Article

Exploring dynamical phase transitions with
cold atomsinanoptical cavity

https://doi.org/10.1038/s41586-020-2224-x

Received: 27 September 2019

Accepted: 10 February 2020

Juan A. Muniz'?, Diego Barberena'??, Robert J. Lewis-Swan'?%, Dylan J. Youngd',
JuliaR. K. Cline', Ana Maria Rey"?™ & James K. Thompson'™

Published online: 29 April 2020

M Check for updates

Interactions between atoms and light in optical cavities provide a means of
investigating collective (many-body) quantum physics in controlled environments.
Such ensembles of atoms in cavities have been proposed for studying collective

quantum spin models, where the atomic internal levels mimic a spin degree of
freedom and interact through long-range interactions tunable by changing the
cavity parameters’™. Non-classical steady-state phases arising from the interplay
between atom-light interactions and dissipation of light from the cavity have
previously been investigated® ™. These systems also offer the opportunity to study
dynamical phases of matter that are precluded from existence at equilibrium but

canbe stabilized by driving a system out of equilibrium

12716 as demonstrated by

recent experiments’ 22, These phases can also display universal behaviours akin to
standard equilibrium phase transitions®****. Here, we use an ensemble of about a
million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-
Meshkov-Glick model®?%, an iconic model in quantum magnetism, and report the
observation of distinct dynamical phases of matter in this system. Our system allows
us to probe the dependence of dynamical phase transitions on system size, initial
state and other parameters. These observations can be linked to similar dynamical
phasesinrelated systems, including the Josephson effect in superfluid helium?, or
coupled atomic?® and solid-state polariton®’ condensates. The system itself offers
potential for generation of metrologically useful entangled states in optical
transitions, which could permit quantum enhancement in state-of-the-art

atomic clocks®**,

Arrays of ultracold alkaline-earth atoms with narrow-linewidth optical
transitions are the basis of the most precise atomic clocks® and are also
used for quantum simulation®and quantum information processing®.
When these atoms are placed inside an optical cavity, their long-lived
internal levels make themideal to simulate non-equilibrium quantum
magnetism, including models featuring long-range interactions medi-
ated by cavity photons.

Here we report an advance towards the goal of simulating quantum
magnetism in an optical cavity. We observe a dynamical phase tran-
sition generated by coupling a narrow-linewidth optical transition
of an ensemble of strontium atoms to a single detuned cavity mode
(Fig.1a, left).

Ingeneral terms, non-equilibrium phase transitions, characterized
by the existence of a critical point that separates phases with distinct
properties, have been described in various contexts. In driven open
systems, non-equilibrium phases are signalled by different steady
states that depend on system parameters such as pump or loss
rates’**3¢ independent of initial conditions. Conversely, here we
focus on a non-equilibrium phase transition in a closed system—
often referred to as a dynamical phase transition (DPT)—where the

non-equilibrium quantum phases are dynamical in nature: that is,
qualitatively distinct behaviours are observed below, above or at a
critical point'*"*° in terms of the time average of an order parame-
ter such as magnetization. DPTs are typically initiated by quenching
control parameters and depend on the initial state of the system.
Such DPTs have been observed experimentally in arrays of trapped
ions"” and cold gases®, as well as previously in the context of
macroscopic self-trapping?*#42, Here we demonstrate a DPT in
a system of cold atoms with global interactions mediated by an
optical cavity.

Implementation of the Lipkin-Meshkov-Glick model

A feature of our cavity simulator (Fig. 1a), compared with earlier
observations, is the use of a much larger ensemble of N = 10°-10°
cold ®8Sratoms. We use two long-lived electronic levelsin these atoms,
V) ('S(m;=0)) and |*) (°P(m;=0)) states, to mimic a spin-1/2
system (|[¥) and |1), respectively). The atoms are confined in a
one-dimensional (1D) optical lattice with anear-magic-wavelength
of 813 nm supported by the optical cavity. We operate the experiment
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Fig.1|System and dynamical phase diagram. a, An ensemble of *Sr atoms is
trapped in alD optical lattice supported by an optical cavity (left). The atoms
are coupled to asingle cavity mode with a single-photon Rabi frequency 2g and
aresonance frequency w.detuned by 4 = w. - w, from the optical atomic
transition 'Sy, ;=0 (|¥)) to *P;, m,= 0 (|1)) (with frequency w, and linewidth y).
Light leaks out of the cavity at a total rate k. The cavity is driven externally by a
laser with frequency w, that, if on resonance with an empty cavity, would
establish a coherent state inside the cavity with average intracavity photon
number 20,/k|*. As shown centre and right, for the far-detuned cavity system
in consideration, the external drive generates a transverse field that drives Rabi
flopping at frequency Q=-2g0Q,/A. The external drive detuning 6 =w, - @,
establishes alongitudinal field. The detuned cavity field generates an effective
spin exchange interaction of strength y = -g%/4 (red arrow, right). b, The
collective LMG model with transverse and longitudinal fields features a
second-order DPT between paramagnetic (P, blue) and ferromagnetic

inaregimeinwhichthe atoms couple to asingle common transverse
electromagnetic (TEM,,) mode of the optical cavity withresonance
frequency w.detuned by 4 =w.- w,fromthe atomic optical transition
with frequency w,. Here 4] is large with respect to the linewidths
of the cavity, x/(2m) = 153.0(4) kHz, and atomic transition,
y/(21) = 7.5 kHz, and also the vacuum Rabi splitting g-/N induced
by the atoms, with g the single-photon Rabi frequency 2g/(2m) =
21.8 kHz. This means that the cavity-mediated dynamics of the atoms
essentially conserves energy and can be well described by the
following Hamiltonian:

A=hy'J +hQj -hsj, (¢}

This Hamiltonian can be recast as the well known Lipkin-Meshkov-
Glick (LMG) model*?¢, which has been studied in various contexts,
including quantum magnetism. In equation (1), we have introduced
the collective spin operators ja =Y, 69/2,where 6is a Pauli operator

for the jth atom witha=x, y, zand J* =] tiJ,. The summation runs
over theindividual atomsj=1,..., Nin the cavity. The parameter y sets
the strength of the infinite-range exchange interactions mediated by
the cavity mode, and Q and 6 define the strength of the transverse and
longitudinal fields respectively (Fig. 1a). The model is realized in the
limit in which the cavity field couples identically to all atoms trapped
in the optical lattice (see Methods for modifications due to inhomo-
geneity in this coupling).

Dynamical phase diagram of the LMG model

Onvarying theratios betweenQ, §and y, two distinct dynamical phases
emerge, for which the time-averaged collective magnetization (along

=l

S
N

phases (F, red). The DPT is characterized by the long-time average of the
collective magnetization <jTZ), and its dynamics can be characterized by
trajectories of the classical Bloch vector in the pseudospin Bloch sphere
(see projection and associated sphere insets). For § = 0, in the paramagnetic
phase the trajectories circumnavigate the Bloch sphere, whereas in the
ferromagnetic phase the trajectories are trapped below the equator.

¢, The two-dimensional map shows the DPT indicated by a sharp change

in (sz) (white solid line) for 6/(yN) > -1/8. The white dashed line (6/(yN) <-1/8)
signals asmooth crossover between the two phases (see Methods). Curves for
6=0 (greensolidline, V,), Q/(xN) = 0.2 (blue solid line, H,) and Q/(yN) = 0.7
(blue dashed line, H,) are shown on both diagrams and experimentally
investigated in Figs. 2b, 3a and 3b, respectively. The dependence of the
transition point on both 6/(YN) and Q/(yN) is investigated in Extended Data
Fig.2b.

2) of the atomic ensemble (]Z) = Iimpm(l/T)JNZ(]Z(t))dt serves as an
order parameter. When all spins are initially prepared in the |V ) state
and 6=0, the system features a sharp second-order transition** between
a dynamical ferromagnetic phase with (]z> # 0 and a dynamical para-
magnetic phase with (jz> =0. This transition is indicated by the solid
greenline (V,) onthe phase diagramshowninFig. 1b, as well asits pro-
jectiononthe (]Z) versus Qplaneinthe same panelandinFig.1c. More
generally, as a function of the parameters Q and 6/(yN) = -1/8, we
observe anon-analyticity of the order parameter (]z) (indicated by a
solid white line in Fig. 1c), which marks a second-order transition
between the two dynamical phases. However, the transition line is
interrupted at a critical point §/(xN) = —1/8. Beyond this, thereis a
smooth crossover regime (indicated by a white dashed line in Fig. 1c)
inwhich the systemis ruled mainly by single-particle physics (setby 6
and Q) and has anintermediate behaviour between that of aferromag-
netand a paramagnet.

In the ferromagnetic phase (red region in Fig. 1b and c), the instan-
taneous magnetization(jz) oscillates about anon-zero time-averaged
value, and the collective pseudospin Bloch vector(J ) = ((jx>, (]y>, (]z))
remains trapped below the equator of the Bloch sphere throughout
the dynamics. This phase is dominated by the interactions which
can be understood in a mean-field approximation as
xJ T =x( ) =J2) =x(NJ/2D(N/2+1) - 2x¢])],- The term § -Jis a con-
stant when restricted to the fully symmetric spin manifold, which is
the case of interest here. The second term describes a self-induced
precession of the collective Bloch vector about the 2 axis, which effec-
tively tilts the axis of rotation of the comparatively weak transverse
field, suchthat the trajectory of the Bloch vector deformsinto an orbit
that remains below the equatorial plane.
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Fig. 2| Characteristic evolution of dynamical phases and scaling of DPT
with atom number. a, Time-traces of the mean magnetization (/) for the case
of all spinsinitially on|V), §=0and Q quenched to different values,at =0, in
the ferromagnetic (top panels) and paramagnetic (bottom panels) phases for
N=950 x10%atoms and 4/(2m) = 50 MHz. The experimental data (blue) are
compared to theoretical calculations (red lines) based on a mean-field
descriptionincluding relevant experimental details (see Methods and
Supplementary Information). Shaded theoretical region accounts for
shot-to-shot fluctuations in Q/(yN). Each point is the average of 12
experimental repetitions. b, Magnetization (/,(¢;)) for different numbers of

Conversely, the paramagnetic phase (blue regioninFig.1band c¢) is
dominated by Rabi flopping driven by the transverse field ()j;. This
term causes large oscillations of the instantaneous (]Z), and, for6=0,
the collective Bloch vector breaks through the equatorial plane and
rotates about the entire Bloch sphere.

For §=0, the transition between the paramagnetic and ferromag-
netic phases occurs at a critical drive Q. = xN/2, as shown in Fig. 1b
and c. The sharp transition in the dynamical behaviour of the system
istraced back to the change indirection of the self-generated preces-
sion proportional to 2x(]z)]z asthe Bloch vector crosses the equato-
rial plane at (jz) =0, generating an abrupt shift to large-amplitude
oscillations for Q > Q.. Typical dynamics of the collective Bloch
vector in the ferromagnetic and paramagnetic phases are shown as
insetsin Fig. 1b. The solid green, solid blue and dashed blue lines in
Fig. 1b and cindicate analogous trajectories in the phase diagram
which will be explored experimentally later in Figs. 2b, 3a and 3b,
respectively (see also Extended Data Fig. 2b and Supplementary
Fig.3forinvestigation of the transition as a function of detuning and
drive).

Probing the LMG dynamical phase diagram

In our simulator, the cavity mediates a global spin-exchange interac-
tion, whichis microscopically described by a flip-flop processin which
the emission of a photon from atom i in state | into the cavity
mode is subsequently absorbed by atomjj in state|V) (Fig. 1a, right).
Weoperateinthe regime|d| >>g-./N, where the instantaneous average
number of photonsinthe cavity mediating the interactionis muchless
thap N, and the dynamics are well described by a spin-exchange model
xJJ withcoupling constant y=-g%A (see also Extended Data Fig. 2a
and Methods). Similarly, the large detuning means that superradiant
emission does not play an active role, in contrast to previous work?.
The interaction dynamics are faster than spontaneous emission,
[xIN>y, and satisfy the hierarchy |4] > g-/N >k, y.

We realize the transverse fields Q and 6 by injecting laser light at
frequency w, into the optical cavity through one mirror, creating a
coherent driving field Qpei“’ o’ inside the cavity. In the rotating frame
at w,, thelaser light’s detuning from atomicresonance 6 = w, - w, pro-
vides the longitudinal field 6]2 in equation (1). Moreover, the applied
laser rapidly builds up a classical field within the cavity on atimescale
of approximately 1/4, which couples [V) to |[D. This realizes the

604 | Nature | Vol580 | 30 April 2020

b,

02}
S 04|
=
S osf

-0.8- 05 1.0

Q/2m) (MHz)
-1.0
1 1 1 1 1
0 0.2 04 06 058 1.0
QIgN)

atoms N=(935, 620, 320)x10° (blue, green and red, respectively) after

t;=4 psof evolution for different normalized drive strengths Q/(xN)

for 4/(2m) =50 MHz and § = 0. This measurement maps to the green solid line
(V) inFig.1b and c. The drive-strength normalization in each experimental
shotis done by spin-dependent imaging. The solid black line indicates the
simulated average (0-6 ps) as a function of the normalized drive including
dephasing sources. The inset shows the magnetization versus non-normalized
transverse field strength Q for the same data sets. All error bars in experimental
data are statistical (10).

transverse field ij in equation (1), where Q =-2g0,/A. We adopt the
convention that this transverse field is oriented along X in the pseu-
dospin coordinate system such that by jumping the phase of the laser
light, we are able to create transverse fields oriented along any direction
inthe pseudospinx-yplane. Furthermore, the experimentis realized
with a standing wave cavity, where incommensurate lattice and drive
wavelengths generateinhomogeneous Q and y parameters compared
withtheideal case presented above. This leaves unchanged the generic
features of the phase diagramin Fig. 1, but quantitatively modifies the
phase boundary.

DPT in absence of longitudinal field

In Fig. 2, we show experimental observations of the characteristic
dynamics and DPT. We begin with all atoms in|4) and then quench
Ofromzerotoaspecific value at ¢ = 0. After a variable evolution time,
we rapidly freeze the atomic dynamics by quenching Q> 0 and creat-
ing strong single-particle dephasing of the ground state. The atomic
magnetization (]Z> and atom number N are then measured with high
efficiency using fluorescence in combination with electron shelving
and state-dependent displacements (see Methods and Extended
DataFig.1).

For the time traces presented in Fig. 2a, we map the magnetization
across different drive strengths with fixed § = 0. For drives deep in the
ferromagnetic phase (Fig. 2a, top left), we observe small-amplitude
oscillations that are in excellent agreement with our theoretical model
based on a mean-field description of the system (see Methods and
Supplementary Information). Close to the experimental critical point
(Fig.2a, toprightand bottom left), the dynamics become more compli-
cated owing tothe complexinterplay betweeninteractions, drive and
single-particle decoherence due to undesirable atomic motioninthe
optical lattice (see Supplementary Information and Supplementary
Figs.1and2). Deepinthe paramagnetic phase (Fig.2a, bottomright), we
observe dynamics of the magnetization consistent with single-particle
Rabi flopping with frequency Q and in good agreement with our simu-
lation. Damping of the oscillations occurs predominantly because of
inhomogeneity in the coupling of the spins to the common cavity mode,
shot-to-shot fluctuations in Q/(yN) (attributed mostly to atom number
fluctuations at about the 5% (root mean square, r.m.s.) level) and atomic
motioninthelattice. Spontaneous emission and decoherence related
toleakage of photons from the cavity are negligible. We include these
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Fig.3|Characterization of the DPT as afunction of longitudinal field for
two different transverse field values at fixed yN. a, b, The atomic
magnetization(Jf,(¢;)) at ;=4 psis measured as a function of the normalized
drive detuning 6/(|x|N) for cavity detunings 4/(2m) = +50 MHz (red, +50 MHz;
blue, —-50 MHz) for two different drive strengths: (a) 2=0.070(3)yNand

(b) 2=0.44(1)yN.Theinner edges of theresonant featuresinaindicate asharp
transition from ferromagnetic to paramagnetic phases as|§|isincreased. In
contrast, the corresponding crossover inbis smoothed. Numerical
simulations are shown as blue and red solid lines with corresponding shaded
regions. The grey-shaded areaindicates the non-interacting limit of Rabi
flopping. Measurementsinaand b map, respectively, to cutsrepresented by
thebluelinesH;and H,inFig.1band c. Allerror barsin experimental dataare
statistical (10).

effectsinour theoretical model (Fig. 2a, red solid line), and fluctuations
inQ/(xN) areindicated by the red shaded regions. Typically, we notice
that the experimentally calibrated parameters overestimate the value
of Q/(xN) by about 10% compared with the numerical simulations.
We attribute this systematic disagreement to drifts on the calibra-
tion parameters and to details not captured by the theoretical model
(see Supplementary Information).

We characterize the behaviour of the DPT with system size by meas-
uring <jz(tf)> attime ¢;=4 ps for different atom number Nwhile initial-
izing every atom in|V) for § = 0 in Fig. 2b. Measuring (jz) at a fixed
time serves as a proxy of the long-term time-averaged magnetization,
as considerable damping is caused by the previously mentioned effects.
In the Fig. 2b inset, we observe a transition in the magnetization at
different values of the transverse field Q, depending on atom number
N.The dependence of the transitionas afunction of systemsize is dem-
onstrated by re-scaling the corresponding drive as Q/(yN), as shown
inthe main panel of Fig. 2b, analogous to the green curvein Fig.1band
c.Weobserve collapse of the data and a critical drive Q2P = 0.35(3)xN.
A comparison to theoretical calculations using time-averaged mag-
netization (see Methods) shows reasonable agreement (solid black
line). The shift of the critical point relative to theideal collective model,
0./(xN)=1/2,is predominantly attributable to the spatialinhomogene-
ity in the coupling of the atoms to the cavity mode (see Methods).
Other smallfactorsinclude single-particle decoherence of the atoms,
which also contributes to the smearing out of the sharpness of the
transition observed in the ideal system (Fig. 1b). Nevertheless, a clear
transition can be observed, as shown by comparing to the theoretical
calculation.

DPTs at fixed transverse fields

The DPT canalso be probed using our ability to controllably introduce
alongitudinal field proportional to 6]Z by detuning the injected light
from the atomic transition, as shown in Fig. 1b. In Fig. 3, we map out
the response of the system to the drive detuning § by measuring the
order parameter (]Z(tf)) at t;=4 ps for two fixed values of the drive
strength Q above and below the (6 = 0) critical point, QS*?, and for two
opposite cavity detunings 4/(2m) = £50 MHz.

We observe a sharp transition in the order parameter (]Z) versus
drive detuning, separating the ferromagnetic and the paramagnetic
dynamical phases for a drive below the observed critical point Q$*P
(blue solid line, H;, in Fig. 1b and c). This is plotted in Fig. 3a with
0=0.070(3)xN < Q7" We observe sharp transitions at the inside edges
of the resonant features, which occur symmetrically for each 4 at
6:./[xN1=F 0.27(2). The critical value of §. and the gradual decrease in
(]Z> for large detuning show good agreement with a mean-field calcula-
tion. The robustness of the sharp transition is demonstrated by the
symmetric response of the magnetization for 4 < -4 and thus of the
interaction shift yN < —xN.

Conversely, when the driveis tuned above Q$*°, O = 0.44(1)xN > QS*P
(Fig. 3b), indicated by the blue dashed line, H,, in Fig. 1b and c, we
observe a smoother crossover between the paramagnetic and ferro-
magnetic phases about the detuning 6./[xN| = £ 0.04(3) in agreement
with the mean-field calculation. Tuning § <. (4 > 0) reduces the influ-
ence of the collective interactions, and the magnetization resembles
the prediction of single-particle detuned Rabi flopping.

Inboth cases, the response of the system to 6 can be understood by
interpreting the single-particle shift and interactioninequation (1) as
anonlinear detuning proportional to (2)((]2) + 6)]2, which competes
withthe coherent drive. Depending on the sign of the interaction and
theinstantaneous magnetization, the single-particle termécaneither
cancel or enhance the contribution of the interactions relative to the
coherent drive, tuning the system between the ferromagnetic and
paramagnetic dynamical phases. The predominant role of the interac-
tions in the dynamics, especially below the critical point, can be
observed by contrasting with the purely single-particle model of
detuned Rabi oscillations (grey shaded area), which predictsaLorent-
zian lineshape centred at 6=0.

Sensitivity to initial condition

The single-particle control achievable in our experimental platform
allows us to explore the DPT as a function of the initial state, as shown
inFig. 4. Specifically, we are able to demonstrate that the critical point
ofthe transitionis state-dependent, by preparing the collective pseu-
dospinindifferent positions onthe Bloch sphere. For example, we can
prepare the system with Q < QP such that the initial collective states
near the south pole remained trapped below the equator, yet there
also existinitial states prepared further towards the equator that exhibit
large oscillations around the Bloch sphere characteristic of the
paramagnetic phase.

Probing the response of the dynamics to differentinitial conditions
allows us to establish a connection between the DPT in our effective spin
model and the phenomena of macroscopic self-trapping andJosephson
tunnelling observed in coupled atomic condensates®® and solid-state
polariton condensates®. Figure 4a schematically shows a double-well
atomic condensate, where the initial magnetization of the collective
state onthe Bloch sphere is analogous to the initial population imbal-
ance between the wells, while the azimuthal angle maps to the relative
phase difference of the condensates. Similarly, the ferromagneticand
paramagnetic phases can berelated to the self-trapped and tunnelling
phases respectively*.

InFig.4c, we plot the measured magnetization after 4 ps of evolution
apolar projection of the Bloch sphere for different drive strengths Q,
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Fig.4 |Dependence of dynamical phases oninitial conditions. a, Theinitial
stateon the Bloch sphere and subsequent dynamics of the spin model can be
mapped to that of atomic condensatesin adouble-well potential, described by
coherentcomplexamplitudesin the left and right wells, «, and ag, respectively.
Populationimbalance maps to the magnetization (/,=|a,|* - |ag|?) and the
relative phase of the condensate wavefunctions maps to the azimuthal angle of
thespinstate (Ag). As time evolves, the populationimbalance either oscillates
asatoms tunnelback and forth between the wells (tunnelling phase) or remains
approximately constant (self-trapped phase). b, The initially prepared spin
state canbe parameterized in terms of the projection onto the equatorial plane

r= AI(N/2)2 N (]Z(O)>2 and therelative azimuthal phase Ag between theinitial
collective Bloch vector and the coherent drive (top; see Methods). The plot of
(J,(t)) (bottom) indicates typical dynamics in thered and blue regions shown in
theadjacent panel of c. ¢, Colour map of (/,(¢;)) at t;=4 ps of evolution, plotted
inapolar projectionofthe Bloch sphere with coordinates defined by the initial
conditionasinb (initial conditions are always below the equator; they are
shown above the equator in the figure to simplify visualization). Left (right)
panels show simulated (experimental) results for {/,(¢;)) at ¢;=4 ps of evolution
for different normalized drives Q/(xN).

aswescantheinitially prepared state J(0). Here, the radial coordinate
maps to the magnitude of the projection of J(0) onthe equatorial plane
(for (]Z(O)) <0), and the angle A¢ maps to the relative phase between
the coherent drive and J(0) (see Methods). As we increase the drive
strength, the set of initial conditions that lead to the ferromagnetic
phase shrinks (red region) while also becoming increasingly asym-
metric about the south pole. Both of these features are in qualitative
agreement with our theoretical calculations, also shown in Fig. 4c,
which take into account coupling inhomogeneities, dephasing and
shot-to-shot fluctuations on Q/(yN). Quantitative differences are
predominantly due to neglecting axial motion of the atoms in the
theoretical model.

Conclusion

The demonstration of the cooperation and competition between
coherent drive and infinite-range interactions in an optical transition
opens a path to the quantum simulation of richer spin models and
out-of-equilibrium physics. For example, more complex spin-spin
couplings can be engineered by using the available Zeeman sublev-
els of the °P, state with two different cavity polarizations®. Moreover,
in the presence of additional inhomogeneous terms, our system can
explore dynamical phases predicted to exist in Bardeen-Cooper-Schri-
effer superconductors***, and by modulation of the transverse field
our platform should be able to realize the archetypal model of a
kicked top*¢, relevant for explorations of quantum chaos and
scrambling dynamics®. Lastly, our investigation of non-equilibrium
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dynamics with the *8Sr ('S,—>P,) optical transition canlead to insight into
how to generate entangled states for quantum sensing with the
long-lived ¥Sr (!S,—P,) optical transition used in state-of-the-art
atomic clocks®.
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Methods

Experimental description

Our experiment begins by loading up to 10°%Sr atoms from a
magneto-optical trap into a one-dimensional optical lattice withinan
optical cavity, as we have described previously>**~°, The lattice has
wavelength 813 nm. This lattice is nominally near-magic with respect to
theultra-narrow millihertz'S, P, clock transition at 698 nm, but can
be made near-magic-wavelength for our optical transition at 689 nm
(m,=0states), 'S, > P, by setting the angle between the linear polari-
zation of the lattice and the quantization axis. The near-magic wave-
length reduces potential dephasing due to the transverse spreading of
the atoms in a non-magic trap. We estimate residual inhomogeneous
broadening due to the lattice to be below 2 kHz. The lattice spacing
isincommensurate with the intracavity probe standing wave, lead-
ing to inhomogeneous coupling to the cavity mode. A sketch of the
system is shown in Extended Data Fig. 1a. The atoms are laser-cooled
to14 pKandtrappedinthe optical lattice, with typical axial trap oscil-
lation frequency w,,/(21)=200 kHz. The atom number is measured
using fluorescence imaging on the dipole-allowed'S, > 'P, transition at
461nm, anditis calibrated by comparing it with the vacuum Rabi split-
ting when the cavity is on resonance with the atomic transition (4=0),
asdetailed in ref. *8, We determine 4 =0 and § =0 from measurements
ofthesymmetry of the collective vacuum Rabi splitting. The measured
cavity linewidth is x/(2m) =153.0(4) kHz. The cavity length is adjusted
using piezoelectric actuators, such that it can be kept at a detuning
Aduring the experiment.

Thecavity isdriven for atime by anear-resonant laser thatrealizes
acoherentdriving field ()pei“’Dfin the cavity, asshownin Extended Data
Fig. 1, where Q, is related to the input power P by the expression
Q= [Kk,P/(2hw ), with k=T, /(T + T)). Here, we define T, and T, as
the single-mirror power transmission and loss coefficients, 105 ppm
and 23 ppmrespectively. Thedriveis turned onand offin approximately
10 nsusing anin-fibre electro-optical modulator (EOM), which creates
asideband at detuning 6 while other frequency components are far
fromresonance and suppressed by being even further fromresonance
with the cavity mode. We apply a strong magnetic field perpendicular
to the cavity axis to define the quantization axis. The probe light is
polarized along the magnetic field direction such that the system is
an effective two-level system [V) = 'Sy, m;=0) and |1 =*P,, m;=0)
transition. For amore complete energy level diagram, see Extended
DataFig.1c).

To observe the DPT, we need to be able to take a snapshot of
the magnetization (fz) after some period of dynamical evolution. To
achieve this, we have developed a technique to freeze the dynamics
quickly and then apply state-dependent spatial displacements of the
cloud such that the populations in the ground and excited states N,
and N, areimaged on two different regions of a charge-coupled device
(CCD) (Extended Data Fig. 1b).

After the drive is applied for some time 7, as shown in the time
sequence in Extended Data Fig. 1d, we turn off the coherent drive by
extinguishing the applied EOM sideband. To effectively count atoms
inbothexcited and ground state immediately after the drive, and freeze
any dynamics that could be caused by spontaneous emission or the
transient decay of the cavity field, we shine astrongly focused 461-nm
beam along the 2 axis and apply a strong 688-nm shelving beam. The
461-nmbeamimmediately stops the dynamics asit dephases the atoms,
overwhelming the single particle rotation and any collective interac-
tions. In addition, the 461-nm beam exerts a radiation pressure force
that givesamomentumkick to the ground-state atoms, causingthem
to move away from the trapping region. Simultaneously, the shelving
beam optically pumps excited-state atoms to the metastable P, , states
(Extended DataFig.1c). We apply the shelving pulse for 5 ps. For scale,
at 2 pus, we observe that >90% of the atoms in the excited state are
shelved.

To finish our state-dependent detection, we allow for a short time
of flight (about 100 ps) so that the momentum kick applied to the
ground state atoms s translated into a displacement in space of a few
100 pum. We then optically pump the shelved atoms back to *P; using
679-nmand 707-nm light applied for 200 ps. The atoms then decay to
the ground state via single-atom decay with time constant 21 ps. We
then perform fluorescence imaging for 50 ps to observe the number
of atoms in the two spatially resolved clouds as shown in Extended
Data Fig. 1b. This allows us to measure the magnetization
<j2> =(N,—N,)/(2(N, + N,)) and total atom number N=N, + N, inasingle
shot. We found that the whole process efficiency is above 98%, limited
mostly by the efficiency of the shelving process.

InFig. 3, we change the drive detuning § by changing the frequency of
theradiofrequency pulse applied to the EOM. The grey shaded arearep-
resents ther.m.s.amplitude for Rabi oscillations withoutinteractions,
thatis, y=0in our model, and the corresponding r.m.s. magnetization
is calculated simply as

2
el @
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In Fig. 4, the initial state preparation is accomplished by preparing
each spinin[¥) and then rotating the spins with a strong drive Q> Q.
for some chosen time. At this point, ¢ = 0, the system has acquired a
magnetization (]Z(O)). We then simultaneously shift the phase of the
driving field by A¢ - t/2 and its amplitude to some Q < Q_and evolve
for a fixed time, typically 4 ps. The phase and amplitude jumps
are accomplished by changing the phase and amplitude of the radiof-
requency tone driving the EOM. We are then able to initialize the col-
lective pseudospin Bloch vector at different positions on the Bloch
sphere, such that (]Z(O)) and A¢ define the polar and the azimuthal
angles, respectively, as indicated in the figure in the main text. As the
phase of the driving field naturally defines the X and y axes for the spin
degree of freedom, our protocol can equivalently be viewed as prepar-
ing the collective Bloch vector at analogous positions on the
pseudospin Bloch sphere.

Model and simulations

The dynamics of the experimental system are modelled by a
master equation for the density operator g of the complete atom-light
system,

dp i~ A o R R

Ao = oo D1+ LIPT+ L1+ L 151 ®
Here, the Hamiltonian H,,, = H, + F, + Hy, issplitinto three contributions
characterizing the atoms, pumping of the cavity field and atom-light
interaction respectively:

AW, n
Hy=5 2067 )
l
AL =wa'a+ 0 (ae +a'e o) ®)
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Hy = Zgi(agi +a6;) (6)
i

where d(a")is the annihilation (creation) operator of the cavity mode
and the sums are taken over i =1,...,N atoms. To reiterate, w, is the
frequency of the atomic transition, w. the frequency of the relevant
cavity mode, Q, the effective amplitude of the injected field and w, the
corresponding frequency. The spatial dependence of the coupling is
characterized by g;=gcos(kj) and k=114, /A, where 2gis the single-photon
Rabi frequency at an antinode of the cavity mode. This form arises
because the magic wavelength of the 1D optical lattice A, = 813 nm s



incommensurate with the wavelength A.= 689 nm of the cavity mode
to which the atomic transition is coupled. For simplicity, we take the
summationtorunoveri=1,2,..., Ntotallatticesites, such that each site
is assumed to be occupied by only a single atom. In reality, there are
about 10’ relevant lattice sites, and each is occupied by about 10>-10°
atoms, butas we assume contact interactions are not relevant and the
atom-light couplingis consistent across the entire atomic sample, this
simplification is reasonable.

Decoherence due to leakage of photons from the cavity at rate k is
described by the Lindblad term

"a) @)

A K oaaat ATM A A

Lclp1=7(2apa -aap-pa

while spontaneous emission on the atomic transition at rate y and

single-particle homogeneous broadening of the ensemble at rate y,
aredescribed by

clp1=2 ¥ 26,65 -616:p - 570 ®)
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The latter is attributed to a range of effects, including undesirable
motion of the atoms in the optical lattice, and is discussed in more
detail in the Supplementary Information.

The simulations presented in Figs. 2-4 are the result of numerical
solution of equation (3) within the mean-field approximation (with the
exception of the lower panels of Fig. 2a) which include additional
effects due to axial motion that are discussed in the Supplementary
Information. Specifically, we solve the equations of motion for
0,= (67,46, (67)) and (@), and factorize higher-order moments
ofthe operators, forexample, (6,?(6}) = (6{)(6}). Further detailsregard-
ing the numerical simulations can be found in the Supplementary
Information.

The effective spin model that describes the nonlinear atomic dynam-
icsthroughout this manuscriptis obtained from the atom-light model
(equation (3)) by separate adiabatic elimination of the injected field
and intracavity fluctuations, and the full calculation is detailed in the
Supplementary Information. Here, we merely present the resulting
Hamiltonian for the atoms:

N 5 QO ,.x hé
H-ﬁgxyof hY 56i-7 Yot (10)
where y;=-gg/A, Q;=-2g0,/Awith6=w,-w,andA = w - w,. More-
over, we have assumed |A|> k, g-/N, Jgﬁp, §.Inthelimit k= 2nm for
n €7, thatis, uniform atom-light coupling g; > g, we recover the col-
lective LMG model of equation (1).

Although in the experimental platform the atom-light coupling g;
is spatially varying owing to the incommensurate cavity and lattice
wavelengths, the qualitative physics we explore is still consistent
with the framework of the collective LMG model. Specifically, while
the simulations of Figs. 2-4 take the proper form of g;into account
(see Supplementary Information), we observe that features of the
detailed inhomogeneous modelsuch as the critical point and dynamical
timescales are consistent with the collective model upon a rescaling
of the atom-light coupling.

Forweak drives deepinthe ferromagnetic phase, the collective model
replicates the quantitative predictions of the inhomogeneous model
uponreplacement of the atom-light coupling with the r.m.s. average,
g~ g/J2andthusy~ x/2and Q- Q/2. This approximationis supported
by comparison to experimental results for the period of the weak oscil-
lations deep in the ferromagnetic phase, which are expected to be
proportional to1/(yN). In Extended Data Fig. 2a we extract this period

from the experimental data as a function of cavity detuning 4, which
is equivalent to varying the interaction strength x =< 1/4. We confirm
that thefitted slope agrees with the xy - x/2 correction forinhomogene-
ous atom-light coupling.

As the drive is increased, the rescaling required for quantitative
comparison changes. Specifically, comparing to the critical point
0o/ (yN) obtained from a numerical calculation of the inhomogene-
ousmodelinthe absence of decoherence, we find that the correspond-
ing collective model requires arescaling g > 0.62g, and thus y > 0.38y
and Q- 0.620, tomatch thecritical va]ue()tche‘”y/ (YN) = 0.3L.Thereduc-
tion of this value below the true collective critical drive Q./(yN) =1/2is
consistent with that observed experimentally (Q5*P/(xN) = 0.35(3)).

Mapping the phase boundary

InFig.1b, ¢, we present the system phase diagram (under the assump-
tion of uniform atom-light coupling), where we map the magnetization
(]Z> as a function of the probe detuning 6 and drive amplitude Q. A
sharp boundary separates the dynamical phases for Q/(xN)50.65,
shownby the solid white line in Fig. 1c. However, as the drive is further
increased and for 6/(yN) < -1/8, the boundary becomes a smooth
crossover, as shown by the dashed white line in Fig. 1c.

Using similar results to those shown in Fig. 3, for the inhomogene-
ouscaserelevant for experiment we are able to map out this boundary
and define a critical detuning 6. between the two dynamical phases
for different fixed drive strengths Q. We identify these values by
looking at the maximum gradient on each of the experimental
and numerical (]z) against § plots shown in Fig. 3. In Extended Data
Fig. 2b we plot §. against Q (points) and compare with numerical
simulations (solid lines) for two opposite cavity detunings
A/(2m) = £50 MHz. For values above Q/(xN) = 0.31, the solid traces do
not represent a strict phase boundary but rather characterize the
crossover region, analogous to the crossover region in Fig. 1c for the
homogeneous case.

In the Supplementary Information, we derive an expression for the
boundary between the two dynamical phases based on the model pre-
sented in equation (1) inthe mean field limit. In the homogeneous case,
the phase boundary Q_(6) is, for 6/(yN) >-1/8:

1/2
0(6) 1] (. 6, 26) 3(86 (.85
N _2{2(1 xNj(l XNJ [XN 1j Z[HXNJ } an

Toaddresstheinhomogeneous coupling presentin our experiment,
werescaleg - 0.62g and thus y~> 0.38yand Q > 0.62Q in this equation
asdescribed earlier. Acomparison of the rescaled equation (11) to the
experimental dataisshown astheblack tracesin Extended DataFig.2b
for two different detunings.

Data availability

Datarelevant to the figures and conclusions of this manuscript are
available at https://doi.org/10.5061/dryad.mgqnk98w9°.,

Code availability

The codes used in the analysis of experimental data and to carry out
associated theoretical calculations are available from the correspond-
ing authors upon reasonable request.
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Extended DataFig.1|Experimental platform.a, Anoptical cavityisdrivenby b, Atypical fluorescenceimage captured ona CCD, showingthe state-resolved
a689-nm coherent field that establishes anintra-cavity field ()pei“’P‘, whichis imaging technique. The N excited state atoms that were shelved into *P,, , while
near resonance with the'S, to P, transition in ®Sr. Inside the cavity, an thefreeze/push beamwas applied remain near the trapping region. The N,
ensemble of atomsis confinedinalD opticallattice at 813 nm. Different lasers ground-state atoms are pushed away from the trapping region. Based on their
areapplied for shelving excited-state atoms into long-lived metastable excited spatial location, the atoms assigned to be in the excited (ground) state are
states, for freezing the system dynamics, for applying aradiation pressure shownin false colour blue (orange). ¢, Therelevant energy levels for %Sr, the
force that pushes groundstatesinadirection transverse to the cavity axis, for laser wavelengths and their functions. d, Experimental timing sequence and
optically pumping atoms from long lived metastable excited states back to the typical timescales.

ground state, and for fluorescence imaging of atomsin the ground state.
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Extended DataFig.2|Probing many-body dynamics and mappingthe
phaseboundary. a, Oscillation period as function of the cavity detuning 4 for
20,/(Ng)=0.104(4), 6=0and atoms starting in|{). Blue points are
experimental values, solid red line represents the mean-field prediction for
thesamedriveand atom number, and the shaded red arearepresents typical
experimental fluctuations on2Q,/(Ng). The period is extracted from sinusoidal
fitstodataasinFig.2a, afterremovingalinear term caused by the
single-particle dephasing effects. The mean-field value (red solid line) is
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T,sc=21/(Nx) with the effective replacements due toinhomogeneous coupling
asdiscussedin Methods. Measurements are takenin the dispersive limit where
A>-/Ng.b,Critical detuning 6. as function of the drive 4 for 4/(21) = +50 MHz
(red and blue points, respectively). We also plot the theoretical prediction for
the phaseboundary (equation (11)) with rescaled parameters, and predictions
ofthe numerical model (solid lines) including uncertainty based on the typical
fluctuationsinQ/(xN). Error bars are statistical (10).
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