
602  |  Nature  |  Vol 580  |  30 April 2020

Article

Exploring dynamical phase transitions with 
cold atoms in an optical  cavity

Juan A. Muniz1,3, Diego Barberena1,2,3, Robert J. Lewis-Swan1,2,3, Dylan J. Young1,  
Julia R. K. Cline1, Ana Maria Rey1,2 ✉ & James K. Thompson1 ✉

Interactions between atoms and light in optical cavities provide a means of 
investigating collective (many-body) quantum physics in controlled environments. 
Such ensembles of atoms in cavities have been proposed for studying collective 
quantum spin models, where the atomic internal levels mimic a spin degree of 
freedom and interact through long-range interactions tunable by changing the 
cavity parameters1–4. Non-classical steady-state phases arising from the interplay 
between atom–light interactions and dissipation of light from the cavity have 
previously been investigated5–11. These systems also offer the opportunity to study 
dynamical phases of matter that are precluded from existence at equilibrium but 
can be stabilized by driving a system out of equilibrium12–16, as demonstrated by 
recent experiments17–22. These phases can also display universal behaviours akin to 
standard equilibrium phase transitions8,23,24. Here, we use an ensemble of about a 
million strontium-88 atoms in an optical cavity to simulate a collective Lipkin–
Meshkov–Glick model25,26, an iconic model in quantum magnetism, and report the 
observation of distinct dynamical phases of matter in this system. Our system allows 
us to probe the dependence of dynamical phase transitions on system size, initial 
state and other parameters. These observations can be linked to similar dynamical 
phases in related systems, including the Josephson effect in superfluid helium27, or 
coupled atomic28 and solid-state polariton29 condensates. The system itself offers 
potential for generation of metrologically useful entangled states in optical 
transitions, which could permit quantum enhancement in state-of-the-art  
atomic clocks30,31.

Arrays of ultracold alkaline-earth atoms with narrow-linewidth optical 
transitions are the basis of the most precise atomic clocks31 and are also 
used for quantum simulation32 and quantum information processing33. 
When these atoms are placed inside an optical cavity, their long-lived 
internal levels make them ideal to simulate non-equilibrium quantum 
magnetism, including models featuring long-range interactions medi-
ated by cavity photons.

Here we report an advance towards the goal of simulating quantum 
magnetism in an optical cavity. We observe a dynamical phase tran-
sition generated by coupling a narrow-linewidth optical transition 
of an ensemble of strontium atoms to a single detuned cavity mode 
(Fig. 1a, left).

In general terms, non-equilibrium phase transitions, characterized 
by the existence of a critical point that separates phases with distinct 
properties, have been described in various contexts. In driven open 
systems, non-equilibrium phases are signalled by different steady 
states that depend on system parameters such as pump or loss  
rates9–11,34–36, independent of initial conditions. Conversely, here we 
focus on a non-equilibrium phase transition in a closed system—
often referred to as a dynamical phase transition (DPT)—where the 

non-equilibrium quantum phases are dynamical in nature: that is, 
qualitatively distinct behaviours are observed below, above or at a 
critical point14,37–40 in terms of the time average of an order parame-
ter such as magnetization. DPTs are typically initiated by quenching  
control parameters and depend on the initial state of the system.  
Such DPTs have been observed experimentally in arrays of trapped 
ions17 and cold gases20, as well as previously in the context of  
macroscopic self-trapping28,29,41,42. Here we demonstrate a DPT in 
a system of cold atoms with global interactions mediated by an  
optical cavity.

Implementation of the Lipkin–Meshkov–Glick model
A feature of our cavity simulator (Fig. 1a), compared with earlier 
observations, is the use of a much larger ensemble of N ≈ 105–106 
cold 88Sr atoms. We use two long-lived electronic levels in these atoms, 

m|↓⟩ ( S ( = 0))J
1

0  and m|↑⟩ ( P ( = 0))J
3

1  states, to mimic a spin-1/2  
system ( ↓⟩ and ↑⟩, respectively). The atoms are confined in a 
one-dimensional (1D) optical lattice with a near-magic-wavelength 
of 813 nm supported by the optical cavity. We operate the experiment 
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in a regime in which the atoms couple to a single common transverse 
electromagnetic (TEM00) mode of the optical cavity with resonance 
frequency ωc detuned by Δ = ωc − ωa from the atomic optical transition  
with frequency ωa. Here Δ  is large with respect to the linewidths  
of the cavity, κ/(2π)  =  153.0(4)  kHz, and atomic transition,  
γ/(2π) = 7.5 kHz, and also the vacuum Rabi splitting g N  induced  
by the atoms, with g the single-photon Rabi frequency 2g/(2π) =  
21.8 kHz. This means that the cavity-mediated dynamics of the atoms 
essentially conserves energy and can be well described by the  
following Hamiltonian:

H ħχJ J ħΩJ ħδJˆ = ˆ ˆ + ˆ − ˆ (1)x z
+ −

This Hamiltonian can be recast as the well known Lipkin–Meshkov–
Glick (LMG) model25,26, which has been studied in various contexts, 
including quantum magnetism. In equation (1), we have introduced 
the collective spin operators J σˆ = ∑ ˆ /2α j j

α , where σ̂ j
α is a Pauli operator 

for the jth atom with α = x, y, z and J J J^ = ^ ± i^
x y

±
. The summation runs  

over the individual atoms j = 1,…, N in the cavity. The parameter χ sets 
the strength of the infinite-range exchange interactions mediated by 
the cavity mode, and Ω and δ define the strength of the transverse and 
longitudinal fields respectively (Fig. 1a). The model is realized in the 
limit in which the cavity field couples identically to all atoms trapped 
in the optical lattice (see Methods for modifications due to inhomo-
geneity in this coupling).

Dynamical phase diagram of the LMG model
On varying the ratios between Ω, δ and χ, two distinct dynamical phases 
emerge, for which the time-averaged collective magnetization (along 

ẑ) of the atomic ensemble ∫J T J t t⟨ ^ ⟩ ≡ lim (1/ ) ⟨ ^ ( )⟩dz T
T

z→∞ 0
 serves as an 

order parameter. When all spins are initially prepared in the  ↓⟩ state 
and δ = 0, the system features a sharp second-order transition43 between 
a dynamical ferromagnetic phase with J⟨ ^ ⟩ ≠ 0z  and a dynamical para-
magnetic phase with J⟨ ^ ⟩ = 0z . This transition is indicated by the solid 
green line (V1) on the phase diagram shown in Fig. 1b, as well as its pro-
jection on the J⟨ ^ ⟩z  versus Ω plane in the same panel and in Fig. 1c. More 
generally, as a function of the parameters Ω and δ/(χN) ≥ −1/8, we 
observe a non-analyticity of the order parameter J⟨ ^ ⟩z  (indicated by a 
solid white line in Fig. 1c), which marks a second-order transition 
between the two dynamical phases. However, the transition line is 
interrupted at a critical point δ/(χN) = −1/8. Beyond this, there is a 
smooth crossover regime (indicated by a white dashed line in Fig. 1c) 
in which the system is ruled mainly by single-particle physics (set by δ 
and Ω) and has an intermediate behaviour between that of a ferromag-
net and a paramagnet.

In the ferromagnetic phase (red region in Fig. 1b and c), the instan-
taneous magnetization J⟨ ˆ⟩z  oscillates about a non-zero time-averaged 
value, and the collective pseudospin Bloch vector J J J⟨^ ⟩ ≡ (⟨ ^ ⟩, ⟨ ^ ⟩, ⟨ ^ ⟩)x y zJ  
remains trapped below the equator of the Bloch sphere throughout 
the dynamics. This phase is dominated by the interactions which  
can be understood in a mean-field approximation as 

J Jχ J J χ J χ N N χ J J^ ^ ≈ (^ ⋅^ − ^ ) ≈ ( /2)( /2 + 1) − 2 ⟨ ^ ⟩^
z z z

+ − 2
. The term ⋅Ĵ Ĵ is a con-

stant when restricted to the fully symmetric spin manifold, which is 
the case of interest here. The second term describes a self-induced 
precession of the collective Bloch vector about the ẑ axis, which effec-
tively tilts the axis of rotation of the comparatively weak transverse 
field, such that the trajectory of the Bloch vector deforms into an orbit 
that remains below the equatorial plane.
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Fig. 1 | System and dynamical phase diagram. a, An ensemble of 88Sr atoms is 
trapped in a 1D optical lattice supported by an optical cavity (left). The atoms 
are coupled to a single cavity mode with a single-photon Rabi frequency 2g and 
a resonance frequency ωc detuned by Δ = ωc − ωa from the optical atomic 
transition 1S0, mJ = 0 ( ↓⟩) to 3P1, mJ = 0 ( ↑⟩) (with frequency ωa and linewidth γ). 
Light leaks out of the cavity at a total rate κ. The cavity is driven externally by a 
laser with frequency ωp that, if on resonance with an empty cavity, would 
establish a coherent state inside the cavity with average intracavity photon 
number |2Ωp/κ|2. As shown centre and right, for the far-detuned cavity system 
in consideration, the external drive generates a transverse field that drives Rabi 
flopping at frequency Ω = –2gΩp/Δ. The external drive detuning δ = ωp − ωa 
establishes a longitudinal field. The detuned cavity field generates an effective 
spin exchange interaction of strength χ = −g2/Δ (red arrow, right). b, The 
collective LMG model with transverse and longitudinal fields features a 
second-order DPT between paramagnetic (P, blue) and ferromagnetic  

phases (F, red). The DPT is characterized by the long-time average of the 
collective magnetization J⟨ ^ ⟩z , and its dynamics can be characterized by 
trajectories of the classical Bloch vector in the pseudospin Bloch sphere  
(see projection and associated sphere insets). For δ = 0, in the paramagnetic 
phase the trajectories circumnavigate the Bloch sphere, whereas in the 
ferromagnetic phase the trajectories are trapped below the equator.  
c, The two-dimensional map shows the DPT indicated by a sharp change  
in J⟨ ^ ⟩z  (white solid line) for δ/(χN) ≥ −1/8. The white dashed line (δ/(χN) < −1/8) 
signals a smooth crossover between the two phases (see Methods). Curves for 
δ = 0 (green solid line, V1), Ω/(χN) = 0.2 (blue solid line, H1) and Ω/(χN) = 0.7 
(blue dashed line, H2) are shown on both diagrams and experimentally 
investigated in Figs. 2b, 3a and 3b, respectively. The dependence of the 
transition point on both δ/(χN) and Ω/(χN) is investigated in Extended Data 
Fig. 2b.
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Conversely, the paramagnetic phase (blue region in Fig. 1b and c) is 
dominated by Rabi flopping driven by the transverse field ΩĴx. This 
term causes large oscillations of the instantaneous J⟨ ^ ⟩z , and, for δ = 0, 
the collective Bloch vector breaks through the equatorial plane and 
rotates about the entire Bloch sphere.

For δ = 0, the transition between the paramagnetic and ferromag-
netic phases occurs at a critical drive Ωc = χN/2, as shown in Fig. 1b 
and c. The sharp transition in the dynamical behaviour of the system 
is traced back to the change in direction of the self-generated preces-
sion proportional to χ J J2 ⟨ ^ ⟩^

z z  as the Bloch vector crosses the equato-
rial plane at J⟨ ^ ⟩ = 0z , generating an abrupt shift to large-amplitude 
oscillations for Ω > Ωc. Typical dynamics of the collective Bloch  
vector in the ferromagnetic and paramagnetic phases are shown as 
insets in Fig. 1b. The solid green, solid blue and dashed blue lines in 
Fig. 1b and c indicate analogous trajectories in the phase diagram 
which will be explored experimentally later in Figs. 2b, 3a and 3b, 
respectively (see also Extended Data Fig. 2b and Supplementary 
Fig. 3 for investigation of the transition as a function of detuning and 
drive).

Probing the LMG dynamical phase diagram
In our simulator, the cavity mediates a global spin-exchange interac-
tion, which is microscopically described by a flip-flop process in which 
the emission of a photon from atom i in state ↑⟩ into the cavity  
mode is subsequently absorbed by atom j in state ↓⟩ (Fig. 1a, right).  
We operate in the regime Δ g N≫ , where the instantaneous average 
number of photons in the cavity mediating the interaction is much less 
than N, and the dynamics are well described by a spin-exchange model 
χ J Jˆ ˆ+ −

 with coupling constant χ = −g2/∆ (see also Extended Data Fig. 2a 
and Methods). Similarly, the large detuning means that superradiant 
emission does not play an active role, in contrast to previous work2. 
The interaction dynamics are faster than spontaneous emission, 
χ N γ≫ , and satisfy the hierarchy ≫ ≫Δ g N κ γ, .

We realize the transverse fields Ω and δ by injecting laser light at 
frequency ωp into the optical cavity through one mirror, creating a 
coherent driving field Ω e ω t

p
i p  inside the cavity. In the rotating frame 

at ωp, the laser light’s detuning from atomic resonance δ = ωp − ωa pro-
vides the longitudinal field δĴz in equation (1). Moreover, the applied 
laser rapidly builds up a classical field within the cavity on a timescale 
of approximately 1/Δ, which couples ↓⟩ to ↑⟩. This realizes the  

transverse field ΩĴx in equation (1), where Ω = −2gΩp/Δ. We adopt the 
convention that this transverse field is oriented along x̂ in the pseu-
dospin coordinate system such that by jumping the phase of the laser 
light, we are able to create transverse fields oriented along any direction 
in the pseudospin x–y plane. Furthermore, the experiment is realized 
with a standing wave cavity, where incommensurate lattice and drive 
wavelengths generate inhomogeneous Ω and χ parameters compared 
with the ideal case presented above. This leaves unchanged the generic 
features of the phase diagram in Fig. 1, but quantitatively modifies the 
phase boundary.

DPT in absence of longitudinal field
In Fig. 2, we show experimental observations of the characteristic 
dynamics and DPT. We begin with all atoms in ↓⟩ and then quench  
Ω from zero to a specific value at t = 0. After a variable evolution time, 
we rapidly freeze the atomic dynamics by quenching Ω → 0 and creat-
ing strong single-particle dephasing of the ground state. The atomic 
magnetization J⟨ ˆ⟩z  and atom number N are then measured with high 
efficiency using fluorescence in combination with electron shelving 
and state-dependent displacements (see Methods and Extended  
Data Fig. 1).

For the time traces presented in Fig. 2a, we map the magnetization 
across different drive strengths with fixed δ = 0. For drives deep in the 
ferromagnetic phase (Fig. 2a, top left), we observe small-amplitude 
oscillations that are in excellent agreement with our theoretical model 
based on a mean-field description of the system (see Methods and 
Supplementary Information). Close to the experimental critical point 
(Fig. 2a, top right and bottom left), the dynamics become more compli-
cated owing to the complex interplay between interactions, drive and 
single-particle decoherence due to undesirable atomic motion in the 
optical lattice (see Supplementary Information and Supplementary 
Figs. 1 and 2). Deep in the paramagnetic phase (Fig. 2a, bottom right), we 
observe dynamics of the magnetization consistent with single-particle 
Rabi flopping with frequency Ω and in good agreement with our simu-
lation. Damping of the oscillations occurs predominantly because of 
inhomogeneity in the coupling of the spins to the common cavity mode, 
shot-to-shot fluctuations in Ω/(χN) (attributed mostly to atom number 
fluctuations at about the 5% (root mean square, r.m.s.) level) and atomic 
motion in the lattice. Spontaneous emission and decoherence related 
to leakage of photons from the cavity are negligible. We include these 

χ

χχ

χ

χ

Fig. 2 | Characteristic evolution of dynamical phases and scaling of DPT 
with atom number. a, Time-traces of the mean magnetization J⟨ ^ ⟩z  for the case 
of all spins initially on ↓⟩, δ = 0 and Ω quenched to different values, at t = 0, in  
the ferromagnetic (top panels) and paramagnetic (bottom panels) phases for 
N = 950 × 103 atoms and Δ/(2π) = 50 MHz. The experimental data (blue) are 
compared to theoretical calculations (red lines) based on a mean-field 
description including relevant experimental details (see Methods and 
Supplementary Information). Shaded theoretical region accounts for 
shot-to-shot fluctuations in Ω/(χN). Each point is the average of 12 
experimental repetitions. b, Magnetization J t⟨ ^ ( )⟩z f  for different numbers of 

atoms N = (935, 620, 320)×103 (blue, green and red, respectively) after  
tf = 4 μs of evolution for different normalized drive strengths Ω/(χN)  
for Δ/(2π) = 50 MHz and δ = 0. This measurement maps to the green solid line 
(V1) in Fig. 1b and c. The drive-strength normalization in each experimental 
shot is done by spin-dependent imaging. The solid black line indicates the 
simulated average (0–6 μs) as a function of the normalized drive including 
dephasing sources. The inset shows the magnetization versus non-normalized 
transverse field strength Ω for the same data sets. All error bars in experimental 
data are statistical (1σ).
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effects in our theoretical model (Fig. 2a, red solid line), and fluctuations 
in Ω/(χN) are indicated by the red shaded regions. Typically, we notice 
that the experimentally calibrated parameters overestimate the value 
of Ω/(χN) by about 10% compared with the numerical simulations. 
We attribute this systematic disagreement to drifts on the calibra-
tion parameters and to details not captured by the theoretical model 
(see Supplementary Information).

We characterize the behaviour of the DPT with system size by meas-
uring J t⟨ ^ ( )⟩z f  at time tf = 4 μs for different atom number N while initial-
izing every atom in ↓⟩ for δ = 0 in Fig. 2b. Measuring J⟨ ˆ⟩z  at a fixed  
time serves as a proxy of the long-term time-averaged magnetization, 
as considerable damping is caused by the previously mentioned effects. 
In the Fig. 2b inset, we observe a transition in the magnetization at 
different values of the transverse field Ω, depending on atom number 
N. The dependence of the transition as a function of system size is dem-
onstrated by re-scaling the corresponding drive as Ω/(χN), as shown 
in the main panel of Fig. 2b, analogous to the green curve in Fig. 1b and 
c. We observe collapse of the data and a critical drive Ω χN= 0.35(3)c

exp . 
A comparison to theoretical calculations using time-averaged mag-
netization (see Methods) shows reasonable agreement (solid black 
line). The shift of the critical point relative to the ideal collective model, 
Ωc/(χN) = 1/2, is predominantly attributable to the spatial inhomogene-
ity in the coupling of the atoms to the cavity mode (see Methods).  
Other small factors include single-particle decoherence of the atoms, 
which also contributes to the smearing out of the sharpness of the 
transition observed in the ideal system (Fig. 1b). Nevertheless, a clear 
transition can be observed, as shown by comparing to the theoretical 
calculation.

DPTs at fixed transverse fields
The DPT can also be probed using our ability to controllably introduce 
a longitudinal field proportional to δĴz by detuning the injected light 
from the atomic transition, as shown in Fig. 1b. In Fig. 3, we map out 
the response of the system to the drive detuning δ by measuring the 
order parameter J t⟨ ^ ( )⟩z f  at tf = 4 μs for two fixed values of the drive 
strength Ω above and below the (δ = 0) critical point, Ωc

exp, and for two 
opposite cavity detunings Δ/(2π) = ±50 MHz.

We observe a sharp transition in the order parameter J⟨ ˆ⟩z  versus  
drive detuning, separating the ferromagnetic and the paramagnetic 
dynamical phases for a drive below the observed critical point Ωc

exp 
(blue solid line, H1, in Fig. 1b and c). This is plotted in Fig. 3a with 
Ω χN Ω= 0.070(3) < c

exp. We observe sharp transitions at the inside edges 
of the resonant features, which occur symmetrically for each Δ at 
δ χN/ = 0.27(2)c ∓ . The critical value of δc and the gradual decrease in 

J⟨ ^ ⟩z  for large detuning show good agreement with a mean-field calcula-
tion. The robustness of the sharp transition is demonstrated by the 
symmetric response of the magnetization for Δ ↔ −Δ and thus of the 
interaction shift χN ↔ −χN.

Conversely, when the drive is tuned above Ωc
exp, Ω χN Ω= 0.44(1) > c

exp 
(Fig. 3b), indicated by the blue dashed line, H2, in Fig. 1b and c, we 
observe a smoother crossover between the paramagnetic and ferro-
magnetic phases about the detuning δ χN/ = ± 0.04(3)c  in agreement 
with the mean-field calculation. Tuning δ < δc (Δ > 0) reduces the influ-
ence of the collective interactions, and the magnetization resembles 
the prediction of single-particle detuned Rabi flopping.

In both cases, the response of the system to δ can be understood by 
interpreting the single-particle shift and interaction in equation (1) as 
a nonlinear detuning proportional to  χ J δ J(2 ⟨ ^ ⟩ + )^

z z , which competes 
with the coherent drive. Depending on the sign of the interaction and 
the instantaneous magnetization, the single-particle term δ can either 
cancel or enhance the contribution of the interactions relative to the 
coherent drive, tuning the system between the ferromagnetic and 
paramagnetic dynamical phases. The predominant role of the interac-
tions in the dynamics, especially below the critical point, can be 
observed by contrasting with the purely single-particle model of 
detuned Rabi oscillations (grey shaded area), which predicts a Lorent-
zian lineshape centred at δ = 0.

Sensitivity to initial condition
The single-particle control achievable in our experimental platform 
allows us to explore the DPT as a function of the initial state, as shown 
in Fig. 4. Specifically, we are able to demonstrate that the critical point 
of the transition is state-dependent, by preparing the collective pseu-
dospin in different positions on the Bloch sphere. For example, we can 
prepare the system with Ω Ω< c

exp such that the initial collective states 
near the south pole remained trapped below the equator, yet there 
also exist initial states prepared further towards the equator that exhibit 
large oscillations around the Bloch sphere characteristic of the  
paramagnetic phase.

Probing the response of the dynamics to different initial conditions 
allows us to establish a connection between the DPT in our effective spin 
model and the phenomena of macroscopic self-trapping and Josephson 
tunnelling observed in coupled atomic condensates28 and solid-state 
polariton condensates29. Figure 4a schematically shows a double-well 
atomic condensate, where the initial magnetization of the collective 
state on the Bloch sphere is analogous to the initial population imbal-
ance between the wells, while the azimuthal angle maps to the relative 
phase difference of the condensates. Similarly, the ferromagnetic and 
paramagnetic phases can be related to the self-trapped and tunnelling 
phases respectively41.

In Fig. 4c, we plot the measured magnetization after 4 μs of evolution 
a polar projection of the Bloch sphere for different drive strengths Ω, 

δ χ

χ

χ

Fig. 3 | Characterization of the DPT as a function of longitudinal field for 
two different transverse field values at fixed χN. a, b, The atomic 
magnetization J t⟨ ^ ( )⟩z f  at tf = 4 μs is measured as a function of the normalized 
drive detuning δ/(|χ|N) for cavity detunings Δ/(2π) = ±50 MHz (red, +50 MHz; 
blue, −50 MHz) for two different drive strengths: (a) Ω = 0.070(3)χN and  
(b) Ω = 0.44(1)χN. The inner edges of the resonant features in a indicate a sharp 
transition from ferromagnetic to paramagnetic phases as |δ| is increased. In 
contrast, the corresponding crossover in b is smoothed. Numerical 
simulations are shown as blue and red solid lines with corresponding shaded 
regions. The grey-shaded area indicates the non-interacting limit of Rabi 
flopping. Measurements in a and b map, respectively, to cuts represented by 
the blue lines H1 and H2 in Fig. 1b and c. All error bars in experimental data are 
statistical (1σ).



606  |  Nature  |  Vol 580  |  30 April 2020

Article

as we scan the initially prepared state J(0). Here, the radial coordinate 
maps to the magnitude of the projection of J(0) on the equatorial plane 
(for J⟨ ^ (0)⟩ < 0z ), and the angle Δϕ maps to the relative phase between 
the coherent drive and J(0) (see Methods). As we increase the drive 
strength, the set of initial conditions that lead to the ferromagnetic 
phase shrinks (red region) while also becoming increasingly asym-
metric about the south pole. Both of these features are in qualitative 
agreement with our theoretical calculations, also shown in Fig. 4c, 
which take into account coupling inhomogeneities, dephasing and 
shot-to-shot fluctuations on Ω/(χN). Quantitative differences are  
predominantly due to neglecting axial motion of the atoms in the 
theoretical model.

Conclusion
The demonstration of the cooperation and competition between 
coherent drive and infinite-range interactions in an optical transition 
opens a path to the quantum simulation of richer spin models and 
out-of-equilibrium physics. For example, more complex spin–spin 
couplings can be engineered by using the available Zeeman sublev-
els of the 3P1 state with two different cavity polarizations3. Moreover, 
in the presence of additional inhomogeneous terms, our system can 
explore dynamical phases predicted to exist in Bardeen–Cooper–Schri-
effer superconductors44,45, and by modulation of the transverse field  
our platform should be able to realize the archetypal model of a  
kicked top46, relevant for explorations of quantum chaos and 
scrambling dynamics47. Lastly, our investigation of non-equilibrium 

dynamics with the 88Sr (1S0–3P1) optical transition can lead to insight into  
how to generate entangled states for quantum sensing with the 
long-lived 87Sr (1S0–3P0) optical transition used in state-of-the-art 
atomic clocks30.
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as atoms tunnel back and forth between the wells (tunnelling phase) or remains 
approximately constant (self-trapped phase). b, The initially prepared spin 
state can be parameterized in terms of the projection onto the equatorial plane 
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 and the relative azimuthal phase Δϕ between the initial 
collective Bloch vector and the coherent drive (top; see Methods). The plot of 

J t⟨ ˆ ( )⟩z  (bottom) indicates typical dynamics in the red and blue regions shown in 
the adjacent panel of c. c, Colour map of J t⟨ ( )⟩z f  at tf = 4 μs of evolution, plotted 
in a polar projection of the Bloch sphere with coordinates defined by the initial 
condition as in b (initial conditions are always below the equator; they are 
shown above the equator in the figure to simplify visualization). Left (right) 
panels show simulated (experimental) results for J t⟨ ( )⟩z f  at tf = 4 μs of evolution 
for different normalized drives Ω/(χN).
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Methods

Experimental description
Our experiment begins by loading up to 106 88Sr atoms from a 
magneto-optical trap into a one-dimensional optical lattice within an 
optical cavity, as we have described previously2,48–50. The lattice has 
wavelength 813 nm. This lattice is nominally near-magic with respect to 
the ultra-narrow millihertz 1S0 → 3P0 clock transition at 698 nm, but can 
be made near-magic-wavelength for our optical transition at 689 nm 
(mJ = 0 states), 1S0 → 3P1, by setting the angle between the linear polari-
zation of the lattice and the quantization axis. The near-magic wave-
length reduces potential dephasing due to the transverse spreading of 
the atoms in a non-magic trap. We estimate residual inhomogeneous 
broadening due to the lattice to be below 2 kHz. The lattice spacing 
is incommensurate with the intracavity probe standing wave, lead-
ing to inhomogeneous coupling to the cavity mode. A sketch of the 
system is shown in Extended Data Fig. 1a. The atoms are laser-cooled 
to 14 μK and trapped in the optical lattice, with typical axial trap oscil-
lation frequency ωtrap/(2π)=200 kHz. The atom number is measured 
using fluorescence imaging on the dipole-allowed 1S0 → 1P1 transition at 
461 nm, and it is calibrated by comparing it with the vacuum Rabi split-
ting when the cavity is on resonance with the atomic transition (Δ = 0), 
as detailed in ref. 48. We determine Δ = 0 and δ = 0 from measurements 
of the symmetry of the collective vacuum Rabi splitting. The measured 
cavity linewidth is κ/(2π) = 153.0(4) kHz. The cavity length is adjusted 
using piezoelectric actuators, such that it can be kept at a detuning  
Δ during the experiment.

The cavity is driven for a time τ by a near-resonant laser that realizes 
a coherent driving field Ω e ω t

p
i p  in the cavity, as shown in Extended Data 

Fig. 1, where Ωp is related to the input power P by the expression 
Ω κ P ħω= /(2 )p m p , with κm = κTm/(Tm + TL). Here, we define Tm and TL as 
the single-mirror power transmission and loss coefficients, 105 ppm 
and 23 ppm respectively. The drive is turned on and off in approximately 
10 ns using an in-fibre electro-optical modulator (EOM), which creates 
a sideband at detuning δ while other frequency components are far 
from resonance and suppressed by being even further from resonance 
with the cavity mode. We apply a strong magnetic field perpendicular 
to the cavity axis to define the quantization axis. The probe light is 
polarized along the magnetic field direction such that the system is  
an effective two-level system m↓⟩ = | S , = 0⟩J

1
0  and m↑⟩ = | P , = 0⟩J

3
1   

transition. For a more complete energy level diagram, see Extended 
Data Fig. 1c).

To observe the DPT, we need to be able to take a snapshot of  
the magnetization J⟨ ˆ⟩z  after some period of dynamical evolution. To 
achieve this, we have developed a technique to freeze the dynamics 
quickly and then apply state-dependent spatial displacements of the 
cloud such that the populations in the ground and excited states N↓ 
and N↑ are imaged on two different regions of a charge-coupled device 
(CCD) (Extended Data Fig. 1b).

After the drive is applied for some time τ, as shown in the time 
sequence in Extended Data Fig. 1d, we turn off the coherent drive by 
extinguishing the applied EOM sideband. To effectively count atoms 
in both excited and ground state immediately after the drive, and freeze 
any dynamics that could be caused by spontaneous emission or the 
transient decay of the cavity field, we shine a strongly focused 461-nm 
beam along the ẑ axis and apply a strong 688-nm shelving beam. The 
461-nm beam immediately stops the dynamics as it dephases the atoms, 
overwhelming the single particle rotation and any collective interac-
tions. In addition, the 461-nm beam exerts a radiation pressure force 
that gives a momentum kick to the ground-state atoms, causing them 
to move away from the trapping region. Simultaneously, the shelving 
beam optically pumps excited-state atoms to the metastable 3P0,2 states 
(Extended Data Fig. 1c). We apply the shelving pulse for 5 μs. For scale, 
at 2 μs, we observe that >90% of the atoms in the excited state are 
shelved.

To finish our state-dependent detection, we allow for a short time 
of flight (about 100 μs) so that the momentum kick applied to the 
ground state atoms is translated into a displacement in space of a few 
100 μm. We then optically pump the shelved atoms back to 3P1 using 
679-nm and 707-nm light applied for 200 μs. The atoms then decay to 
the ground state via single-atom decay with time constant 21 μs. We 
then perform fluorescence imaging for 50 μs to observe the number 
of atoms in the two spatially resolved clouds as shown in Extended  
Data Fig.  1b. This allows us to measure the magnetization 

J N N N N⟨ ^ ⟩ = ( − )/(2( + ))z ↑ ↓ ↓ ↑   and total atom number N = N↓ + N↑ in a single 
shot. We found that the whole process efficiency is above 98%, limited 
mostly by the efficiency of the shelving process.

In Fig. 3, we change the drive detuning δ by changing the frequency of 
the radiofrequency pulse applied to the EOM. The grey shaded area rep-
resents the r.m.s. amplitude for Rabi oscillations without interactions, 
that is, χ = 0 in our model, and the corresponding r.m.s. magnetization 
is calculated simply as

J
N Ω

δ Ω

N
⟨ ^ ⟩ = −

2 ( + )
−

2
(2)z χ =0

rms 2

2 2

In Fig. 4, the initial state preparation is accomplished by preparing 
each spin in  ↓⟩ and then rotating the spins with a strong drive Ω > Ωc 
for some chosen time. At this point, t = 0, the system has acquired a 
magnetization J⟨ ^ (0)⟩z . We then simultaneously shift the phase of the 
driving field by Δϕ − π/2 and its amplitude to some Ω < Ωc and evolve 
for a fixed time, typically 4 μs. The phase and amplitude jumps  
are accomplished by changing the phase and amplitude of the radiof-
requency tone driving the EOM. We are then able to initialize the col-
lective pseudospin Bloch vector at different positions on the Bloch 
sphere, such that J⟨ ^ (0)⟩z  and Δϕ define the polar and the azimuthal 
angles, respectively, as indicated in the figure in the main text. As the 
phase of the driving field naturally defines the x̂ and ŷ axes for the spin 
degree of freedom, our protocol can equivalently be viewed as prepar-
ing the collective Bloch vector at analogous positions on the  
pseudospin Bloch sphere.

Model and simulations
The dynamics of the experimental system are modelled by a  
master equation for the density operator ρ̂ of the complete atom–light 
system,

L L L
ρ
t ħ

H ρ ρ ρ ρ
d ^
d

= −
i

[ ^ , ^] + [ ^] + [ ^] + [ ^] (3)tot c el s

Here, the Hamiltonian H H H Hˆ = ˆ + ˆ + ˆ
tot A L AL is split into three contributions 

characterizing the atoms, pumping of the cavity field and atom–light 
interaction respectively:

∑H
ω

σ^ =
2

^ (4)
i

i
z

A
a

H ω a a Ω a a^ = ^ ^ + ( ^e + ^ e ) (5)ω t ω t
L c

†
p

i † −ip p

∑H g aσ a σ^ = ( ^ ^ + ^ ^ ) (6)
i

i i iAL
+ † −

where â a( ˆ )†  is the annihilation (creation) operator of the cavity mode 
and the sums are taken over i = 1,...,N atoms. To reiterate, ωa is the  
frequency of the atomic transition, ωc the frequency of the relevant 
cavity mode, Ωp the effective amplitude of the injected field and ωp the 
corresponding frequency. The spatial dependence of the coupling is 
characterized by gj = gcos(kj) and k = πλL/λc, where 2g is the single-photon 
Rabi frequency at an antinode of the cavity mode. This form arises 
because the magic wavelength of the 1D optical lattice λL = 813 nm is 



incommensurate with the wavelength λc = 689 nm of the cavity mode 
to which the atomic transition is coupled. For simplicity, we take the 
summation to run over i = 1,2,…, N total lattice sites, such that each site 
is assumed to be occupied by only a single atom. In reality, there are 
about 103 relevant lattice sites, and each is occupied by about 102–103 
atoms, but as we assume contact interactions are not relevant and the 
atom–light coupling is consistent across the entire atomic sample, this 
simplification is reasonable.

Decoherence due to leakage of photons from the cavity at rate κ is 
described by the Lindblad term

L ρ
κ

aρa a aρ ρa a[ ^] =
2

(2 ^ ^ ^ − ^ ^ ^ − ^ ^ ^) (7)c
† † †

while spontaneous emission on the atomic transition at rate γ and 
single-particle homogeneous broadening of the ensemble at rate γel 
are described by

L ∑ρ
γ

σ ρσ σ σ ρ ρσ σ[ ^] =
2

2 ^ ^ ^ − ^ ^ ^ − ^ ^ ^ (8)
i

i i i i i is
− + + − + −

L ∑ρ
γ

σ ρσ ρ[ ^] =
2

^ ^ ^ − ^ (9)
i

i
z

i
z

el
el

The latter is attributed to a range of effects, including undesirable 
motion of the atoms in the optical lattice, and is discussed in more 
detail in the Supplementary Information.

The simulations presented in Figs. 2–4 are the result of numerical 
solution of equation (3) within the mean-field approximation (with the 
exception of the lower panels of Fig. 2a) which include additional  
effects due to axial motion that are discussed in the Supplementary 
Information. Specifically, we solve the  equations of motion for 

σ σ σσσ ≡ (⟨ ^ ⟩, ⟨ ^ ⟩, ⟨ ^ ⟩)i i
x

i
y

i
z  and a⟨ ˆ⟩, and factorize higher-order moments  

of the operators, for example, σ σ σ σ⟨ ˆ ˆ ⟩ ≡ ⟨ ˆ ⟩⟨ ˆ ⟩i
x

j
y

i
x

j
y . Further details regard-

ing the numerical simulations can be found in the Supplementary 
Information.

The effective spin model that describes the nonlinear atomic dynam-
ics throughout this manuscript is obtained from the atom–light model 
(equation (3)) by separate adiabatic elimination of the injected field 
and intracavity fluctuations, and the full calculation is detailed in the 
Supplementary Information. Here, we merely present the resulting 
Hamiltonian for the atoms:

∑ ∑ ∑H ħ χ σ σ ħ
Ω

σ
ħδ

σ^ = ^ ^ +
2

^ −
2 (10)

i j
ij i j

i

i
i
x

i
i
z

,

+ −

where χij = −gigj/Δ, Ωi = −2giΩp/Δ with δ = ωp − ωa and Δ = ωc − ωa. More-
over, we have assumed ≫Δ κ g N gΩ δ, , ,p . In the limit k = 2nπ for 

Zn ∈ , that is, uniform atom–light coupling gj → g, we recover the col-
lective LMG model of equation (1).

Although in the experimental platform the atom–light coupling gj 
is spatially varying owing to the incommensurate cavity and lattice 
wavelengths, the qualitative physics we explore is still consistent 
with the framework of the collective LMG model. Specifically, while  
the simulations of Figs. 2–4 take the proper form of gj into account 
(see Supplementary Information), we observe that features of the 
detailed inhomogeneous model such as the critical point and dynamical 
timescales are consistent with the collective model upon a rescaling 
of the atom–light coupling.

For weak drives deep in the ferromagnetic phase, the collective model 
replicates the quantitative predictions of the inhomogeneous model 
upon replacement of the atom–light coupling with the r.m.s. average, 
g g→ / 2 and thus χ → χ/2 and Ω → Ω/2. This approximation is supported 
by comparison to experimental results for the period of the weak oscil-
lations deep in the ferromagnetic phase, which are expected to be 
proportional to 1/(χN). In Extended Data Fig. 2a we extract this period 

from the experimental data as a function of cavity detuning Δ, which 
is equivalent to varying the interaction strength χ ∝ 1/Δ. We confirm 
that the fitted slope agrees with the χ → χ/2 correction for inhomogene-
ous atom–light coupling.

As the drive is increased, the rescaling required for quantitative 
comparison changes. Specifically, comparing to the critical point 
Ω χN/( )c

theory  obtained from a numerical calculation of the inhomogene-
ous model in the absence of decoherence, we find that the correspond-
ing collective model requires a rescaling g → 0.62g, and thus χ → 0.38χ 
and Ω → 0.62Ω, to match the critical value Ω χN/( ) ≈ 0.31c

theory . The reduc-
tion of this value below the true collective critical drive Ωc/(χN) = 1/2 is 
consistent with that observed experimentally Ω χN( /( ) = 0.35(3))c

exp .

Mapping the phase boundary
In Fig. 1b, c, we present the system phase diagram (under the assump-
tion of uniform atom–light coupling), where we map the magnetization 

J⟨ ^ ⟩z  as a function of the probe detuning δ and drive amplitude Ω. A  
sharp boundary separates the dynamical phases for ⪅Ω χN/( ) 0.65 , 
shown by the solid white line in Fig. 1c. However, as the drive is further 
increased and for δ/(χN) < −1/8, the boundary becomes a smooth 
crossover, as shown by the dashed white line in Fig. 1c.

Using similar results to those shown in Fig. 3, for the inhomogene-
ous case relevant for experiment we are able to map out this boundary 
and define a critical detuning δc between the two dynamical phases 
for different fixed drive strengths Ω. We identify these values by  
looking at the maximum gradient on each of the experimental  
and numerical J⟨ ^ ⟩z  against δ plots shown in Fig. 3. In Extended Data 
Fig. 2b we plot δc against Ω (points) and compare with numerical 
simulations (solid lines) for two opposite cavity detunings  
Δ/(2π) = ±50 MHz. For values above Ω/(χN) ≈ 0.31, the solid traces do 
not represent a strict phase boundary but rather characterize the 
crossover region, analogous to the crossover region in Fig. 1c for the 
homogeneous case.

In the Supplementary Information, we derive an expression for the 
boundary between the two dynamical phases based on the model pre-
sented in equation (1) in the mean field limit. In the homogeneous case, 
the phase boundary Ωc(δ) is, for δ/(χN) > −1/8:
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To address the inhomogeneous coupling present in our experiment, 
we rescale g → 0.62g and thus χ → 0.38χ and Ω → 0.62Ω in this equation 
as described earlier. A comparison of the rescaled equation (11) to the 
experimental data is shown as the black traces in Extended Data Fig. 2b 
for two different detunings.

Data availability
Data relevant to the figures and conclusions of this manuscript are 
available at https://doi.org/10.5061/dryad.mgqnk98w951.

Code availability
The codes used in the analysis of experimental data and to carry out 
associated theoretical calculations are available from the correspond-
ing authors upon reasonable request.
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Extended Data Fig. 1 | Experimental platform. a, An optical cavity is driven by 
a 689-nm coherent field that establishes an intra-cavity field Ω e ω t

p
i p , which is 

near resonance with the 1S0 to 3P1 transition in 88Sr. Inside the cavity, an 
ensemble of atoms is confined in a 1D optical lattice at 813 nm. Different lasers 
are applied for shelving excited-state atoms into long-lived metastable excited 
states, for freezing the system dynamics, for applying a radiation pressure 
force that pushes ground states in a direction transverse to the cavity axis, for 
optically pumping atoms from long lived metastable excited states back to the 
ground state, and for fluorescence imaging of atoms in the ground state.  

b, A typical fluorescence image captured on a CCD, showing the state-resolved 
imaging technique. The Ne excited state atoms that were shelved into 3P0,2 while 
the freeze/push beam was applied remain near the trapping region. The Ng 
ground-state atoms are pushed away from the trapping region. Based on their 
spatial location, the atoms assigned to be in the excited (ground) state are 
shown in false colour blue (orange). c, The relevant energy levels for 88Sr, the 
laser wavelengths and their functions. d, Experimental timing sequence and 
typical timescales.
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Extended Data Fig. 2 | Probing many-body dynamics and mapping the 
phase boundary. a, Oscillation period as function of the cavity detuning Δ for 
2Ωp/(Ng) = 0.104(4), δ = 0 and atoms starting in ↓⟩. Blue points are 
experimental values, solid red line represents the mean-field prediction for  
the same drive and atom number, and the shaded red area represents typical 
experimental fluctuations on 2Ωp/(Ng). The period is extracted from sinusoidal 
fits to data as in Fig. 2a, after removing a linear term caused by the 
single-particle dephasing effects. The mean-field value (red solid line) is 

Tosc = 2π/(Nχ) with the effective replacements due to inhomogeneous coupling 
as discussed in Methods. Measurements are taken in the dispersive limit where 

≫Δ N g . b, Critical detuning δc as function of the drive Δ for Δ/(2π) = ±50 MHz 
(red and blue points, respectively). We also plot the theoretical prediction for 
the phase boundary (equation (11)) with rescaled parameters, and predictions 
of the numerical model (solid lines) including uncertainty based on the typical 
fluctuations in Ω/(χN). Error bars are statistical (1σ).


	Exploring dynamical phase transitions with cold atoms in an optical  cavity

	Implementation of the Lipkin–Meshkov–Glick model

	Dynamical phase diagram of the LMG model

	Probing the LMG dynamical phase diagram

	DPT in absence of longitudinal field

	DPTs at fixed transverse fields

	Sensitivity to initial condition

	Conclusion

	Online content

	Fig. 1 System and dynamical phase diagram.
	﻿Fig. 2 Characteristic evolution of dynamical phases and scaling of DPT with atom number.
	﻿Fig. 3 Characterization of the DPT as a function of longitudinal field for two different transverse field values at fixed χN.
	﻿Fig. 4 Dependence of dynamical phases on initial conditions.
	Extended Data Fig. 1 Experimental platform.
	Extended Data Fig. 2 Probing many-body dynamics and mapping the phase boundary.




