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Abstract—This paper investigates the use of Gaussian Processes
(GP) for RSS fingerprinting-based navigation. In particular, a
recursive GP scheme to adapt the fingerprints as they evolve over
time is discussed which accounts for the uncertainty of position
labels associated to new RSS measurements. The marginalization
over the uncertainty of position labels is here implemented
numerically through cubature rules, which is seen from com-
puter simulations to enhance field estimation performance and,
ultimately, positioning results.

Index Terms—Indoor navigation, fingerprinting, Gaussian Pro-
cesses, geospatial sensing, uncertainty propagation.

I. INTRODUCTION

The advance of telecommunication systems leads to new
paradigms where technology becomes increasingly intercon-
nected. This phenomenon associated with the necessity for
seamless solutions in location-based services in indoor en-
vironments resulted in a steady increase in academic and
commercial interest in indoor navigation systems capable of
localize and tracking devices in real-time. Indoor navigation
offers a number of difficult challenges which include the
heterogeneity of technologies, resulting in the lack of a legacy
solution, and the impossibility of using the widely diffused
Global Navigation Satellite System (GNSS) technology, one
of the most accurate sources of position information when it
is available, which is often infeasible in indoor or obstructed
environments [1]. Instead, alternative systems have to be
adopted. One approach to positioning and tracking in such
environments is fingerprinting, also referred to as mapping or
scene analysis.

Fingerprinting consists in building a database containing
a collection of measured features at designated reference
locations and applying regression techniques the learn the
underlying map between locations and measurements. The
position in feature space associated through the database with
a particular physical reference location is referred to as the
“fingerprint” of the environment at that location, and the as-
sumption that these feature vectors are relatively unique forms
the basis for the fingerprinting technique. The fingerprinting
procedure typically operates in two stages [1]: an offline stage
in which the environment is surveyed at known locations and
the results are recorded into a database, and an online stage in
which navigation is performed by matching new measurements
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with the content of the database. Once a match is made,
position may be inferred based on the reference positions
associated with those database measurements.

Fingerprinting offers several important advantages as an
indoor positioning technology. One important advantage is
that it does not require a specific measurement model: since
indoor environments are often segmented and highly non ho-
mogeneous in composition, useful observables such as sound
and electromagnetic radiation often exhibit highly nonuni-
form or nonlinear diffuse behaviors which can not be easily
or accurately modeled even without advanced and thorough
knowledge of the contents of the environment. Fingerprinting
replaces the need for an accurate measurement model with a
need for an offline training stage, a requirement which may
be more realistic in certain contexts. Other advantages are that
they are strictly passive and can often make use of existing
features of the environment such as installed WiFi networking.
For this reason among others, WiFi received signal strength
(RSS) fingerprinting is now widely used in indoor positioning
and navigation problems [2]. Another remarkable feature of
fingerprinting methods is that they do not require any knowl-
edge regarding the location of the transmitting nodes, which
is particularly relevant in other schemes such as those which
are geometric-based [1]. On the other hand, a big limiting
factors in generating fingerprinting databases are related to
cost and time constraints which makes this strategy prohibitive
for complex and dynamical environments.

One possible strategy to circumvent this limitation consists
in collecting RSS measurements from interconnected devices
transiting in the region of interest, a strategy adopted in
crowdsourcing applications [3]. For instance, tracking algo-
rithms are used to provide position estimations from time-of-
arrival (TOA) [4] or RSS observations [5]. Thus, by exploiting
tracking mechanisms embedded in Navigation systems, which
often provide a full distribution characterization for position
estimates [6], pairs of RSS values and their corresponding
locations can be easily obtained. Although simple and cheap,
adopting such approach comes at the expense of knowing
the exact locations where measurements actually took place,
thus, introducing input uncertainty. In this work, we consider
an hybrid scenario where an initial Fingerprinting data is
available while new measurements taken at unknown locations
are constantly streamed accompanied by the distribution of the
corresponding location estimate.
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One of the core building blocks of fingerprinting-based nav-
igation systems is the mathematical model that interconnects
locations and RSS measurements. The literature presents a
variety of models which include the physic-based path-loss
model [1], parametric models such as Neural Networks [6]—-
[8], and non-parametric (or semi-parametric) models such as
kernel-based methods [9], [10]. One advantage of the later
methods is the lack of assumption about the environment or
the underlying function modeling RSS values as a function
of spatial localization. In this work, we focus in kernel-based
strategies. More specifically, we adopt Gaussian Process (GP)
models since they cope with the Bayesian framework often
adopted in Navigation systems.

GP regression methods consist of defining stochastic mod-
els for functions and performing inference in functional
spaces [11]. These methods have been shown to be useful
in a wide variety of fields and tasks including regression and
classification [11], detection [12], unmixing [13], and Bayesian
optimization [14], to name but a few. The basic idea behind
GP regression consists of modeling a function for which very
little information is available other than some smoothness
assumption. The GP inference is often performed considering
a training set comprised of paired known noiseless inputs and
measured noisy outputs. In the context of indoor navigation,
GP-based approaches have been employed under both tra-
ditional fingerprinting and noisy locations settings, see, [5],
[10], [15], and references there in. When uncertain locations
are considered, inference is performed by marginalizing the
uncertain locations [10], [15], where, due to the nonlinear
nature of GP models, Gaussian approximations and numerical
integration methods are used.

A major drawback of GP is the high complexity associated
with the inverse and determinant calculations of the kernel
matrix. This limitation makes the employment of GP on its
direct form impracticable as the number of available data
grows. The literature presents different strategies to address
this issue which can be crudely divided into local or global
inference approximations [16]. Global approximations aim at
reducing the complexity by distillation of the kernel matrix
which can be achieved by selecting a subset of the training
data (inducing points) [17], removing low-correlated entries
(truncating), or considering Nystrom approximation inspired
strategies [11], [18]. Such strategies result in smaller, sparse
and low-rank kernel matrices respectively. Local strategies
consists in providing inference over local samples subsets of
training data which can be combined using a global fusion
strategy. The most widely studied approach involves mixture
or product of local experts [16], [19], [20] providing smooth
predictions and valid uncertainty measures [16]. In most
strategies discussed above, accessibility to the whole training
data is assumed and learning can be performed offline or
in batch mode. When data arrives sequentially, online low-
cost strategies should be considered. In [21], an online sparse
GP regression strategy was presented. It promotes recursive
updates of the posterior GP moments for a finite set of
basis vectors, the so called active set. The methodology is
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based on Bayesian state estimation techniques and achieved by
marginalizing the contribution provided by the newly incoming
data.

In this contribution, we address the recursive active set
GP strategy in the context of RSS field learning for indoor
navigation accounting for location uncertainty. Specifically,
we modify standard recursive GP based on active set to
account for location errors. We consider a Bayesian approach
where marginalization with respect to the uncertain locations
is incorporated into the recursive GP algorithm. Due to the
intrinsic nonlinearity of the problem and of the Gaussian
process regression approach adopted, we consider Gaussian
approximations of marginalized distributions implemented by
numerical integration strategies such as cubature rules [22].
Finally, the marginalized distributions are incorporated in the
recursive GP algorithm which is then tested in different related
scenarios where the fingerprints, used for positioning purposes,
change over time.

This paper is organized as follows. Section II presents stan-
dard GP regression while Section III presents the derivation
of recursive GP (RGP). Section IV discusses the issue of
position uncertainty and proposes a strategy to marginalize
the uncertainty. Experiments to assess the performance for
RSS field estimation and tracking performance with RGP
are presented in Section V. Finally, concluding remarks are
presented in Section VI.

II. GAUSSIAN PROCESS REGRESSION

This section briefly presents the standard Gaussian pro-
cess regression [11]. Given a set of N input-output pairs
{xp, ye ), ¢ € X C R%, y € R related according to an
arbitrary model such as

yr = (k) + Mk (1)
with  ~ N(0, Ufl), and 1 € H considered to be a function of
a reproducing kernel Hilbert space H defined over a compact
set X', GPs assume a Gaussian functional distribution as prior
for the function ¢|xr ~ N(0,k(xk,xk)), where £ is a
kernel function such that x(-,&) € H. For a set of input
points X = [x1,. ..,z ] the prior distribution for ¢ becomes
P|X ~ N(0, K), where K € RV*¥ s the Gram matrix with
entries [K|;; = x(x;,x;). For a given set of measurements
Yy =[y1,...,yn] " associated with the positions X, the prior
distribution becomes

y~N(O,K +0.1). )
The predictive distribution allows one to “predict” the value
of the function 1, for a new input value «,. Thus, we have
Yu|xy ~ N(0, Ky ), Where Ky, = K(T4, ). Since y and 1,
are jointly Gaussian their joint PDF is given by
el )
(n

Rosex

3)

*
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where k, £ [k(x1,2),...,5(zN,x,)] . Finally the predic-
tive distribution can be obtained by conditioning 1), over the
observation and the its respective positions as

%I%X,w* NN(Mwa,X@*’sily,X@*) “)

' —1
with gy x 2, = &) (K+02I) y, and 3, o

Faw — K, (K + ol )_1m*. Using the GP distribution above,
the distribution of p(y,) can be obtained by replacing (4) in (1)

®)

P(yx) N(/‘w\y,X,muS?p\y,X,w* + 072;)'

The Bayesian framework also provides strategies to estimate
free parameters, such as the kernel parameters 6 and the noise
power 072,. The classical approach [11] aims at maximizing the
marginal likelihood p(y| X, o7, 0) with respect to (o7, 8).

If we consider a prior with mean m(z) then the GP posterior
mean and variance becomes

-1

pp, =m(z,) + 5] (K+02I) y (6)
-1

s?p* = Kyx — F-‘,I (K + O’%I) Koy @)

III. RECURSIVE GAUSSIAN PROCESS

Recursive Gaussian processes [21] aims at recursively learn
the underlying function ¢ by updating the GP model, anchored
at a set of basis points (active set) X, @ = (X), by
exploiting the information provided by new observations y,
taken at inputs X, with ¢ =0, 1,... being a time index, but
without necessarily increasing the number of basis points X,
and, thus, keeping the GP’s computational complexity limited.
This objective is achieved by marginalizaing the predictions
W, 2 (X,) obtained for the new set X .

Thus, assuming an initial prior for the GP, such that
P X) = Ny (s, ). with 16 2 m(X) and =Y 2 K,
the goal is to calculate the posterior distribution p(%|y,.,) by
updating the distribution of 1) from the previous step ¢t — 1

p(Ylyi4_1) = Nw (ljf—la 2?—1)

by exploiting the new observation y,. p(¢|y,.;) can be ob-
tained after marginalization over ,:

®)

P(¢|y1:t) = /p(¢7¢t|y1:t)d¢t

_ /P(yt%» ¢tvm?t<)p(¢,¢t|y1:t71)d¢
P(Y1.4-1) ¢

p(yt "‘/’t)p("/)t "l/’, M)p("/’|y1:t—1)
_ / eop ()W )P(Ply ) )dep,

d
p(yl:tfl) i

€))

which requires computation of the distributions in the integral.
The distribution p(t),|1P) can be obtained from the follow-

ing joint distribution

o]l

Y,

K K,
K] K,

m

my (10)
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A

with m 2 m(X), m; 2 m(X);, K; = x(X,X;) and
Ktt & I{(XhXt). ThUS,

PR, [) = N (el 2 1¥) an

with

p¥l¥ =m, + K/ K™ (¢ —m)

=my + J(¢p —m) (12)

and
=Y - Ky - K, (13)

where

J, =KK™ (14)
The  joint  distribution  p(t), ¢¥,|yq.._1) =

p(Y|¥)p(¥|y,.._1) can be obtained from (8) and (11)
by completing the square! in (15) where the quadratic part

on 1, and ¥ is given in (16).
Using the identity in [23] we have
-
| wal
J=P | s g =Y g

Xy, = (17

The crossed term is given by

-1
C=2z3y4 1

[ ¥ r =) et - I ) - Im)
wt L (Ed’twj)il(mt —Jtm)

|

r -1 -1
[ r (B a2 | e
P, I (sl g, ‘ (S¥el¥)”
v
n
X (18)
[ p¥e |
from where we conclude that
P
Heq
L = 19
© my+ J, (N;p_1—m) ] (19)

Thus, the vector z = [t),1),] T is Gaussian distributed accord-
ing to

SRl

sz—l

my + J; (uﬁl — m)
-

s, | sl
J57 | s g sY g

; (20)

)

and the marginal of 1,

P lyrir) = N (u¥, 2% @D

with moments
b =my+ 3, (pf, —m) (22)
IR SEZILNEN 5 YLy A (23)

'Noting that —%(z—uz)TEgl(z—p,z) = —%zTEglzﬁ-zTE;lp‘zﬁ—
constant, one needs only to identify the squared and crossed terms to obtain
the covariance and mean of the resulting distribution.
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1 1
§ = =5y = ph ) TEP I g, — ) — S (= ) TSR (- )
1 1
= _§(¢t —my — Jy( — m))T[Ewt‘w]_l("bt —my — Ji(p —m)) — 5("/’ - N;p—l)T[E:p—ﬂ_l("b - /1';/’—1) 15)
—1 —1 —1
SR U 2 B I IR AL e AL ko N N K
@= 2% T F = 2 { P, } _(Ewmp)*{]t ‘ (Elptw’)*l Y, (16)
The update part is obtained by performing the marginaliza- and

tion in (9). Note that (9) can be rewritten as

Pl = [ el b )pb Bl )i,
:/Ctp(yt|7"pt)p(wl’lpt,yl:tfl)p(¢t|y1:t71)d¢t
:/ctp(yt|7¢t)p(¢t|y1:t71)p(¢|¢t7yl:tfl)d'l/’t

Kalman filter update

= /p(¢t|y1:t)p('¢"‘/’ta Yi.—1)dY,

where, since p(y,|,¥;) = N("/’ta”?,ﬂ and p(¢|y1.,_1) =
N (u®:, %) are both Gaussian distributions, the term
cep(Yel, Y )P(Yi|y14-1) = p(¥ly,,) can be seen as a
standard Kalman filter update (under the model y, = 1), +n;)
whose posterior p(1,|y;..) is also Gaussian with moments
given by

(24)

(25)
(26)

ple = p? + Gy, — p)
23% — Ewt _ Gtz'd’t

where Gy £ X%+ (2%t + 02I)~! is the Kalman gain.
Finally, p(¢|t¥;,y,.+_1) can be obtained from the joint

distribution in (20) by applying the identity in [23, pg. 87].

Thus, (|, y1.,_1) = N (u?!#e, £¥1¥) with moments

p¥Ve = pl o+ L, - )
v —x¥  _LJSY

and L, 2 3% J] (zwt 3

With these results the product in the right side of (24) direct
leads to the joint Gaussian distribution of ), 1, |y;.;, whose
quadratic form is

27)
(28)

1 _
Quap, = —52 Dy iy, 2 (29)
with z = [1,4,]T and
—1 o
X, =
(E’/’l‘lpt)il ‘ _(Elpt|¢)71Lt 30)
- -1 =T
_L (=¥ ‘ (%) L) (=)L,

from where we conclude that

2 _ E¢|¢t +Lt2';/’tL: ‘ Ltzg)t
U B D A

} 3D

221’ = ¥l Ltz’g’tL;r
=¥ - L,J>Y  + LSV L)
= 2216/:1 - LtJtE:pfl
\T
+ L (2¢t — Gt§:¢t) (2;{1JI (2%) )

-x¥ - LGJzt,

=¥ - GJ.EY, (32)
Equivalently the mean becomes
ut = pl oy + Gy, — p¥). (33)
with
G; = L;G;. (34)

Algorithm 1: Recursive GP Update

Input : X, X, GPy_y 2 (uf 1,27 )
Output: uf’, 2;"

% Inference ;

Compute J; using (14);
Compute ¥t using (22);
Compute X%t using (23);
% Update ;

Compute G: using (34);
Compute p? using (33);
Compute =¥ (32);
return ,u}”, Ef’

D-T- R N 7 B VR S

IV. ACCOUNTING FOR POSITION UNCERTAINTY

In most spatial-temporal applications the target device lo-
calization is unknown and, thus, must be estimated using
some kind of positioning or tracking algorithm. However,
positioning estimates provided by such algorithms contain
errors which could be assessed by exploiting uncertainty
measures often provided by such algorithms. Particularly,
Bayesian filtering tracking algorithms provide a distribution
characterization of the states over time. Here, we focus on
the spatial RSS field estimation when new measures are
obtained at uncertain locations, that is, new RSS vectors
y, are measured at some uncertain locations, which can be
statistically characterized as x; ~ p(x:) = N (T4, Xg,)-
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Following a Bayesian framework, to deal with the intrinsic
uncertainty provided by the distribution p(x;) one must resort
to marginalization of the random variable x;. This will have
a direct impact int the computation of the kernel matrices K
and K that depend on new locations ;.

Our objective is to compute u;p and Ef’ considering that
X is a Gaussian random matrix. We propose then to consider
the expected values with respect to X; such as

w = Ex, (E{lyr,, X)) = Bx, {uf]X. )
— Ex, {ui’il + Gy, — u"’t)}
= 'u:p_l +Ex, {f(X1)} (35)

and

=) = varx, {E{¢|y,,, X1}} + Ex, {var {sb|y,.., X:}}
= varx, {Mf’lXt} +Ex, {Ef’\Xt}

= Ex, {(u?’lXt) (“?Xt)T}
(e fmtix)) (o {mix )

+Ex, {=P, - Gz
= Ex, {F(X0)f (X0} —Ex, {f(X)}EX, {F(X0)}
+ =7, —Ex, {9(X)} =, (36)

with f(X¢) = Gi(y, — p¥1) and g(X ) = GiJ .

The expected values in (35) and (36) cannot be solved
analytically due to the nonlinear nature of the functions. A
Taylor expansion approach for linearization could be consid-
ered, which requires computation of the derivatives of those
functions, which could be cumbersome and not accurate due
to the non-linearity degree of those. In this article, given that
the expectation is over the Gaussian random variable X, we
approximate those expectations using deterministic cubature
rules [24]-[26] such as

Ex, {f(X.)} ~ %Zf(Xﬁ”) 37)
j=1
Ex, {g(X)} ~ %ZQ(X?)) (38)

<
Il
a

FXIFT(XY) (39

3=

Il
-

Ex, {F(X)FT (X0}~

J

with X §j ) being sigma-points sampled at optimal locations
with respect to the distribution p(X}).

V. EXPERIMENTS

This section presents experiments with synthetic data. The
data was created using the path-loss model [27] with a path-
loss exponent of v = 3. White Gaussian noise was added to
all RSS values according to the model in (1) and modeling
sensor measurement noise. In all simulations we considered
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Fig. 1.

Fingerprinting data for scenario 1.

oy, = 4 which is a typical noise standard deviation for RSS
modeling [1]. An initial RSS-fingerprinting dataset consisting
of 400 location/RSS pairs distributed uniformly across the
space was generated, which was used to train an initial GP
characterization of the fingerpring.

As error metrics we considered the Root Mean Squared
Error (RMSE) for position error and the normalized RMSE
(NRMSE) for field error estimation. The RMSE is given by

1~ ()
n E ||93t
r=1

where n is the number of time samples used to empirically
approximate the expectation. The NRMSE for the field esti-
mation is defined as

& |2 (40)

oAk

14, —
Z KAl

where 1), and {ﬂt are respectively the true and estimated field
at time t.

NRMSE(¢,) = (41)

A. Field estimation performance

To assess the field estimation performance and convergence
of the discussed algorithms, we constructed a simulated sce-
nario consisting in the initial fingerprinting set, a field change
and new measurements y; taking place at uncertain locations.
That is, given a mean location p,, and a covariance matrix
>z, the actual RSS measurement y; takes place at a location
xy ~ N(py,, Xe,). The field change consisted in adding a
constant value (a DC level) d. = 10 to all field values.

The simulated data was built considering a 20x 20 m? room
with one access point placed at the center as depicted in Fig. 1.
The room size and location of the transmitter were selected in
order to spatially centralize the peak of the RSS field and thus
provide a better error assessment. In this scenario we compare
the recursive GP (RGP) and the RGP with marginalization
of the inputs, namely, RGPMarg. For this, we first trained a
GP using the fingerprinting data (Fig. 1) and then updated
it using RGP or RGPMarg with new measurements taken
in uncertain locations. Fig. 2 shows the resulting GP field
estimations where the mean is plotted as a 3D surface (first
row) and with a top view (middle row), while the covariance
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Fig. 2. From left to right: Initial GP for the initial fingerprinting data, RGP, RGPMarg after d. = 410 was added, STDyax = 5 and 0, = 4, and n = 3000
samples. From top down: plot of GPs mean (3D), GPs means (top view) and GPs covariance matrices.

16 —— RGPMarg
RGP

500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Samples Samples

16 —— RGPMarg 16 —— RGPMarg
RGP RGP

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Samples Samples

Fig. 3. NRMSE for 100 MC runs, oy, = 4, o®™* = [1, 3, 5, 10].

matrices (bottom row) are depicted as images with values
coded by color. For these results we modeled X, = 01,
with § ~ Upp 1), being a constant simulating a time varying
uncertainty. The rationale for this time-varying strategy is to
mimic results provided by tracking algorithms.

The results in Fig. 2 show marignal performance im-
provement provided by GPMarg which can be noticed by
an overall higher value around the peak. This analysis

" —— RGPMarg " —— RGPMarg
RGP RGP
12
@
@z
3
z
8
8
6
1
0 2000 1000 6000 8000 10000 0 2000 1000 6000 8000 10000
Samples Samples
" —— RGPMarg —— RGPMarg
RGP 1 RGP
12
12
= [}
z 10 )
= =
& £
z z
8
8
6
_— |
4 6
0 2000 4000 6000 8000 10000 0 2000 1000 6000 8000 10000
Samples Samples

Fig. 4. NRMSE for 10 MC runs, o, = 4, fixed o, = [1, 3, 5, 10].

is coherent with NRMSE computed which both methods
NRMSERGPMarg("/}t) = 4.66 and NRMSERGP(’I/)t) = 5.08.
Another interesting characteristic of these results is related to
the GP covariance matrix. Analysing the covariance matrices
in Fig. 2 one can notice that RGP model confidence is
erroneously much higher (i.e., providing smaller covariance
elements) than the RGPMarg solution. This happens since
RGP neglects completely the noisy positioning labels. This
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result is very important specially when considering the in-
tegration of the field estimation method with tracking filters
in charge of computing the position estimate, which may
become overconfident in the measurement model. As a result,
one of the main features of RGPMarg is the higher, realistic
uncertainty characterization on the top of the mean field
representation.

Figures 3 and 4 present the NRMSE evolution as new
samples are available. In Fig. 3 we considered X, = {001
for o™ ¢ {1,3,5,10}, which allows for eventual large
uncertanties but also very precise samples. In contrast, we
also performed analogous simulations fixing the covariance
matrix. Fig. 4 presents results with fixed 3,, = 0,1 with
or € {1,3,5,10}. The results show smaller RNMSE for
RGPMarg after convergence, but a usually faster convergence
of RGP. The only exception are the results for 3, = 10 x I
(bottom-right panel of Fig. 4) where RGP presented a better
performance, and for 3,, = I (top-left panel of Fig. 4)
where RGPMarg was both faster and more accurate. These
results show the performance gains obtained by marginalizing
uncertainty even in such a simplistic scenario. We highlight
that the simulated pathloss fields are very smooth without
sharp discontinuities, reflections and attenuation existing even
in simple real scenarios. This sharp changes in the field would
lead to bigger errors being propagated throughout the recursive
estimations.

B. Tracking Performance

In this section we analyse the tracking performance when
field changes and uncertainty are present. We implemented
a Cubature Kalman Filter (CKF) [28], using the same dy-
namical model used in [6]. In this simulation the scenario
consists of a 40x40 m? room with 5 access points (APs)
as depicted in Fig. 5 (left). Following the same strategy of
our previous simulations, here, we also consider an initial
fingerpringing stage followed by a change in the field and the
arrival of new measurements y, taken at uncertain locations
x; ~ N(pg,,Bz,) with fixed X, = I. To assess the
tracking performance with the different strategies we generated
100 tracks with 500 points each using a random walk with
covariance @ = ¢.I, with ¢; = 0.1. To simulate field changes
we added DC levels, d. = [15, 5,10, 10, 20], to the APs and
the resulting RSS field is depicted in Figure 5 (right). Figure 6
presents the RMSE for position estimation. We can see that
both recursive strategies performed much better than the static
GP even with presence of noise in the locations. Furthermore,
a marginal accuracy gain is observable when comparing the
RGPMarg and RGP even with this very simplistic scenario.

VI. CONCLUSIONS

This paper deals with the regeneration of fingerprints for
positioning purposes. Particularly, we consider a setup where
RSS fingerprints are used to train a Gaussian Process (GP) that
characterize the RSS spatial field of a set of anchor nodes,
which is then used in a data-fusion filter for tracking and
positioning. The paper tackles the issue of those fingerprints
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30

40 40

Fig. 5. RSS fields. Initial fields (left) and fields after change (right).

10

RMSE

GP
RGPMarg
RGP

200 300 400 500

Samples

100
Fig. 6. RMSE evolution for position estimation averaged over 100 tracks.

evolving over time, and thus the need for the database to
adapt as well. One sound possibility is the use of a Recursive
GP (RGP) approach in order to implement such on-line
learning. Additionally, the new RSS values might be recorded
at locations whose positions might not be accurately known,
but with some associated uncertainty. In this contribution, we
proposed a methodology to incorporate such uncertainty by
a marginalization process in the RGP. A set of simulation
results are provided to validate i) the field estimation update
with marginalization, and i7) the tracking performance using
the proposed GP strategies. The performance improvements of
considering uncertain locations is not only seen in the differet
RMSE results, but in the feature of providing more reliable
uncertainty measures. We achieve a more realistic covariance
estimation of the RGP which impacts the performance of the
positioning solution. Future work will explore the effective use
of such position-dependent covariance in a practical scheme,
as well as the use of real-data.
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