. These crescents highlight that the Wigner function
has oscillatory structure at length scales smaller than the
original vacuum noise. At longer times, the coherent states
begin to distinctly disperse and even more complex fine struc-
ture emerges in phase space as shown for the example at
t = O.55(X\/IV )~!. The sub-SQL sensitivity of these latter
two states is a direct result of the fine structure appearing on
scales smaller than typical vacuum noise. Specifically, the fine
structure means that the application of a small displacement,
at a scale below the SQL, can still make the final perturbed
state rapidly orthogonal to the original [26].

A quantitative assessment of the metrological utility of the
spin boson cat state |,) for any perturbation is given by the
Cramer-Rao bound [24,36]. In particular, the sensitivity 68
to a small coherent displacement 8 is bounded by the quan-
tum Fisher information Fy (QFI) as (§8)* > (Fop)~'. For a
pure state, F is proportional to the quantum variance of the
operator that generates the perturbation [37], evaluated with
respect to the aforementioned state. For the specific case of
displacements along the real axis in phase space generated by
the displacement operator D = ¢'#* with ¥ = i(a" — &), then
Fo = 4{(AY)?) where ((AO)?) = (0% — (0)2. The choice
of ¥ is motivated because Fig. 1(b) shows that the largest
variance (and hence largest QFI) is at 90° with respect to the
initial displacement, at least for short times.

The QFI of the state |;), Eq. (3), can be evaluated exactly.
For simplicity, this is most easily accomplished by consider-
ing the equivalent evolution generating |¥,) in the Heisenberg
picture. Specifically, we compute the time-evolved annihila-
tion operator:

a(t) = e™a0)e ™M = a(0)eS. 5)

The relevant moments for the QFI are

(a(t)) = a[cos (X—t>]N ~ ae_NXTZIZ,

2
@@y = az[cos(xt)]N ~ate s, ©
(@' a) = o?,
which leads to the final result:
Fo =4+ 8a[1 — cos(x1)V] ~ 4+ 8a2(1 _ e ) 7

For short times (x+/N¢ < 1), the QFI simplifies to
Fo ~ 4+ 4Ny a’t?, 8)

When x+/Nt > 1, the QFI generically saturates to
sat(Fq) ~ 4 + 8a?, 9

apart from rare revivals at xt ~ wn for n € Z where it returns
to the SQL Fy = 4. A special exception to this is when both
n and N are odd, where at xt ~ nm for n € Z the QFI Fy
further increases to 4 + 16a.

While the QFI sets a lower bound on 88, in practice the at-
tainable sensitivity is dictated by the available measurements
which can be implemented to infer 8. In particular, a tradeoff
in the use of powerful entangled states such as cat states is that
they typically require sophisticated measurements to saturate
the Cramer-Rao bound. This can include parity or fidelity
measurements [38,39], and construction of full distribution
functions of observables [40], all of which require single-
particle resolution.

Reflective of this, we find that in our case measurement
of simple observables with respect to the perturbed state
[Vg) = D(B) |¥:), where B € R, does not capture the effects
of the displacement. To be concrete, measurement of the cav-
ity quadrature X = a4 a' or ¥ = i(a’ — &) does not provide
sub-SQL sensitivity (see Appendix A), while spin observables
such as S’X,y.z are completely insensitive as the perturbation
commutes with them.

Recently, it has been recognized that a powerful approach
to overcome this technical obstacle is to use time reversal of
the entangling dynamics after application of the perturbation
[7,16,29,39,41-45] (also known as an interaction-based read-
out scheme [46—49]). Typically, if the initial prepared state is
Gaussian then reversal of the nonlinear dynamics may allow
the perturbation to be inferred efficiently in simple observ-
ables, such as the cavity quadratures or spin projections S'x,y, 2

In light of this, we propose the following sensing protocol,
illustrated in Fig. 2: (i) prepare the cavity in a coherent state
of real amplitude « and all pseudospins polarized along %, (ii)
evolve with H [Eq. (1)] for time t, (iii) coherently displace
the cavity by small 8, (iv) evolve with —H for time 7, and (v)
measure an observable M (at final time 27). Note that we use
7 instead of r whenever we refer to the time-reversal protocol.
The state at the end of all three steps is then described by

o) = 1¥7) = 7 [yg) = DB [Yp) . (10)

We will choose to measure either spin projection M = §,
or S’y. We can motivate this choice, in particular compared
to, e.g., the optical quadrature X or ¥, by considering the
dynamics of the protocol within a semiclassical approxima-
tion. The first evolution describes a rotation of the collective
pseudospin Bloch vector about 2 by an angle ¢; ~ x|a|’z,
induced by the large coherent bosonic amplitude. Reversal
of the dynamics, after the small displacement of the cavity
field, rotates the Bloch vector in the opposing direction by
¢ ~ —x|ae 57 4 B|?r about . Here, the additional phase
added to the o term accounts for dynamics of the cavity field
during the first evolution period, while S, is a semiclassical
fluctuation ~ /N of the (conserved) inversion due to quan-
tum projection noise. Collectively, these two rotations add up
to yield a residual rotation of the Bloch vector from its initial
configuration, by ¢ir = ¢1 + ¢2 ~ —2xaBrcos(xS,7) about
Z. The rotation angle scales with the coherent amplitude «,
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FIG. 2. Preparation of the generalized cat state |y38) and inter-
ferometric protocol. (i) The cavity is injected with a coherent field
o and the collective spin is fully polarized along X (blue circles).
(ii) Fluctuations in the spin projection combined with the dispersive
interaction drive a rotation of the initial bosonic coherent state into
a superposition at angles 6,, ~ xm,t. Conversely, the large cavity
occupation rotates the collective Bloch vector by ¢; ~ x|a|*z about
Z. (iii) The cavity field is coherently displaced by g (red circles). The
spin degree of freedom is unaffected. (iv) By reversing the sign of
the dispersive interaction the initial rotations are undone. If 8 # 0
the final cavity state (red circles) does not return to the original
coherent state. Similarly, the collective spin rotates back under the
evolution by ¢ ~ —x |ae™*5%7 4 B|r about £, leading to an overall
rotation ¢y = @ + ¢ ~ —2xafrcos(xS,7v) relative to the initial
state along X.

which thus amplifies the effect of the perturbation . The re-
sulting collective spin precession can be tracked by measuring
the mean spin projection S, or Sy. The correction o cos(xS,7)
will lead to a slow decay in the observable signal as the inter-
action period t increases, and is a result of residual atom-light
entanglement at the end of the protocol.

For comparison, following the same protocol the opti-
cal quadratures evolve as X (2t) ~ X (0) + 28cos(xS,7) and
Y (27t) =Y (0), respectively. Clearly, the latter is completely
insensitive to the perturbation while the former does not dis-
play any enhancement that scales with the initial coherent
displacement «. Indeed, as we later shown in Eq. (16), we find
measuring the X quadrature yields a sensitivity even worse
than the SQL (88)> = 1/4, as the signal washes out due to
residual atom-light entanglement [care of the term cos(xS.t)
which becomes an exponential decay after formally treating
the quantum noise]. This contrast to the case when M = S'y is
measured as illustrated in Fig. 3(a).

Our discussion is made rigorous by exactly computing the
achievable sensitivity for each of these observables. Specif-
ically, the sensitivity 88 achievable by measuring M is
operationally defined as

2 _ ((AM)?)
CP = ey (b

10

Cramer-Rao bound

mm Short time approx.

m 20

=] —

N 2 30
g —
10 g%
. Z10

(@)

0 0.1 0.2 0.3
XT

FIG. 3. (a) Dependence of the measurement observable on S for
fixed xt = 0.1: (8,) (27) (red, oscillatory) and (X) (27) (blue, lin-
ear). Shaded regions indicate rms fluctuations due to quantum noise,

ie., ‘/([ASV(ZI)]Z) and +/([AX (27)]?). The period of oscillations

in (S‘y) (27) is enhanced by the amplitude «, allowing a more pre-
cise inference of 8. (b) Comparison of attainable metrological gain
relative to the SQL as a function of interaction time 7 for N = 51
and o = 15. The short-time approximation (upper line, solid blue)
is given by Eq. (14), while the exact result (lower solid red line) is
given by Eq. (13).

We can explicitly evaluate the sensitivity with respect to M =
S'y by computing the evolution in the Heisenberg picture. The
relevant expectation values required to compute the sensitivity
given by Eq. (11) are shown in Appendix A, Eq. (A18). Here
we show the sensitivity for M = S, as g — 0. For this we
need the variance ((AS,)?) to order 8° and the signal (3,) to
order B:

(S’y) = 2uBN sin(Xr/Z)[cos ()(2_77)] - + 0(p?),
A N
(AS))") = 7 + 0(). (12)
The sensitivity is then given by
((AS))?) 1

2 _ _
(8p)" = ‘wz "~ 160N ([sin(xt/2) cos(x T /2)N-112’
dp

eNX212/4
"~ 16e2N[sin(x/2)12°
where the approximation of the cosine as an exponential in
the second line is valid for x7 <« 1. In fact, Eq. (13) is valid
for any spin projection on the equatorial plane of the Bloch
sphere, S, = S, cos ¢ + S, sin ¢. However, we highlight that
in practice ¢ = 0, corresponding to S, should be avoided

(13)
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as at the typical working point of the interferometer (8 =~ 0)
both the slope of the expectation value and variance vanish
at different rates, so the sensitivity would be dominated by
technical noise in any experimental realization. A further dis-
cussion of this experimental point is made in Sec. IV C.

For short times (x /N7 < 1), we attain a sensitivity

(BB ~ (14)

ANa? 212’
which is close to the bound set by the Fisher information,
68)? > .7-'51 ~ (4 +4Na?x2t*)~!. The divergence as T —
0 reflects the limitations imposed on the sensitivity by spin
projection noise ((AS’},)Z) o N/4. Specifically, the atoms and
light must interact for a time sufficiently long such that the
small displacement of the cavity field can be mapped into a
resolvable rotation of the collective spin. More rigorously, this
requires that the perturbation of the collective spin along S,
satisfies 65, = (N/2)¢or = xadBt = /N/4 where the right-
hand side of the inequality is the characteristic projection
noise of a coherent spin state. In fact, satisfying this inequality
can be used to qualitatively derive Eq. (14).

We show this result for the sensitivity in Fig. 3, and
compare it to the Cramer-Rao bound, given by the Fisher
information of Eq. (7). For the sake of clarity, throughout this
paper we plot the attainable sensitivity as the metrological
gain with respect to the SQL:

S (@ = £;

S § at .
D(ﬁ)[(S+(-[2))1n] = (§Hym @ +h)a+h).

15)

To complete our previous discussion comparing the useful-

ness of the cavity quadratures as opposed to spin observables,
the sensitivity attainable with M = X is

5 - <(A)?)2> _ 1 _ eNX2T2/4
(6p)" = |%>|2 = Acos(xzy - 4 0 (19

which is never below the SQL.

III. ENGINEERING THE DISPERSIVE INTERACTION

Our proposed protocol and discussion of the previous sec-
tion hinge on the ability to engineer Eq. (1). In this section,
we outline two experimentally feasible methods to realize this
interaction. While our focus is on implementation in an optical
cavity, we point out that the following is readily applicable
to other platforms with spin-boson interactions, including
trapped ion arrays [50].

We begin by assuming the underlying microscopic model
describing the coupling of a single bosonic cavity mode to a
collection of N two-level systems (atomic transitions) can be
written as a Tavis-Cummings Hamiltonian:

Hrc =g@'8™ + a8t — Aa'a. (17)

Here, A, is the detuning of the atomic transition from the
cavity mode frequency and 2g is the single-photon Rabi fre-
quency.

A. Dispersive protocol

Our first proposed scheme assumes that the cavity de-
tuning is large with respect to other relevant scales in the

Hamiltonian, specifically |A.| > lglv/N, and is a collective
generalization of the strong dispersive limit in single qubit
microwave cavity experiments [11,12,51,52]. We shift Hrc

into the interaction picture generated by Hy = —A.a'a:
Hy = g(8tae™" +a'Se7'A). (18)

Using the approach of Ref. [53] we can compute an effective
time-averaged Hamiltonian, which in the original frame is

Hp=—-Ad'a+ iﬁt@- + Ea*aﬁz. (19)
Ac Ac

For this approximation to be valid, the timescale induced
by the first term of Hp should be greater than the timescale
induced by the corrections (second and third terms). Crudely,
the second term can potentially generate a mean-field rotation
of the spins at a rate g2N/A,, while the third term rotates
the spins at a rate g”|a|?/A, (for an initial coherent state of
amplitude o) or alternatively rotates the photon distribution in
phase space at a rate gZN/A,. All these timescales should be
less than A.. Therefore, we require both |A.| > | g|«/ﬁ and

|Acl > |gel.

B. Resonant protocol

The second scheme we consider conversely assumes that
the cavity is tuned to be resonant with the atomic transition.
Though not immediately obvious, injecting a large coherent
field leads to a slightly modified version of Eq. (1), where
the cavity photon number &'a couples to the spin projection
along x, S,, instead of along z. While the naive expectation
is that a large classical field should produce Rabi flopping
of the atoms, we demonstrate in this section that the dy-
namics should be augmented by a dispersive interaction that
arises due to quantum fluctuations. This scheme was presented
briefly in Ref. [23], but we make the arguments justifying its
validity more rigorously here.

Large coherent cavity fields |«) have well-defined phases,
with a phase spread §¢ ~ 1/|a|. Conversely, they have large
photon number fluctuations §n ~ |«|. This suggests that, in
the presence of such a field, the entangling atom-light dynam-
ics will initially be driven by number fluctuations. To account
for them more explicitly, we introduce here the number-phase
representation of the bosonic operators [54]

(20)

where the last equality is a consequence of the general rela-
tion e f(1) = f(# + 1)e® for any function f. Substitution of
these identities into Hyc with A, = 0 yields

A = g8 Va + He). 1)

Our previous discussion about phase fluctuations would im-
ply that we can replace the phase operator by a classical
number, at least for short times. This would be correct, but
the Tavis-Cummings model is sufficiently simple that we do
not need to make this approximation. Instead, we notice that
the combination $*e™® has the same matrix elements as the
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operator $* in the sense that
(n,me 8% In,ml) = (n,me| 8% In+ 1Lml),  (22)

where n is the photon occupation number and |m;) is an
eigenstate of S, with eigenvalue m.. It would therefore prove
useful to find a transformation that implements this mapping.
This can be achieved using the operator T = ¢S:+N/2) 5o
that

S+ ei(ﬁ(§:+N/2) _ ei&(ﬁzﬂv/zq )§t (23)

One needs to be cautious about these relations because 7" is
only well defined the way we have written it when acting on
states with n > N. In fact any state |n, m;) with n < m, +
N/2 would transform into a state with a negative number of
bosonic excitations. The standard way out of this problem is to
define the action of 7" in such states to be zero. The downside
is that 7' defined this way is not a unitary operator, in the sense
that 777 # 1. However, it remains true that 77 = 1 so we
can still perform the transformation # — T 7HT by inserting
TT% in between operators and states in any expression. Fur-
thermore, we will assume further on that we are working with
states that have support in photon numbers much greater than
N so we will not need to care about the precise definition of 7
close to n = N. Under these approximations, then

PN s N
T’ﬁT:ﬁ—Sz—E, (24)
and, consequently,
At ot N
T'HT =g S E—SZ+H.C. . (25)

As we have assumed that the cavity mode initially has a
large mean occupation (7)) = 7 > N with small fluctuations
V{(AR)?) « 71, we can replace A — 7 + 87 and keep only the
first order in 671. Then the Hamiltonian becomes

i an s -8,
TTAT ~ [[S+(1+T>+H.C.:|

N+1> gh .
S+ ==5;
Vi

g aa  aa
— ——=(5:5; + 5:5). (26)
PN
The first term and mean-field contribution o |«|? of the sec-
ond term describe Rabi flopping with frequency 2g+/7 (with a
small correction), while fluctuations in photon number gen-
erate evolution of the spins through the second term on a

g—V«\/?) which for the case of an initial coherent
state is equal to g and independent of 7. The third term may
appear bigger than the second because of the presence of two
collective spin operators. However, it is highly nonresonant in
the frame of the Rabi flopping and hence it generates evolution
% = gN?/i3/2, which can
be made as small as desired by increasing the amplitude of
the initial coherent state. On the other hand, the second term
commutes with the Rabi flopping so we can write the relevant

= gx/ﬁ(

timescale

of the spins with a timescale

Hamiltonian as

S, 27

The transformation defined by 7" also acts on other oper-
ators and states, and so to be rigorous we calculate its action
on them and show that these corrections can be made small. In
the case relevant for this paper and consistent with the notation
of Eq. (27), the system starts with all the atoms in the ground
state of the transition. Then, 77 |1y) = |v). Furthermore,

o[

+ 8.
n+1
so the relative corrections to bosonic operators are of the order

of N/n, which is already assumed to be small. Spin operators
also transform:

Ttal = ,[1 - “a=all+O0W/n)],  (28)

78,7 = 3.,
P15 = §reid, (29)

In this case, the validity of the approximation relies on the
phase spread of the state at the end of the protocol. Consid-
ering ~ :I:«/N fluctuations in S‘x, Eq. (27) indicates that the
initially coherent state will grow to a size ~ +/Ngt in phase
space at a short time ¢. This distribution subtends a phase
spread with respect to = 0 given by

~/Ngt
5p = Y& (30)
o
Hence, we can expect that
(§7e7) ~ (§7) + OW/Ngt /o), 31)

and the corrections can be made smaller by increasing «.

Lastly, we note that 7 is coupled to S, instead of S.. Since
this amounts to a rotation of our basis about S‘_\,, none of
the previous results for the Fisher information and sensitivity
are altered, as long as we change the initial state to |i) =
|(—N/2),) |a) and perform measurements of a spin projection
in the yz plane. In that case the attained sensitivity is exactly
the one discussed above.

To further support the validity of our approximations, we
compare the results of numerical simulations using (i) the
exact Tavis-Cummings Hamiltonian and (ii) the approxima-
tion of Eq. (27). The results are shown in Fig. 4. We also
show (see Fig. 5) that the Fisher information relevant for our
protocol is the same whether it is calculated with the exact
Tavis-Cummings Hamiltonian or with Eq. (27).

Our estimates for the errors introduced by approximating
Hrc with Eq. (27), further complemented by Figs. 4 and 5,
show that the approximation is justified for the timescales
we are interested in. Given that we have shown two different
ways of obtaining Eq. (1), it is worthwhile to point out their
differences. Most important of all, the coupling constant x
takes a different form in both protocols:

2¢ g
XDispersive — A_(;’ XResonant = ;» (32)
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-1.0=
0 1 2 3 4 5

gt

FIG. 4. Evolution of (S.) predicted by the complete Tavis-
Cummings model (solid blue), Eq. (17), for the initial state |N/2,) |o)
with N = 40 and o = 40. The decay envelope of the oscillations is
compared to that predicted by the effective dispersive interaction
Eq. (27) (dashed black). In the inset we show that the frequency
of Rabi oscillations is also captured correctly when including the
small correction in the first line of Eq. (27) (red dots). Though
not noticeable, the discrepancy between the exact evolution and the
approximation is about 4%, which is consistent with N/a?> = 0.025.

and generically

XDispersive _ 2g0 <1, (33)
XResonant A

since ga/A < 1 is one of the necessary conditions for the
dispersive protocol to be valid. Hence, the resonant protocol
is faster, which is helpful against dissipation as we will show
in the next section. On the other hand, if occupation of the
bosonic mode is restricted to be small by other technical
reasons (as may happen in other platforms), then it might
only be possible to engineer the dispersive protocol. Another
difference is that the spin projections to which photon number
fluctuations couple determine what initial spin states are use-
ful. In the dispersive protocol, coupled to S., this means that it
is better to start with a state pointing in the xy plane, whereas

- wm -
30 -
as) g
= ’
20
% V4 1/Fq
= / = = Approximation
= 10 ]
]
ol
0O 2 4 6 8 10 12 14

gt

FIG. 5. Cramer-Rao bound, 1/F,, on metrological gain with
respect to the SQL, independently calculated using the Tavis-
Cummings model (solid red) and effective dispersive interaction
Eq. (27) (dashed black). Calculations are for the initial state
IN/2,) |a) with N = 40 and @ = 40.

for the resonant protocol, coupled to S, states pointing in the
vz plane are to be preferred.

Finally, note that Ygresonant = &/ depends on « in such a
way as to cancel all the o dependence of Eq. (14). For short
times, the only effect of increasing « is then to guarantee
that the approximations leading to Eq. (27) are valid. This
feature, namely, o independence of the sensitivity for short
times, will also hold for the resonant protocol in the presence
of dissipation, as will be shown in a later section.

IV. EFFECTS OF DISSIPATION

As discussed in the introduction, dissipation and deco-
herence are major obstacles that must be overcome in any
realistic implementation of a quantum technology. In partic-
ular, photons leaked through the mirrors of optical cavities
are an intrinsic source of decoherence, with photon loss rates
typically much faster than the single-photon Rabi frequency.
Another important source of decoherence is spontaneous
emission of the atoms, which sets a characteristic time scale
within which the atomic coherent dynamics must occur to
be useful. In the following we will address each of these
sources of intrinsic decoherence separately and use analytic
calculations to show that they do not fundamentally limit
the attainable sensitivity for reasonable parameter regimes. A
combined analytic treatment of both is not possible, and it is
also computationally difficult for relevant experiment parame-
ters, but we will argue that cavity decay is the dominant decay
process for our protocol.

A. Cavity decay

In the presence of photon loss, the evolution of the system
is given by a master equation with Hamiltonian H = x§.a'a
and jump operator /ka:

p = —il[xS.a'a, p +K<apa — —) =L,p. (34)
We remark again that the results of this section are valid for

both the dispersive and resonant protocols as long as the initial
states and final measurements are chosen appropriately.

1. Fisher information

We begin by first seeking to understand how photon decay
destroys useful entanglement in the atom-light system, which
can be characterized by the Fisher information. Before launch-
ing into the complex calculation for the complete model, it is
useful to consider a toy model of a simpler bosonic cat state
and examine how coherences and entanglement lead to cat
death [55].

For our preliminary example, we define the initial cat state

_ 1 [flan) +a2)
|¢cat>—N<—ﬁ ) (33)

where we take o # o and N is a normalization factor ac-
counting for the nonorthogonality of ;) and |«;). We subject
the cat state to evolution described by only the dissipative
terms in Eq. (34). Rewriting the initially pure state as a density
matrix, p = |Wear){V¥ecatl, the time evolution of the relevant

as
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matrix elements is given by

i) (o] = loie™/?) (e 1| = |o!) o

3

lar) (2] — ¢ laje™ "2 (aae™ /2| (36)

= ¢ [ (]

where we define o} = aje” 7 fori=1,2and
2 2
¢; = exp [M((z“ -1 —aje5(1 — e'“)]

Kt
A exXp [—?(|a1|2 + loa|* — 20610@)], 37

for which the approximation holds for k¢t < 1. For a mixed
state and with respect to the generator ¥ = —i(a — a'), the
Fisher information is defined as [24]

x)z N
FQ—2Z v MACTS (38)

where the {|a)} are eigenstates of the time evolved density
matrix o, and {A,} are their corresponding eigenvalues. Given
that the cat state only has support in the subspace spanned
by |o}) and |a), which we denote by I, we can simplify the
Fisher information (see Appendix F) to

)L - )\b)z O 2
Fo=2 Z (al ¥ |b) |
abel hat Ay
+ATI[BYTY pl — ATC[PY TR Y ], (39)

where the P; are projectors into /. For large enough |or; — a3 |?
and «t < 1, |o}) and |&f) are almost orthogonal, so we can
consider them to be a basis of /. In this basis we define
i = lod) (o] — |ob) (@] and D = o) {ech|, which allows us
to express p and X as follows:

| =
)

i I
PY'YP ~ [—e ™ (o) — af)* + 1]%

A

—kt %2 I-
+[—e (o —a3)” + 1] (40)
From this representation, the Fisher information of the dying
cat state is calculated to be

Fo ~ 4+ 4lm(y — ap)Pe e el 4

In the absence of dissipation, a large separation in phase space
o« o] — oy along the imaginary axis is desirable and leads to a
large Fisher information. As has been explained previously in
this paper and discussed elsewhere [26,31], this is because a
large separation leads to fine structure in phase space which
increases the sensitivity of the state to small perturbations.
However, for finite « this fine structure is also destroyed very

rapidly, illustrated here by the exponential decay of the Fisher
information with separation o erlo—aalt

The example of the bosonic cat state is useful as it can
provide powerful intuition into the fragility of the more com-
plex spin-boson cat state [Eq. (3)]. In particular, it allows us
to make a heuristic prediction for the expected scaling of the
Fisher information in the presence of photon decay.

Our toy model consists of approximating the generalized
spin-boson cat state of Eq. (3) by a simpler superposition in-
volving only the characteristic spin fluctuations m, ~ ++/N:

|‘(pc(1t> - %['(\/ﬁ)z) ® |aeiiX\/Nt>

F1(=VN)) ® lae VN, (42)

The bosonic components of this toy spin-boson cat state are
separated by a characteristic distance ~ ya+/N¢ which dy-
namically increases. Substituting oy — oy — 2i on«/ﬁt into
Eq. (41) and optimization with respect to ¢ yields a predicted
scaling

2N 2\ 1/3
X “) (43)

o (22

for the Fisher information.

This apparently simplistic analysis is borne out by more
intensive calculations. In particular, we now outline a detailed
analysis of the Fisher information for the full spin-boson
generalized cat state, dynamically generated by the dispersive
interaction, Eq. (1), and subject to photon loss at rate «.

We write the density matrix corresponding to the initial
pure state, Eq. (2), as

po = (Z Cm.C m) <nz|) ® |a) (ol . (44)

After evolution for a time T under both the coherent and dissi-
pative dynamics, described by Eq. (34), the density matrix is
given by (see Appendix B for more details)

b= o~ (i)tspin ® |o(e_m/2) <ae—Kl/2| )eiﬁz, (45)

K

where
PP =Y emep e Imy) ()

mg,n;

2

fz,t) = =
. —

(1 _ e—l(H-i)(Zt) _ (XZ(] _ ekl)‘ (46)

The Fisher information of this state is again obtained via
Eq. (39). The structure of p, allows one to reexpress Fp in
terms of spin operators alone (see Appendix C) and we thus
obtain

()\r - )Ls )2

Ols)|?, 47
T [(r| Ols) | (47)

Fo=4+ 202 Z

where {|r)} are now eigenstates of p™"

corresponding eigenvalues, and

0 = —i(e "5 —

only, {A,} are their

xSy, (48)

In the case that the initial collective spin is large, N > 1,
and is prepared in a coherent spin state polarized along the x
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FIG. 6. (a) Evolution of QFI with interaction time. Numerical evaluation of F, using Eq. (47) (dashed black) is compared to approximate
analytic expressions Eq. (49) (lower solid, blue) and Eq. (50) (upper solid, red) for N = 1000, « = 100+/N, and xa~/N/k =73 > 1.
(b) Optimal QFI as a function of xa~/N/« for N = 1000 and @ = 100+/N. We compare the numerical optimization of Eq. (47) (dashed
black) to the approximate analytic expression Eq. (51) (solid red). The gray horizontal line indicates the optimal QFI for ¥ = 0, which is
attained for very large values of ya+/N/«. The vertical lines mark the region delimited by Eq. (52), where our results for (Fo)opt are expected

to work.

direction, we can use a Gaussian approximation for the expan-
Hlvz

sion coefficients, ¢,,, o< e~ ¥ . For X«/ﬁ <L K, X\/ﬁt < 1we

also have that f(z, 1) ~ ia(X5 — X0 )7 XOCrE iy

these approximations we are then able to evaluate Eq. (47)

analytically (see Appendix C for more details):

4X2N0l2t2671ct
14 ZEEN[] — et (1 4kt 4 £2)]

K2

Fo=4+ . (49)

When «t < 1, Fp becomes

Fo=4+ (50)

Nylrealsd ’
| 4 Mcer?

from which the optimal time and JF are

6 1/3
toot = | ——— N
o <x2a2KN>

4X2012N 173
32

X2a2N>1/3

(]:Q)opt = 4+4<

(S

%4+4.4< >
K

This result is consistent with the toy model argument up to
prefactors. Our results for the optimal Fisher information are
valid for

K
-< VN < ka?, (52)

where the left-hand inequality comes from «foy < 1 and
the right-hand one comes from x\/ﬁ topt < 1. If the left in-
equality is not satisfied, then there is no appreciable Fisher
information because dissipation is too strong. If the right
inequality is not satisfied then Eq. (51) is no longer valid but
for contrary reasons: (Fg)op can saturate the value of the ideal
case, (Fo)opt = 4 + 8a.

We benchmark our analytic calculations by comparison
to a full numerical evaluation of Eq. (47), shown in Fig. 6.
We choose N = 1000, « = 100+/N, and ya~/N/k = 73. As
implied from Eq. (49), this ratio controls the time develop-
ment of Fy (in units of «t¢). Since it is larger than 1 there

should be metrological enhancement, i.e., o > 4. Such a
ratio can be experimentally realized, for example, using the
parameters in Refs. [19,56] and applying the resonant interac-
tion described in Sec. I B: xo /2w = g/2n = 11 kHz, N =
10%, and « /27 = 150 kHz. We also compare the optimal Fp
obtained through our analytic expressions against numerical
simulations for various values of ya~/N/k and find that the
agreement is excellent in the region where our approximation
holds, given by Eq. (52).

2. Achievable sensitivity with collective spin observables

The effects of photon loss on the time-reversal protocol and
the achievable sensitivity (§8)* with respect to measurements
of collective spin observables can also be analytically evalu-
ated. Specifically, we explicitly calculate the time evolution of
relevant operators and evaluate expectations values of collec-
tive observables at the end of the time-reversal protocol.

In the case of nonzero cavity decay, the initial evolution
is implemented by L, , defined in Eq. (34), acting during a
time 7;, and the reversed evolution is implemented by £_,.
For generality, we assume the second evolution takes time 1,
which is not necessarily identical to t;. This latter assumption
is motivated by the naive expectation that as photons are lost
from the cavity the occupation of the cavity field driving the
precession of the collective spin is reduced. This will destroy
the symmetry of the time-reversal protocol, and thus in our
calculation we consider whether choosing 7, > 7, may offset
this issue and lead to improvements in the achievable sensitiv-
ity.

For simplicity, our calculations are carried out in the
Heisenberg picture, for which we have to use the Hilbert-
Schmidt adjoints of £, acting in reverse order on the operators
of interest. To obtain the sensitivity, we need to calculate the
evolution of spin operators and their variances. In particular,
we need the evolution of $*, (§*)?, and §t8~ since they
are enough to construct the sensitivity of any spin measure-
ment in the xy plane. The calculations are involved and we
quote only the final result (the full derivation can be found in
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Appendix D):
(SHY"(11, 1))
= Tr{po[($T)" (11, »)1}
= expla’ (e, me ™ 7 ) + 0w BHT(53)

where (($)"(t;, 1)) indicates the expectation value of §” at
the end of the protocol and

ixm cr—iyme
om — ——— (e -1 ’
e K+ zxm( )
T = Tr{(§H)" expl2ns, marfe 2+
x cos(xnS. +mxi /DA™ (54)

Some general properties of the expectation values can be
understood by looking at the exponential prefactor in Eq. (53):

exple® (e ™ 4t )+ 0Bl (55)

Setting ) = 1, = t for simplicity and expanding the argu-
ment of the exponential in Eq. (55) for kt < 1 and xt < 1
we obtain
2,2,..3
—iK()l2XI’l‘C2 — %. (56)
The first term of Eq. (56) describes a mismatched overall
rotation between the first and last evolution steps, as we
foreshadowed. Specifically, the first evolution of the protocol
generates a rotation of the spins about Z through an angle
of ¢ ~ ya’t. In the second evolution period the original
coherent state is damped due to photon loss and so the rotation
of the spin about 2 is reduced, ¢, ~ —a?e™*7 xr. Combining
these, we then find an overall residual rotation of the spin at
the end of the protocol, ¢y ~ xa2kt? forkt « 1. In princi-
ple, this rotation can be corrected by a judicious choice of the
measured projection S’w and so does not affect the sensitivity.
On the other hand, the second term of Eq. (56) arises due to
contrast decay of the collective spin induced by decoherence
and does modify the sensitivity in an irreversible manner.
From Eq. (53) the relevant expectation values can be cal-
culated and they are shown in Appendix D, Eq. (D20). They
reduce to Eq. (A18) when « = 0. With these results we can
calculate the sensitivity of a measurement of S, in the limit

xVNt < 1, x/Nty < 1:

1+ 4)(21)12/7[1].{2) | 4)(2a2f2(rl,r2)
e L — e K
2
8p) = ( + )

8N 8

cr 122 fan)
ete «2

X )
X2a2(e71(1’2 _ l)/K2

(57)

where

f, )= "2kt + e 2 + k(1 — 11)e ] — 1.
(58)

Cavity decay has introduced an N independent summand
to (88)* that will ultimately limit the attainable sensitivity
as N is increased. Note also that the time development of
8p is parametrized by N and yo/x. We plot the full sen-
sitivity at =0 and 7 = 1, = 7 as a function of 7 for

N
(=]

wn O oa
-
& el .

Y 4
4
J
|
[ k/2m = 150 kHz
H--n/%r—lSkHz ’—

|
0 0.1 0.2 0.3 0.4 0.5

7(ps)

FIG. 7. Metrological gain as a function of interaction time t (in
us) when photon leakage from the cavity is accounted for: yo =
g =27 x 11 kHz and N = 10°. We compare two cavity decay rates:
k /2w = 15 kHz (dashed blue) and « /27 = 150 kHz (solid orange).

-
(@)

Met. gain (dB)

(@]

realistic parameter values [19,56] and using the resonant
protocol: N = 10°, o = 10%, xo =g=2m x 11 kHz, and
k /2w = 15 and 150 kHz in Fig. 7. Note that, as in the ideal
case, the sensitivity for the resonant protocol is « independent.

We also compare (88)* to the Cramer-Rao bound in Fig. 8.
They attain a maximum at roughly the same time and differ
by only a few dB. Further restricting to T < 1 the idealized
sensitivity of Eq. (14) is modified to

KT

1
8B AN ———— o+ —, 59
F) 4Na? x27? + 6 (59)

which upon minimization in time gives

) B 3 1/3
opt — szNaz )

1 312 173
(Sﬂ)gpl = Z(W) . (60)

Even though the scaling with N is reduced, as compared to
Eq. (14), increasing the number of atoms still results in an
enhanced sensitivity. Furthermore, the figure of merit quanti-
fying the optimal sensitivity is clearly ya~/N/«, which in the
case of the resonant protocol reduces to g«/N /k i.e., the ratio

-

Met. gain (dB)

0.0 0.1 0.2 0.3 04 0.5
7(ps)

FIG. 8. Comparison of metrological gain using the time-reversal
protocol and M = S’y (dashed dark blue) to that predicted from the
Cramer-Rao bound (solid red). Calculations are for N = 10°, yo =
g=12m x 11 kHz, and « /27 = 150 kHz.
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FIG. 9. Optimal sensitivity as a ratio of the characteristic interac-
tion scale and cavity decoherence rate, y ~/Na /i for different N. The
inset shows (§ /3) as a function of y o /k, emphasizing that, overall,
larger N is better. When yav/N/« 2 1, there is enhanced sensitivity
which scales like N~'/3. Conversely the protocol does not beat the
SQL for ya+/N/xk < 1.

opt

between the collectively enhanced coupling and the cavity
decay rate. This is further confirmed in Fig. 9, where we plot
€ ;3)019t calculated from the full set of equations Egs. (D20) as

a function of xa+/N/« for different values of N.

As discussed before, the effects of decoherence can be
partly compensated by changing the forward (z;) and back-
ward (72) evolution times of the protocol. Indeed, as Fig. 10
shows, the optimal 1, is longer than 7;. However, we found
that optimizing over both 7, and 1, leads at most to a gain of
0.3 dB for the current cavity decay rate of k /(27) = 150 kHz.
While the optimal result 7, > 7; can be intuitively understood
as offsetting the decreased cavity occupation in the second
period of atom-light interaction which generates the rotations
of the collective spin, the optimization of interaction-based
readout protocols [47-49,57] in the presence of significant
dissipation, such as the case here, remains an interesting open
question for future investigation.

Finally, we compare quantitatively the optimal sensitivities
attainable with the resonant and dispersive protocols, thus
complementing the discussion at the end of Sec. III. Setting

I

10

M

=

i

< T1

0 5

ks

=

0.05 0.1 0.15
mo(jss)

FIG. 10. Sensitivity as a function of 1, for yo =g=27 x
11 kHz, N = 10°, and « /27 = 150 kHz and fixed 7; = 85 ns. Note
that the best gain is obtained for 7, slightly larger than ;.

XDispersive — 2gz/Ac and XResonant = g/ |ct|, we get that

wm%:(memY”:(kmvzﬁ 6D
(68 )12( XDispersive A )

Given that for the dispersive Hamiltonian to work we need
gla]/A. < 1, we conclude that (68)p > (§8)r, so that the
resonant protocol will generically be better than the dispersive
one.

B. Spontaneous emission

Another source of intrinsic decoherence is spontaneous
emission of the atoms. Care must be taken when considering
the effect of spontaneous emission, particularly in differen-
tiating the dispersive and resonant protocols which generate
a dispersive interaction in different (rotated) frames with re-
spect to the spin degree of freedom. Due to this, we present
a separate calculation and results for each protocol. Lastly,
we note that in this case an analytic result for the Fisher
information is not possible and so we focus on evaluating only
the achievable sensitivity via the time-reversal protocol and
collective measurements.

1. Resonant protocol

The nature of spontaneous emission on the resonant proto-
col is affected by the presence of a very strong single-particle
drive term along the x direction. In principle, the master equa-
tion describing the evolution of the atom-light density matrix
0 is given by

Adta— A
+2y Z (5[—/35[# - M) (62)

However, this is modified by the presence of a rotation at
Rabi frequency 2ga, which we assume is fast compared to the
spontaneous decay rate, y. Upon moving to the rotating frame
of the drive Hy = 2gan, this assumption allows us to discard
fastly oscillating terms and end with the following effective
master equation:

. ) &T& A
o

+y Y (280p8 + 8151 + +3ips1 — p)
i

= M., (63)

where we have set y = g/a.

To compute the sensitivity we work in the Heisenberg
picture again and evolve §*, (§*)?> and §+§~ using the
Hilbert-Schmidt adjoint of M, . Note that in this case Stisa
raising operator with respect to the eigenstates of S, since the
dispersive interaction is oriented in this direction. As we will
show later on, spontaneous emission is not the limiting factor
so we will take the forward and backward evolution times
to be the same and denote them by 7. Both the calculations
and the final result are involved, and so we show them in
Appendix E and Eq. (E28), respectively.
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2. Dispersive protocol

In the dispersive protocol there is no single-particle drive,
so the dissipative terms are unmodified. On the other hand, the
presence of the term proportional to $T8~ in the Hamiltonian
which we have previously neglected [see Eq. (19)] must now
be accounted for. It is important as it generates additional en-
tanglement between the atoms, thus making the system more
susceptible to the effect of spontaneous emission. Taking this
into account, the dynamics of the atom-light system is now
described by the master equation for the density matrix p:

AdtaA— A
+2yZ<6fbfri+——{“f ol }). (64)

As in the resonant protocol, the derivation and final results for
the relevant expectation values are very involved, so they are
shown in Appendix E and Eq. (E30), respectively.

3. Timescales and sensitivity

In both the resonant and dispersive protocols we iden-
tify that there are two relevant timescales: ¢ ~ ¥ ~!, which
describes single-particle decay effects, and t ~ (Ny x2)~'/3,
which characterizes entanglement dynamics. The latter arises
in a manner analogous to the cavity system since the en-
tangling evolution is creating spin cat states due to photon
number fluctuations, with a susceptibility to decoherence
similar to that of their bosonic counterparts. Given that the res-
onant scheme generally leads to a better sensitivity, we focus
on this case in what follows. Calculations for the dispersive
case are very similar and give qualitatively similar results.
In the resonant protocol, the entanglement timescale is made
less relevant by using a large o, as (Ny x2)~'/3 o a?/3. As
we already require @ > +/N for the resonant protocol to be
valid, we assume « can be increased sufficiently so that only
single-particle decay is relevant. In this scenario, we have that,
for short times,

e6yr

402N x272°

Minimizing Eq. (65) with respect to time indicates that the
optimal sensitivity is determined by the ratio xa+/N/y and
is attained at 3yt = 1, as shown in Fig. 11. For the ex-
perimental parameters discussed in Refs. [19,56] (g = 27 x
11 kHz, y = 27 x 7.5 kHz, and N = 10°) and in the case of
the resonant protocol (x = g/), it follows that ya+/N/y =
gv/N/y ~ 1500. Looking at Fig. 11 we conclude that sponta-
neous emission alone is not a limiting factor for the protocol.

To understand the importance of spontaneous emission
relative to cavity leakage, we can compare the timescales to
reach optimal sensitivity in both cases. Examining Eq. (65)
the optimal squeezing is reached at t ~ y~!. This is to be
compared with the optimal squeezing time in the presence of
photon loss, which is ¢ ~ (kg?N)~!/3. Considering the same
parameter regime from Refs. [19,56] as previously, we have
that y =1 > (kg?N)~!/3 and thus we expect cavity decay to be
far and away the dominant limitation of the protocol. To be
more concrete, substituting the optimal time t = (3xg*>N)~!/3

(8B ~ (65)

40 »
= 20 "
> N == =20
+> 7 o S
b
= I = \/Vj 192
-20 [ ~
0 10 20 30 40
t(us)

FIG. 11. Sensitivity as a function of time using the resonant pro-
tocol for ya = g =2m x 11 kHz, y /27 = 7.5kHz, and N = 10?
(lower, dot-dashed red), 10* (middle, dashed blue), and 10° (upper,
solid orange). Note that the optimum occurs always at the same time.

[Eq. (60)] into Eq. (65) we note spontaneous emission leads to
a correction of 6% to the sensitivity, which is negligible and
justifies the detailed calculations we presented in Ref. [23].

C. Detection noise

Prior work discussing the implementation of time-reversal
and related interaction-based readout schemes has highlighted
their utility in suppressing issues associated with detection
noise [16,43,47-49,58]. In the case of time reversal, this ro-
bustness can be associated with the fact that characterization
of the metrological sensitivity only requires measurement of
simple observables such as mean spin projections [16,43].
On the other hand, work on the more general interaction-
based readout schemes has demonstrated that the robustness
to detection noise is preserved even when full distribution
functions of observables are used [47,48].

In the absence of decoherence, our time-reversal protocol
is robust to detection noise up to the level of the fundamental
quantum noise. Speciﬁcally, we can model detection noise in
an observable M as a Gaussian fluctuation of standard devia-
tion o}, which does not contribute to the observed mean (M)

but does to the variance ((AM)?) — ((AM)?) + (adet)2 For
a measurement of M = S¢ = cos()S, + sm(go)S the achiev-
able sensitivity then generalizes to

Nx2t2/4

8B~ ————
(88) 4No? y 212

o2
|:1 + 4cscz(<p)ﬂ]. (66)
N
The optimal robustness occurs for ¢ = 7 /2 (i.e., M= S’y),
for which detection noise ogey < VN only leads to a numeric
prefactor correction to the ideal sensitivity. We point out that
the csc?(¢) dependence implies this feature is not overly sen-
sitive to the choice of ¢.
The robustness is preserved when photon leakage and
atomic spontaneous emission are included. Specifically, in the
former case and for « 7, X\/N T K1,

2
2 2, 9det
68) 1 + 4csc (</))—N ]

1
~ 4a2NX2r2|:
KT |:N — 1+ csc?(p)

o2
+ 3 N + 4cscz(<p)%i|, (67)
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FIG. 12. Robustness to detection noise as a function of mea-
surement basis M = S’w = cos(¢)S, + sin(go)S).. Detection noise of
Oget = VN /4 is included for the case with spontaneous emission
[y/@m) = 7.5 kHz, upper solid line, in blue], and with photon loss
[k /(2m) = 150 kHz, lower solid line, in red], leading to an optimal
sensitivity for ¢ = 7 /2. For comparison we also plot the relevant
results for o4, = 0 (dashed lines). The inset shows scaling of sensi-
tivity with oy, for ¢ = /2. Dashed lines in this case represent the
04et = O result. All calculations are for N = 10°, r = 85 ns, and other
parameters used in Refs. [19,56].

while, in the latter and for x «/ﬁ T K1,

2 2
0 CSC(@)
N2a2y272 "

(8B ~ (68)

1 €% — cos(p)?
4N x2a?t? sin(g)?

We plot example results for the parameters of Refs. [19,56]
and N = 10° in Fig. 12 using Eqgs. (66) and (67) and as a
function of ¢. The inset shows the scaling of the metrological
gain for fixed ¢ = /2 with varying og4e, and confirms the
protocol is robust to detection noise oge; < VN.

~

V. CONCLUSIONS

In this paper we have described a protocol for quantum
enhanced sensing in an optical QED cavity which leverages
the ability to work in a strong collective coupling limit due
to the large atom number accessible in such systems. We
demonstrated that a dispersive light-matter interaction can be
engineered by either detuning the cavity or operating it on
resonance with the atomic transition and injecting a large
coherent field, and used to generate metrologically useful
entangled atom-light states. Our detailed analysis of intrin-
sic decoherence, particularly photon loss through the cavity
mirrors and spontaneous emission of the atoms, predicts that
entangled states of the cavity field can be generated for sens-
ing of optical electromagnetic fields below the SQL by up to
10-20 dB in realistic experimental conditions.

Our protocol and results are not exclusive to the optical
cavity platform, and could be readily implemented in a range
of other systems and frequency regimes. These include mi-
crowave cavities [59], circuit QED [60,61], trapped ion arrays
[50], and other hybrid quantum systems [62,63], particularly
in the context of sensing weak forces or small mechanical
displacements [6,64].
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APPENDIX A: IDEAL EXPECTATION VALUES

In this Appendix we investigate the sensitivity attainable
by measurement of only simple observables. First, we will
show how the perturbation of the resource state can be inferred
from the quadratures of the cavity field, but not in a way that
demonstrates a quantum advantage. Then, we will consider
the full time-reversal protocol and show that the second period
of atom-light interaction allows the perturbation to be mapped
into the spin projection and leads to a quantum-enhancement
below the SQL.

1. Direct measurement

We consider here the resource state directly after the pertur-
bation by a coherent displacement. As discussed in the main
text, the perturbed state is

_ivt&ata
l¥g) = D(Ble” "> o) , (AD)
where |o) = |o) ® [N/2,) is the initial state, with o € R.
The initial entangling evolution which creates the resource
state is described by e~x/5:4'4 "and D(B) implements the dis-
placement we are trying to infer. For clarity, we take 8 € RR.
First, we will demonstrate that the spin observables are

completely insensitive probes of the perturbation. To be gen-
eral, let us consider an arbitrary spin operator O;. Then

(05)5 = (Yol eX594D(BY O, D(B)e X154 [yrg) | (A2)

where (...)4 indicates the expectation value is taken after the
perturbation 8 has occurred. Since Oy is a purely spin opera-
tor, it commutes with D(B), which is constructed out of only
bosonic operators. Hence,

(Os)g = (ol 5440, 7780 gy (A3)
Thus, no information about 8 is presented in the spin observ-
ables.

Next, we instead consider the result of measuring a quadra-
ture of the cavity field. To be general, we will consider an
arbitrary quadrature

X? =ae +ate ™ (A4)

characterized by the phase ¢.
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For simplicity, we perform the calculation in the Heisen-
berg picture. Thus the operator a evolves as

a_)eixzﬁ,map(ﬁ)faD(ﬁ)e—ixz&a*a
— ei}({iﬁ“ﬁ(& 4 ﬂ)efixts}a':ﬁ (AS)
= ae” "5 4 B,

Noting that (N/2,|e=*"% |N/2,) = cos(xt/2)", we proceed
to compute the following expectation values:

(@) = acos(xt/2)" + B,

(@) = o cos(xt)N +2aBcos(xt/2)V + B (A6)

(@'a)y = o +2ap cos(xt /2" + B>

With this, we can evaluate the relevant expectations of the
quadrature X ?:

(X?) 5 = acos(xt/2)" cos(¢) + B cos(e),
(AR =1+ ZaZ[[cos(Xt)N — cos(x1/2)*"] cos(2¢)
+1- cos(Xt/Z)ZN}

2,22 2

%1+Noz X “t” sin(¢) S
2

The last line demonstrates that the variance is never reduced

below the level of vacuum noise [((AX?)?) = 1]. Moreover,

the signal (X?) g does not demonstrate an amplified response

to the perturbation scaling with atom number N or the initial

cavity amplitude |«|. Specifically,

= cos(¢).

As a result, measuring a cavity quadrature does not give an
enhanced sensitivity with respect to the SQL, i.e., (88)* =
((AX?)?)/|18(X?)/3B|> > 1 for any ¢ and ¢.

(AT)

dp (X9) (A8)

2. Time-reversal protocol

We now move on to the case of the full time-reversal
sequence and present a detailed derivation of the achievable
sensitivity and related expectation values in the absence of
any dissipation. The results are pertinent to the discussion of
Sec. II.

We briefly recap that the evolution in the time-reversal
protocol is composed of three key steps: (i) evolution with
the dispersive interaction H = ya'aS. [Eq. (1)] for a time
7, (i1) a coherent displacement of amplitude S of the cavity,
and (iii) reversed evolution with Hamiltonian —H for another
duration 7. Collectively, the evolution in the Schrédinger
picture is described by |¥»;) = U|y) with the unitary
operator

U — ei)(s}&t& TD(ﬁ)e—i)(S}&T&T, (A9)
where D(B) = /@9 with B € R a displacement in the X
direction in bosonic phase space. It is easier in this instance
to evaluate the dynamics in the protocol in the Heisenberg

picture, where the evolution of an operator O is given by
O(t) = UT0(0)U. To characterize the achievable sensitivity
(8B)* we are only required to compute observables of the
form ((8,)") and ((S’y)m) for m = 1,2, and so it is suffi-
cient to evaluate only the evolution of the operator ($T)".
Lastly, we note that any function of S‘z (such as 8§t87)
commutes with U, and thus will not change under time
evolution.

Breaking apart the unitary evolution described by Eq. (A9),
we begin by applying the reverse evolution [step (iii)]:

(§+)m(r) = efixs’:&"'&I(S‘v+)meix$'z&"'&r
— (S+)m —ixma‘at (AlO)

= (§Hym el
where we have used .SA’tf(S'Z) = f(S. — ST and the well-
known relation (1 4+ x)@'% =: e4'd : 10 leave the result in a

form that will be useful in the remaining steps. Next, we apply
the displacement operator [step (ii)]:

SH™)p = DB ETY"()IDB)
_ D(,g)*[(S*)’” L eleT M —da ]D(ﬁ) (A11)

=@y @ =D@ BB
Finally, to evaluate the initial evolution [step (i)] we use the
results

eiXS'ztAlelT(S‘*)me*ixnglfaf — (*’S‘er)mei)(m&*[n

s

pixSatar g —ixSatar _ &e‘ixng, (A12)
so that
§y(2r) = S [(SJr)m(f)D]e*ixﬁ;a"'ar
= (§+yreinmilin A

¢ @M =D@ ST ) ae ST p) L
Expectation values of this operator can then be taken with
respect to the initial state [yp) = |N/2,) ® |«) [Eq. (2)]. This
is done in two stages: We evaluate the expectation value with
respect to |«) and then the spin degree of freedom.
First, using the fact that (o] €47 = (qe~x™"| we find
that we need to evaluate the following expression:

o —ixmt _1\(at pixSzt ~—ixSzT
lxmr| . e(e 1)a'e +pB)(ae +B) . |Ol)

(e

_ e(e—ixmr_1)(aeimxreixfzf+ﬁ)(ae—i)(§;t+ﬁ)ea2(eixmf_1)

— 8/32(6—[)(11::71)

X exp [ — 4iaB sin(ymrt/2) cos(XS'Zr + er/Z)]
(A14)

where we have used the relation for normal ordered
expressions (y|: f(a',a): |a) = f(y*,a) and computed
the overlap (e " |a) = ¢* @ D Defining g(v) =
—4a B sin(xmt /2) we can perform a Jacobi-Anger expansion
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of the exponential

eig(r)cos(szr+)(mr/2) — Z l-an [g(T)]einx(SZ+m/2)r’ (A15)

n

where J,, is the nth Bessel function of the first kind. Thus to
evaluate the expectation with respect to state |[N/2,), we have
to calculate

(N/2,] (87 Y"e™ ™S |N/2,)
= (87" cos(nyt/2)N memmxT/2 (A16)

J

where (($7)")y = (N/2,| (§*)™ |N/2,). Putting all the pieces
together, we find that

<(§+)m(2‘[)) = ((S‘-‘r)m)o eﬂz("’ﬂ‘mr—l)

x Y i"Ju[g(r)] costnyT /2N (A17)

By taking m = 1,2 and using the initial conditions ($*), =
N/2 and ((S+)2)0 = N(N — 1)/4 we can get the relevant ex-
pectation values needed to compute the sensitivity:

(§+(2‘[)> — ]Evexp[(efixr _ 1)/32] Z ian[—4(xﬂ Sin(X‘L’/z)][COS (%)]N_l,

§ery) = M0
(575 ey = TEED.

APPENDIX B: RESOURCE STATE IN THE PRESENCE
OF PHOTON LOSS

In this Appendix we present a more detailed treatment of
the dispersive dynamics in the presence of photon loss. In
particular, we focus on the generated state after the first period
of atom-light interaction, Eq. (45).

As the dissipative dynamics will generate a mixed state
in general, we begin our calculation from the density matrix
representing the initial state |v) [Eq. (2)]:

po = IN/2:)(N/2:| ® |a)(]. (BI)

Evolution is described by the Liouvillian

& » . 1t py) 5

z Pt]+K(aP Tr) x Pt -
(B2)

To simplify the treatment of the evolution, we perform a

change of frame and define the transformed density operator
as

b= —ixla'a

xalar Ku ar

£ lHt ~ tHI
Et = 2 pPr € )

(B3)

where H = xa'aS.. This transformation is designed to strip
away the commutator and anticommutator parts of £,. Some
straightforward yet tedious manipulations using the identity
ag@’a) = g(a'a + 1)a, where gis any function, then result in
a simplified equation of motion for

8,5,:/(@ Kt thtAg_-&T i)(S'ZI’

(B4)
|

exp[(e %" — 1)p?] Z i"J,[—dap sin(xr)][cos(

(A18)

n)(r)]N*Z
2 b

n=—0o0

(

with the the initial condition &y = py.

The superoperator acting on p in the right-hand side of
Eq. (B4) leaves bosonic coherent states invariant. Further-
more, the initial condition of the system involves precisely a
coherent-state factor. This suggests an ansatz for the density
matrix which is a tensor product: & = £P" @ |a)(«|. Substi-
tution of this ansatz into Eq. (B4) then ylelds an equation for
the spin degree of freedom:

JEP = Kotzef’”eiixgté,smne"xg”. (BS)
If £ js expanded in the $; basis, S[m.) = m_|m.), an ana-
lytic form for £ can be obtained in a straightforward man-
ner. In particular, we can express £7" = > Ao (D) |m) (1],
and inserting this into Eq. (BS) leads to decoupled equations
for each coefficient d,,,:

By = K2 <X (B6)
These can be solved exactly:
ICOtz(l _ e—Kz+i)((n—m)t)
dmn(t) = eXp |: N i|cmcj:’ (B7)
Kk —ix(n—m)

where we have used the initial condition &, P INJ2,) (N2
and expressed the state in the S, basis, ie., |[N/2,) =
Zmz Cm, |my).

Transforming back to the original frame, the solution é‘,
yields an analytic form for the density matrix of the complete
atom-light system:

pr=eMe K"’"(den(t)|m><n|®|a><a|) i g2
m,n

— —lHl (

dm,,(t)|m n| ®eKOl (e‘ ”—1)|ae Kt/2>< Kt/2|>eth’

(B8)
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catar ka2 (e —
where we have used e™ 2z |a) = ¢ . |ee™ /%), A more
compact form of the final result is then
bt _ e_,ﬁ; (i):pin ® |ae_’(’/2)(ae_"’/2|)eiﬁ’, (B9)
with
P =Y creme! " m) (nl,
m,n
) (B10)
K()l2(1 _ e*/ctﬂxzt) ot
f(th): —|—0[(e _1)7

K —ixz

which are used in Sec. IV A of the main text.

APPENDIX C: QUANTUM FISHER INFORMATION WITH
PHOTON LOSS

Having derived the complete density matrix of the atom-
light state generated by the dispersive interaction in the
presence of photon loss [Egs. (45) and (B9)], we can use
this result to evaluate the quantum Fisher information and
establish the metrological utility of the state.

The quantum Fisher information of a generic quantum state
0 can be computed via the expression [24]

ra — Ap)? .
Fo=2 Y Bl G 1)

where G is the generator of the perturbation, {|a)} are the
eigenstates of the density matrix p, and {),} are the corre-
sponding eigenvalues. As we are characterizing the sensitivity
of the generated state to small displacements, we take G =
Y =—i(a—a".

Computation of F thus requires us to calculate the eigen-
system of p, and subsequently compute the matrix elements
(a|Y |b). Given the structure of p,, we find it convenient
to strip away the ™’ factors (which amounts to a unitary
transformation), so tl}at |a) = eiflt la), A, remain unchanged,
and (a| Y |b) = (a| €'Y e~ |b). Under this transformation,

eiHlYe—iHl — _i(ae—i)(szt _ &Tei)(szl)' (C2)

Alternatively, |a) can also be characterized as eigenstates of
P @ e ) e ), (C3)

where ;" is defined in Eq. (B10). We highlight that the
bosonic component is diagonal in the coherent-state basis, and
so we expect most of its eigenvalues are zero. This allows us
to greatly simplify the calculation of the Fisher information,
following the procedure outlined in Appendix F, by picking P;
(as defined in Appendix F) to be Lpin ® e ™"/?) (e /2. In
particular, this feature allows us to reduce the computation to

()‘r - )‘«s )2

0ls) %, Cc4
P [ (rlO]s) | (C4)

Fo=4+2a" Z

where {|r)} are now eigenstates of pP"

corresponding eigenvalues, and

only, {A,} are their

¢51), (C5)
This is precisely Eq. (47) given in the main text.

0= —i(e_ingt —

A simpler analytic expression can be computed by way
of further reasonable approximations. As mentioned in the
main text, for X\/N <L K, X\/Nt <« 1 and large N the matrix
elements of p;"" can be approximated as

c;:cmef("_’"”) |m) (n|
m? + n?
N

— o 2m — w2 jm) n ]

~ exp [ - +ici(n —m) (Co)

where we leave the coefficient c; unspecified because it can be
eliminated by doing a rotation about §, while leaving O intact
(since they commute), and

2.2 ,—«t 2,2
t
2= 50 e (14 5)] @
K 2
For simplicity, we henceforth omit ¢;. Under these approxi-
mations,

1 /112 )12
PP A Y e iy g (C8)
mn

where 0 = k x2at*/6 and C is a normalization constant. If

o < 1 then we can approximate the summations by integrals.
Furthermore, after a rescaling m = +/Nx, the state of the spin
subsystem is given by

f)tSPiH = / dxdy e—xz—y2—02N(x—y)2 1x) (|

= ( / dxdy e O N’ |)c)(y|>e’f‘2 (€9

_ C//effczefﬁz/ﬂazN)effcz

where C’' and C” are (distinct) normalization constants. Addi-
tionally, x and y are continuous variables defined with respect
to the operators X and p: X is a positionlike operator satisfying
X |xy = x' |x’) and p is its conjugate momentum.

The remaining exponential terms in the last line of Eq. (C9)
can be rewritten as

Ibtspin o e~ @EHEP/2 (C10)
where
cosh(ab) =1+ L,
02N
- | (C11)
@ 420N+ 1)

It is now apparent that 5" is diagonal in a basis of eigenstates

of a harmonic oscillator with frequency w = ab:

P = (1=, (C12)
with
o= [ Lr4i b5 (C13)
TV V2

the associated bosonic annihilation operator. The eigenvalues
are therefore

=1 —e e,

(C14)
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while the expectation values (r| O |s) (where |r) is now in-
dexed by the excitation level of the harmonic oscillator)
become, within the approximation x\/ﬁt < 1 (which will be
later shown to be valid as « limits the relevant timescales of
interest),

5] |s)
YN Is)

(r| [—i(e™ "5 —

~ (r| [—i(em VN —
~ —2x~/Nt (r| % |s)

2)( v Nbt
= — L= (1851 + V/58415), (C15)
\/_
where §, ; is a Kronecker delta. After squaring we get
N ) 2x*Nbt?
| (r| Ols) |” = T(rrsr,m + 56/41,6)- (Clo)

Note that the cross terms have vanished.

Since the expression for the Fisher information in Eq. (C4)
is symmetric between r and s, we just consider one of the Kro-
necker deltas and double the result. Then, Eq. (C4) simplifies
nto

o 2 2 2
)LS —A dx“Nbt=(s + 1
T ) 2 _,(tz( +1 s) X ( )

=0 )\s+l + )"S a
8 ZNb 2t2 —KE(] — e™@
4y X ot e ( e )
a
S (e—w(s+1) _ e—wS)Z
—~ efw(erl) + e~ (S + 1)
8x2Nbat2e (1 — e ®)}
=4+ e (s+1
a(l +e @) ; ( )
a4t SXZNbO[ZtZe—KZ(l _ e—w).
a(l +ev)

(C17)
We now plug in @ = ab and make repeated use of Eq. (C11)
to obtain
4X2NO[2 2 ,—«kt
1+ 202N
4X2Na2t2671(t
14 LN [1 — e (14Kt + 2’2)]

Fo=4+

=4+

(C18)

4y Na2r?
1+« x2Nt3/3’

where in the last line we have approximated ¢ < 1. These
are the results used for Eq. (49) of the main text.

APPENDIX D: SENSITIVITY IN THE PRESENCE OF
CAVITY DECAY

The operational sensitivity (§8)> achievable via the full
time-reversal protocol and measurement of collective spin
observables can also be calculated accounting for photon loss.
Different to the prior computation of Fisher information, here

the calculation is most simply performed in the Heisenberg
picture. In particular, an operator O evolves according to

O(r1, 2) = 4 L], e“20(0), (D)
where £ are Hilbert-Schmidt adjoints, defined by
A N A .~ {afa, Oy
£0 = ix[a'aS., O) + (4" 0a — )
X xla'as:, O] 2 (D2)

L4 0 =D (BYOD(B).
Relevant expectation values are then calculated with respect
to Yo = [Yo) (Yol [Eq. (2)].

Let us now consider the generic evolution of an operator of
the following form:
A=ef

STy £, (D3)

where f is any function of bosonic variables and : : denotes
normal ordering. We consider this form because, as we will
see, both the initial and final steps of the protocol fall under
this category. Then A satisfies the following equation:

X atan A U {afa, A
o, A = —ixla'as,, A]+K< Aa—T).

(D4)
For the sake of clarity, we remark that only A has any 7
dependence. All the other operators in Eq. (D4) (&, a', and
S.) are T independent. We simplify Eq. (D4) by pulling out
some factors

2 ivataS.t “atar A —ivataS.t cata
5 = i1 “Szfez“ at A p=ixa ”Szfez“ ar (DS)
to obtain
8fu _ Kekresz At B ae xS (D6)

with initial condition E(0) = (§*)™: f:. We try an ansatz for

a solution of the form

E=E"me:,
where £ is a purely bosonic operator. This leads us into the
following equation for : § ::

9, (€)= kTG g

D7)

= KkeTeNM g E (D8)
_ Ke/{relxmr &T&E :
from which we find the solution
K(er(r-mer _ 1),\-]-,\
&= exp| ——a'alf:. DY)
K+ixm
The final result for E is
A . KT+ixmt __ 1
&= )" exp [K(e : )&T&]f:. (D10)
K+ixm

We now use this result to evaluate the evolution Eq. (D1).
The action of the first superoperator (corresponding to the last
step of the protocol) is

EH)"(m) = £ [(84)"] = Ay, (D11)
where A is of the form of Eq. (D3) with f = 1. Then
. . KTo+ixmty __ 1 .
& = §)"exp ["(e : )a’a} .. (D12)
K+ixm
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and

A~

1\1 _ él e—(K-‘ri)(m)&T&rz

KTo+ixmty __
= (S‘+)m 1exp |:K(e i : 1)&T&i| :ef(/c+ixm)iﬂfm

K+ ixm

+ixmt a'a
— (S'+)m|:K(eKT2 lX. 2=1) + ]i| e—(l(-‘ri)(m)?ﬁiﬂz
K+ixm
. . —(k+ixm)ta __ 1 a'a
K+ixm
R . —KTy—ixmty __ 1
= (ST :exp |:1Xm(e - )a*a} :
K+ixm
= (Sty™ i md'a :
(D13)
where we have defined
iXm —KT—iymrt
Ne.m e —1), (D14)

=/<+ixm

and have made repeated use of the identity : ¢@ 144 .= 7',
Next, the displacement is effectuated by use of the identity
DY(B)aDB) = a + B. Thus,

(8" (02)p = Ly [(8 (1)) = (§7 " rol@ 49150,

S (21, 72) = ()" exp [1,mBa’ e S/ 2 iamilin, exp [nn,ma*a +

X exp [nzg,mﬂ&e*ixgm ﬂnl/z]eﬂzmw

Note that it is still of the form of Eq. (D3). This allows us to
again use the result of Eq. (D10) with

f = explnea@ + B)a+ p)l

for the third evolution superoperator (¢“x™) but with different
& and f\, which we denote @2 and f\z. Note that f\g is
precisely the ($1)"(t;, 7,) we are interested in. Taking into
account that —x — x and T — t;, we can write the result
directly:

(D16)

]

»= 81" exp [nfz,m(eﬁ + B)a+B)

K(ektl—ixmrl _ 1) .
—&'&] :

K—1ixm
X (D17)

— (S'Jr )meﬂzmz_memz,mﬂf: exp [Urz,méf&
K(eKTI*imel _ 1),\--,\ R
—aa):eMmnPl

K—ixm
With &,, (8T)Y"(1y, 12) can be computed using

& ivataSt —catar, A&  —ivataSn —cata
(S+)m(l'1, .[2) — ixa “Szfle sa'ar Eze ixa uSzfle 5a url’

— (S‘Jr)m exp [nrz’mﬁa'(‘eix(S}er)n 71(1’1/2]: exp [(nrz,mei(l(iixm)n + W:,,m)&Ta] .

X exp [nh’mﬂ&efixﬁzn 7Kr1/2]eﬂzmzm

— (Ser)m: exp [(nrz’meflanrixmrl + r]:’m)&'ra + nrz,m,BaTeiX(S:er)n —KkT1/2

+ Ny mBle™ XNy g2y LT

= ()™ exp [(nfz,,,le*”lJr"XmT1 + ”j,,m)&T&

ixmry

(D18)
(D15) which results, after some simplifications, in
|
K(e/ctlfixmrl _ l) A-]-A:|
—a'a|:
K—ixm
(D19)

+ T"[z,mﬂe_T]JrT(&TeiX(SZ+%)r] + &e—i)((sr"!‘%)fl) + 527712,”1] .

Evaluating the expectation value of M (1, 72) with respect to a photon coherent state then amounts to the replacements ¢ — «
and &' — o* in the last line of Eq. (D19) since the expression is normal ordered. The relevant expectation values are then

R N —KTHix T
$* (1, m) = 7 &P [“z(nr2,1€ T r D+ T)n.lﬂz]

o0
p . T N—1
X Z i”J,,( - 2int2,1aﬂe—ifl+’§ﬂ)[cos (”)(2 1)] ,
n=—00

NN -1)

811, 1)) = 1

exp [Olz(nrz,ze_mlﬂzm )+ flrz,zﬂz]

> Koos nyt\V-2
x 3 ﬂh(—znmgaﬂaﬁﬂﬂﬂj[am( > )] ,
n=—00

NN +1)

(S8 ) (1. 1))y = 1

(D20)
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APPENDIX E: SENSITIVITY IN THE PRESENCE OF
SPONTANEOUS EMISSION

In this Appendix we present the calculation of the expec-
tation values required for the sensitivity in the presence of
spontaneous emission. We present here the case of the reso-
nant protocol. Even though the effect of spontaneous emission
is different in the resonant and dispersive cases, the methods
presented here can be adapted to tackle the case of the disper-
sive protocol.

Similar to the case of photon loss, in both cases we will
compute the evolution within the Heisenberg picture, focusing
on the collective observables. As discussed in the main text,
since spontaneous emission is not the limiting factor of the
sensitivity, we consider equal durations for the forward and
backward evolutions:

o+m M T pt M: [ &+ \m
[($F1"Q2r) = ML, M [(ST)"]. (E1)
Here,
M0 =ix[8.a"a, 0]
£y Y (25105 + 5105 + 5,05, - 0). P
and
L540 =D (BOD(), (E3)
identically defined as per the previous section.
We begin with
EH"r)=A=eM [(S+)’"] (E4)

which corresponds to the final step of the protocol. By differ-
entiating with respect to 7, we find the A satisfies

A =M A (ES)
with initial condition Ay = [S*(0)]™.
The structure of /\/li 5 motivates the ansatz
A = f@, nHiHm, (E6)

J

expl~2if sin(my T /)" e MR 4 e = 3 e

Here, (O;) =

expl—4il¢| B sin(mxT/2) cos(p + myt/2)] = Y e 5"

b>0

Using the Jacobi-Anger expansion to reexpress the left-
hand side of this last equation and equating coefficients of ¢’
we find that the following holds:

i )
Wfb[—4i|§ |B sin(mxt/2)],
where Jj, is the bth-order Bessel function of the first kind. The
reason this expansion is convenient is that the evolution of the
operators

(€10plC) = (E14)

ab(§tym (E15)

where f is some operator valued function of 7 = a'a and
is the only t dependent part of the expression. Substitution
of this ansatz into Eq. (ES) results in a differential equation
for f:

3, f = —m(327/ + m) 7. (E7)
The solution is an exponential
f(h,T) = e 5 i (ES)
which is then substituted back into the ansatz to yield
@) = e 5 (TyreimiT, (E9)

The next step involves a displacement, which is straight-
forward to implement once again using the identity
DY (B)aD(B) = a + B to yield

S (T = L [$T)"(0)]

(E10)
— e—T (S+)me—im(fl++ﬁ)(&+ﬂ)f .

Before beginning the final step, it is convenient to do some
preliminary manipulation of the last exponential in Eq. (E10):

ixmbt

> (@M 0p(h)

e—im(ai-‘rﬂ)(a-i-ﬁ)f _ eﬁz(efimxr_]) |: Z e_
b>0

+Y e 'X'"beI(n)ab'} e XM (E11)

b<0

where Op(71) are operator valued functions of # and t that
are to be determined. If we multiply by e*”"* on the right
and take the expectation value of both sides with respect to
a generic coherent state |¢) we find that the left- and right-
hand sides of Eq. (E11) transform correspondingly to the new
equality:

(¢] Op |) is a function of || only. Expressing ¢ in terms of its amplitude and phase .= |§ le’® we get

ixmbt ixmbt

TIE 0 + Y e (0] ¢, (E12)
b>0 b<0

b —ib¢ + Ze 2 |§||b\ —lh¢) (E13)

b<0

(

takes a simple form in the final step of the evolution that we
apply. The evolved operator at the end of the displacement
step is, hence,

A 3yt A —imyt
@Y (x)p = e = (SHymef e D

X[Ze—

b>0

+Zei

b<0

ixmbr

2 (") 0p(h)

(E16)

ixmbr A iy mi
5 th(n)albl]e ixmht
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Returning now to the evaluation of Eq. (El), we finally

must act with the superoperator ¢MX' on each term of the sum
in Eq. (E16), so we need to investigate the quantities

b = T[Sy, (E17)
which satisfy an equation similar to Eq. (ES):
Oc&pm = M Epm. (E18)

This is all that we need to consider, since M; commutes with
right and left multiplication by any function of 7.
Once again, the structure of Eq. (E18) motivates the ansatz

Epm = Qo Sz, T) AP STy T T (E19)

where ¢ is a function to be solved for. Plugging the ansatz
into Eq. (E18) results in a differential-difference equation for
4b,m (Z ) t ):

3161b,m(Z, t) = - lX bz Qb,m(Z, t)

yN
+ T[qb,m(z + 1, t)+6]b,m(2—1, t)_qu,m(z» t)]

Z
+ %[qb,m@ — 10— oz + 1.1)]

+ Tm[qb,mc, 1) = goml(z — 1.1)] (E20)

J

(S+)m(2‘[)f — e_3myteﬁ2(eimxl_1>[z Im)(bl (a )”Obq bm(s+) + Z e i 2

b>0

(S+)m(2t)f — e—3m}/tef32(€im"'—l)|:ze—m§<’”( )bobq bm(S+)m +Ze ;hr AT Abev+w§;(3'+)m:|‘

b>0

With this, we can take the expectation value with respect to py =

subject to the initial condition g ,(z, 0) = 1, which is ob-
tained by plugging T = 0 in Eq. (E19). To solve Eq. (E20),
we plug in the ansatz solution g, (¢, z) = exp[v(t) + w(t)z],
which leads to a set of ordinary nonlinear differential equa-
tions for v and w:
b= Y v v _ 0y g VMg oy,
4 2 (E21)
w=—ixb+ %(e_w —ev).

These equations can be solved exactly, but the solution is not
particularly illuminating. Instead, we solve it perturbatively in
the ratio x /y, which is very small for both protocols described
in the main text, and assuming N >> 1. Then,

i mb
o) = — ”;’;1 € +yt—1)
Nx*b
+ %(e—“ﬂ —de —2p143),  (E22)

w(t) = —( =D,

to order (x/y)3. We now express the evolved observable in
terms of g ,:

imy bt A

|b|a q—b, m(S+)m:|

b=0 (E23)

b<0
IN/2:)(N/2:| ® |ee) {(ee|, which results in

(@)= e P '){Zlbjb[ diae sin(mxt /2)]e” "5 [N/ 24] "5 (81 Y" IN/2.)] }

(STym@2r)) ~ ((§F )" (0))e>mreef ™ ])[Zleb —diaf sin(mxt/2)]e”"

b

(E24)

2 el —N\wl /8}

In Eq. (E22), we can omit the imaginary term on v since it is small and has no N enhancement factor, as compared to its second
term. Furthermore, if we are probing times such that yz <« 1, we can keep only first-order terms in y in both v and w. From this
we obtain the final result for the expectation value:

) 212a743 L,
<(§+)m(21—)> = ((S*)m(o»e3m)/teﬂ2(el"'>(f1){ Z exp [M]lb.]b[ _ 410“3 sin(mxt/Z)]e*Nxz”’“f /8 } .

E25
> 24 (E25)

In comparison to the ideal case, Eq. (A17), we note
that spontaneous emission introduces two effects: the first is
single-particle-type decay of the expectation values, with the
exponent e=3vm while the latter is the result of entanglement
dynamics, given by the e’V X012 factors. In the case of
the resonant protocol, with x = g/«, the latter can be made
negligible by choosing a sufficiently large «.

Lastly, to finally compute the necessary means and vari-
ances of S'X,y, the expectation

(§787)20) (E26)

(

is required. This can be computed in a straightforward way
by identifying that §+8~ initially commutes with the Hamil-
tonian H = xS.a"a and continues to do so throughout the
evolution. Thus, its dynamics is given entirely by the spon-
taneous emission term, from which we can immediately write
down the solution

N NN -

($T8H2r) = T+t l)e—ﬁw. (E27)
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The relevant expectation values are then

o3 TPHETD)
3¢ Z

(8T@n)=

(§T2@20) = —N(N4_ D oy e > o EH be[ 4o sin(Xr)]e_szxzfz/S,

b=—00

N NN-D g0

+8 A
($*$Ho) = R

yx2b2NT3 ibjh[—4aﬁ sin (X_2‘5>]87szxzrz/8’

(E28)

Keeping only the single-particle decay terms, we find that the sensitivity to displacements (at 8 = 0) when measuring 3‘¢ =

S, cos o+ S'y sin(¢) and ¢ # 0 is

eNX2t2/8 (eﬁyt — cos ¢2)
8B)° . E29
0p)y = 4Nax2t? sin g2 (E29)
For short times X\/]V T K 1, we recover Eq. (65) in the main text.
A similar derivation shows that the relevant expectation values in the dispersive protocol are the following:
ot N “2yr e ad LRGP ESONT L (XT “NB 228
(STQt)) = —e e Z e 2 i Jb[ —4a B sin (—)]e X ,
2 st 2
[e.¢]
$*221)) = N—(N4_ Domtrrgpemron §o jutstspns "I, = dapsin(x) e, (E30)
b=—00
N NN -1
(85 @ry = 5 4+ M,

APPENDIX F: SIMPLIFIED EVALUATION OF QUANTUM
FISHER INFORMATION

In this Appendix, we show how to simplify the calculation
of the quantum Fisher information of a mixed state when this
state has only a few eigenvalues that are nonzero. This is
relevant for the manipulations that lead to Eqgs. (39) and (47)
and for the numerical evaluation of Eq. (47) in the main text.

For generality, we consider

p=7) hila)lal, (F1)

where p is some density matrix, |a) are the eigenstates of p,
and A, are the corresponding eigenvalues. Then, the Fisher
information with respect to a generator O is

— p)?

fQ_zz T |(alO1b)|*. (F2)

Let us now assume that the eigenvalues can be separated
into two sets, / and /¢ (complement of I), such that, for any
Ay € I and A € I, X, > A,. Given that the eigenvalues of p
are always less than 1, this effectively means that A, € I¢ are
much closer to zero than A, € I. Then we can split the sum
into four parts:

L=ttty
abel acl®bel aeclbel¢ aclbel®

We can neglect the last term since it is of the first order in the
small eigenvalues. The second and third sums are equal and

(

Aq € I dominate over A, € I€ so they can be simplified to

3 wfta@lom)| =

ael¢,bel

> hb{alOlb) (b0 |a)

acl¢l,bel

= ) (alOpIb)(b|0"a)

acl¢,bel

where

P =" " |b)(b] (F5)

bel

is the projector into subspace I. The Fisher information then
becomes

(Ag — A )2 A2
Fo=23 5 —|@lom)|
abel b (F6)

A

+ 4Tr<ﬁ,0*0,a) - 4Tr(P,OTP,O,a),

which is the result Eq. (39) quoted in the main text.
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