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Abstract—GNSS denial via jamming is a low skilled attack
which can be performed by nearly anyone using tools which
are readily available through the online marketplace. Methods
of jammer mitigation such as beamforming or other active
methodologies require an estimation of the location of the
jamming signal source. There is interest in developing systems
which can be used to identify and locate the sources of broadcast
signals, either for the purposes of augmenting mitigation or for
the purposes of taking direct action to eliminate the sources of
jamming signals. One way that such localization systems might
be deployed is on rotor-wing aircraft which may be utilized to
perform synthetic aperture direction of arrival (SA-DOA). In this
contribution we propose a methodology for identifying circular
maneuver trajectories which minimize the estimation error of
performing SA-DOA using such a platform.

Index Terms—Synthetic Aperture, Cramér-Rao Lower Bound,
Bayesian Optimization, Pattern Search, Direction-of-Arrival

I. INTRODUCTION

As GNSS usage in PVT applications has become increas-
ingly ubiquitous over the past several decades, denial or
manipulation of GNSS signals has become an increasingly
critical vulnerability in many civilian and military systems [1]-
[3]. In particular, GNSS denial via jamming is a low skilled
attack which can be performed by nearly anyone using tools
which are readily available through the online marketplace.
In order to combat these types of attacks on critical systems,
substantial effort has been made into developing robust GNSS
signal processing techniques. Some of these techniques have
shown impressive results in mitigating the effect of jamming
attacks, however there are no techniques capable of completely
countering the loss of performance produced by jamming on
GNSS based PVT [4], [5]. For this reason there is interest
in developing systems which can be used to identify and
locate the sources of broadcast signals, either for the purposes
of augmenting mitigation techniques such as those which
utilize beamforming or for the purposes of taking direct
action to eliminate the sources of jamming signals. Passive
jammer localization consists of two sages: first, the direction of
arrival (DOA) of the jamming signal is estimated from several
known locations, and second, the multiple direction of arrival
estimates are used to compute an estimated location of the
signal source. The final accuracy and precision of the location
estimate depends on that of the direction of arrival estimates,
and as such it is critical that the DOA estimates be as accurate
and precise as possible.
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For some applications it is not feasible or indeed desirable to
have a fixed network of DOA estimators placed in established
locations around a possible jamming source, for reasons which
may be related to cost or mobility. For instance, antenna array
receivers for GNSS are known to be complex to implement
and bulky [6], although some solutions for the latter can
be found in the literature [7]. In these instances, it may be
necessary to perform DOA estimation based on alternative
means; for instance, deployed on a mobile platform which
can be relocated to different locations in the field in order
to perform localization synthetically. The literature contains
several examples of such systems deployed using unmanned
aerial vehicles (UAV) equipped with small fixed sensor arrays
consisting of two or three antennae or, on larger vehicles,
rotating antenna arrays such as those utilized in airborne
early warning and control (AEW&C) systems. Since jammer
localization problems often occur on a scale which is not
conducive to using large aircraft, many of these systems are
restricted to small arrays which produce DOA estimates which
are less precise, or more susceptible to error, in comparison
to arrays consisting of larger numbers of antenna elements. In
this contribution, we propose a broadcast source localization
system which utilizes the advanced maneuvering capabilities
of multi-rotor rotary-wing aircraft, including commercially
available quadcopters, to perform a method of synthetic aper-
ture direction of arrival (SA-DOA) estimation which may
be able to produce more reliable estimates than comparable
fixed-array (FA-DOA) estimation architectures deployed on
similarly sized aircraft. In addition, we propose a methodology
(see Fig. 1) in which present direction of arrival estimates may
be used to optimize the parameters of the aircraft maneuvers
used to perform SA-DOA in order to iteratively improve
the achievable estimation accuracy based on the information
inequality.

Implementation and testing of an architecture which ac-
complishes the above goals requires the completion of sev-
eral intermediate steps, as detailed in Fig. 2. This paper
discusses the derivation of a maximum likelihood estimator
for DOA estimates based on a synthetic aperture antenna, for
which we additionally provide its estimation bound provided
by the Cramér-Rao Lower Bound (CRB). In the proposed
architecture, the UAV performs an arbitrary trajectory (with
known locations thanks to, for instance, an on-board inertial
measurement unit) from which an initial DOA estimate can
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Fig. 1: Conceptual illustration of the proposed jamming lo-
calization technique. An UAV synthetizes array geometries in
order to improve DOA estimation.
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be performed. These initial estimate is required in order
to evaluate the CRB and subsequently minimize it. To that
aim, we consider two different optimization approaches to
iteratively approach a solution.
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Fig. 2: Possible System Outline

The remainder of the paper is organized as follows. Sec-
tion II introduces the signal model, derives the parameter
estimation bounds, and formulates the maximum likelihood
estimator for the problem. Section III discusses the maneuver
optimization approach through minimization of the estimation
bounds. Computer simulation results are discussed in Section
IV and the paper is concluded with final remarks in Section
V.

II. SPATIAL FILTERING OF RF SIGNALS WITH SYNTHETIC
APERTURE PROCESSING

A. Signal Model for Synthetic Aperture Processing

The complex baseband representation of a line-of-sight
(LOS) RF signal measured by a sensor is expressed as

x(t) = a(t)s(t — 7(t)) exp(—j2m fer(t)) + n(t) (1)

Here, s(t) is the baseband received signal content and a(t) is
the complex amplitude of the received signal produced when a
signal of complex amplitude v impinges on the antenna with
directional gain and relative polarization G(t) = F(¢)y(t).
7(t) is the delay caused by the propagation of the signal
through space. f. is the nominal carrier frequency of the
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transmitted signal and n(t) represents any additive noise,
except from multipath reflections.

The delays observed in the received signal are separated
into two components: the reference delay representing the
propagation time for the transmitted signal to the origin of
the local frame of reference of the receiver, and the relative
delay representing the small differences in propagation time
for different local antenna locations within that local frame of
reference. That is,

2

For small observation times and low relative velocities, the
reference delay can be approximated to be of a constant value
Tref(t) = 79, while the relative delay is expressed in terms of
the position of the receiver in the local frame and a unit vector
ty pointing in the direction of the transmitter as
Ap(t) E,p(t)

C C

T(t) = Tret + Trel -

7—rel(t) (3)

The relative delay, then, is consequently a function of the
direction of arrival 1), comprised of the relative azimuth ¢
and elevation 6 of the transmitter from the perspective of
the receiver. When we collect a set of K measurements of
this signal at the receiver, we observe a measurement vector
x e CK x1

x=(dOg)u+n, (4)

where d € CK*1 is the basis-function vector with elements
expressed in terms of the sample time ¢ as

[d]i = s(t — 7(tx)) exp(—j2m fer(tr)) - (5)

u € C! is the complex constant amplitude of the signal im-
pinging on the receiving antenna and g € C* <! is the complex
gain induced by the directionality and relative polarization of
the antenna for each of the collected samples. For complex,
real world radiation patterns this vector should be determined
experimentally, but for some hypothetical cases however this
may be computed analytically. In this paper we consider the
case where each antenna is isotropic and right-hand circularly
polarized (RHCP). Under these constraints, the value of g will
depend only on the polarization mismatch coefficient ~(¢),
which can be obtained as

d)g{Txd)g,Rz ) (6)

where the vectors ¢, 7, and ¢4 g, represent the normalized
Jones polarization vectors of the transmitting and receiving
antennas transformed respectively into a global frame of refer-
ence. This transformation requires the application of two pairs
of rotations. The first, X gy, X7, € R3*3, are defined such
that they each represent a transformation from the antenna’s
directional frame of reference (i.e. that in which the boresight
of the antenna is aligned with the z axis) into the global frame
of reference. The second, T p,, ', € R3¥3, are defined such
that they each represent a transformation from the antenna’s
relative frame of reference (i.e. that in which the z axis is
aligned with ry, and —r, respectively) into the global frame of

Yy, Yre, Y72, Tr2, TRa)
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reference. Then, given the normalized Jones vector for RHCP,
drucp = 1/vV2[1,—], O]T, we can compute

(7N
3

®g,re = P're Y RePrHCP
G910 = LreXroPrHCP
B. Cramér-Rao Bound Derivation

The Cramér-Rao Lower Bound (CRB) provides a lower
bound on the covariance for joint, unbiased estimation of the
deterministic parameters of a given model. The CRB is formed
by taking the inverse of the Fisher information matrix (FIM)

0*Inp(x; &)

defined as
) - -5

where x is the vector of measurements and £ is the vector
of parameters to be estimated. Under the assumption that the
measurement vector is distributed as x ~ CAN(u(€), Zx),
where 3, does not depend on the parameters &, application
of the Slepian-Bang’s formula yields

€))

- o (&) 1 n(§)
L =
For the model described in (4), we have
p(é) = (d(v,9) O g(¥))u (1D
with parameters
I v N | Y DR

Under the assumption of a known channel spatio-temporal
covariance matrix ¥, the FIM submatrices are given by [8],

[9]

ou'? ou
Juzuj=2éR{ (d@g)HE,?(d@g)} (13)
ou”t dog)
I, ,-—2%{0“ (dog)Ts;! u} (14)
¥i &ul 61,/)3
H
Y = 2| S @00 S (S 0gn)  05)
ou; 070
ddog)” 1ddOg) }
Jypip, =2R<{u DI u (16)
it { i Y
_ dog ., od
od Hea_1, 0
Ju = 20{u(E 02 B (S 0g| ()
The partial derivatives of d are separated as
od  od o0t(ty)
G~ ol o 1)
with
[ od ] = —§(ty — 7(tr)) x exp(§27 fer(t1)))

— 327 fes(tr — 7(tx))) x exp(§27 fer(tx)))
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and

aT(tk) if & ey

1,
[ o; ]f{c—lw, it & e v

The values of Ju/o¢; are [1, O]T for Ouw/0R{u} and
[0, j]T for du/03{u} respectively, with j the unit imaginary
operator. Finally, for g we need to compute the partial deriva-
tives of the gain matrix with respect to the DOA parameters
1. These derivatives depend on the direction of arrival 1,
as well as the radiation pattern and relative polarization of
both the transmitting and receiving antennas. For the isotropic
RHCEP case, these derivatives can be computed analytically by
applying the chain rule to (6) using the partial derivatives of
the DOA vector

2L

—sin 6 cos ¢ — cos fsin ¢
ory = | —sinfsing | ; Iry = | cosbcos¢ |; (22)
09 0
cosd 0

C. Maximum-Likelihood Validation

Under the assumption that the vector of received signal
measurements is distributed as x ~ CAN(pu(€),Xx) with
known spatio-temporal covariance matrix ¥, the probability
of observing a given measurement vector x is given by the
likelihood function

p(x;6) = !

oty O O ()T (- p(e))

(23)

from which we define the maximum-likelihood solution for
parameter vector £ as

& = argmaxp(x; €) = argmaxInp(x;€)  (24)
¢ ¢

= arggmin(x - )" S (x - p€).  (25)

Here, In p(x; £) is the log-likelihood function and the mean of
the measurements is defined as in (4).

n(§) = E{x} = (dOg)u

Finding the maximum-likelihood estimate for the parameters
& is performed by solving an optimization problem with cost
given by

(26)

A(€) = (x — ) S (x — hu)

where h = (d © g). Since the mean function (&) is linear
with respect to the measurement amplitudes u, we can formu-
late the maximum-likelihood solution for those parameters in
closed-form as

v = (W72 h) T 'h s x

27)

(28)

Substituting this back into (27) yields a new cost function in
terms of the other parameters. Eliminating terms which are
independent of the parameters € and simplifying yields the
reduced cost function

[A©)]uctm = x7=7 (WS ) RIS %, (29)
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to be maximized in this case. Recalling the definition of the
basis function d given in (5), we see that, with respect to
the parameters in 1) and Ty, the cost function given in (29) is
both nonlinear and nonconvex. Maximizing this function must
be done numerically rather than analytically using a nonlinear
optimization algorithm. Figure 3 shows the results of applying
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Fig. 3: RMSE for 50° Azimuth, various Elevation angles

(1000 Monte Carlo averages)

one such algorithm, the Nelder-Mead simplex method [10],
to the cost function found in (5) for a known, uniform
spatio-temporal covariance matrix of the form 3y ol
One-thousand trials were performed for different ground-truth
directions of arrival and a noise variance of o 1071,
The root mean squared error (RMSE) of these trials was
computed and is shown in comparison to the results of the
CRB computation described in II-B for a ground-truth azimuth
of 50° and varying elevation.

III. MANEUVER OPTIMIZATION VIA CRB MINIMIZATION

We are interested in finding the set of sensor positions p(t)
for a given observation interval Ts 4 which will yield the best
possible estimate of the parameters of interest in £. To do
this, we need to find the set of k positions which minimize
the Cramér-Rao lower bound defined in II-B. In particular, we
are interested in minimizing the mean-squared error of our
DOA estimate which can be done by minimizing the trace of
the CRB submatrix corresponding to t):

argmin Y [J()];;" V& € ¢

pP(tk),Vtx€Tsa

p= (30)

With p € R3*F, estimating this set of positions is infeasible for
even modest sample rates and observation intervals, and would
yield a solution which would not be useful in controlling the
sensor platform. Instead, we need to apply a more compact
and tractable characterization of the position of the aircraft
during the collection period.
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A. Maneuver Parameterization

To formulate our problem in a way that is independent
of the sampling rate and observation interval, we need to
identify a parameterization which yields a continuous function
of position in terms of a handful of tunable design variables.
This function defines a trajectory along which the sensor
will travel during the observation interval. This can be done
in a number of different ways, but in the case of synthetic
aperture mounted on an aerial vehicle, it is appropriate to
restrict ourselves to the set of circular trajectories incident to
the current location of the vehicle. This yields the following
characterization

p(t>:f(t7 paaaﬂa’y?pOaVO) (31)

where p is the radius of the maneuver, py and v( are the
initial position and velocity of the vehicle at the start of the
maneuver, and «, 3, and y are the yaw, pitch and roll of the
maneuver with respect to the initial position of the receiver, in
the global frame of reference. By adjusting these parameters
it is possible to form any complete or fractional circular
trajectory incident to the current location of the receiver.
Utilizing this parameterization for the position of the sensor
into the formulation for the CRB given in II-B yields the
following parameterization for the relative delay in (3) as a
function of time

ST
r
7_rel(t) = ?wf(tv paaaﬂ777p0aV0) (32)

Finally, this delay can be used to compute the value of d that
is used throughout the CRB computation.

B. Optimization Methods

The objective function to be minimized is the CRB de-
scribed in II-B parameterized by the sample positions com-
puted using (31). This nested complexity and lack of smooth-
ness excludes the possibility of minimization using gradient-
based optimization methods, so we must instead rely on direct
search methods which require evaluating only the objective
function at selected points. In our case, evaluating the objective
function means computing the Cramér-Rao lower bound for a
given set of trajectory parameters. To do so we must simulate
the action of the sensor and signal for the entire duration
of Ts4. Due to this computational cost, it is important that
we minimize the number of evaluations required to reach a
suitable global minimum. We consider two such methods for
performing this direct search optimization: an algorithm based
on generalized pattern searching (GPS) using an adaptive mesh
[11], and Bayesian optimization method utilizing an expected
improvement acquisition function [12].

1) Generalized Pattern Search: Generalized Pattern Search
(GPS) describes a family of iterative algorithms for derivative-
free unconstrained or linearly constrained optimization. These
methods work by evaluating the objective function at a fixed
set of points, called a mesh, which are located at a given
distance in different directions away from the currently esti-
mated minimum. This process is repeated for several iterations,
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with the mesh distance being adjusted depending on whether
or not the method was successful in identifying an improved
minimum in the previous iteration. When an iteration identifies
a new estimated minimum the mesh expands by a prede-
termined factor, otherwise it contracts. Application of linear
constraints in the GPS algorithm is done by application of a
barrier function of the form [13]

fx), ifxe
0, otherwise

fa(x) = (33)

where ) is the feasible set for x. In this way, values which
fall outside of the constraints are functionally discarded and
the method proceeds with the remaining points in the mesh.
The process of polling the objective function and updating the
mesh repeats until a predetermined number of iterations have
occurred, or the size of the mesh has reached a predetermined
minimum. Although these methods can be applied to problems
for which the objective function is non-differentiable or even
non-continuous, they are not guaranteed to converge to a
global minimum.

2) Bayesian Optimization: Bayesian optimization is an-
other black box approach to globally optimizing objective
functions, particularly those which are difficult or compu-
tationally expensive to evaluate or for which the objective
function is not available in a closed form. It is similar to
the pattern search algorithm in that it seeks to identify a
global minimum in as few objective evaluations as possible,
however the way in which it approaches this problem is
fundamentally different. Rather than immediately searching
the objective function for increasingly smaller values of the
objective function, Bayesian optimization operates by con-
structing a probabilistic model over the feasible domain of the
objective function. As observations are made by evaluating
the objective function at different points, the posterior is
updated and the model iteratively becomes a more refined
representation of the true objective function [12].

Determining where to sample the objective function is done
by invoking an acquisition function which quantifies the "util-
ity” of a candidate point, taking into account the uncertainty
in the probabilistic model and trading off between exploration
and exploitation. Here, “exploration” refers to sampling the
objective at points where the model uncertainty is high while,
in the context of objective minimization, while “exploitation”
refers to sampling the objective at points where the model
expectation is low. By balancing these properties Bayesian
optimization avoids becoming trapped in local minima, and in
applications where it’s useful can be exploited to find multiple
local or global minima. For our application we selected the
expected improvement acquisition function, which has the form

El(x, Q) = E[max(0, pq (Xvest) — f(x)]-

where f(z) is the objective function, @ is the Gaussian process
posterior, and Xpes; and i (Xbest) are the location and value
of its minimum. At each iteration the posterior distribution
of the model is updated using samples of the objective

(34)
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function which correspond to the maximum of this function
as computed in the previous step, and a new maximum is
computed for the next iteration. This process is repeated for a
fixed number of iterations corresponding to the total number
of allotted objective function evaluations.

IV. EXPERIMENTAL VALIDATION

To compare the two methods for CRB optimization under
the maneuver model described in III-A, we performed simu-
lated experiments assuming known signal waveform s(t) of
a form consistent with a narrowband continuous-wave (CW)
jammer modulated to a frequency appropriate for jamming
GPS L1 (1575.42 MHz). Since the CRB for a uniform circular
array is agnostic to relative azimuth, received signals were
generated for an azimuth of 50° above the xz-plane and
elevations varied from 10° — 90° above the xy-plane in
increments of 10°.

For each experiment, the initial direction-of-arrival was
first computed using maximum likelihood estimation and an
arbitrary trajectory with a radius of 2 meters in the xy-plane,
executed at a vehicle speed of 27 m/s (7 rads/sec). This param-
eters given by this maximum likelihood result were then used
to form the model for performing CRB optimization using
both the pattern search and Bayesian optimization methods.
Each method was initialized with the flat, arbitrary trajectory
used to perform initial estimation and executed for a total
of one-hundred function evaluations. After each iteration, the
minimum objective and total number of function calls for each
method was recorded. In the case of Bayesian optimization,
additional random initialization points are selected each time
the method is executed. In order to determine mean perfor-
mance the method was called fifty times for each experiment
and the results averaged.
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Fig. 4: DOA-Trace Objective function minimum using GPS
optimization. Ground truth of 50° Azimuth, various Elevation
angles.

Figures 4 and 5 show the progression of estimated minima
for the pattern search and Bayes algorithms respectively as a
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Fig. 5: DOA-Trace Objective function minimum using
Bayesian optimization. Ground truth of 50° Azimuth, various
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function the number of objective evaluations. Both methods
were successful in identifying circular trajectories which per-
form better than the initial, flat trajectory. In comparison to
each other the two methods performed similarly on average,
with the GPS methods performing slightly better on average
for evaluation counts lower than ten. This is consistent with the
approach employed by each method: while the GPS methods
are designed to rapidly converge on a local minimum, the
Bayesian methods aim to strike a balance between searching
for the minimum and mapping the function over the feasible
domain.

V. CONCLUSIONS

In this paper we have proposed a method for minimizing
estimation error in unbiased estimators by finding tunable
parameters which minimize the corresponding Cramér-Rao
lower bound. We applied this method to the problem of
direction-of-arrival (DOA) estimation in the context of GNSS
jammer localization, and showed that this approach can be
used to design trajectories for performing DOA estimation
using an antenna mounted on rotor wing aircraft. Two differ-
ent methodologies were applied to solving this minimization
problem: one using generalized pattern search and another
using Bayesian optimization with an expected improvement
acquisition function. By applying these methods in simulations
of the GNSS jammer localization scenario, we determined
that both methods perform similarly for the given scenarios.
We conclude that for the particular problem of optimizing
DOA estimation in GNSS synthetic aperture, there is not a
substantial benefit to applying more computationally complex
Bayesian optimization methods where more efficient pattern
search methods will suffice.
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