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ABSTRACT

This article discusses the use of deep learning schemes for spoofing detection. Particularly, the characteristics of the
so-called Cross Ambiguity Function (CAF) in the presence and absence of spoofing signals are exploited to train a
set of data-driven models providing a probabilistic classification. The method operates on a per-satellite basis. The
results show that complex neural networks are effectively able to capture the nature of spoofing attacks. Particularly,
a Multi-Layer Perceptron (MLP) and two classes of Convolution Neural Networks (CNNs) are considered in this work,
validated over simulated data.

INTRODUCTION

Location-based services, alongside with the modern applications on Intelligent Transportation Systems require re-
liable, continuous and precise navigation, positioning and timing information for their successful operation and
implantation in the market. Global Navigation Satellite Systems (GNSS) constitute the backbone and main infor-
mation supplier for Positioning, Navigation and Timing (PNT) data [2, 6, 7].

GNSS receivers are very sensitive and vulnerable to deliberate interference, which opens the door for attackers
who want to compromise a GNSS-based system or infrastructure causing serious impacts. Due to the lack of inherent
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Figure 1: Deep learning signal detection process in the presence of spoofer

security design in GNSS systems, many applications could be potentially at risk as reported in numerous articles.
Deliberately attacks on GNSS receivers might act at two different categories: physical attacks on the receiver (non-
signal attacks) or attacks at the GNSS signal-in-space (SIS) level (signal attacks) [8]. This paper is working on the
second category (signal attacks), which are intentional attacks on GNSS signals, which has three different forms:
jamming, meaconing, and spoofing. The focus of this work is on spoofing, which is the transmission of forged
GNSS-like signals, with the purpose to produce a false position at the victim’s receiver without disrupting GNSS
operations, effectively taking control of the receiver. Notice that jamming attacks aim at denying GNSS positioning
service, an opposite goal to spoofing interference. In [20] to obtain a higher detection probability of the GPS spoofing,
a general identification scheme with decision fusion is used. The singular values of the wavelet transform coefficients
of both spoofing and genuine signal considered as feature vectors, that are input into three classifiers, which are the
support vector machines (SVM), the probabilistic neural networks (PNN) and the decision tree (DT), respectively,
for GPS spoofing identification. The results of the three classifiers are fused with a K-out-of-N decision rule, and
the final classification result has a higher probability detection and lower false alarm. This [17] presents a method
to detect a GPS spoofing based on Multi-Layer NN whose inputs are indices of features to performed spoofing
detection by exploiting conventional machine learning algorithms such as K-Nearest Neighbourhood (KNN) and
naive Bayesian classifier. In [10], two methods of predicting the appropriate jamming technique for a received threat
signal using deep learning is investigated: using a deep neural network on feature values extracted manually from
the PDW list and using long short-term memory (LSTM) which takes the PDW list as input. [14] work proposed to
treat the jammer classification problem in the Global Navigation Satellite System bands as a black-and-white image
classification problem, based on time-frequency analysis and image mapping of a jammed signal. It also proposed to
apply machine learning approaches to sort the received signal into six classes, namely five classes when the jammer
is present with different jammer types and one class where the jammer is absent.

The goal of this work is to detect the GNSS signal spoofing attack. In particular, the paper proposes to use a deep
neural network (DNN) to carry out the detection (or classification) task. Deep learning technique has been recently
evolving in various fields, including autonomous vehicle navigation. This paper aims at exploring the capabilities
of deep learning models in complementing the standard design of GNSS receivers, in particular, it focuses on the
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Figure 2: CAF evaluation at the Delay/Doppler grid

signal detection process in presence of spoofer which to the best of our knowledge has not been explored in the past,
which is shown in Fig.1. Two different hypotheses considered, the null hypothesis (Hp), that the legitimate signal
and noise are present, but there is no spoofing signal and the alternative hypothesis (#1), that both the legitimate
signal, spoofed signal, and noise are present in the dataset.

To this end, three different neural networks designed and evaluated the two hypotheses detection process such
as Complex-CNN, Simple-CNN, and MLP. The networks are trained with two different optimizers for various C'/Ny
between 33 to 45 dB-Hz at a different delay and Doppler frequency with 1 ms coherent and 10 non-coherent integration
configuration. The results show that the Complex-CNN outperforms the Simple-CNN and MLP in training accuracy
and also in the detection process. The Simple-CNN and MLP have a very low probability detection in lower C'/Ng
in comparison with Complex-CNN, which can be extracted from histogram figures since the low C/Ny completely
overlapped it shows that distinguishing these two hypotheses from each other almost is impossible.

The paper is organized as follows. GNSS SPOOFER DETECTION section reviews the GNSS Spoofed signal
model and the standard model of the Spoofed signal. The data-driven approach introduces and connects to the
problem of GNSS Spoofed signal in DEEP NEURAL NETWORKS MODEL AND PROBLEM STATEMENT.
SIMULATION ENVIRONMENT AND RESULTS SECTION explain the details of the training of a neural network
and discuss the results. The paper is concluded in the final remarks in CONCLUSION.

GNSS SPOOFER DETECTION

To understand the impact of a spoofing attack - and its potential countermeasures -, we first recall that the first
stage in the operation of a Global Navigation Satellite System (GNSS) receiver is acquisition. This process results in
deciding whether the satellite signal is present or absent in the received signal, as well as provides rough estimates of
the parameters, such as code delay and Doppler shift of the signal transmitted by the satellite. All GNSS receivers
[4, 9, 13, 21] implement such an acquisition process by evaluating the so-called Cross Ambiguity Function (CAF),
usually in discrete-time.

In order to detect the presence of visible satellite signals, a receiver performs a two-dimensional search. The
acquisition process involves calculating the CAF value for a given satellite by correlating the received signal and
local pseudo-random code for every possible delay/Doppler pair in the search space. When the signal is present, the
CAF exhibits a large peak for a specific delay/Doppler cell, which is then passed on to the tracking loops for fine
estimation and tracking. Fig. 2 shows the exemplary representation of this process.

Received GNSS signal is considered as:

N
X(t) =) aibi(t —mi(t))ei(t = 7i(t) exp(j(wrrt — weri(t) — ¢i(1)))
i=1



where N is the number of spreading code, «;(t) is the carrier amplitude of the i-th signal, b; is the i-th signal’s
data bit stream, ¢;(t) is its spreading code, 7;(¢) is the i-th signal’s code phase, w. is the carrier frequency, wyr the
intermediate frequency, and ¢;(t) is the i-th carrier phase. The spoofer sends a set of false signals that are similar
to true signal, except for those parameters that would eventually cause a different position estimate at the receiver
unless properly detected.

A receive GNSS spoofed signal is:

N
Xo(t) = Y asibilt = mi(t))eilt = 7i(t)) exp(flwrrt — werei(t) — ds(1)))
i=1

where Ny, denotes the number of spoofed signals. In order to deceive the receiver, each spoofed signal must have
the same spreading code ¢;(t) as the corresponding true signal and broadcast its best estimate of the same data bit
stream b;, the spoofed amplitude «; ;(t), code phases 75 ;(t), and carrier phases ¢s;(t) for i =1,..., N are different
from those of the true signal [16].

The total signal at the victim receiver antenna during a spoofing attack is:

Y(t) = X (1) + X5 (t) +n(t) (1)

where 7(t) is the received noise, typically modeled as zero-mean, additive, white, and Gaussian.
Therefore, two hypotheses are tested:

1. The null hypothesis (#Hg), that the legitimate signal and noise are present, but there is no spoofing signal.
Ho : Y(t) = X(t) +n(t)

2. The alternative hypothesis (#;), that both the legitimate signal, spoofed signal, and noise are present in the
dataset;
Hi:Y () = X(t) + Xs(t) +n(t)

In this context, we propose to treat the spoofing detection problem as a hypothesis testing problem on the
CAF’s delay/Doppler map for each satellite independently, for instance the i-th satellite. After downconversion and
sampling (at a rate f; = 1/Ts), the CAF can be computed as the correlation of the digital signal and the known
local code for the i-th satellite. At a given delay/Doppler pair:

N—1
Ci(t, fa) = % Z y[n]c;(nTs — 7) exp{—j2m fqinTs} , (2)
n=0

Local replica

which can be expressed more compactly in vector notation after gathering N samples from the samples and the local

code as y,c; € CP*N as
H

Cilr f) = T3 3)

The effect of a spoofing signal on the CAF is well-known and shown in Fig. 2 for clarity, showing an arbitrary
CAF under both hypotheses. This work proposes to train a DNN, data-driven model to learn to classify between
spoofed or clean signal receptions.

Three types of error probabilities characterize the performance of the detector: detection (the probability of
correctly detecting signal+spoofer when there is signal+spoofer), false-alarm (the probability of wrongly detecting
satellite is spoofed when there is only signal), and miss-detection (the probability of mistakenly deciding for the
null hypothesis when the satellite is spoofed). The two first probabilities are used in order to obtain an important
figure of merit in acquisition performance: the Receiver Operating Characteristics (ROC), a plot of the probability
of detection as a function of the probability of false alarm [4, 12, 22]. We will use ROC curves in evaluating the
performance of the proposed detection method.
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Figure 3: Detection scheme of GNSS acquisition by using the Fully Connected Structure of Deep Learning approach.

DEEP NEURAL NETWORKS MODEL AND PROBLEM STATEMENT

Neural networks (NN) are models composed of neurons, which are information processing units, for complex data
processing. A NN typically contains an input layer, one or more hidden layers, and an output layer, as well as
pre-defined activation functions that connect adjacent layers. Each layer has a specific weight, which is usually
determined with backpropagation during a training process that involves large amounts of data with known labels
[15, 23]. One of the most important part in NN is how to design and choose a network to get the high accuracy with
less network complexity. some of effective aspects are: number of layers, number of neurons, and type of optimizer.
In the simulation and result section, the accuracy of different types of networks is discussed more. In this work, in
order to detect the spoofed signal, the performance of two different structure of neural networks are evaluated and
compared together: a Multi-Layer Perceptron (MLP) and a Convolution Neural Network (CNN).

MLP Network

The first neural network structure that will be used in this research is the Multi-Layer Perceptron (MLP), which
is referred to as a traditional neural network. This type of network is comprised of one or more layers of neurons
(which consist of a row of neurons). Fig.3 shows an exemplary representation of this type of network. The first layer
is called the input layer, which is fed with the training dataset for learning the parameters of the (potentially several)
hidden layers that are not directly exposed to the input. During training, the number of nodes in the hidden layer
are randomly ignored or “dropped out”, which are shown in black in Fig.3. The number of neurons in this last layer
depends on the number of the classes that one wants to classify since those provide their probabilities.

CNN Network

The second artificial neural network structure considered here is the so-called Convolutional Neural Network (CNN),
which is one of the most popular models for deep learning in the context of learning class labels from image datasets.
A CNN can have tens or hundreds of layers, where each of these layers learns to identify different features of an image
[19]. At each layer filters are applied to each training image and the output of each convolution image is used as an
input to the next layer. Fig.4 illustrates a CNN structure. During training, the input size of the CNN is fixed, the
input is going through a stack of convolutional layers with the same or different filter sizes. In each convolution layer,
the filter sweeps the input image from left to right and up to down by using stride with 2 pixels size, which is the
number of pixels that each time the filter shifts. In the end, the convolution layers are followed by Fully Connected
(FC) layers and a final softmax layer, which is used for classification purposes [19].

Probabilistic learning

The aforementioned DNN models have the task of classifying CAF maps into spoofed/cleaned cases. We aim at
doing that on a probabilistic sense, thus providing probabilities for both hypotheses. The inputs to the NNs is the
CAF evaluated at the delay/Doppler grid, which can be considered as an image. Such images (refer to Fig. 2 for
an exemplary situation) has certain characteristics that can be used to determine whether the signal is present or
not: i) in the absence of spoofing signal, the image should exhibit a single peak corresponding to the legitimate
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Figure 4: Detection scheme of GNSS acquisition by using the Convolutional Neural Network Structure of Deep
Learning approach.

satellite signal (if received with enough power); and 47) in the presence of a spoofing signal, the CAF image should
be composed of two peaks and exponentially distributed noise in the remaining cells. This is used to train a NN
model to classify between Hy and #1, the hypotheses described earlier.

The proposed methodology works on a per-satellite basis. Recall that the input data fed to the NNs is the
corresponding CAF image for the satellite, which we denote with Z; in the sequel. That is, the {m,n} element of
the input matrix is defined as

Ziln = |Ci ([T)ms [fa]n) |* (4)

where 7 and f; are vectors containing the tested delay and Doppler-shifts, respectively. We use the convention that
[a],, represents the m-th element in vector a and that [A],, , provides a shortcut for the element of A in the m-th
row and n-th column.

From a Bayesian perspective, all the information resides in the a posteriori distribution of each hypothesis once
data is observed. An optimal (Bayesian) test between Hy and H; is given by the ratio

p(H1|Zi) ™
Pl%i) 5y 5
o(HolZ0) 12 5)

in which case we basically favor the model with largest a posteriori probability. This can be further expanded in
terms of the likelihood and a priori distributions as

p(Zi|H1) P(Hy) " 1

p(Zi|Ho) P(Ho) 1,

; (6)

where we readily identify that P(#;) denotes the a priori probability of the i-th hypothesis. In the absence of better
priors, we may assume equally likely hypotheses P(Ho) = P(H1) = 1/2. Otherwise, we might incorporate that
information in the hypothesis test, resulting on the adjustment of a threshold . The resulting test statistic is such
that "

o DB
p(Zi|H0) Ho
which would act as our spoofer detection algorithm, where threshold + is a tuning parameter. Since the test statistic
is a ratio of probabilities, we have that 0 < T(Z;) < co. Similarly as in [3], the DNNs provide estimated probabilities
for each of the hypotheses in (7). Therefore, the input data would be Z; and the output of the DNN would be the

estimated probabilities in the dataset y used to build Z;.

T(Z;) (7)

SIMULATION ENVIRONMENT AND RESULTS

To accomplish the objective, we train DNNs using synthetically generated data. Particularly, we use a dataset
consisting of 10000 snapshots of 1&Q samples with different Carrier-to-Noise-density ratio (C/Ny) varying between
33 to 45 dB-Hz, as well as randomly generated delays between 0 to 1 ms and Doppler shifts between -4000 to 4000
Hz. These samples are then processed to compute the CAF over a Doppler-delay grid. An analogy to images can
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Figure 7: ROC curves for Simple-CNN and MLP using CAF generated with 1 ms coherent integration and 10
non-coherent integration

be made for these CAFs where each Doppler/delay cell is a pixel whose value is that of the CAF. For instance, if 20
Doppler bins are considered to acquire a GPS L1 C/A signal, those images would be 20 x 1023 dimensional. These
images are fed to the input layer of the DNN, whose output would be the classification into a present/absent of the
spoofed satellite signal. In a supervised training scheme, these input/output pairs are provided by labeling and using
the aforementioned synthetic data generation. In the experiments, the ReLU activation function and two different
optimize are used to train the network Stochastic Gradient Descent with Momentum (SGDM) and Adam optimizer.
In this work, two different NN structures will be considered: Multilayer perceptron (MLP), and Convolution Neural
Network (CNN).

The model implemented with MLP structures considered different number of fully connected layers. Each fully
connected layer followed up with rectified linear unit (ReLU) activation function to allows for faster and more effective
training by mapping negative value to zero [18]. After each layer a 1/2 dropout probability was considered. The last
fully connected layer contained two neurons, used in predicting the class for which the input image belongs to. After
defining the network structure, the training options were specified. The network trained with two different optimizer
Stochastic Gradient Descent with Momentum (SGDM) and Adam optimizer with an initial learning rate of 0.001.
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Figure 9: Py(7y) and Pjq(y) under 1 ms coherent and 10 non-coherent integration for Complex-CNN models.

The maximum number of epochs, which is a full training cycle on the entire training dataset, was set to 30 and at
every epoch the data was shuffled. After 20 epochs the learning rate dropped by factor of 0.1. the training progress
shows the mini-batch loss and accuracy and the validation loss and accuracy. The loss is the cross-entropy loss and
the accuracy was defined as the percentage of inputs that the network classified correctly.

In this work, two different CNN structures are used. First, the simple CNN structure is used and evaluated to
detect the Spoofed signal, which contains 3 convolution layers and 3 fully connected layer. Each convolution layer was
followed by a batch normalization layer and a ReLU activation function. The batch normalization layers, normalizing
the activation and gradients propagation through a network and using it between the convolution layer and ReLLU
layers to speed up network training [1|. Each fully connected layer follows up with the ReLU activation function and
a dropout layer with a probability of 0.5. The last fully-connected layer contains two neurons to predict each image
belongs to which class since two types of classes are exist in this work. The result of this network was not promising
since as it was said in [3] it is expected that CNN outperforms the MLP to detect the Spoofed signal. Therefore,
the more complex CNN structure is decided to use and evaluated to detect the Spoofed signal. The complex CNN
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structure which is used in this research is very similar to the VGG 16 structure training [11]. The network has 13
convolution layers that each layer was followed by a batch normalization layer and a ReLU activation function. Also,
it contains 3 fully connected layers that each layer follows up with the ReLU activation function and a dropout layer
with a probability of 0.5. The last fully-connected layer contains two neurons to predict each image belongs to which
class since two type of classes are exist in this work. In the end, after defining the network structure, the training
options were specified, which were the same as for the MLP training options. Fig. 5 shows the training accuracy of
these three networks with Adam and SGDM optimizer for C'/Ny between 33 to 45 dB-Hz with 2 different number
of non-coherent integration (Nnci) values. The result shows that the Complex-CNN (VGG16) network outperforms
Simple-CNN and MLP. Moreover, in all networks the Adam optimizer has better accuracy than the SGDM optimizer.

The detection process determines the presence or absence of the Spoofer and the output is the random variable
which is called a decision variable. If the Spoofer is present, The probability that the decision variable passes a
threshold § is called the detection probability and if the Spoofer is absent it called false alarm probability. Then
the plot of detection probability (Py) versus the false alarm probability (Py,) is called the Receiver Operating
Characteristic (ROC). Fig. 6 and 7 show the Receiver Operating Characteristic (ROC) curve result that they are
trained and tested under the same integration configuration for Complex-CNN, Simple-CNN and MLP respectively.

From Fig. 6 it can be observed that for low C'/Ny values the performance of NNs is not attaining the theoretical
ROC curves. However, as C/Ny increases, such an approach can reach theoretical limits. An explanation could be
that for low C'/Ny the various NNs cannot extract the relevant features from the input images. When C/Nj increased,
either because of an actual power increase or longer integration times, the NN is able to perform classification on
whether the Spoofer present or not. In comparing the ROC curve result of Fig. 6 with Fig. 7 it is shown that
Complex-CNN outperforms the Simple-CNN and MLP network structures. The Simple-CNN and MLP are not able
to reach the theoretical even in higher C'//Ny. Indeed, these results were predictable from Fig. 5 since the neural
network can be trained much better with Complex-CNN, which is 80%, in comparison with Simple-CNN and MLP,
which are around 60%.

As it was discussed in [3] for simple scenario and dataset the MLP and Simple-CNN are working similarly.
However, for a more complex scenario, CNN outperforms the MLP because in CNN the input pass through a set of
convolution filters, each of these filters activates certain features from the images and creates an output that causes
to improve the detection. In order to, increase this feature designing more Complex-CNN would be helpful which is
discussed in this work.

Fig. 8 shows the probability of detection and probability of false alarm of different C'/Ny for all 3 networks.
As was discussed, the Complex-CNN has the best probability of the detection for all different C/Ny, which is close
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to 90% for C'/Ny = 36 dB-Hz and close to 100% for C'//Ny = 37 dB-Hz and greater. Moreover, Simple-CNN and
MLP have a worse probability of detection than Complex-CNN even at higher C'/Ny. However, in this situation
Simple-CNN outperforms MLP.

In Fig. 9, detection and false alarm probabilities are plotted against the classification threshold (i.e., Py(y) and
Pyq(7)), for different values of C'/Ny under 10 non-coherent integration for complex-CNN network models. It can be
taken from these figures the probability of detection and probability of false alarm for all different C'/Ny converged
when the (7) is equal to 0.5.

The result of probability of detection and probability of false alarm at the convergence point (y = 0.5) for different
C/Np under 1 ms coherent and 10, 20, 30 and 50 non-coherent integration for Complex-CNN models is depicted in
Fig. 10(a), 10(b) respectively. It can be taken from the figures by increasing the number of non-coherent integration
the probability of detection increased and the probability of false alarm decreased significantly. As it shows in fig.
10(a), the detection probability for C'/Ny 38 and above for all number of non-coherent integration are the same and
close to 100%, but increasing the number of non-coherent integration affected the result of lower C'//Ny significantly.
For example, for C'/Ny 33 when the number of non-coherent integration is equal to 10 the probability of detection
is almost 10%, however, by increasing it to 50 the probability of detection reach the 90%. A similar improvement
happened for the probability of false alarm in Fig. 10(b) that show when the number of non-coherent integration is
equal to 10 the probability of false alarm is almost 20% even for highest C'//Ny, however, by increasing it to 50 the
probability of false alarm decrease to the 0 for almost all C//Nj.

The impact of low C'/Ny on ROC performance is further explained. The histograms under Hg and #; are shown
in Fig. 11 for all 3 networks under two different C'/Ny. Ideally, one would like to have as few histogram overlapping
as possible, such that they can be easily distinguished. Fig. 11(d) & 11(f) shows the Simple-CNN and MLP networks
for C'/No= 36 respectively, as the result got from Fig. 8(a) for lower C'/Ny of these two networks P, is too low,
that the reason is obvious in histogram plot since two hypotheses completely overlapped, which make the detection
almost impossible.

CONCLUSIONS

This article presents a DNN approach to detect spoofing attacks. Spoofing attacks are, in general, difficult to model
and counteract [5]. In those situations, data-driven schemes become useful if enough training data is available. This
article explores this approach using the CAF delay /Doppler map as an input to a DNN for classification purposes.
Particularly, several neural network models are trained with and their performance compared in terms of detection
and false alarm probabilities. Results show promising performances, particularly with more complex NNs, able to
capture the nature of spoofing attacks and their impact on CAF maps. Future works will revolve around improving
those results in terms of lower false alarm probability, while keeping detection probabilities large.
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