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Abstract—This paper investigates the use of data-driven mod-
els, popular in the machine learning literature, as an alternative
to well-engineered signal processing blocks used in state-of-the-
art GNSS receivers. Acknowledging that the latter are optimally
designed and extensively tested, it is also agreed that when the
nominal models do not hold the performance of the receiver
might degrade. Particularly, we investigate the use of data-
driven models in the signal acquisition stage of the receiver
by addressing a classification problem from Cross Ambiguity
Function (CAF) delay/Doppler maps. A discussion on the training
of such models and future perspectives is provided. The detection
results in nominal situations are then compared to the theoretical
bound in the receiver operating characteristic (ROC) plots.

Index Terms—Satellite-based navigation, machine learning,
neural networks, signal detection.

I. INTRODUCTION

Signal acquisition is the first action that is performed by
a Global Navigation Satellite System (GNSS) receiver. The
outcome of this process decides either the signal from a
particular satellite is present or absent in the received signal, as
well as provides a rough estimate of its associated code delay
and Doppler frequency if present. All GNSS receivers [1], [2],
[3], [4] implement such an acquisition process by evaluating
the so-called Cross Ambiguity Function (CAF), usually in a
discrete-time domain. The CAF is a two-dimensional function
that is related to the correlation between the received signal
and local code for every possible delay/Doppler pair and that
is used in signal detection and coarse synchronization (a.k.a.
acquisition).

It is customary to think of this acquisition process as a
signal detection problem where two hypotheses are available:
1) the null hypothesis H, is that the signal is not present or not
correctly aligned with the local replica, and 2) the alternative
hypothesis H; is that the signal is present and correctly aligned
with the local replica. In each hypothesis, three kinds of proba-
bilities characterize the performance of the acquisition method:
detection (the probability of correctly detecting signal/noise
when there is signal/noise), false-alarm (the probability of
wrongly detecting signal when the satellite is not present),
and miss-detection (the probability of mistakenly deciding for
the null hypothesis when the signal is present). The two first
probabilities are used in order to obtain an important figure
of merit in acquisition performance: the Receiver Operating
Characteristics (ROC), a plot of the probability of detection
as a function of the probability of false alarm [1], [5], [6].
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Signal acquisition is based on solid statistical grounds,
where the approach of maximizing the CAF (i.e., the correla-
tion between the local replica and the incoming signal) can be
seen to be optimal under certain model conditions (e.g. Gaus-
sianity and linearity of the channel). However, experiments
show (e.g. [7]) that reality is typically more challenging and
that the assumed nominal model does not necessarily hold
always. Recent attempts to modify the CAF to make it more
robust to non-Gaussian behaviours (such as heavy-tailed noise
distributions) showed outstanding performance, particularly in
the context of GNSS operation under jamming [8], [9], [10],
[11], [12], [13], [14]. Regardless its remarkable performance
in outlier-rich data, the aforementioned robust approach does
not accommodate for more complex situations such as multi-
modal distributions or moderate-to-severe nonlinearities af-
fecting the received signal. This work conjectures that such
complex behaviours can be learnt by employing efficient data-
driven methods, trained over large datasets. In particular, we
propose to use a deep neural network (DNN) to carry out the
detection (or classification) process. Prior to targeting those
challenging scenarios that turn the nominal model unreliable,
this paper focuses on replicating the optimal results (provided
by standard model-driven methods under nominal conditions)
by employing data-driven models (a.k.a. NNs). This analysis
is important in order to establish a set of trained, verifiable,
accurate and efficient NN kernels with expected performance
guarantees. Additionally, it would validate the validity of the
approach, paving the way for more advance NN models that
are trained in more challenging scenarios using a combination
of synthetic and real training data.

The paper is organized as follows. Section II reviews the
GNSS signal model and the standard formulae of signal
acquisition. Section III introduces the data-driven approach
and connects it to the problem of GNSS signal acquisition.
Section IV describes the training methodology, a crucial aspect
of data-driven models, and Section V discusses the obtained
results. The paper is concluded with final remarks and future
directions in Section VI.

II. GNSS SIGNAL ACQUISITION

A receiver observes signals from M satellites plus noise.
After downconversion and sampling (at a rate f; = 1/Ty) the
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samples discrete-time signal is:

M
= > wouln] + o

which can be expressed more compactly in vector notation
after gathering N samples from the samples and the local
code as y,c; € C1*V as

yln] H
Y<;
zoiln] = abi(nTs —7i)ci(nTs — 1) exp(§2m fainTs + jo;) Cilr, fa) = N 3)
The CAF is crucial in the acquisition (and tracking) of the
with a; the amplitude of the i-th received signal; b;(-) the geljites’ signals. The MLE of ; can be expressed in terms

data bits of the i-th navigation message; ¢;(-) the spreading
code of the i-th satellite; 7; the time-evolving delay of the
i-th satellite; fy,; the Doppler-shift; ¢; a carrier-phase term
introduced by the channel; and 7[n] models the random noise
at the receiver, typically complex, zero-mean and Gaussian
distributed with variance o

Signal acquisition is one of the first actions a receiver
needs to perform, basically deciding either the signal from
a particular satellite is present or absent, as well providing a
rough estimation of the code delay and Doppler frequency
of the received signal in case it is deemed present [1].
Therefore, when searching for the :-th satellite this problem
can be formulated as an hypothesis testing problem with two
possibilities:

Ho
Hq

i-th satellite is not present

i-th satellite is present
Equivalently, the two competing hypothesis are

nin|
g,i[n] + n[n]

Ho

such that n = 0,...,N — 1 index the N samples used
in acquisition (i.e., coherent integration interval). Since the
parameters 0; = («;, ¢;, 7, ]ﬂ“—)—r are not known, the optimal
detection framework (in the maximum likelihood (ML) sense)
is the Generalized Likelihood Ratio Test (GLRT), which
requires ML estimation (MLE) of the vector 8;. Given a set
of N observations, y = (y[0],y[1],...,y[N —1])T the MLE
of 0; is defined as

0; = arg maxp(y|6;) , (D
where it is typically assumed that the parameters in 6; are
piece-wise constant within the N samples of y and that the
codes have ideal cross-correlation properties so they can be
processed independently at the receiver.

It can be seen that the GLRT results in the maximization
of the correlation between the received signal and a locally
generated code. This correlation operation is encoded in the
so-called Cross Ambiguity Function (CAF), which is nothing
but the correlation between y[n] and the spreading code of the
i-th satellite, at a given delay/Doppler pair (in discrete-time):

N-1
y[n] ¢;(nTs — 1) exp{—j2n fq,nTs},

0

1
N

n=

Ci(Ta fd) =

Local replica

2

of it as

(7, fai) = arg%adﬁ{‘ci(ﬂfd,iﬂz} 4
& = |Ci(Fi, fai) )
¢i = LCi(%i, fai) . 6)

and we decide that the i-th satellite is present by setting
a detection threshold S (designed for a desired false alarm
probability) on the test statistic in the optimization problem in
(4) such as
2 11
Ci(7, fa)|” 2 B

Ho

)

A. CAF Evaluation

The CAF is function which depends on the delay 7 and the
Doppler frequency f; of the local replica. The optimization
in (4) is performed over a grid of possible 7 and f; values,
typically evaluating the CAF on a set of discrete values. Such
bi-dimensional grid is referred to as the search space. The
search space consist of set of cells which include the different
value of delay and Doppler, which we gather in vectors T €
R"~ and f; € R™/, respectively. Typically, we have that n, >
ny. The evaluation of this grid can be performed following
several strategies that trade-off search speed and performance.
Three searching strategies are typically considered: maximum
search, serial search, and hybrid search strategies [1].

1) Maximum: this strategy evaluates the CAF all over the
search space R"™ x R™/, such that each cell corresponds
to a CAF value at the corresponding delay/Doppler pair.
The overall maximum value of the ambiguity function
is then selected and compared to the threshold 5, if the
maximum’s value is greater than /3 the satellite is con-
sidered acquired, with estimated code delay and Doppler
frequency corresponding to those of the maximum’s cell.
Serial: in this strategy the ambiguity function is evaluat-
ing serially cell by cell. In each cell when the ambiguity
function (7) is computed, it is immediately compared
to the threshold. If the value exceeds the threshold the
acquisition process stops and the value of the estimated
code delay and Doppler frequency are matched to those
from the cell under the test. This strategy has the benefit
of reducing the number of CAF evaluations, at the
expenses of some performance degradation.

Hybrid: this strategy evaluates the ambiguity function
row-by-row (or column-by-column), and at the end of
each row (column) the values of the computed ambiguity
functions are compared to the threshold. As soon as the
maximum value in the current row (column) exceeds the

2)

3)
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Fig. 1: CAF evaluation at the delay/Doppler grid in the (a) absence and (b) presence of signal with C'/Ny = 39 dB-Hz.

threshold the acquisition process stops and the estimated
code delay and Doppler frequency are set to the corre-
sponding cell. This strategy brings in a balance between
the two approaches above.

In this work the maximum strategy is used as a searching
strategy. This allows us to have a full representation of the
CAF in (7), which is then fed to a NN for classification
between H( and H; hypotheses as detailed in Section III.

B. Receiver Operating Characteristic

This part described Receiver Operating Characteristic
(ROCQ). In first step, detection process determine the presence
or absence of the signal is transmitted by satellite and the
output is the random variable which is called decision variable.
If the signal is present, The probability that the decision
variable passes a threshold 3 is called the detection probability
and if the signal is absent it called false alarm probability.
Then the plot of detection probability (Py) versus the false
alarm probability (Pf,) is called the Receiver Operating
Characteristic (ROC).

In order to calculate the ROC curves, first one needs to
calculate the Py, and Py probabilities. The value of the
detection threshold § is typically computed for a given false
alarm probability, given by

K-1 1 k
Pra,(8) = exp (—%) Do (%) (8)

where K indicates the number of non-coherent integrations
(i.e. averages of K coherent integrations as in (7)) considered
(such that K = 1 in absence of non-coherent integration)
and o2 % is the variance of the in-phase and quadrature
outputs.

Then, the P; can be calculated as a function of 3 by

Py (B) = Qk (\/K%v \/é)

€))
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where A\ = a?/4 is the non-centrality parameter, and the
generalized Marcum @Q-function is defined as

1 oo
/ =K exp (—
b

aE—1
which allows for computation of the ROC curves.

a2—|—x2
2

Qk(a,b) = > I (az)dx

(10)

III. DEEP LEARNING APPROACH

In this work, the goal is to create a neural network model
that is capable of recognizing the presence/absence of satellite
signal. To that aim, we use as inputs the CAF evaluated at
the delay/Doppler grid, which can be considered as an image.
Such images (refer to Fig.1 for an exemplary situation) has
certain characteristics that can be used to determine whether
the signal is present or not: ) in the absence of signal from
a specific satellite, the image should be composed of random
values (theory telling that the CAF would be exponentially
distributed in that case); and i) in the presence of a satellite
a peak should emerge from the random noise floor. This
knowledge can be used to train a data-driven model (e.g. a
neural network of some sort) such that a classifier can be
used which learns to discriminate between Hqo and H;, the
hypotheses described earlier in Section II.

In this work two different structures of artificial neural
networks are considered and compared: i) a Multi-Layer
Perceptron (MLP), which is a neural network architecture
with moderate complexity that has been widely used in the
machine learning literature; and ii) a Convolution Neural
Network (CNN), very popular within the computer vision
community thanks to its ability to capture complex non-linear
phenomena, at the expenses of a much larger complexity
compared to MLPs. These models are discussed in this section
after a brief overview on how the classifier is built following
a probabilistic approach, in which the different NNs are in
charge of delivering Bayesian estimates of the probabilities of
each hypothesis given the observed data. Recall that the data
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Fig. 2: Detection scheme of GNSS acquisition by using the Fully Connected Structure of Deep Learning approach.

fed to the NNs is the CAF’s delay/Doppler map for the i-th
satellite, which we denote with Z; in the sequel. The proposed
methodology works on a per-satellite basis. That is, the {m, n}
element of the input matrix is defined as

Zi]mn = |Ci (7] [£aln) |7 (i

where 7 and f; are vectors containing the tested delay and
Doppler-shifts, respectively. We use the convention that [a],,
represents the m-th element in vector a and that [A],, ,
provides a shortcut for the element of A in the m-th row
and n-th column.

In the Bayesian sense, the information of the models is
gathered in their a posteriori distribution after observing the
data. An optimal (Bayesian) test between Hg and H; is given

by the ratio
Z;,) "
p(HolZ:) #,
in which case we basically favor the model with largest a
posteriori probability. This can be further expanded in terms
of the likelihood and a priori distributions as

p(Zi|H1) P(Hy) "
p(Zi[Ho) P(Ho) 12,

where we readily identify that P(7{;) denotes the a priori prob-
ability of the ¢-th hypothesis. In the absence of better priors,
we may assume equally likely hypotheses P(Hg) = P(H1) =
1/2. Otherwise, we might incorporate that information in the
hypothesis test, resulting on the adjustment of a threshold ~.
The resulting test statistic is such that

Zi|H,) Ha
T(z,) 2 P&
2= Sz =

which would substitute the standard acquisition test defined in
(7). Since the test statistic is a ratio of probabilities, we have
that 0 < 7(Z;) < oo.

The trained NNs (explained below) are then providing the
probabilities of each of the hypotheses in (14). Therefore, the
input data would be Z; and the output of the NN would be
the estimated probability for the i-th satellite to be absent or
present in the dataset y used to build Z;.

13)

(14)

If the test in (14) is in favor of 71, then an estimate of the
delay/Doppler for the ¢-th satellite is given by the arguments
of the largest element in Z;. That is,

{r,n} = arg max (Z;])m.n (15)
such that 7; = [7], and fdJ- = [f4]a.

Neural networks (NNs) are models composed of neurons,
which are information processing units, for complex data
processing. A NN typically contains an input layer, one or
more hidden layers, and an output layer, as well as pre-
defined activation functions that connect adjacent layers. Each
layer has a specific weight, which is usually determined with
backpropagation during a training process that involves large
amounts of data with known labels [15], [16]. Remarkably,
there are implementations of DNNs that are extremely ef-
ficient, allowing for fast, real-time execution of the DNN
classifier once the network is trained. The main challenge for
DNN being to have enough training data to characterize those
effects in a data-driven manner, issue discussed in Section IV.

A. MLP

The first neural network structure that is used in this
research is the so-called Multilayer Perceptron (MLP), which
is referred to as a traditional neural network. This type of
network is comprised of one or more layers of neurons (which
consist of a row of neurons). Fig. 2 shows an exemplary
representation of this type of network. The first layer is called
the input layer, which is fed with the training dataset for learn-
ing the parameters of the (potentially several) hidden layers
that are not directly exposed to the input. During training, a
number of nodes in the hidden layer are randomly ignored
or “dropped out”, which are shown in black in Fig. 2. This
process will temporarily remove them from the network with
a given probability for all incoming and outgoing connections.
The last layer of the MLP is called output layer, follow up by a
softmax layer. The number of neurons in this last layer depends
on the number of the classes that one wants to classify since
those provide their probabilities. The softmax layer calculates
a probabilities for each possible class, given a dataset. Those
probabilities must add up to 1, and are used as in (14) in order
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Fig. 3: Detection scheme of GNSS acquisition by using the Convolutional Neural Network Structure of Deep Learning approach.

to determine which class is the most probable given an input
set Zz

B. CNN

The second artificial neural network structure considered
here is the so-called Convolutional Neural Network (CNN),
which is one of the most popular models for deep learning
in the context of learning class labels from image datasets.
A CNN can have tens or hundreds of layers, where each of
these layers learn to identify different features of an image
[17], [18]. At each layer filters are applied to each training
image and the output of each convolution image is used as an
input to the next layer.

Fig. 3 illustrates a CNN structure. In contrast to other neural
networks such as MLP, CNN is composed of an input layer,
many hidden layers, and an output layer. During training, the
input size of the CNN is fixed, the input is going through a
stack of convolutional layers with the same or different filter
sizes. In each convolution layer, the filter sweeps the input
image from left to right and up to down by using stride with
2 pixels size, which is the number of pixels that each time the
filter shifts. In the end, the convolution layers are followed by
Fully Connected (FC) layers and a final softmax layer, which
is used for classification purposes [18].

The CNN structure is shown in the box of Fig. 3 which
has several convolution and fully connected layers. Each
convolution layer consist of a number of filters (C), with filter
size (F') and channel size (D). It transforms the input images
with dimensions of WjH;D; through a set of convolution
filters, each of these filters activates certain features from the
images and creates an output with dimensions of WyHy Do
as an input to the next layer. After each layer the batch
normalization will be used to speed up learning and using the
activation function to make input as a non-linearity output. The
number of convolution layers are depend on the structure that
is using. After the last convolution layer, the CNN architecture
highlights fully connected layers in charge of a classification
task, and the output of these layers is a vector with dimensions
the number of classes (2 in this case) that will be predicted.
The output would be the predicted probabilities for each class,
as needed to compute (14).

IV. SIMULATION SETUP AND DNN TRAINING

The goal of this work is framed within the described satellite
signal acquisition process on a GNSS receiver. In particular,
we propose to use a DNN to carry out the detection (or clas-
sification) process. The results of this work are shown in next
section which are established from simulating a synthetical
dataset with the two types of NNs described earlier, namely
MLPs and CNNs.

The dataset that is used consists of 10* snapshots of, GPS
L1 C/A, 1&Q samples with different Carrie-to-Noise-density
ratio (C/Ny) varying between 30 to 45 dB-Hz, as well as
randomly generated delays between 0 to 1 ms and Doppler
shifts between —4000 to 4000 Hz. These samples are then
processed to compute the CAF over a Doppler-delay grid.
An analogy to images can be made for these CAFs where
each Doppler/delay cell is a pixel whose value is that of the
CAF, Z;. For instance, if 20 Doppler bins are considered
to acquire a GPS L1 C/A signal, those images would be
20 x 1023 dimensional. These images are fed to the input
layer of the DNN, whose output would be the classification
between presence/absence of the ¢-th satellite signal, as well as
its Doppler and delay values if present. In a supervised training
scheme, these input/output pairs are provided by labeled data
by using the aforementioned synthetic data generation.

The proposed method is based on NNs, which is using a
snapshot containing either signal-plus-noise or noise-only as
ground truth and use the classifier network with softmax layer
and dropout to classify the snapshot and predict the probability
of belonging to each class.

The model implemented with MLP structures considered
different number of fully connected layers. Each fully con-
nected layer followed up with rectified linear unit (ReLU)
activation function to allows for faster and more effective
training by mapping negative value to zero [19]. After each
layer a 1/2 dropout probability was considered. The last fully
connected layer contained two neurons, used in predicting the
class for which the input image Z; belongs to.

After defining the network structure, the training options
were specified. The network trained with stochastic gradient
descent with momentum (SGDM) optimizer with an initial
learning rate of 0.001. The maximum number of epochs, which
is a full training cycle on the entire training dataset, was set to
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Fig. 4: ROC curves for MLP and CNN using CAF generated with (a,b) 1 ms coherent integration and (c,d) 1 ms coherent

integration and 10 non-coherent integrations.

30 and at every epoch the data was shuffled. After 20 epochs
the learning rate dropped by factor of 0.1. the training progress
shows the mini-batch loss and accuracy and the validation
loss and accuracy. The loss is the cross-entropy loss and the
accuracy was defined as the percentage of inputs that the
network classified correctly.

The CNN structure that was used is very similar to the VGG
16 structure [17]. The network has 13 convolution layers and
3 fully connected layers. Each convolution layer was followed
by a batch normalization layer and a ReLu activation function.
The batch normalization layers, normalizing the activation and
gradients propagation through a network and using it between
the convolution layer and ReLu layers to speed up network
training [20]. Each fully connected layer follow up with ReLU

1219

activation function and a dropout layer with the probability
of 0.5. The last fully connected layer contains two neurons
to predict each image belongs to which class since two type
of classes are exist in this work. After defining the network
structure, the training options were specified, which were the
same as for the MLP training options.

V. RESULT

The machine learning method was implemented using the
two described types of NNs. In training, both were trained
using either coherent integration data (i.e., 1 ms coherent) or
non-coherent integrations (i.e., 1 ms coherent and 10 ms non-
coherent).
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Fig. 5: P;(vy) and Pyq(y) under 1 ms coherent integration for MLP and CNN models.

Fig. 4 to 6 shows the obtained result for both MLP and
CNN under the two integration configurations. Notice that in
this case, they are trained and tested under the same integration
configurations.

From Fig. 4, it can be observed that for low C'/Ny values
the performance of NNs is not attaining the theoretical ROC
curves. However, as C'/ Ny increases, such an approach is able
to reach theoretical limits. An explanation could be that for
low C/Ny the various NNs cannot extract the relevant features
from the image, Z;. When C/Nj, either because of an actual
power increase or longer integration times, the NN is able
to perform classification on whether the signal from the i-th
satellite is present or not.

As for a comparison between MLP and CNN architectures,
although their performance is very similar as per Fig. 4, the
results show that MLP slightly outperforms CNN classification
results.

This considerations are supported by the results in Fig.
5, where detection and false alarm probabilities are plotted
against the classification threshold (i.e. Py(y) and Py.(7)),
for different value of C'/Ny under 1 ms coherent integration.
Likewise in Fig. 6, where non-coherent values are shown. In
essence, those probability plots show that CNN achieves larger
Py, values than MLP, which causes a degradation in their ROC
curves.

The impact of low C'/Ny on ROC performance is further
explained by the histograms of the test in (14) under both
hypotheses, shown in Fig 7. Recall that one would like to
have the histograms under H, and H; as separate as possible,
which happens for large C'/Ny but clearly does not for low
C/Ny values. Whereas in the former the empirical distribu-
tions can be clearly distinguished (notice these were plot for
log T (Z;) to be visible), the former are overlapped such that a
sample from 7 (Z;) cannot me meaningfully discerned among
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Fig. 6: Py(vy) and Pf,(y) under 1 ms coherent and 10 non-coherent integrations for MLP and CNN models.

both distributions.

In the last set of results, we aim at understanding the gen-
eralization properties of these models under different receiver
configurations, namely the integration intervals. The ROC
curves for both MLP and CNN models for such experimentare
shown in Fig. 8. For both models, during training the network
is using CAF generated with 10 ms non-coherent integrations
and then for the testing part it is using the CAF generated
with 15 non-coherent integration time. These results should
be compared those reported in Fig. 4. At the light of the
plots, it seems that MLP has less generalization properties than
CNN. it shown that in both MLP and CNN models the Neural
networks performance increase by increasing the number of
the integration time even if the network is trained with less
integration interval when compared to Fig. 4(c), 4(d).

Further research is needed in understanding how learn-
ing from a configuration (e.g., coherent integration) can be
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transferred to other receiver configurations (e.g., non-coherent
integrations).

VI. CONCLUSION

This article investigated the use of machine learning models
(also known as neural networks, NNs) to learn the classifica-
tion task of detecting signals from GNSS satellites. Traditional
schemes based on correlation are optimal, and thus NNs are
not expected to outperform those in nominal conditions. The
use of NNs to substitute traditional approaches could bring
benefits when nominal physics-based models do not hold. The
article presented a proof-of-concept validating the use of NNs
for detection purposes in GNSS. Two architectures, MLP and
CNN were discussed, out of which MLP seemed to provide
slightly better results, presumably due to the simplicity of the
classification task. Future work will show the potential of such
approach in learning more complex behaviours and, ultimately,
being able to carry acquisition under contested environments.
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Fig. 8: ROC curves for MLP and CNN using different configurations to generate CAF inputs for training and testing.
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