

Title: Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record

Authors: Matthew S. Fantle^{1,*} and Andy Ridgwell²

1 Department of Geosciences, Pennsylvania State University, University Park, PA 16802

2 Department of Earth Sciences, University of California, Riverside, CA 92521

* Corresponding author

email: mfantle@psu.edu

phone: 814-863-9968

fax: 814-863-7823

Keywords

Ca isotopes

Marine carbonates

Carbonate authigenesis

Reactive transport modeling

Earth System modeling

Ocean acidification

A manuscript submitted to *Chemical Geology* (Ca Isotope Special Issue)

1 **0. Abstract**

2

3 In this contribution, we explore the idea that the Ca isotope proxy has utility as an
4 indicator of carbonate authigenesis (i.e., post-depositional precipitation of CaCO_3
5 within the sedimentary package). Given the strong contrast in isotopic fractionation
6 factor between the formation and diagenetic environments, Ca isotopes have the
7 potential to fingerprint carbonate authigenesis when it occurs close to the seawater-
8 sediment interface. We demonstrate that Ca isotopes are particularly applicable to
9 exploring ocean acidification events, and potentially ocean anoxic events, and focus
10 our attention on ocean acidification related to the Paleocene-Eocene Thermal
11 Maximum (PETM). We present three scenarios that vary in magnitude and duration
12 of carbon fluxes simulated using an Earth System model of intermediate complexity
13 (cGENIE) and use the cGENIE output to constrain the upper boundary conditions of
14 1-D reactive transport models of authigenesis and recrystallization in the
15 sedimentary section. Along with simple mixing calculations, the models inform our
16 exploration of the hypothesis that authigenic carbonate induced by a saturation
17 state overshoot during the PETM explains recently published Ca isotope records,
18 and perhaps bulk carbonate records over Ocean Anoxic Event (OAE) 2. Our
19 simulations suggest that fractionation factor variability does not explain the PETM
20 $\delta^{44}\text{Ca}$ records, and we propose a $\delta^{44}\text{Ca}-\text{CaCO}_3$ space framework to assist with the
21 elucidation of authigenic additions over time scales that are short relative to the
22 residence time of Ca in the ocean (~ 1 Ma). Ultimately, we find that the 'authigenic
23 zone' generated in the sedimentary column may be influenced by alkalinity
24 overshoots or redox state; the CaCO_3 produced in this zone can overprint temporal
25 signals with depth-dependent signals that reflect lithology and sedimentation rate
26 and need not be spatially uniform, even when driven by a global event. Ultimately,
27 we demonstrate the utility of Ca isotopes for exploring short time scale climatic
28 events and a quantitative framework to guide interpretations.

29 **1. Introduction**

30
31 Calcium isotopes have recently been applied as tools to identify ocean acidification
32 events – intervals characterized by excess release of CO₂ to the ocean and/or
33 atmosphere that drives coupled decreases in pH and carbonate ion concentration
34 and, hence, carbonate saturation state (e.g., Hönnisch et al., 2012) – in the geologic
35 past (e.g., Payne et al., 2010; Hinojosa et al., 2012; Jost et al., 2014; Du Vivier et al.,
36 2015). These studies generally have assumed that (1) ocean acidification modifies
37 the marine Ca cycle, and that (2) the Ca isotopic composition ($\delta^{44}\text{Ca}$) of mineral
38 phases, such as calcite and apatite, sample seawater and therefore serve as useful
39 archives of global perturbations to the Ca cycle. Modification of the Ca cycle can
40 arise as a result of reduced (i.e., due to dissolution associated with ocean
41 acidification) or enhanced (i.e., due to precipitation during the alkalinity overshoot)
42 Ca removal via burial of marine carbonates, and/or by changes (and particularly
43 temperature-driven increases) in the weathering of terrestrial carbonates and Ca-
44 bearing silicate minerals.

45 Thus, the promise of the $\delta^{44}\text{Ca}$ proxy is that it might serve as an indicator of
46 the ocean acidification event itself or of enhanced rates of (calcium-) silicate
47 weathering in the aftermath of massive CO₂ release. Conceptually, ocean
48 acidification can impact the Ca isotopic composition of seawater by altering the flux
49 balance of Ca into and out of the ocean (i.e., F_{sed}/F_w ; DePaolo, 2004; Fantle and
50 DePaolo, 2005; Fantle, 2010), changing the isotopic fractionation factor associated
51 with carbonate sedimentary removal (e.g., Fantle, 2010; Du Vivier et al., 2015;
52 Komar and Zeebe, 2016), and/or changing the isotopic composition of the input flux
53 to the global ocean (Fantle and Tipper, 2014).

54 One critically important aspect of this manner of interpreting Ca isotopic
55 composition is the assumption that seawater $\delta^{44}\text{Ca}$ is generally insensitive to change
56 over time scales shorter than the residence time of Ca in the ocean. Because the Ca
57 concentration of seawater throughout the Phanerozoic is generally constrained to
58 be greater than (or similar to) that of the modern ocean (e.g., Horita et al., 2002), it
59 is reasonable to assume oceanic residence times of Ca > 500 ka (e.g., Berner and
60 Berner, 1996). This is longer than the ~300 ka silicate weathering feedback time-
61 scale induced by geologically rapid CO₂ release (Lord et al., 2016) and, therefore,
62 any Ca isotope signal of evolving marine $\delta^{44}\text{Ca}$ will be considerably damped. Indeed,
63 ocean acidification events *sensu stricto* – that is, the coupled decline in both the pH
64 and carbonate saturation state of the ocean – are a <100 ka time-scale phenomena
65 and hence are significantly shorter than the residence time of Ca in the ocean. Thus,
66 it seems unlikely that Ca isotopes are indicators of exogenic Ca cycle changes due to
67 short time scale ocean acidification events. Only much longer-lasting (>1 Ma)
68 episodes of enhanced CO₂ emissions would be expected to result in sustained
69 elevated concentrations of CO₂ in the atmosphere and Ca fluxes to the ocean, and
70 hence drive the isotopic evolution of the seawater reservoir.

71 An additional interpretive complication is that the Ca isotopic fractionation
72 factor between carbonate sediments and seawater may be impacted by those
73 geochemical changes associated with ocean acidification (particularly carbonate

74 saturation state). The apparent interpretive ambiguity that results can be illustrated
75 by comparing two studies, both of which interpreted Ca isotopic variability in
76 carbonates as a consequence of ocean acidification. Firstly, Payne et al. (2010) (and
77 later Hinojosa et al., 2012) measured a substantial decrease in limestone (and later
78 conodont) $\delta^{44}\text{Ca}$ associated with the end-Permian mass extinction. The authors
79 interpreted the excursion, which occurred over a couple hundred thousand years, to
80 be a result of ocean acidification driven by enhanced volcanism from large igneous
81 province (LIP) emplacement. The preferred mechanism for this drop in $\delta^{44}\text{Ca}$ was an
82 increase in the weathering input mass flux relative to the output mass flux of
83 carbonate from the ocean. More recent work has suggested a similar mechanism as
84 Payne et al (2010) – excess delivery of Ca via platform carbonate weathering
85 associated with sea level regression – as the driver of the negative Ca isotope
86 excursion at the P-T boundary (Wang et al., 2019).

87 Due to the difficultly in changing the $\delta^{44}\text{Ca}$ of the global ocean over short time
88 scales via carbonate dissolution and/or a relative imbalance in the input and output
89 fluxes, Komar and Zeebe (2016) suggested that a weathering feedback of the sort
90 proposed by Payne et al. (2010) would not produce the coupled $\delta^{13}\text{C}$ and $\delta^{44}\text{Ca}$
91 trends observed. Instead, Komar and Zeebe (2016) suggest that the drop in $\delta^{44}\text{Ca}$ is
92 explained by a change in the fractionation factor associated with carbonate
93 precipitation. Similarly, Du Vivier et al. (2015) measured a relative increase in
94 limestone $\delta^{44}\text{Ca}$ associated with Ocean Anoxic Event (OAE) 2 – another LIP
95 emplacement event and assumed interval of enhanced CO_2 outgassing and ocean
96 acidification. The $\delta^{44}\text{Ca}$ increase was likewise interpreted as a consequence of
97 changes in the fractionation factor associated with calcite precipitation due to
98 changes in seawater carbonate chemistry. In the simplest terms, the situation is
99 confused: two LIP-driven events that are both associated with ocean acidification,
100 though based on observed $\delta^{44}\text{Ca}$ changes that are opposite in sign.

101 Accordingly, without some means of discriminating between the two
102 scenarios, the Ca isotopic proxy is ambiguous, which severely restricts its utility.
103 This issue is an important one to resolve, as it prevents the straightforward use of
104 the Ca isotope proxy and presents a barrier to the use of the proxy by those outside
105 the Ca isotope community. If we are to move forward with the proxy, then, we must
106 understand specifically how fractionation factor can impact the rock record and,
107 more generally, how nuanced the interpretation of the Ca isotope record must be.

108 From a broader perspective, it is important to be able to identify relatively
109 short time scale events in the geologic record unambiguously, particularly because
110 ocean acidification associated with rapid/abrupt climate change is the nearest
111 analog to modern-day climate change. Proxies other than carbon isotopes are
112 important to have, especially given claims that the $\delta^{13}\text{C}$ of shallow ocean carbonates
113 are significantly impacted by meteoric diagenesis (e.g., Swart, 2015 and references
114 therein; Dyer et al., 2017). More generally, of course, the application of multiple
115 proxies allows for a clearer picture of causative factors, and subsequent impacts on
116 the Earth system, associated with a given event.

117 At present, we suggest that the Ca isotope proxy is characterized by
118 ambiguity in its interpretation of ocean acidification events. Thus, in this

119 contribution. we attempt to clarify the issue. In particular, we explore the origin of
120 so-called positive Ca isotopic anomalies via carbonate authigenesis, and evaluate the
121 hypothesis that fractionation factor variability can explain such anomalies. Our
122 exploration is guided by a series of model simulations, which examine geochemical
123 and isotopic trends associated with ocean acidification at the global ocean and
124 sedimentary column scales. Our overriding motivation, and in keeping with the
125 theme of the special issue, is to support the continuing development of the Ca
126 isotope proxy and to promote its utility as a means of reconstructing the past.

129 **2. Authigenic Carbonate: A Link Between Ca Isotopes and Ocean Acidification**

131 In this contribution, we propose that Ca isotopes are a useful and sensitive proxy for
132 ocean acidification, but not in the manner outlined above. Our proposal is
133 predicated on two observations of an ocean acidification event associated with the
134 Paleocene-Eocene Thermal Maximum (PETM). Briefly, the Paleogene (65.5-23 Ma)
135 is characterized by a series of 'hyperthermal' events, during which isotopically light
136 carbon was released into the ocean-atmosphere system. The most prominent of
137 these was the PETM, which occurred at ~55.5 Ma and is cited as one of the best
138 analogs available for future carbon flux scenarios (Westerhold et al., 2012). The
139 release of carbon during the PETM led to a geologically rapid (<10 ka), global
140 increase in temperature at the Earth's surface that was as large as 9-10°C in the
141 surface ocean and 4-5°C in the deep ocean (e.g., McInerney and Wing, 2011). The
142 carbon input lowered ocean pH and carbonate ion concentration and resulted in
143 decreased carbonate mineral preservation in deep-sea sediments. In some locations
144 at the seafloor, carbonate content (i.e., wt. % CaCO_3) went to zero, leaving a clay
145 interval in otherwise carbonate-rich oozes (e.g., Zachos et al., 2005).

146 Contemporaneous with warming, as well as pH and carbonate ion concentration
147 decreases, various proxies indicate that dissolved oxygen concentrations also
148 generally declined during the PETM (e.g., Pagani et al., 2006; Sluijs et al., 2006;
149 2008; Weller and Stein, 2008; Nicolo et al., 2010; Schulte et al., 2011; Dickson et al.,
150 2012; Wieczorek et al., 2013; Zhou et al., 2016; Yao et al., 2018).

151 The first observation that forms the basis of our proposal, then, is the
152 overshoot in the depth of the carbonate compensation depth (CCD) that followed
153 peak carbon input and the initial dissolution pulse. Both modeling (e.g., Dickens et
154 al., 1997; Zeebe et al., 2009; Cui et al., 2011, Zeebe and Zachos, 2013; Gutjahr et al.,
155 2017) and field measurements (e.g., Zachos et al., 2005; Röhl et al., 2007; Zeebe and
156 Zachos, 2013; Penman et al., 2016) suggest that the overshoot was a global
157 phenomenon, occurring over ~tens to hundreds of ka subsequent to ocean
158 acidification as a consequence of alkalinity added to the ocean via temperature-
159 enhanced silicate weathering (e.g., Kelly et al., 2005; Zeebe and Zachos, 2013). The
160 overshoot, and its consequent impact on carbonate production and preservation in
161 the water column, has been proposed to be responsible for the high and constant
162 CaCO_3 contents observed at multiple deep-sea drilling sites. We contend that the
163 overshoot, and specifically increases in bottom water saturation state, not only
164 enhanced preservation of carbonate exported from the surface ocean, but also

165 provided favorable conditions for the precipitation of authigenic carbonate near the
166 seawater-sediment interface.

167 The second relevant observation is the considerable variation in the $\delta^{44}\text{Ca}$ of
168 marine carbonate sediments over the PETM (Fig. 1; Griffith et al., 2015). This work
169 clearly demonstrated large shifts in sedimentary carbonate $\delta^{44}\text{Ca}$ associated with
170 the PETM that occur over time scales that are considerably shorter than the
171 assumed oceanic residence time. The observed shift is largest ($\sim 1\text{\textperthousand}$) at ODP Site
172 1221, the deeper of the two sites and the site at which carbonate contents in the
173 sedimentary column are the lowest, but it is also evident at the shallower Site 1212
174 ($\sim 40\%$ of 1221 excursion; Fig. 1). Such sizeable changes in bulk carbonate $\delta^{44}\text{Ca}$ are
175 not explained by evolving seawater $\delta^{44}\text{Ca}$ (e.g., Komar and Zeebe, 2011), and were
176 not observed in marine barite (the ostensible “passive” tracer of seawater $\delta^{44}\text{Ca}$;
177 Fantle, 2010) at ODP Site 1221. Instead, we contend that the trend in $\delta^{44}\text{Ca}$ is
178 explained by the formation of authigenic carbonate from a seawater-like fluid,
179 assuming a fractionation factor (α_{s-f}) between authigenic carbonate and aqueous Ca
180 of ~ 1 (i.e., 0\textperthousand ; Fantle and DePaolo, 2007; Fantle, 2015; Griffith et al., 2015).
181 Seawater is the isotopically heaviest reservoir on Earth ($\sim 1.9\text{\textperthousand}$), and biogenic
182 marine carbonate is typically offset from seawater by $\sim 1.3\text{\textperthousand}$ (Fantle and Tipper,
183 2014). There is, therefore, sizeable isotopic leverage to detect authigenic carbonate
184 contributions to typical biogenic carbonates when authigenesis occurs close to the
185 seawater-sediment interface.

186 The reader should bear in mind that recrystallization may be considered to
187 be a form of authigenesis (literally “born in place”), though one in which the net
188 mass of solid does not change. In the end, distinguishing between net addition of
189 authigenic carbonate and recrystallization is not important to our narrative, as both
190 mechanisms require the formation of a secondary carbonate phase with a
191 significantly different Ca isotopic composition than primary carbonate, though it is
192 an interesting second-order question.

193 In order for authigenesis to be a feasible explanation of the PETM data,
194 authigenic carbonate would have to form within the diffusive boundary layer in the
195 sedimentary column (i.e., from pore fluid whose $\delta^{44}\text{Ca}$ is distinct from that of bulk
196 carbonates). This layer, which represents the depth range over which transport via
197 diffusion (in most cases) and reaction compete effectively to maintain pore fluid
198 $\delta^{44}\text{Ca}$ out of isotopic equilibrium with respect to the reacting solid, is on the order of
199 10 meters in recrystallizing carbonate-rich sections (e.g., Fantle and DePaolo, 2007;
200 Fantle et al., 2010; Fantle, 2015), and on the order of 100 meters in sections where
201 reaction (i.e., dissolution and/or recrystallization) is slower relative to transport
202 (i.e., as at ODP Site 984; Turchyn and DePaolo, 2011). In either case, the isotopic
203 effects of authigenic CaCO_3 addition will be limited to within tens of meters of the
204 sediment-seawater interface. At greater depths, recrystallization and/or net
205 dissolution of carbonates erase(s) the isotopic leverage to alter the solid (Fantle and
206 DePaolo, 2007; Fantle et al., 2010; Fantle, 2015; Fantle et al., 2020) by adding Ca to
207 the pore fluid that has the same isotopic composition as the reactive solid and
208 attaining isotopic equilibrium (i.e., $\delta_{solid} - \delta_{fluid} = \Delta_{s-f}^{diagenetic}$; Fantle et al., 2020).
209 In addition, the rate of authigenic carbonate formation would have to be relatively

210 slow such that there are limited rate-dependent kinetic isotope effects associated
211 with calcite precipitation (see Fantle and Tipper, 2014 for summary of isotope
212 effects associated with mineral precipitation; DePaolo, 2011; Steefel et al., 2014).

213 To evaluate if authigenesis can explain the PETM data from Sites 1221 and
214 1212 in a quantitative manner, we present a variety of simple mixing, reactive
215 transport, and Earth System modeling results and analyses. Chief among the
216 questions we address is whether a global event generates a global authigenic
217 response as a consequence of the alkalinity overshoot associated with ocean
218 acidification. In addition, we explore the hypothesis that lower $O_2(aq)$
219 concentrations that accompany such events may impart an isotopically distinct
220 authigenic signal. This, in turn, suggests a new use for Ca isotopes in exploring the
221 evolution of oxidation state at the Earth's surface.

224 **3. Computational/Modeling Methods**

226 We utilized two numerical modeling constructs in this study. The first is the cGENIE
227 Earth System Model (Ridgwell et al., 2007a) – an ‘intermediate complexity’ model
228 that comprises a three-dimensional ocean circulation model with 2-D dynamic-
229 thermodynamic sea ice component and energy-moisture balance atmospheric
230 model, plus representation of the global carbon cycle. The specific PETM
231 simulations utilized a CO_2 emissions forcing to the atmosphere that was identical to
232 either that of (i) Gutjahr et al. (2017) or (ii) Gibbs et al. (2016) (i.e., twice the carbon
233 flux of Zeebe et al., 2009). A simulation that matched the Cui et al. (2011) carbon
234 emissions scenario was also run, though did not include Ca isotopes. Control
235 scenarios that had no carbon forcing, as well as no change in Ca isotopic
236 fractionation factor, were also conducted. All experiments were run following the
237 spin-up for 200 ka from the onset of the PETM.

238 The second modeling effort utilized the multicomponent reactive flow and
239 transport code CrunchTope (e.g., Druhan et al., 2013, Steefel et al., 2014).
240 CrunchTope was used to simulate either carbonate authigenesis (i.e., net addition of
241 solid with or without primary calcite dissolution) or recrystallization (i.e., coupled
242 dissolution-precipitation with no net change in mass of the solid), while varying
243 calcite saturation state, oxygen concentrations, and/or pH at the upper boundary.
244 Because CrunchTope does not allow for a continuous change in boundary
245 conditions, the temporal evolution of the upper boundary condition was set over
246 three discrete intervals and the ‘stop-restart’ functionality of CrunchTope used (see
247 SI for details). The chemistry over the intervals was constrained by the output from
248 cGENIE, such that the coarse temporal evolution at the upper boundary matched the
249 magnitude of change in the cGENIE simulations. Additional details on both modeling
250 efforts are provided in the Supplementary Information (Sections S1 and S2; Fig. S1;
251 Tables S1-S3).

256 **4. Results and Discussion: Evaluating the Authigenic Hypothesis**

257
258 In the discussion that follows, we present mass balance arguments in support of the
259 hypothesis that authigenic contributions near the sediment-seawater interface have
260 appropriate leverage to explain the PETM data at Sites 1212 and 1221. We then
261 discuss the main ambiguity in the interpretation of Ca isotopic data, that of
262 fractionation factor variability, and use the cGENIE simulations to support the
263 contention that the fractionation factor in a PETM-like ocean changes minimally due
264 to ocean acidification (given current understanding), and present testable
265 hypotheses that allow us to evaluate this concept. We use the cGENIE output to
266 explore how an authigenic carbonate signal associated with an ocean acidification
267 event might look spatially, both from location to location at the seafloor and with
268 depth in the sedimentary column, and evaluate the degree to which global drivers
269 create spatially invariant signals. Both can impact how we interpret geochemical
270 records of the past, and specifically whether we regard these signals as generated by
271 local or global processes (e.g., Swart and Kennedy, 2012). We present reactive
272 transport simulations of CaCO_3 authigenesis associated with the PETM overshoot, as
273 well as the transient drop in oxygen concentrations in bottom waters that may have
274 co-occurred with the rise in temperature and $p\text{CO}_2$. Finally, we propose an
275 authigenic interpretation of OAE 2 Ca isotope records, and evaluate the feasibility of
276 a fractionation factor-based explanation for these records.

277
278 *4.1 Mass Balance Arguments Favoring an Authigenic Origin for PETM $\delta^{44}\text{Ca}$ Signals*

279
280 The hypothesis of a detectable authigenic Ca isotope signal in the rock record is
281 generally reasonable from an isotopic mass balance perspective (Fig. 2).
282 Considering initial porosities between 0.6 and 0.9 and an authigenic endmember
283 with a $\delta^{44}\text{Ca}$ of 1.9‰ (SRM-915a scale), filling between ~10% and 90% of the
284 available pore space can explain the PETM data (Fig. 1; see SI for mixing equations).
285 As the initial carbonate content of the sediment decreases, the amount of authigenic
286 carbonate required to increase bulk carbonate $\delta^{44}\text{Ca}$ markedly (>0.5‰) decreases
287 (Fig. 2). This simple estimate does not consider change in porosity as a function of
288 compaction, as compaction is minimal in the upper tens of meters of the
289 sedimentary column. This calculation also does not consider the recrystallization of
290 existing carbonate (i.e., stable mineral recrystallization; e.g., Fantle and DePaolo,
291 2007; Fantle et al., 2010; Fantle, 2015; Gorski and Fantle, 2017; Lau et al., 2017;
292 Ahm et al., 2018), a topic that is considered in subsequent sections.

293 If the addition of authigenic carbonate explains variability in the $\delta^{44}\text{Ca}$ of bulk
294 sediment over ocean acidification events, then we expect to see a relationship
295 between $\delta^{44}\text{Ca}$ and the CaCO_3 content of the sediment that can be used to identify
296 such events in the rock record. In the simplest scenario, the carbonate content and
297 the $\delta^{44}\text{Ca}$ should vary in a positive manner. One added complication is that
298 carbonate content is also impacted by the flux from the surface ocean to the
299 sedimentary column, which is a function of the balance between production in the
300 surface ocean and the degree of preservation prior to burial (i.e., related to deep

301 water saturation state and dissolution kinetics in the water column). For instance,
302 changes in the export flux of carbonate from the ocean have been noted to occur
303 during the recovery phase of the PETM (e.g., Penman et al., 2016).

304 However, while CaCO_3 content in sediments may certainly vary on short time
305 scales (i.e., less than the residence time of Ca in the ocean), variability in the $\delta^{44}\text{Ca}$ of
306 this flux globally (and thus a relationship between CaCO_3 and $\delta^{44}\text{Ca}$) may only occur
307 by changes in the fractionation factor ($\Delta^{44}\text{Ca}$). The trajectory of a fractionation
308 factor change in $\delta^{44}\text{Ca}$ -wt. % CaCO_3 space depends on whether or not there is a clear
309 and consistent relationship between $\Delta^{44}\text{Ca}$ and biogenic production of CaCO_3 , a topic
310 we discuss in more detail below. Ultimately, while CaCO_3 and $\delta^{44}\text{Ca}$ may covary due
311 to changes in fluid $\delta^{44}\text{Ca}$ values (i.e., global seawater $\delta^{44}\text{Ca}$) over time scales longer
312 than the residence time, it seems reasonable to explore the short time scale PETM
313 data for correlations between CaCO_3 content and $\delta^{44}\text{Ca}$ that are indicative of
314 authigenesis. Following this exploration, we then discuss the likelihood of
315 fractionation factor variability over ocean acidification events such as the PETM.

316

317

318 *4.2 Simple Mixing Arguments for an Authigenic Origin for PETM $\delta^{44}\text{Ca}$ Signals*

319

320 In the PETM data (Griffith et al., 2015), there are relationships between CaCO_3
321 content and $\delta^{44}\text{Ca}$ that are strongly suggestive of authigenic CaCO_3 additions. Given
322 our assumptions regarding the isotopic compositions of the endmembers, the
323 trajectories of the mixing relationships between $\delta^{44}\text{Ca}$ and weight percent CaCO_3
324 depend mainly on the initial carbonate content of the sediment (Fig. 3; see SI for
325 mixing equations). Though we only consider one $\delta^{44}\text{Ca}$ value for the authigenic
326 endmember, the reader should be aware that the $\delta^{44}\text{Ca}$ of the authigenic
327 endmember may vary depending on where in the section it precipitates (open vs
328 closed diagenetic system; e.g., Fantle et al., 2020); authigenesis carried out within
329 the diffusive boundary layer will produce a phase that is isotopically distinct from
330 the primary phase, while authigenesis below the depth of equilibration will not.
331 Endmember $\delta^{44}\text{Ca}$ values will also depend on the $\delta^{44}\text{Ca}$ of the local water column
332 (e.g., open ocean vs. coastal/near shore environments; Holmden et al., 2012) and
333 potentially the mineralogy of the primary phase (e.g., Fantle et al., 2010; Blättler et
334 al., 2012; Lau et al., 2017; Ahm et al., 2018). The former would generally decrease
335 the leverage to alter by lowering the $\delta^{44}\text{Ca}$ of the fluid (e.g., due to mixing of riverine
336 and/or submarine groundwater discharge with seawater). The latter is a result of a
337 change in the fractionation factor associated with mineral precipitation and could
338 either increase or decrease the leverage of the authigenic phase to alter bulk $\delta^{44}\text{Ca}$.

339 For a range of initial carbonate contents, then, the mixing curves can explain
340 the Ca isotopic data that are anomalously high in the PETM intervals at both Sites
341 1212 and 1221 (Fig. 3a). Interestingly, the data from the shallower Site 1212 lie
342 almost entirely on an authigenic carbonate mixing trend for a carbonate-rich
343 sediment. Taken at face value, this suggests that the Ca isotopic variability at Sites
344 1212 and 1221 is authigenic in origin. This is entirely consistent, then, with the
345 hypothesis that ocean acidification events promote authigenic carbonate formation

346 as a consequence of deep ocean oversaturation following the dissolution pulse.
347 However, this preliminary analysis also suggests that the isotopic signal of
348 authigenesis is somewhat complicated, as it theoretically extends at least tens of
349 centimeters below the physical horizon that denotes the onset of the PETM. We
350 explore this in more detail in Section 4.4.

351

352

353 *4.3 Expectations for Fractionation Factor Variability Associated with Ocean*
354 *Acidification*

355

356 One potential interpretive complication with interpreting the $\delta^{44}\text{Ca}$ - CaCO_3 mixing
357 curves solely in terms of authigenesis is the presence of environmental signals, the
358 relative importance of which depends critically on the time scale over which the Ca
359 isotopic signal occurs. One of the most often cited causes of variations in carbonate
360 $\delta^{44}\text{Ca}$ is a change in the fractionation factor associated with CaCO_3 formation. Some
361 authors have also claimed that the original carbonate mineralogy (i.e., aragonite vs.
362 calcite) can influence the Ca isotope record (Lau et al., 2017; Jost et al., 2017;
363 Higgins et al., 2018), and the implications and caveats of this hypothesis have been
364 explored in some detail previously (e.g., Fantle, 2010). Accordingly, we will concern
365 ourselves here with the fractionation factor hypothesis, as this seems the most
366 applicable to short time scale ocean acidification events.

367 Before beginning our analysis, it is worth noting that it is not clear if
368 fractionation factor variability can be reasonably invoked when precipitation is
369 biologically mediated or controlled. Most of the existing empirical relationships
370 between fractionation factor and carbonate system chemistry, for instance, rely on
371 abiotic/inorganic experiments. Given the regulated manner in which organisms,
372 such as foraminifera (e.g., Erez, 2003), precipitate carbonate, it is not at all clear that
373 such results can be used in global models to describe controls on the Ca isotopic
374 composition of a biogenic carbonate output flux.

375 Further, experimental culture studies are ambiguous when it comes to the
376 control of Ca isotopic fractionation by aqueous carbonate chemistry (Kisakürek et
377 al., 2011; Mejia et al., 2018). If one takes the foraminiferal culture data at face value
378 (e.g., Fig. 3 in Kisakürek et al., 2011), the preferred correlation between $\Delta^{44}\text{Ca}$ and
379 carbonate ion concentration is not only weak (slope $<0.0005\text{ ‰}/\mu\text{M CO}_3^{2-}$) but also
380 opposite in sign to the well-studied inorganic precipitation effect (e.g., Tang et al.,
381 2008; 2012). Further, if one considers the growth rate effect on fractionation factor,
382 it is equally unclear if and how carbonate producers respond to elevated CO_2
383 concentrations (e.g., Riebesell et al., 2000; Langer et al., 2006; Manno et al., 2012;
384 Davis et al., 2017), thus complicating the application of the growth rate- $\Delta^{44}\text{Ca}$
385 correlation to carbonate sediments.

386 Because of these complications, we adopt the simplest approach and apply
387 the inorganic experimental results of Lemarchand et al. (2004) and Tang et al.
388 (2008; 2012) as a means of exploring previous suggestions that fractionation factor
389 controls Ca isotope records of the past. Our objective is to examine spatial and
390 temporal patterns produced in cGENIE and use this information to generate

391 predictions about what should be observed in cases where fractionation factor
392 controls the Ca isotopic composition of the rock record.

393

394 4.3.1 General Discussion of Fractionation Factor Variability

395
396 As previously mentioned, over time scales less than the residence time of Ca in the
397 ocean, variability in seawater $\delta^{44}\text{Ca}$ is insufficient to drive significant global
398 differences in bulk carbonate $\delta^{44}\text{Ca}$ (Fig. 1; Komar and Zeebe, 2016). Therefore,
399 during events lasting thousands to a few hundred thousand years, such as the PETM,
400 (i) the CaCO_3 content of the sediment (via the balance between production and
401 preservation and the addition of authigenic carbonate), (ii) authigenesis, and/or (iii)
402 the fractionation factor may drive variability in $\delta^{44}\text{Ca}$ - CaCO_3 space. In the latter case,
403 the expectation is that any shift in the fractionation factor in the surface ocean, for
404 instance, due to ocean acidification should coincide with any shift in $\delta^{13}\text{C}$, assuming
405 that the decrease in $\delta^{13}\text{C}$ directly reflects ocean acidification. As we explore in more
406 detail below, this means that any shift in fractionation factor will likely be
407 heterogeneous in the global ocean and will reflect water column chemistry.

408 Over short time-scale events, the fractionation factor may impact carbonate
409 sediment $\delta^{44}\text{Ca}$ either locally or globally. Local shifts will result in heterogeneous
410 “anomalies” in the rock record that vary as a function of location and/or
411 environment. In theory, it should be straightforward to identify such a mechanism
412 by measuring contemporaneous carbonates from a range of locations. However, as
413 is clear from the cGENIE modeling discussed below, even a global driver (such as
414 $p\text{CO}_2$) can generate spatially variable signals (e.g., temperature and saturation
415 state). Care must therefore be taken in discriminating between global and local
416 effects, which can be aided by quantifying the spatial variability in saturation state
417 or carbonate ion concentration using proxies or models.

418 One can also consider changes in the global fractionation factor over short
419 time scales, though this must be thought out carefully. The global fractionation
420 factor is a flux-weighted average (X_i) of all the output modes (i) that occur in the
421 ocean (Fantle, 2010):

422

$$\Delta^{44}\text{Ca}_{\text{output}}^{\text{global}} = \sum_{\text{outputs},i} \Delta^{44}\text{Ca}_i \cdot \frac{F_i}{\sum_i F_i} \quad (= X_i) \quad [2]$$

423 where $F_i/\sum_i F_i$ is the fraction of the global flux contributed to by the i^{th} output mode
424 (i.e., X_i). The inorganic experimental data suggest that there are potentially two
425 ways to drive changes in the global fractionation factor, keeping in mind the caveat
426 above:

427

- 428 (1) By varying a single (or related) parameter(s), such as temperature or
429 precipitation rate, globally, which drive(s) a fundamental change in
430 $\Delta^{44}\text{Ca}_{\text{input}}^{\text{global}}$ (also referred to as $\Delta^{44}\text{Ca}_{\text{sed}}$). The expectation is that $\Delta^{44}\text{Ca}_i$ of
431 all output modes change in a similar manner or that there is one dominant
432 output mode, such that the effect on carbonate $\delta^{44}\text{Ca}$ is globally uniform.

435
436 (2) By varying one (or more) of the dominant output modes, such that $F_i/\sum_i F_i$
437 and/or $\Delta^{44}Ca_i$ associated with that mode. The driver of such a change can be
438 local in origin.

439
440 An example of the second driver of global fractionation factor is a change in the
441 proportion of Ca removed as aragonite, a topic that was explored in detail by Fantle
442 (2010). Assuming that calcite and aragonite are the main output modes of Ca from
443 the ocean, the global fractionation factor is described by: $\Delta^{44}Ca_{output}^{global} =$
444 $\Delta^{44}Ca_{calcite} + X_{arag}(\Delta^{44}Ca_{arag} - \Delta^{44}Ca_{calcite})$, where X_{arag} is the fraction of the
445 total output flux removed as aragonite (Fantle, 2010). One suggestion has been that
446 the biogenic calcite and aragonite output fluxes are isotopically distinct (Blättler et.
447 al., 2012), and could therefore control seawater isotopic variability. However, post-
448 depositional transformation of metastable phases can reduce the leverage of the
449 aragonite flux to alter either seawater or bulk carbonate $\delta^{44}Ca$ (Fantle, 2010; Fantle
450 and Higgins, 2014; Higgins et al., 2018). In order for aragonite output to impact the
451 global fractionation factor, then, the aragonite must not react in the sedimentary
452 column or it must do so in an effectively closed system.

453
454
455 **4.3.2. cGENIE Model Constraints on Fractionation Factor Variability Associated with**
456 **Ocean Acidification Events**

457
458 Before beginning a discussion of our expectations regarding fractionation factor
459 impacts on Ca isotopic records, which is predicated on cGENIE constraints on the
460 chemical evolution of seawater over the event, we summarize the general output of
461 the three PETM scenarios simulated — Gutjahr et al. (2017), Cui et al. (2011), and
462 Gibbs et al. (2016). The general observations in all cases are similar (Fig. 4):

463 (1) A rise in temperature and alkalinity (due to carbonate dissolution), and a
464 drop in pH, associated with an increase in atmospheric pCO_2 ;
465 (2) Occurrence of widespread seafloor undersaturation at the initiation of the
466 carbon pulse, followed by an extended period of supersaturation (the
467 “overshoot”);
468 (3) A spatially-variable pattern of bottom water supersaturation during the
469 overshoot;
470 (4) A spatially-variable distribution of sedimentary carbonate contents that
471 reflect the balance between delivery of carbonate to the sedimentary column
472 and core-top dissolution.

473
474 The surface saturation state with respect to calcite also exhibits spatial
475 variability over the PETM, which is presented by subtracting the initial steady state
476 spin-up for each simulation from the time at which the minimum saturation state
477 occurs (46, 60, and 6 ka, respectively, for the three scenarios presented). At these
478 times, large decreases in surface ocean saturation state occur in the western Pacific
479 Ocean while much smaller variability is observed in the Southern Ocean and sub-

480 Arctic Pacific (Fig. S2). Within the thermocline, the trends are broadly similar: the
481 largest drops in saturation state are focused in bands between 15 and 30°N and 15
482 and 30°S, while the South Atlantic exhibits a smaller drop in saturation state
483 compared to surface waters. Recognizing the extent of the spatial variability in such
484 a global scenario is critical, as it allows for some degree of ground-truthing (albeit
485 model-based) when it comes to interpreting Ca isotopic records in terms of
486 fractionation factor variability.

487 One of the commonly cited drivers of fractionation factor variability is
488 temperature, which the PETM-specific cGENIE simulations suggest is not sufficient
489 to explain the Ca isotope records from Sites 1212 and 1221. Temperature
490 differences due to warming (relative to pre-event T) in the three scenarios
491 investigated can be as much as $\sim 5^{\circ}\text{C}$ or so throughout the water column. Given a
492 fractionation factor sensitivity $<0.02\text{‰}/^{\circ}\text{C}$ (e.g., Gussone et al., 2003; Langer et al.,
493 2007; Griffith et al., 2008), one would need a temperature difference at a given
494 location of at least $5\text{--}10^{\circ}\text{C}$ to see a resolvable signal (~ 0.1 to 0.2‰). Though the
495 effect is in the right direction (smaller fractionation with increasing temperature),
496 the magnitude of this effect is considerably smaller than what is observed at Sites
497 1212 and 1221 (Fig. 1b).

498 In addition, the maximum spatial heterogeneity in the PETM temperature
499 anomaly is only $\sim 1\text{--}2^{\circ}\text{C}$ at all water depths (shown for the surface ocean in Fig. S3).
500 In other words, the spatial variance in temperature difference (relative to pre-event
501 temperature distributions) is small. This means that site-to-site differences in
502 carbonate $\delta^{44}\text{Ca}$ due to temperature-driven changes in fractionation factor over the
503 PETM are likely less than 0.1‰ . Temperature-driven changes in fractionation
504 factor, therefore, do not explain the *differences* in the Ca isotope records at Sites
505 1212 and 1221 over the PETM.

506 Thus, we turn to those chemical parameters that are commonly cited as
507 controlling the fractionation factor: the saturation state relative to calcite (Ω_{calcite})
508 and the carbonate ion concentration. We considered variability in the fractionation
509 factor as a function of either the relationship constrained by Lemarchand et al.
510 (2004) and regressed by Gussone et al. (2005):

$$512 \quad 1000 \cdot \ln(\alpha_{\text{calcite}-\text{Ca}^{2+}}) = -1.31 + 3.69 \cdot m_{\text{CO}_3^{2-}} [\text{mmol/kg}] \quad [3]$$

513 or the relationship between saturation state and fractionation factor suggested by
514 Tang et al. (2012):

$$517 \quad \Delta_{\text{calcite}-\text{Ca}^{2+}} = -0.067 \cdot \Omega_{\text{calcite}} - 0.321 \quad [4]$$

518 It is important to note that the former relationship (Eqn. 3) is similar to the one
519 utilized by Komar and Zeebe (2016) in their LOSCAR simulation of the end-Permian
520 $\delta^{44}\text{Ca}$ dataset published by Payne et al (2010), and that it is opposite in sense to the
521 abiotic experimental data of Tang et al. (2008; 2012) (Eqn. 4; for summary, see Fig.
522 7 of Fantle and Tipper, 2014). Given the low ammonium concentrations in the
523 experiments of Tang et al. (2008; 2012), these data are arguably more relevant to
524

525 the surface ocean, in which ammonium concentrations are negligible, and the
526 sedimentary column (ammonium concentrations in sedimentary pore fluids are
527 generally >100x lower than in the experiments of Lemarchand et al. (2004) and
528 Al Khatib and Eisenhauer (2017)).

529
530 The objective of the cGENIE simulations was to address two questions:

531
532 (1) Can fractionation factor variability driven by saturation state be responsible
533 for the PETM-specific Ca isotopic trends noted by Griffith et al. (2015)?
534 (2) Are there any general lessons that can be gleaned from the PETM simulations
535 that can be applied to similar events?

536
537 With regard to the first question, the results of the simulations at Site 1262
538 are plotted in $\delta^{44}\text{Ca}$ - CaCO_3 space for the carbon flux scenarios described above and
539 the relationships in Eqns. 3 and 4 (Fig. 3a). Site 1262 is representative of a seafloor
540 location that exhibits a strong decrease in sedimentary carbonate content over the
541 PETM, and thus spans a range of CaCO_3 values. More muted variations in CaCO_3 are
542 observed in the GENIE sedcore output at Sites 1221 and 1212 (Fig. 3a, also see
543 Section 4.4 for discussion of Site 1212; Site 1221 not shown but minimum % CaCO_3
544 is ~26% for the Cui et al. (2011) C release scenario), but the extent of variability in
545 $\delta^{44}\text{Ca}$ is similar at all sites.

546 The simulations, which document a small change in carbonate $\delta^{44}\text{Ca}$
547 associated with ocean acidification over the PETM (Fig. 3a), support the contention
548 that large changes in bulk carbonate $\delta^{44}\text{Ca}$ are not explained by variations in the
549 fractionation factor associated with the enhanced carbon flux to the atmosphere
550 over the PETM. Insofar as cGENIE accurately captures the processes that link
551 carbonate $\delta^{44}\text{Ca}$ and water chemistry (i.e., surface water production and deep
552 water/core top dissolution), there must be another explanation for the $\delta^{44}\text{Ca}$ data
553 observed at Sites 1212 and 1221.

554 In contrast to earlier cGENIE model studies on contemporary ocean
555 acidification that linked the CaCO_3 :POC ratio directly to saturation state changes:
556 $F_{z=h_e}^{\text{CaCO}_3} = \gamma \cdot r_0^{\text{CaCO}_3:\text{POC}} \cdot F_{z=h_e}^{\text{POC}}$ where $\gamma = (\Omega - 1)^n$ for $\Omega > 1$ (Ridgwell et al.,
557 2007b), we did not consider changes in the carbonate production flux relative to
558 particulate organic carbon (POC) production at the surface. However, such a
559 mechanism moves one along a totally different trajectory than those described by
560 the mixing lines (e.g., gray arrow in Fig. 3a), a conclusion that does not depend on
561 the carbon flux scenario utilized.

562 Though large changes in bulk carbonate $\delta^{44}\text{Ca}$ are precluded, smaller changes
563 driven by fractionation factor shifts may occur over the PETM. The maximum
564 modeled drop in surface saturation state (Ω_{calcite}) that is associated with the carbon
565 isotope excursion (CIE) is ~60% (Cui et al. (2011) scenario). This would cause a
566 maximum ~0.3‰ change in $\Delta_{\text{calcite}-\text{Ca}^{2+}}$, and the effect would be expressed
567 regionally (i.e., in the western Pacific and Indian Oceans) and not globally (Fig. S2).
568 Over most of the surface ocean, the change in $\Delta^{44}\text{Ca}_{\text{calcite}-\text{Ca}^{2+}}$ is more moderate,

569 between ~0.1 and 0.2‰ at most during the CIE. Such model-based estimates are
570 useful, as they provide a first-order expectation for fractionation factor changes
571 associated with the PETM that can guide the interpretation of future measurements
572 and, potentially, Ca isotope records produced during other events.

573 With regard to the control of Ca isotopic records by fractionation factor
574 variability, then, our analysis suggests a testable hypothesis: IF the fractionation
575 factor can change over extreme events such as hyperthermals and ocean anoxic
576 events, as a variety of authors have suggested, then there must be variability in the
577 fractionation factor PRIOR to the event that is related to the spatial chemical
578 heterogeneity in the surface ocean. Because there is spatial variability in saturation
579 state and carbonate ion concentration (Fig. S4a and c), there should be resolvable
580 variability (~0.4-0.5‰) in the $\delta^{44}\text{Ca}$ of the carbonate sedimentation flux from the
581 ocean prior to the event (Fig. S4b and d).

582 To be clear, this heterogeneity is not related to heterogeneity in the $\delta^{44}\text{Ca}$ of
583 seawater, which is spatially uniform; neither is this hypothesis applicable to
584 locations in which fluid $\delta^{44}\text{Ca}$ is influenced locally (such as by riverine or submarine
585 groundwater discharge; e.g., Holmden et al., 2012). Considering only, then, locations
586 that receive carbonate formed from global seawater, our hypothesis is that if the
587 fractionation factor can control Ca isotopes in the rock record, then there must be
588 spatial variability in the $\delta^{44}\text{Ca}$ of contemporaneous carbonate sediment.

589 There is not an abundance of data to evaluate this hypothesis over the PETM.
590 Based on the cGENIE-based constraints on water chemistry (i.e., of surface waters in
591 which carbonate producers live), Sites 1212 and 1221 should contain
592 contemporaneous bulk carbonates that have similar Ca isotopic compositions. The
593 data, however, indicate that pre-PETM bulk carbonates at these sites are
594 significantly different in Ca isotopic composition. Again, this suggests a factor other
595 than differences in the fractionation factor as the causative factor. We therefore
596 conclude that authigenesis explain the Ca isotope records over the PETM.

597 The significance of such a conclusion is multi-faceted. One aspect that we
598 note here is that temporal mismatches in various geochemical proxy records are
599 sometimes suggested to reflect unexpected changes in the geochemical cycles of
600 those elements constrained by the proxy records, cycles which are then often
601 described as “decoupled”. However, an authigenic signal communicated from the
602 upper boundary overprints temporal signals in the depth domain. With regard to Ca
603 isotopes, the possibility of a sizeable authigenic component obviates the need to
604 invoke global scale decoupling of geochemical cycles, which can be difficult to
605 explain.

606

607

608 *4.4 Interpreting the Past Assuming the Presence of an Authigenic $\delta^{44}\text{Ca}$ Signal*

609

610 In Section 4.3, we noted the expectation that a shift in the global fractionation factor
611 associated with a change in seawater chemistry during ocean acidification events
612 should be coincident with any shift in $\delta^{13}\text{C}$. The cGENIE simulations suggest that the
613 same is generally true of CaCO_3 (Fig. 5). However, at Sites 1212 and 1221 over the

614 PETM, the maximum $\delta^{44}\text{Ca}$ value is offset from the minimum CaCO_3 content, and the
615 increase in $\delta^{44}\text{Ca}$ at both sites appears correlated in the relative depth domain (Fig.
616 1).

617 One way to explain this observation is that dissolution induced by ocean
618 acidification lowers the carbonate content during ocean acidification, and authigenic
619 carbonate then “fills in” the gap from the top down during the alkalinity overshoot.
620 At Site 1221, where CaCO_3 contents reach low values, such a scenario is not difficult
621 to imagine, and is supported by our mixing analysis (Fig. 3). At Site 1212, the
622 cGENIE model output suggests that dissolution could have been substantially
623 greater than measured (drop from ~95% to ~80 wt. % CaCO_3 ; Fig. 1) if bioturbation
624 was minimal. In the Gibbs et al. (2016) carbon emission scenario with no
625 bioturbation, the modeled drop in carbonate content at Site 1212 associated with
626 core-top dissolution was ~50 wt. % CaCO_3 (Fig. S5). To be consistent with the
627 authigenic interpretation (Fig. 3a), the CaCO_3 content at Site 1212 prior to the
628 overshoot would only have to be ~75 wt. % CaCO_3 , which seems reasonable.

629 Thus, while it is feasible that the $\delta^{44}\text{Ca}$ signal reflects authigenic carbonate
630 additions, this line of reasoning highlights the need to understand the depth range
631 over which authigenesis generated from above can influence the sedimentary
632 record. Accordingly, we turn to reactive transport modeling to address this
633 question.

634

635

636 4.4.1 Reactive Transport Considerations of Authigenesis in the Marine Sedimentary

637 Column

638 A variety of key questions arise when considering the hypothesis that authigenic
639 carbonate formation, induced by a change in the chemistry of ocean bottom waters,
640 plays a role in determining the Ca isotopic composition of marine sediments during
641 the PETM and, perhaps, other intervals in Earth history. We focus on two related
642 questions: (1) What controls the length scale over which authigenesis acts? and (2)
643 how might an authigenic signal manifest itself in the rock record? We are not
644 claiming that authigenesis is the explanation for all Ca isotope variability observed
645 in the rock record, and there are doubtlessly other signals that are present. We
646 should be clear that the authigenic signal we are discussing is imparted at or near
647 the sediment-seawater interface, where the Ca isotopic leverage to alter the bulk
648 sediment is the most extreme. This is not a deep, burial diagenetic signal and it will
649 not affect all geochemical proxies in a similar manner.

650 The questions above are directly relevant to the interpretation of
651 geochemical variations in the depth domain as temporal signals that reflect the
652 evolution of the ocean-atmosphere system. It is important to remember that
653 diagenetic processes act in the depth domain, and are not necessarily bound by
654 temporal boundaries (though could be if properties such as grain size, surface area,
655 for instance, covary with geochemistry over time). Diagenesis therefore can
656 overprint temporal records with depth-dependent signals, which may result in
657 misinterpreting the convoluted signal.

With this in mind, authigenic carbonate addition is a reasonable explanation of Ca isotopic variability in the rock record if the length scale over which this effect occurs is large enough to be detected or large relative to the length scale of features observed in the natural system. In the latter case, so-called Ca isotopic excursions are observed over meter to tens of meters length scales, while the variability over the PETM is observed over centimeter length scales (Fig. 1; e.g., Payne et al., 2010; Griffith et al., 2015). So, there is a considerable range of relevant length scales to consider.

In addition, the carbonate added must have a distinct isotopic composition relative to the bulk sediment. In carbonate-rich sediments, this is generally the case in the upper tens of meters of the sedimentary section (Fantle and DePaolo, 2007; Fantle, 2015). In sedimentary systems, the Ca isotopic composition of authigenic carbonate is a function of pore fluid $\delta^{44}\text{Ca}$ and the fractionation factor associated with marine carbonate precipitation, which is close to one (Fantle and DePaolo, 2007; Fantle, 2015). In the marine system, pore fluid $\delta^{44}\text{Ca}$ is initially the same as seawater ($\sim 1.9\text{\textperthousand}$) and is altered in the sedimentary column by any process that puts isotopically distinct Ca into, or takes Ca out of (fractionating isotopically in the process), the pore fluid. The isotopic composition of the upper and lower boundaries can also influence pore fluid $\delta^{44}\text{Ca}$; the length scales over which the boundaries can influence pore fluids depend on the relative importance of transport (diffusion/advection) to reaction (e.g., Fantle et al., 2010).

To address these questions, we conducted two sets of authigenic precipitation simulations, which varied primarily in the lithology of the sedimentary column (Table S2). One set of runs was Site 1212-like (96% calcite at depths < 175 cm, and 80% and 93% calcite in the upper 25 cm), while the other was Site 1221-like (40% and 60% calcite at depths < 175 cm, and 1% calcite in the upper 25 cm). The burial lithology (i.e., the material added by sedimentation that is constrained by the measured % CaCO_3 at each site) also differs for each set of site simulations (82.5% calcite at Site 1221, in most cases, though simulations were also run with burial lithologies that were 1% calcite and 96% calcite; 95% calcite at Site 1212). The reader should be aware that the large changes in % CaCO_3 that are shown (e.g., in Fig. 7) are not authigenic, but reflect the change in burial lithology assumed for each site (refer to Table S2 for initial and burial lithologies).

Though there are no clear constraints on the rate constants for authigenic precipitation, the simulations suggest that rate constants $\sim 10^{-11} \text{ mol/m}^2/\text{s}$ can generate the sort of mixing patterns that are inferred at Sites 1212 and 1221. The mineral precipitation rates in the authigenic models are $< 10^{-4} \text{ mol/g/yr}$, which is two to three orders of magnitude slower than experimental rates at low to moderate saturation states (e.g., Zuddas and Mucci, 1998; Tang et al., 2008) yet faster than carbonate recrystallization rates in natural systems (e.g., Richter and DePaolo, 1987; 1988; Richter and Liang, 1993; Fantle and DePaolo, 2006; 2007; Fantle, 2015).

Assuming such rate constants, the length scale over which the upper boundary saturation state permeates into the sedimentary column at any given time is on the order of tens of centimeters. The length scale is a function of the transport flux (diffusive in this case) relative to the reaction rate (Fig. 6). Given the same

704 diffusive flux (similar porosity, diffusion coefficients, and concentration gradient),
705 lowering the rate constant will increase the length scale. Assuming that the rate
706 constant is the primary variable, and not the diffusion coefficient (or tortuosity), a
707 larger length scale comes at the cost of slower authigenic carbonate accumulation.
708 The time scale of the event will therefore also determine the amplitude of the
709 authigenic signal, as will burial rate. Burial moves sediment through the zone of
710 authigenesis, determining how much time a sediment package spends in the zone
711 and distributing the signal in the depth domain. Assuming equal rate constants, a
712 slower burial rate will result in greater accumulation of authigenic carbonate over a
713 shorter length scale, compared to high burial rates in which authigenic additions are
714 smaller and the isotopic signal is distributed over a longer length scale. This effect is
715 clearly seen in the model simulations (Fig. 7).

716 The penetration of the upper boundary signal into the sedimentary column
717 allows for the authigenic signal to stratigraphically “precede” the primary,
718 depositional signal of the event. If one considers sedimentation rates on the order of
719 25 m/Ma (2.5 cm/ka), the apparent time lag is ~10 ka prior to the event; at lower
720 sedimentation rates (e.g., sedimentation rates in the OAE 2 Portland #1 core are <1
721 cm/ka), the apparent time lag would be tens of thousands of years. This apparent
722 time lag can be observed in the simulated Site 1221 depth profiles; in this case, the
723 authigenic signal manifests as a local peak in bulk carbonate $\delta^{44}\text{Ca}$ that occurs at the
724 edge of the siliciclastic section (Fig. 7b-c), which is material deposited *before* the
725 alkalinity overshoot. A similar peak is observed in the measured data from Site 1221
726 (Fig. 7d). Such a peak is important to recognize, as it is not a temporal feature, but
727 one associated with diagenetic processes occurring in the depth domain. That said,
728 the peak does not occur at higher burial rates (Fig. 7d), because the siliciclastic unit
729 does not spend appreciable time in the authigenic zone; however, the peak would
730 reappear if precipitation kinetics increased by some mechanism (e.g., increased
731 surface area). This is another example in which the isotopic signal could be
732 misinterpreted as a temporal one, yet would only be present in sections that had
733 slow enough burial and a carbonate-poor lithology exposed in the authigenic zone.

734 More generally, the simulation of authigenic carbonate precipitation induced
735 by a change in the upper boundary is, as expected, consistent with the simple mixing
736 calculations (Fig. 3b). In addition, the Ca isotopic composition of the simulated bulk
737 sediment clearly reflects the chemical evolution of the upper boundary condition
738 over the event. Thus, even though Ca isotopes are impacted by a diagenetic process,
739 they are useful for elucidating primary signals.

740 The simulations presented above are endmember simulations in which
741 neither carbonate dissolution nor recrystallization is permitted. For this reason,
742 pore fluid $\delta^{44}\text{Ca}$ does not change over the model domain. The impact of
743 dissolution/recrystallization is to lower pore fluid $\delta^{44}\text{Ca}$ values closer to those of the
744 reacting solid; such a shift would alter the leverage of authigenic carbonate to
745 impact bulk carbonate $\delta^{44}\text{Ca}$.

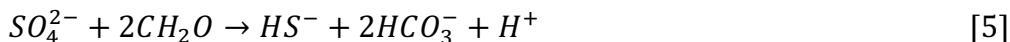
746 The extent to which pore fluid $\delta^{44}\text{Ca}$ may change due to recrystallization is
747 evaluated in simulations in which recrystallization of the bulk carbonate is
748 permitted. The rate constants used are consistent with existing constraints on

carbonate recrystallization rates ($\sim 10^{-14}$ mol/m²/s, which yields rates ~ 0.1 Ma⁻¹; Fantle and DePaolo, 2007; Fantle, 2015; Huber et al., 2017). In the presence of recrystallizing sediment, pore fluids exhibit $<0.5\text{\textperthousand}$ variability in isotopic composition (Fig. 8). Pore fluid $\delta^{44}\text{Ca}$ is initially pulled down to $\sim 1.5\text{\textperthousand}$ by bulk carbonate dissolution (as precipitation is assumed not to fractionate), but subsequently increases as the simulation proceeds and the bulk carbonate $\delta^{44}\text{Ca}$ evolves towards that of the pore fluid. This is a maximum estimate of the variability in pore fluid $\delta^{44}\text{Ca}$, as it assumes the entire solid is open to recrystallization. If the mass of reactive solid is smaller, the leverage to alter pore fluid $\delta^{44}\text{Ca}$ at a given rate is less (e.g., Chanda et al., 2019).

Though observations are scarce, such isotopic variability in the pore fluid is generally consistent with observations in the upper ~ 15 meters of carbonate-rich sedimentary sections (e.g., Fantle and DePaolo, 2007; Fantle, 2015; Higgins et al., 2018). The ultimate point is that even in the presence of recrystallization, isotopic leverage exists in the upper 2 meters of the section to generate isotopically distinct authigenic carbonate. This is expected given that the diffusive reaction length scale (i.e., the length scale over which the system remains somewhat open to transport) for Ca isotopes is on the order of meters to tens of meters (Fantle and DePaolo, 2006; Fantle and DePaolo, 2007; Fantle et al., 2010).

Recrystallization does not explain the PETM data if one assumes that all sedimentary carbonate is equally reactive. In this case, one expects increases in the $\delta^{44}\text{Ca}$ of the entire sedimentary package in the upper few meters of the section, with a diagenetic effect that scales with the carbonate content (Fig. 8). This is, as expected, generally similar to the trend expected at low extents of authigenesis, and generally highlights the difficulty disentangling authigenesis and recrystallization.

However, at the most rudimentary level, the interpretation of Ca isotopes as either a primary or diagenetic signal does not rely on distinguishing between authigenesis and recrystallization. The distinction does matter if we want to interpret the diagenetic signal or constrain the impact of authigenesis on the global Ca and/or C cycles (e.g., Schrag et al., 2013). The main differences between the two mechanisms are that recrystallization (i) does not produce any net change in the mass of carbonate in the section, and (ii) generates a dissolution flux that could, if large enough, impact pore fluid $\delta^{44}\text{Ca}$. Accordingly, the ideal recrystallization trend is a vertical line in $\delta^{44}\text{Ca}$ - CaCO_3 space (Fig. 3). Thus, distinguishing between recrystallization and authigenesis is difficult at extremes in sedimentary carbonate content (i.e., extremely high and extremely low, such as we have at the PETM sites being explored).


To distinguish between authigenesis and recrystallization, acidification events in oceans with preserved pelagic carbonate records may prove to be ideal case studies. Specifically, sites that move below a shoaling CCD during the event present a “blank canvas” of sorts for authigenesis to impart a signal. In such sediments, where carbonate content is essentially zero, authigenesis can be the only means of drastically changing sedimentary $\delta^{44}\text{Ca}$ values. For this reason, future work should not ignore siliciclastic-dominated facies.

794 **4.4.2 The Case for Ocean Anoxia as a Global Driver of Carbonate Authigenesis**

795
796 One of the outstanding questions regarding a diagenetic origin of isotopic
797 excursions in the rock record is whether or not diagenesis can create effects that are
798 expressed globally. The question is relevant for a range of reasons, most notably
799 that the global expression of an excursion is often suggested either to preclude a
800 diagenetic origin or to argue for the expression of a primary marine signal (e.g.,
801 Halverson et al., 2002). This issue has been addressed in studies of shallow water
802 carbonate diagenesis (e.g., Swart and Eberli, 2005; Swart, 2008), which have
803 suggested global diagenetic drivers such as sea level change (e.g., Swart and
804 Kennedy, 2012) and increased terrestrial weathering rates (e.g., Cui et al., 2017). In
805 this study, we evaluate whether or not global events, such as ocean acidification, can
806 generate globally-expressed, diagenetically-produced geochemical signals.

807 The ambiguity in the logic that primary signals are globally uniform while
808 diagenetic signals are local can be appreciated by considering the example of an
809 ocean acidification event. Associated changes in ocean carbonate ion concentration
810 have been hypothesized to induce variations in the Ca isotopic fractionation factor
811 in biogenic carbonate, which is a primary (not a diagenetic) signal. In this scenario,
812 carbonate ion concentration changes are driven globally, but are not uniform in the
813 ocean (Fig. 4; Figs. S2 and S4). Thus, the Ca isotopic expression of this global event,
814 which is a primary signal, will vary from location to location in the ocean. Clear
815 interpretation therefore requires an understanding of how the Ca isotopic signal is
816 imparted and expectations for the variability given location, lithology,
817 sedimentation rate, etc.

818 One theme of this contribution is that global events may be expressed in the
819 sedimentary record via diagenetic processes, such as a saturation state overshoot
820 associated with an ocean acidification-hyperthermal event. However, an alkalinity
821 overshoot is not the only means of increasing saturation state in the sedimentary
822 column during such events; alkalinity also increases in marine sedimentary pore
823 fluids as sulfate is reduced. A general reaction is:

825 though more complex formulations for organic matter (e.g., using Redfield ratios for
826 marine organic matter) and the chemical composition of the electron donor can be,
827 and have been, considered (e.g., Dale et al., 2006; 2008; Soetaert et al., 2007;
828 Bergmann et al., 2013; Arndt et al., 2013). The simple analysis presented herein
829 does not take into account the myriad of complexities surrounding redox reactions
830 in marine sediments (e.g., Arndt et al., 2013 and references therein).

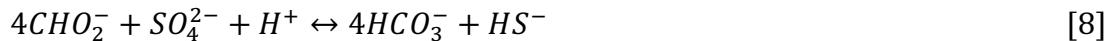
831 In the modern ocean, the zone of sulfate reduction extends from meters to
832 hundreds of meters below the seafloor (Fig. S8), effectively traversing the gradient
833 in pore fluid Ca isotopic composition from seawater-like to carbonate-like. In
834 carbonate-rich sections, authigenic carbonate formed within the upper tens of
835 meters can be isotopically distinct, while authigenic carbonate formed deeper will
836 not be isotopically distinct from bulk carbonate. In order for sulfate reduction to be
837 a viable mechanism for producing isotopically distinct carbonate, sulfate reduction

840 must generally occur in the upper tens of meters of the sedimentary column (i.e.,
841 where pore fluid $\delta^{44}\text{Ca}$ is substantially higher than that of the bulk carbonate); this
842 length scale can change depending on the rate at which carbonate dissolves or
843 recrystallizes. In addition, sulfate reduction rates are influenced by a range of
844 parameters, including $\text{O}_2(\text{aq})$ concentrations, temperature, sulfate concentrations,
845 and the energetic favorability of the sulfate reduction reaction (e.g., vis- -vis the
846 electron donors). A change in any, or a combination, of these factors can
847 theoretically impact the depth over which sulfate reduction occurs.

848 In the three CO_2 -release scenarios simulated using cGENIE, bottom water
849 oxygen concentrations decreased transiently throughout the ocean over a period of
850 10 ka (Fig. 9); at some locations at the seafloor, depressed oxygen concentrations
851 persisted over longer, 30 to 40 ka time scales. The change in aqueous oxygen
852 concentration is uniform neither spatially nor with depth in the water column,
853 which suggests that any O_2 -related isotopic signal generated by this global event is
854 likely to be expressed heterogeneously. Predictably, it is in deeper sediments that
855 such a signal is most likely to be found (Fig. 9). The decrease in oxygen
856 concentration coincides with the onset of the PETM, increase in export flux of POC,
857 and the initial temperature increase. Accordingly, sulfate reduction must also occur
858 at rates that produce sufficient alkalinity to counterbalance the drop in bottom
859 water saturation state associated with the dissolution pulse.

860 It should be noted that of the small fraction of the surface ocean POC export
861 flux that reaches the seafloor in cGENIE, none enters the sedimentary column by
862 design and the residual deep ocean settling flux is reoxidized at the sediment-
863 seawater interface (i.e., a 'reflective boundary' condition; Hülse et al., 2017). As a
864 result, seafloor dissolved O_2 concentrations, and the oxygenation impact of changing
865 POC export, will be slightly overestimated. But this hypothesis is worth evaluating,
866 as there is evidence for low oxygen concentrations, and even anoxia, over the PETM
867 (e.g., Pagani et al., 2006; Sluijs et al., 2006; 2008; Weller and Stein, 2008; Nicolo et
868 al., 2010; Gruber, 2011; Schulte et al., 2011; Dickson et al., 2012; Wieczorek et al.,
869 2013; Zhou et al., 2016; Yao et al., 2018). In addition, this mechanism makes
870 possible two different time scales (and potentially depth scales) for an authigenic
871 response: one associated with the main C pulse and one associated with the
872 alkalinity overshoot.

873 We conduct a preliminary exploration of this hypothesis by utilizing the
874 reactive transport model described in the SI (Section S2), which consists of a
875 reactive network containing aerobic respiration, denitrification, and sulfate
876 reduction (Table S2). The model is run to steady state over ~ 8 ka, and then
877 perturbed using the cGENIE output to constrain the time scale of the perturbation
878 and the extent to which oxygen concentration, pH, and saturation state decrease
879 (Fig. 10a; Table S2). Our objective is to assess if, for a given sulfate reduction rate
880 formulation, the PETM oxygen perturbation impacts the saturation state of calcite in
881 the sedimentary column *relative to* the pre-perturbation steady state. We can use
882 the same simulations to examine the length scale over which dissolution (driven
883 from the upper boundary) impacts pore fluid $\delta^{44}\text{Ca}$. The latter determines if the


884 authigenic carbonate formed as a result of this process would be isotopically distinct
885 relative to bulk carbonate.

886 The primary issue with the sulfate reduction hypothesis is that while sulfate
887 reduction produces alkalinity, the canonical reaction (Eqn. 5) also produces protons.
888 The same is true of sulfate reduction coupled to the oxidation of organic substrates
889 such as glucose. In this scenario, without a local sink for H^+ or another source of
890 alkalinity (e.g., carbonate dissolution: $H^+ + CaCO_3 \rightarrow Ca^{2+} + HCO_3^-$; Berner, 1966),
891 the formation of authigenic carbonate is not energetically favorable. To illustrate
892 this (as a reference case), we simulated sulfate reduction using glucose as the
893 electron donor and assuming a rate constant that generates sulfate reduction rates
894 comparable to those observed in the marine system (SI Section S2 and references
895 therein). At these rates, and in the presence of calcite dissolution, pore fluids did not
896 attain supersaturation with respect to calcite in the 10-meter model domain.

897 Interestingly, if acetate (CH_3COO^-) is the electron donor (e.g., Winfrey and
898 Ward, 1983; Lovley and Klug, 1986; Brüchert and Arnosti, 2003; Dale et al., 2006;
899 2008; Glombitza et al., 2015; 2008; Beulig et al., 2018), then sulfate reduction does
900 not produce H^+ :

903 For other energetically-favorable electron donors, such as $H_2(aq)$ and formate (e.g.,
904 Abram and Nedwell, 1978; Dale et al., 2006; 2008; Larowe and Van Cappellen, 2011;
905 Table 1 in Arndt et al., 2013; Adhikari et al., 2016; Glombitza et al., 2015; Beulig et
906 al., 2018), protons are explicitly consumed in the sulfate reduction reaction:

912 Though the microbial reaction network in nature is admittedly far more
913 complicated than we consider, it seems at least plausible that sulfate reduction can
914 induce authigenic carbonate precipitation over some length scale in the sedimentary
915 section if acetate, formate, and/or hydrogen are involved. Accordingly, we explore
916 an endmember model in which sulfate reduction uses acetate as an electron donor
917 (i.e., acetotrophic sulfate reduction) and quantify the impact of a PETM-like ocean
918 acidification perturbation on calcite saturation state in the upper 10 meters of the
919 sedimentary section.

920 The reactive transport modeling suggests that acetotrophic sulfate reduction
921 has the potential to enhance authigenic carbonate formation in the upper 10 meters
922 of the sedimentary section (Fig. 10). Over the PETM-like acidification event (Fig.
923 10a), the drop in $O_2(aq)$ at the upper boundary increases sulfate reduction rates at
924 depth, which induces an increase in calcite saturation state relative to the pre-
925 perturbation steady state. Model sulfate reduction rates in the upper 10 m are
926 $<8 \cdot 10^{-6}$ mol/kg water/yr, which are consistent with rates inferred for deep-sea
927 sediments and are $\sim 10^4$ times slower than rates inferred in coastal settings (SI
928 Section S2). Thus, the rates are not so high that the hypothesis is untenable. It is also

930 worth noting that while the absolute saturation state values are likely not entirely
931 accurate due to the closed lower boundary condition and size of the model domain,
932 the endmember scenario is consistent with an increase in saturation state over
933 meter length scales.

934 It is also clear from the simulations that dissolution induced from the upper
935 boundary condition over the perturbation has no substantive effect on pore fluid
936 $\delta^{44}\text{Ca}$. Dissolution occurs within the upper tens of centimeters of the section,
937 consistent with observations of burndown. However, the dissolution rate is too slow
938 to impact pore fluid $\delta^{44}\text{Ca}$, which is maintained at seawater values via diffusive
939 communication with bottom waters. This is in contrast to the recrystallization
940 scenario (Fig. 8), in which pore fluid $\delta^{44}\text{Ca}$ is impacted even at rates of dissolution
941 that are comparable to the dissolution/burndown scenario. The reason for this
942 difference is that recrystallization occurs throughout the model domain, at depths
943 that preclude rapid diffusive communication with bottom waters; such conditions
944 result in the development of a pore fluid isotopic gradient. Further, while the burial
945 rate extends the zone over which dissolution is seen, and will by extension affect the
946 depth interval over which authigenic addition is observed (as in the overshoot
947 simulations), increasing burial rates does not change the depth scale over which the
948 alkalinity increase occurs.

949 While this mechanism is speculative, as it depends on a reaction network
950 that is currently the topic of debate in the scientific community, it suggests that the
951 Ca isotope proxy might have utility that extends beyond its current reach. More
952 specifically, it offers a means of explaining authigenic enrichments during ocean
953 anoxic events that do not require ocean acidification (see Section 4.4.3). Finally, this
954 hypothesis leads to the intriguing suggestion that the formation of authigenic
955 carbonate is linked to the identity/chemistry of the electron donor. Though this is
956 likely complicated, it does suggest that there is still fertile (and perhaps unexpected)
957 ground to be explored with regard to the Ca isotope proxy.

960 4.4.3. The Role of Authigenesis in Other Deep-Time Records

961 Assuming that the PETM carbon perturbation (and associated changes in saturation
962 state) is a reasonable analog for carbon perturbations associated with other events
963 in deep time, we can evaluate the impact of authigenesis on other records. Ocean
964 Anoxic Event 2 (OAE 2) is an excellent case study because of the high-quality Ca
965 isotope work produced to date (Blättler et al., 2011; Du Vivier et al., 2015), and
966 because the records exhibit the direction of change that one would associate with
967 shallow carbonate authigenesis. Additionally, the magnitude of the fractionation
968 factor change inferred for the PETM based on cGENIE modeling is consistent with
969 the size of the anomalies reported in OAE 2 Ca isotope records by Du Vivier et al.
970 (2015). Yet questions remain that may be addressed by an authigenic mechanism; at
971 the very least, a discussion of the OAE 2 data will help us identify any outstanding
972 questions that might guide future applications of the Ca isotope proxy to such
973 events.

975 The Portland #1 core Ca isotopic record over OAE 2 (Fig. 11; Fig. S7) exhibits
976 a negative trend in $\delta^{44}\text{Ca}$ -wt. % CaCO_3 space, which could be interpreted as either a
977 dissolution trend (in the case of a heterogeneous sediment) or a long-term (~ 1.3
978 Ma) environmental signal (Du Vivier et al., 2015). A number of datums, which fall off
979 this larger trend, were previously hypothesized to reflect a change in the global
980 fractionation factor over ~ 600 ka (Du Vivier et al., 2015). We suggest that these
981 $\delta^{44}\text{Ca}$ data may be explained by authigenic addition of CaCO_3 (Fig. 11); just as with
982 fractionation factor variability, however, authigenesis alone cannot explain the
983 increase in CaCO_3 content over OAE 2, as there is no unambiguous progression along
984 a simple mixing curve. Instead, we suggest that the Portland #1 core was affected by
985 at least two processes: (i) an increase in relative delivery (or preservation) of CaCO_3 ,
986 and (ii) authigenesis. According to this hypothesis, authigenesis controls the Ca
987 isotopic signal, while the former explains most of the offset to higher CaCO_3 . This is
988 consistent with suggestions that carbonate content in the Portland #1 core
989 increased as a consequence of reduced siliciclastic delivery (e.g., Meyers et al.,
990 2001), a hypothesis that doesn't *preclude* components of the signal derived via
991 authigenesis

992 From a Ca isotopic perspective, two other records, Oyubari and Eastbourne,
993 are also consistent with authigenesis (Fig. 11; Du Vivier et al., 2015). Oyubari, in
994 particular, is fascinating, as it occurs at the low end of the CaCO_3 range (much like
995 the PETM record at Site 1221), and closely follows the trajectory of the mixing
996 curve. We predict that authigenic additions could explain Portland #1 and Oyubari
997 by increasing the CaCO_3 content by <0.9 (Oyubari) to ~ 5 wt. % (Portland #1) (Fig.
998 11); such additions (ignoring the effect of any contemporaneous dissolution) would
999 decrease porosity by $<<1$ to as much as 30%. Theoretically, Eastbourne would
1000 require a more sizeable addition but, because it is unclear what the baseline
1001 carbonate $\delta^{44}\text{Ca}$ is, we do not make an estimate of the authigenic addition.

1002 To be absolutely clear, we are not unequivocally stating that the Ca isotopic
1003 trends associated with OAE 2 are authigenic in origin. However, we are suggesting
1004 that it is plausible, and it represents a viable mechanism that should be considered.
1005 If authigenesis explains the Ca isotopic records, this does not necessarily preclude a
1006 connection to ocean acidification, as has been hypothesized previously (Du Vivier et
1007 al., 2015). However, instead of being driven by the fractionation factor, the Ca
1008 isotope record is a result of authigenesis promoted by a saturation state overshoot
1009 or, as described above, deoxygenation of the sedimentary column. Authigenesis
1010 explains the spatially-variable, yet synchronous, nature of the OAE 2 records (i.e.,
1011 not the same magnitude at all locales over the event), even though they are
1012 ostensibly associated with a global driver (i.e., ocean acidification). Authigenesis
1013 also explains the positive nature of the excursion, the correspondence with mixing
1014 lines, and the temporally abrupt nature of the excursion.

1015 The alternate hypothesis that fractionation factor variability explains the Ca
1016 isotopic records over OAE 2 is consistent with the rate at which carbonate ion
1017 concentrations and saturation state change over ocean acidification events
1018 generated by extremely rapid C emissions (Fig. 4). However, the fractionation factor
1019 decrease of $\sim 0.15\text{\textperthousand}$ suggested to accompany an acidification event generated by

1020 CLIP volcanism (Du Vivier et al., 2015) is inconsistent with foraminiferal culture
1021 data (e.g., Kisakürek et al., 2011), which imply an *increase* in carbonate ion
1022 concentration of >300 μM during OAE 2 (NB: Mejia et al. (2018) present culture data
1023 for coccolithophores, yet no experimental pH, alkalinity, or carbonate system data
1024 are available to apply their results consistently to this analysis.).

1025 Not only do carbonate ion concentrations *drop* over CO_2 -induced ocean
1026 acidification events (e.g., Fig. 4), but the absolute value of such a perturbation is
1027 more than 25 times larger than the change simulated to occur over the PETM (itself
1028 a rather sizeable ocean acidification event over which the maximum simulated drop
1029 in carbonate ion concentration in the surface ocean is $\sim 30\%$; Figs. 4 and S4e-f). In
1030 order for this issue of magnitude to be resolved, and ignoring the sign of the
1031 perturbation, the biogenic carbonates measured by Du Vivier et al. (2015) must
1032 follow the inorganic calcite slope of Tang et al. (2008; 2012). If the biological isotope
1033 effect was associated with an alkalinity overshoot during the recovery from ocean
1034 acidification, instead of acidification, this could explain the Du Vivier et al. (2015)
1035 OAE 2 data. However, one would expect to see the acidification signal first, followed
1036 by the overshoot signal, which is not observed in the OAE 2 records.

1037 Finally, it is important to stress that whereas carbon isotopes can act as
1038 indicators of diagenetic alteration, they may not be useful indicators in this
1039 instance. Though $\delta^{13}\text{C}$ is typically utilized to indicate authigenesis induced by the
1040 oxidation of organic matter or methane deeper in the sedimentary column, the
1041 overshoot mechanism operates differently: it is driven by bottom water
1042 chemistry that promotes carbonate authigenesis and need not be accompanied by
1043 a $\delta^{13}\text{C}$ signal (i.e., bottom water $\delta^{13}\text{C}$ DIC) that differs from the primary DIC $\delta^{13}\text{C}$. We
1044 do not include any quantitative considerations of $\delta^{13}\text{C}$ in our calculations or models
1045 for the simple fact that $\delta^{13}\text{C}$ of the authigenic phase is expected to be similar to the
1046 primary phase, such that there is little to no leverage to alter $\delta^{13}\text{C}$ in this case. Thus,
1047 there need not be a low $\delta^{13}\text{C}$ diagenetic component in the OAE 2 cores for our
1048 hypothesis to be valid.

1049 Given the fact that significant portions of the seafloor may have been driven
1050 anoxic during OAE 2, it is also possible that the zone of sulfate reduction effectively
1051 migrated upwards (Section 4.4.2; e.g., Barnes et al., 2020), such that authigenic
1052 carbonate was produced over a depth range at which pore fluid $\delta^{44}\text{Ca}$ was closer to
1053 seawater than bulk carbonate values. Our simulations suggest that this can occur
1054 over >1 meter length scales, which is sufficient to explain OAE 2-type trends. It
1055 should be noted that such an authigenic signal is likely to have a distinct C isotopic
1056 composition compared to the alkalinity overshoot case (e.g., Barnes et al., 2020).
1057 The C isotopic offset will depend on a few parameters, including the rate of sulfate
1058 reduction and the depth at which the signal is acquired. Though we do not explore
1059 this in any detail in this contribution, it is worth noting that the three Portland #1
1060 samples with the highest $\delta^{44}\text{Ca}$ values also have the lowest $\delta^{13}\text{C}$ values (Sageman et
1061 al., 2006).

1062
1063
1064

1065
1066 **5. Summary and Remaining Questions**
1067

1068 In this contribution, we propose Ca isotopes as a sensitive proxy of ocean
1069 acidification, an application of the Ca isotope proxy that takes advantage of (i) the
1070 largest Ca isotopic gradient in the Earth system (i.e., that between seawater and
1071 marine carbonates) and (ii) the occurrence of alkalinity or saturation state
1072 overshoots during hyperthermal events. We suggest that Ca isotopes can identify
1073 authigenic carbonate in the rock record, if that carbonate forms within the diffusive
1074 boundary layer in the sedimentary column. Carbonate generated in this manner is
1075 isotopically distinct, unlike that formed during burial diagenesis, where the leverage
1076 to alter bulk carbonate values is typically extremely small (e.g., Fantle et al., 2010).
1077 Accordingly, we demonstrate how the formation of authigenic carbonate can be
1078 evaluated in $\delta^{44}\text{Ca}$ - CaCO_3 space and subsequently tie existing Ca isotopic data over
1079 the PETM and potentially OAE 2 to authigenesis. Because explaining large changes
1080 in the $\delta^{44}\text{Ca}$ of carbonates over relatively short time scales infers large and
1081 unreasonable changes in the exogenic Ca cycle, the authigenic mechanism provides
1082 a reasonable and interpretable alternative to Ca cycle-driven changes.

1083 Importantly, the formation of authigenic carbonate can be driven globally
1084 (e.g., as in a hyperthermal event such as the PETM) but the geochemical expression
1085 of such a global event need not be spatially uniform. The data from ODP Sites 1212
1086 and 1221 and the cGENIE simulations presented herein both demonstrate that the
1087 intensity of the authigenic signal is likely not homogeneous across the global ocean.
1088 Thus, there should be no unqualified expectation that all records display the same
1089 trends in response to a global driver. This is also true of primary signals that are
1090 driven by global ocean acidification events, such as fractionation factor variability.
1091 The recognition that a global event need not impart a globally consistent
1092 geochemical signal highlights the utility of Ca isotopes for mapping out spatial
1093 variations in ocean chemistry during alkalinity overshoots.

1094 We also suggest that decreases in bottom water $\text{O}_2(\text{aq})$ concentrations can
1095 effectively shift the zone of authigenesis related to sulfate reduction in the
1096 sedimentary column towards the seawater-sediment interface. If electron donors
1097 such as acetate, formate, and hydrogen participate to a significant extent in sulfate
1098 reduction, then the chemistry favors the generation of supersaturation states in the
1099 upper part of the sedimentary section in which pore fluid $\delta^{44}\text{Ca}$ is seawater-like. An
1100 interesting corollary to this hypothesis, which emphasizes events that *enhance* the
1101 production of authigenic carbonate, is a scenario in which a climatic or ocean
1102 chemical perturbation reduces the authigenic signal (i.e., by lowering sulfate
1103 reduction rates). This raises the intriguing possibility of Ca isotope excursions that
1104 move in the opposite direction as those explored in this study.

1105 An advantage of the interpretative framework described in this study is that
1106 the Ca isotopic signal of shallow authigenesis is predictable and constant over
1107 geologic time: authigenic carbonate formed within tens to hundreds of centimeters
1108 of the seawater-sediment interface will always shift bulk sediment to higher $\delta^{44}\text{Ca}$
1109 values. The mixing trend in $\delta^{44}\text{Ca}$ - CaCO_3 space should be distinct from fractionation

1110 factor changes, though difficult to distinguish from recrystallization. Given what is
1111 known about recrystallization rates, however, it seems likely that recrystallization
1112 cannot create such trends over short length scales. Further, the amplitude of the
1113 authigenic signal is simply limited by the relative mass of authigenic carbonate
1114 added to the bulk sediment, and the technique is applicable to a bulk sediment
1115 proxy archive over a variety of time scales. The framework also suggests that
1116 sample collection should not necessarily focus only on rocks with high carbonate
1117 contents, and that there should be an expectation of isotopic effects as one crosses
1118 lithologic boundaries.

1119 Future work should focus on identifying geochemical proxies that have
1120 distinct differences in elemental and isotopic partitioning between the surface ocean
1121 and sedimentary column (e.g., oxygen isotopes, Sr/Ca, Mg/Ca, U/Ca), which can be
1122 used in conjunction with Ca isotopes as diagenetic indicators to aid in distinguishing
1123 between primary and diagenetic signals (e.g., Fantle et al., 2020). Applying multiple
1124 diagenetic indicators is necessary because the isotopic and/or elemental
1125 partitioning contrast needed to fingerprint diagenesis may not always be present in
1126 the sedimentary column (Fantle et al., 2020). Reliance on Sr isotopes, C isotopes, or
1127 Mn concentrations, for instance, as unambiguous diagenetic indicators can lead to
1128 interpretations that are not properly informed.

1129 In addition, there is a need to advance our understanding of biologically-
1130 mediated isotope effects, in particular the extent to which changes in seawater
1131 chemistry impact Ca isotopic fractionation during biologically-mediated CaCO_3
1132 precipitation. Because parameters co-vary in natural systems in ways that can
1133 complicate the application of culture studies in a simple manner, a robust
1134 mechanistic model for such effects is needed. Although recent work has attempted
1135 to move in this direction (Mejia et al., 2018), our understanding remains incomplete.

1136 Ultimately, if Ca isotopes prove an effective proxy for authigenesis at the
1137 sediment-seawater interface, it may be possible to use Ca isotopes (in conjunction
1138 with other tools) to probe the dynamics of the Earth system in novel (and perhaps
1139 unexpected) ways. Indeed, Ca isotopes may prove of great utility for elucidating the
1140 strength of the weathering feedback over geologic time scales, for constraining the
1141 organic substrates participating in sulfate reduction, or as an indicator of surface
1142 oxidation state.

1143

1144

1145 **Acknowledgements**

1146 The CrunchTope work could not have been completed without the sage advice, and
1147 considerable patience, of Dr. J. Druhan. MSF also thanks Ben Barnes for extremely
1148 helpful, and wide-ranging, discussions, and for sharing his opinion and specific
1149 suggestions for revisions of this manuscript. The authors thank one anonymous
1150 reviewer, Andy Jacobson, Guest Editor Elizabeth Griffith, and Editor Don Porcelli for
1151 helpful comments and advice on revisions. A. Ridgwell acknowledges funding from
1152 the European Research Council as part of the “PALEOGENiE” project (ERC-2013-
1153 CoG-617313) as well as from the Heising Simons Foundation.

References

Abram, J. W. and Nedwell, D. B. (1978) Hydrogen as a substrate for methanogenesis and sulfate reduction in anaerobic saltmarsh sediment. *Archives of Microbiology* 117, 93-97.

Adhikari, R.R., Glombitza, C., Nickel, J.C., Anderson, C.H., Dunlea, A.G., Spivack, A.J., Murray, R.W., D'Hondt, S. and Kallmeyer, J. (2016) Hydrogen Utilization Potential in Subsurface Sediments. *Frontiers in Microbiology* 7.

Ahm, A.S.C., Bjerrum, C.J., Blattler, C.L., Swart, P.K. and Higgins, J.A. (2018) Quantifying early marine diagenesis in shallow-water carbonate sediments. *Geochim Cosmochim Acta* 236, 140-159.

Al Khatib, M. and Eisenhauer, A. (2017) Calcium and strontium isotope fractionation in aqueous solutions as a function of temperature and reaction rate; I. Calcite. *Geochim Cosmochim Acta* 209, 296-319.

Arndt, S., Jorgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D. and Regnier, P. (2013) Quantifying the degradation of organic matter in marine sediments: A review and synthesis. *Ear Sci Rev* 123, 53-86.

Barnes, B.D., Husson, J.M., Peters, S.E. (2020) Authigenic carbonate burial in the Late Devonian-Early Mississippian Bakken Formation (Williston Basin, USA). *Sedimentology*, <https://doi.org/10.1111/sed.12695>.

Bergmann, K.D., Grotzinger, J.P. and Fischer, W.W. (2013) Biological influences on seafloor carbonate precipitation. *Palaeos* 28, 99-115.

Berner, R.A. (1966) Chemical Diagenesis of Some Modern Carbonate Sediments. *Am J Sci* 264, 1-36.

Berner, R.A. (1978) Sulfate reduction and rate of deposition of marine sediments. *Earth Planet Sci Lett* 37, 492-498.

Berner, R.A. (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, N.J.

Berner, E. K. and Berner, R. A., (1996). Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, N.J.

Beulig, F., Røy, H., Glombitza, C. and Jørgensen, B.B. (2018) Control on rate and pathway of anaerobic organic carbon degradation in the seabed. *Proc Natl Acad Sci USA* 115, 367-372.

Blattler, C.L., Jenkyns, H.C., Reynard, L.M. and Henderson, G.M. (2011) Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. *Earth Planet Sci Lett* 309, 77-88.

Blattler, C.L., Henderson, G.M. and Jenkyns, H.C. (2012) Explaining the Phanerozoic Ca isotope history of seawater. *Geology* 40, 843-846.

Brückert, V. and Arnosti, C. (2003) Anaerobic carbon transformation: experimental studies with flow-through cells. *Mar Chem* 80, 171-183.

Chanda, P., Gorski, C. A., Oakes, R. L. and Fantle, M. S. (2019) Low temperature stable mineral recrystallization of foraminiferal tests and implications for the fidelity of geochemical proxies. *Earth Planet Sci Lett* 506, 428-440.

Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C., (2011). Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. *Nature Geoscience* 4, 481-485.

Cui, H., Kaufman, A.J., Xiao, S.H., Zhou, C.M. and Liu, X.M. (2017) Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. *Chem Geol* 450, 59-80.

Dale, A. W., Regnier, P. and Van Cappellen, P. (2006) Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis. *Am J Sci* 306, 246-294.

Dale, A.W., Regnier, P., Knab, N.J., Jorgensen, B.B. and Van Cappellen, P. (2008) Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. *Geochim Cosmochim Acta* 72, 2880-2894.

Davis, C.V., Rivest, E.B., Hill, T.M., Gaylord, B., Russell, A.D. and Sanford, E. (2017) Ocean acidification compromises a planktic calcifier with implications for global carbon cycling. *Scientific Reports* 7.

DePaolo, D.J. (2011) Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. *Geochim Cosmochim Acta* 75, 1039-1056.

Dickens, G.R., Castillo, M.M. and Walker, J.C.G. (1997) A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. *Geology* 25, 259-262.

Dickson, A.J., Cohen, A.S. and Coe, A.L. (2012) Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. *Geology* 40, 639-642.

Druhan, J.L., Steefel, C.I., Williams, K.H. and DePaolo, D.J. (2013) Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior. *Geochim Cosmochim Acta* 119, 93-116.

Du Vivier, A. D. C., Jacobson, A. D., Lehn, G. O., Selby, D., Hurtgen, M. T., and Sageman, B. B., (2015). Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor. *Earth Planet Sci Lett* 416, 121-131, <http://dx.doi.org/10.1016/j.epsl.2015.02.001>.

Dyer, B., Higgins, J. A. and Maloof, A. C. (2017) A probabilistic analysis of meteorically altered $\delta^{13}\text{C}$ chemostratigraphy from late Paleozoic ice age carbonate platforms. *Geology* 45, 135-138, doi:10.1130/G38513.38511.

Erez, J. (2003) The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies, in: Dove, P.M., De Yoreo, J., Weiner, S. (Eds.), *Biomineralization*. Mineralogical Society of America, Washington, D.C., pp. 115-149.

Fantle, M. S. and DePaolo, D. J., (2007). Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The $\text{Ca}^{2+}(\text{aq})$ -calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. *Geochim Cosmochim Acta* 71, 2524-2546.

Fantle, M. S., Maher, K. M., and DePaolo, D. J., (2010). Isotopic Approaches for Quantifying the Rates of Marine Burial Diagenesis. *Reviews of Geophysics* 48, RG3002, doi:10.1029/2009RG000306

Fantle, M.S. (2010) Evaluating the Ca isotope proxy. *Am J Sci* 310, 194-230, doi 10.2475/2403.2010.2403.

Fantle, M. S. and Higgins, J. A., (2014). The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. *Geochim Cosmochim Acta* 142, 458-481, doi: 10.1016/j.gca.2014.07.025.

Fantle, M. S. and Tipper, E. T., (2014). Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. *Earth Science Reviews* 129, <http://dx.doi.org/10.1016/j.earscirev.2013.10.004>, 148-177.

Fantle, M. S., (2015). Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. *Geochim Cosmochim Acta* 148, 378-401.

Fantle, M. S., Barnes, B. D., and Lau, K. V. 2020. The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record. *Annu. Rev. Earth Planet. Sci.* 48: *in press*, doi:10.1146/annurev-earth-073019-060021.

Gibbs, S.J., Bown, P.R., Ridgwell, A., Young, J.R., Poulton, A.J. and O'Dea, S.A. (2016) Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. *Geology* 44, 59-62.

Glombitza, C., Jaussi, M., Røy, H., Seidenkrantz, M. S., Lomstein, B. A. and Jørgensen, B. B. (2015) Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. *Frontiers in Microbiology* 6.

Gorski, C.A. and Fantle, M.S. (2017) Stable mineral recrystallization in low temperature aqueous systems: A critical review. *Geochim Cosmochim Acta* 198, 439-465, doi: 410.1016/j.gca.2016.1011.1013.

Griffith, E.M., Paytan, A., Kozdon, R., Eisenhauer, A. and Ravelo, A.C. (2008) Influences on the fractionation of calcium isotopes in planktonic foraminifera. *Earth Planet Sci Lett* 268, 124-136.

Griffith, E. M., Fantle, M. S., Eisenhauer, A., Paytan, A., and Bullen, T. (2015). Effects of ocean acidification on the marine calcium isotope record at the Paleocene–Eocene Thermal Maximum. *Earth Planet Sci Lett* 419, 81-92, <http://dx.doi.org/10.1016/j.epsl.2015.03.010>.

Gruber, N. (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. *Philosophical Transactions of the Royal Society A* 369, 1980-1996.

Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Böhm, F., Spero, H.J., Lea, D.W., Bijma, J. and Nagler, T.F. (2003) Model for kinetic effects on calcium isotope fractionation ($\delta^{44}\text{Ca}$) in inorganic aragonite and cultured planktonic foraminifera. *Geochim Cosmochim Acta* 67, 1375-1382.

Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B.M.A., Reitner, J., Worheide, G. and Dullo, W.C. (2005) Calcium isotope fractionation in calcite and aragonite. *Geochim Cosmochim Acta* 69, 4485-4494.

Gutjahr, M., A. Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R.D., Thomas, E., and Foster, G.L. (2017) Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum Paleocene-Eocene Thermal Maximum, *Nature* 548, doi:10.1038/nature23646

Halverson, G.P., Hoffman, P.F., Schrag, D.P. and Kaufman, A.J. (2002) A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth? *Geochem Geophys Geosys* 3.

Higgins, J.A., Blattler, C.L., Lundstrom, E.A., Santiago-Ramos, D.P., Akhtar, A.A., Ahm, A.S.C., Bialik, O., Holmden, C., Bradbury, H., Murray, S.T. and Swart, P.K. (2018) Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. *Geochim Cosmochim Acta* 220, 512-534.

Hinojosa, J. L., Brown, S. T., Chen, J., DePaolo, D. J., Paytan, A., Shen, S. Z., and Payne, J. L., (2012). Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. *Geology* 40, 743-746.

Holmden, C., Papanastassiou, D. A., Blanchon, P., and Evans, S., (2012). $\delta^{44/40}\text{Ca}$ variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. *Geochimica Cosmochimica Acta* 83, 179-194, doi:10.1016/j.gca.2011.12.031.

Hönisch, B., A. Ridgwell, D.N. Schmidt, E. Thomas, S.J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R.C. Martindale, S.E. Greene, W. Kiessling, J. Ries, J.C. Zachos, D.L. Royer, S. Barker, T.M. Marchitto Jr., R. Moyer, C. Pelejero, P. Ziveri, G.L. Foster, B. Williams (2012) The Geological Record of Ocean Acidification, *Science* 335: 1058-1063.

Huber, C., Druhan, J.L. and Fantle, M.S. (2017) Perspectives on geochemical proxies: The impact of model and parameter selection on the quantification of carbonate recrystallization rates. *Geochim Cosmochim Acta* 217, doi: 10.1016/j.gca.2017.08.023, 171-192.

Hülse, D., S. Arndt, J.D. Wilson, G. Munhoven, and Ridgwell, A. (2017) Understanding the causes and consequences of past marine carbon cycling variability through models, *Earth-Science Reviews* 171, doi: 10.1016/j.earscirev.2017.06.004.

Jacobson, A. D. and Holmden, C., (2008). $\delta^{44}\text{Ca}$ evolution in a carbonate aquifer and its bearing on the equilibrium isotope fractionation factor for calcite. *Earth Planet Sci Lett* 270, 349-353.

Johnson, J. W., Oelkers, E. H. and Helgeson, H. C. (1992) SUPCRT92 - A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 bar to 5000 bar and 0°C to 1000°C. *Comput Geosci* 18, 899-947.

Kelly, D. C., Zachos, J. C., Bralower, T. J. and Schellenberg, S. A. (2005) Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum. *Paleoceanography* 20, PA4023, doi:4010.1029/2005PA001163.

Kelly, D.C., Nielsen, T.M.J., McCarren, H.K., Zachos, J.C. and Rohl, U. (2010) Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene-Eocene thermal maximum. *Palaeogeogr Palaeoclimatol Palaeoecol* 293, 30-40.

Kisakürek, B., Eisenhauer, A., Böhm, F., Hathorne, E.C. and Erez, J. (2011) Controls on calcium isotope fractionation in cultured planktic foraminifera, *Globigerinoides ruber* and *Globigerinella siphonifera*. *Geochim Cosmochim Acta* 75, 427-443.

Komar, N. and Zeebe, R. E., (2011). Oceanic calcium changes from enhanced weathering during the Paleocene-Eocene thermal maximum: No effect on calcium-based proxies. *Paleoceanography* 26, doi:10.1029/2010PA001979.

Komar, N. and Zeebe, R. E. (2016) Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. *Paleoceanography* 31, 115-130.

Langer, G., Geisen, M., Baumann, K.H., Klas, J., Riebesell, U., Thoms, S. and Young, J.R. (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. *Geochem Geophys Geosys* 7, Q09006, doi:09010.01029/02005GC001227.

Langer, G., Gussone, N., Nehrk, G., Riebesell, U., Eisenhauer, A. and Thoms, S. (2007) Calcium isotope fractionation during coccolith formation in *Emiliania huxleyi*: Independence of growth and calcification rate. *Geochem Geophys Geosys* 8, doi:10.1029/2006GC001422.

Larowe, D. E. and Van Cappellen, P. (2011) Degradation of natural organic matter: A thermodynamic analysis. *Geochim Cosmochim Acta* 75, 2030-2042.

Lau, K.V., Maher, K., Brown, S.T., Jost, A.B., Altiner, D., DePaolo, D.J., Eisenhauer, A., Kelley, B.M., Lehrmann, D.J., Paytan, A., Yu, M., Silva-Tamayo, J.C. and Payne, J.L. (2017) The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. *Chem Geol* 471, 13-37.

Lord, N.S., A. Ridgwell, M.C. Thorne, and D.J. Lunt (2016) An impulse response function for the 'long tail' of excess atmospheric CO₂ in an Earth system model, *Global Biogeochemical Cycles*, doi: 10.1002/2014GB005074.

Lovley, D. R. and Klug, M. J. (1986) Model for the Distribution of Sulfate Reduction and Methanogenesis in Fresh-Water Sediments. *Geochim Cosmochim Acta* 50, 11-18.

McInerney, F.A. and Wing, S.L. (2011) The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. *Annu Rev Earth Planet Sci* 39, 10.1146/annurev-earth-040610-133431, 489-516.

Manno, C., Morata, N. and Bellerby, R. (2012) Effect of ocean acidification and temperature increase on the planktonic foraminifer *Neogloboquadrina pachyderma* (sinistral). *Polar Biology* 35, 1311-1319.

Meyers, S.R., Sageman, B.B. and Hinnov, L.A. (2001) Integrated quantitative stratigraphy of the Cenomanian-Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling. *J Sediment Res* 71, 628-644.

Mejia, L.M., Paytan, A., Eisenhauer, A., Bohm, F., Kolevica, A., Bolton, C., Mendez-Vicente, A., Abrevaya, L., Isensee, K. and Stoll, H. (2018) Controls over $\delta^{44/40}\text{Ca}$ and Sr/Ca variations in coccoliths: New perspectives from laboratory cultures and cellular models. *Earth Planet Sci Lett* 481, 48-60.

Nicolo, M.J., Dickens, G.R. and Hollis, C.J. (2010) South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum as depicted in New Zealand margin sections. *Paleoceanography* 25.

Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damste, J.S., Dickens, G., Backman, J., Clemens, S., Cronin, T., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Martinez, N., McInroy, D., Moore Jr., T.C., O'Regan, M., Onodera, J., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.C., St John, K.E.K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M. and Yamamoto, M. (2006) Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. *Nature* 442, 671-675.

Payne, J. L., Turchyn, A. V., Paytan, A., DePaolo, D. J., Lehrmann, D. J., Yu, M. Y., and Wei, J. Y., (2010). Calcium isotope constraints on the end-Permian mass extinction. *Proc Natl Acad Sci USA* 107, 8543-8548.

Penman, D.E., Turner, S.K., Sexton, P.F., Norris, R.D., Dickson, A.J., Boulila, S., Ridgwell, A., Zeebe, R.E., Zachos, J.C., Cameron, A., Westerhold, T. and Rohl, U. (2016) An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum. *Nature Geoscience* 9, 575-581, doi:510.1038/ngeo2757.

Richter, F.M. and DePaolo, D.J. (1987) Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. *Earth Planet Sci Lett* 83, 27-38.

Richter, F.M. and DePaolo, D.J. (1988) Diagenesis and Sr isotopic evolution of seawater using data from DSDP-590B and DSDP-575. *Earth Planet Sci Lett* 90, 382-394.

Richter, F.M. and Liang, Y. (1993) The Rate and Consequences of Sr Diagenesis in Deep-Sea Carbonates. *Earth Planet Sci Lett* 117, 553-565.

Ridgwell, A., Hargreaves, J.C., Edwards, N.R., Annan, J.D., Lenton, T.M., Marsh, R., Yool, A. and Watson, A. (2007a) Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. *Biogeosciences* 4, 87-104.

Ridgwell, A., Zondervan, I., Hargreaves, J., Bijma, J., and Lenton, T. (2007b) Assessing the potential long-term increase of oceanic fossil fuel CO₂ uptake due to 'CO₂-calcification feedback', *Biogeosciences* 4, 481-492.

Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E. and Morel, F.M.M. (2000) Reduced calcification of marine plankton in response to increased atmospheric CO₂. *Nature* 407, 364-367.

Rittmann, B. E. and McCarty, P. L. (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill, New York.

Rohl, U., Westerhold, T., Bralower, T. J. and Zachos, J. C. (2007) On the duration of the Paleocene-Eocene thermal maximum (PETM). *Geochem Geophys Geosys* 8, doi:10.1029/2007GC001784.

Sageman, B.B., Meyers, S.R. and Arthur, M.A. (2006) Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. *Geology* 34, 125-128.

Schrag, D.P., Higgins, J.A., Macdonald, F.A. and Johnston, D.T. (2013) Authigenic Carbonate and the History of the Global Carbon Cycle. *Science* 339, 540-543.

Schulte, P., Scheibner, C. and Speijer, R.P. (2011) Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene-Eocene Thermal Maximum in the Dababiya Quarry section, Egypt. *Chem Geol* 285, 167-183.

Sime, N. G., De La Rocha, C. L., Tipper, E. T., Tripati, A., Galy, A. and Bickle, M. J. (2007) Interpreting the Ca isotope record of marine biogenic carbonates. *Geochim Cosmochim Acta* 71, 3979-3989.

Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J., Moran, K. and Scientists, t.E. (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. *Nature* 441, 610-613.

Sluijs, A., Rohl, U., Schouten, S., Brumsack, H.J., Sangiorgi, F., Damste, J.S.S. and Brinkhuis, H. (2008) Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). *Paleoceanography* 23.

Soetaert, K., Hofmann, A.F., Middelburg, J.J., Meysman, F.J.R. and Greenwood, J. (2007) The effect of biogeochemical processes on pH. *Mar Chem* 105, 30-51.

Steefel, C.I., Druhan, J.L. and Maher, K. (2014) Modeling Coupled Chemical and Isotopic Equilibration Rates. *Procedia Earth and Planetary Science* 10, 208-217.

Swart, P.K. and Eberli, G. (2005) The nature of the $\delta^{13}\text{C}$ of periplatform sediments: Implications for stratigraphy and the global carbon cycle. *Sediment Geol* 175, 115-129.

Swart, P.K. (2008) Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. *Proc Natl Acad Sci USA* 105, 13741-13745.

Swart, P.K. and Kennedy, M.J. (2012) Does the global stratigraphic reproducibility of $\delta^{13}\text{C}$ in Neoproterozoic carbonates require a marine origin? A Pliocene-Pleistocene comparison. *Geology* 40, 87-90.

Swart, P.K. (2015) The geochemistry of carbonate diagenesis: The past, present and future. *Sedimentology* 62, 1233-1304.

Tang, J. W., Dietzel, M., Böhm, F., Kohler, S. J. and Eisenhauer, A. (2008) $\text{Sr}^{2+}/\text{Ca}^{2+}$ and $^{44}\text{Ca}/^{40}\text{Ca}$ fractionation during inorganic calcite formation: II. Ca isotopes. *Geochim Cosmochim Acta* 72, 3733-3745.

Tang, J. W., Niedermayr, A., Kohler, S. J., Böhm, F., Kisakürek, B., Eisenhauer, A. and Dietzel, M. (2012) $\text{Sr}^{2+}/\text{Ca}^{2+}$ and $^{44}\text{Ca}/^{40}\text{Ca}$ fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength. *Geochim Cosmochim Acta* 77, 432-443.

Turchyn, A.V. and DePaolo, D.J. (2011) Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments. *Geochim Cosmochim Acta* 75, 7081-7098.

Wang, J.Y., Jacobson, A.D., Zhang, H., Ramezani, J., Sageman, B.B., Hurtgen, M.T., Bowring, S.A. and Shen, S.Z. (2019) Coupled $\delta^{44}/^{40}\text{Ca}$, $\delta^{88}/^{86}\text{Sr}$, and $\delta^{87}\text{S}/^{86}\text{Sr}$ geochemistry across the end-Permian mass extinction event. *Geochim Cosmochim Acta* 262, 143-165.

Weller, P. and Stein, R. (2008) Paleogene biomarker records from the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): Organic carbon sources, anoxia, and sea surface temperature. *Paleoceanography* 23, PA1S17, doi:10.1029/2007PA001472.

Westerhold, T., Rohl, U. and Laskar, J. (2012) Time scale controversy: Accurate orbital calibration of the early Paleogene. *Geochem Geophys Geosys* 13, Q06015, doi:10.1029/2012GC004096.

Wieczorek, R., Fantle, M.S., Kump, L.R. and Ravizza, G. (2013) Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. *Geochim Cosmochim Acta* 119, 391-410.

Winfrey, M.R. and Ward, D.M. (1983) Substrates for Sulfate Reduction and Methane Production in Intertidal Sediments. *Appl Environ Microbiol* 45, 193-199.

Yao, W.Q., Paytan, A. and Wortmann, U.G. (2018) Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. *Science* 361, 804-806

Zachos, J. C., Rohl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D., (2005). Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. *Science* 308, 1611-1615.

Zeebe, R. E., Zachos, J. C., and Dickens, G. R., (2009). Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. *Nature Geoscience* 2, 576-580.

Zeebe, R. E. and Zachos, J. C., (2013). Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene. *Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences* 371, 2012006, doi:10.1098/rsta.2012.0006.

Zhou, X., Thomas, E., Winguth, A.M.E., Ridgwell, A., Scher, H., Hoogakker, B.A.A., Rickaby, R.E.M. and Lu, Z. (2016) Expanded oxygen minimum zones during the late Paleocene-early Eocene: Hints from multiproxy comparison and ocean modeling. *Paleoceanography* 31, 1532-1546.

Zuddas, P. and Mucci, A. (1998) Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength. *Geochim Cosmochim Acta* 62, 757-766.

Figure captions

Figure 1 — (a) Calcium carbonate content (wt. %) and (b) Ca isotopic composition ($\delta^{44}\text{Ca}$; ‰) of bulk carbonate sediments and marine barite from ODP Sites 1212 and 1221 (Griffith et al., 2015). In (b), both the seawater and SRM-915a scales are shown for completeness. All records are shown on relative depth scales, relative to the carbon isotope excursion (CIE) indicated by carbonate $\delta^{13}\text{C}$ (‰). Error bars (external reproducibility) are not included, for clarity, but vary between 0.05 and 0.3‰ (see Griffith et al., 2015).

Figure 2 — Calcium isotopic composition ($\delta^{44}\text{Ca}$; ‰) of bulk sediment due to mixing between biogenic marine and authigenic endmembers, as a function of % initial pore space filled. Shaded areas indicate a range in initial carbonate content of the sediment between 50 and 100 wt. %. Also shown are mixing envelopes that vary as a function of the initial porosity (ϕ) of the bulk sediment. The authigenic endmember is assumed to have a constant $\delta^{44}\text{Ca}$ value of 1.9‰, which is the modern seawater value (e.g., Fantle and Tipper, 2014). In reality, the $\delta^{44}\text{Ca}$ of the authigenic endmember will vary based on where in the sedimentary section it forms.

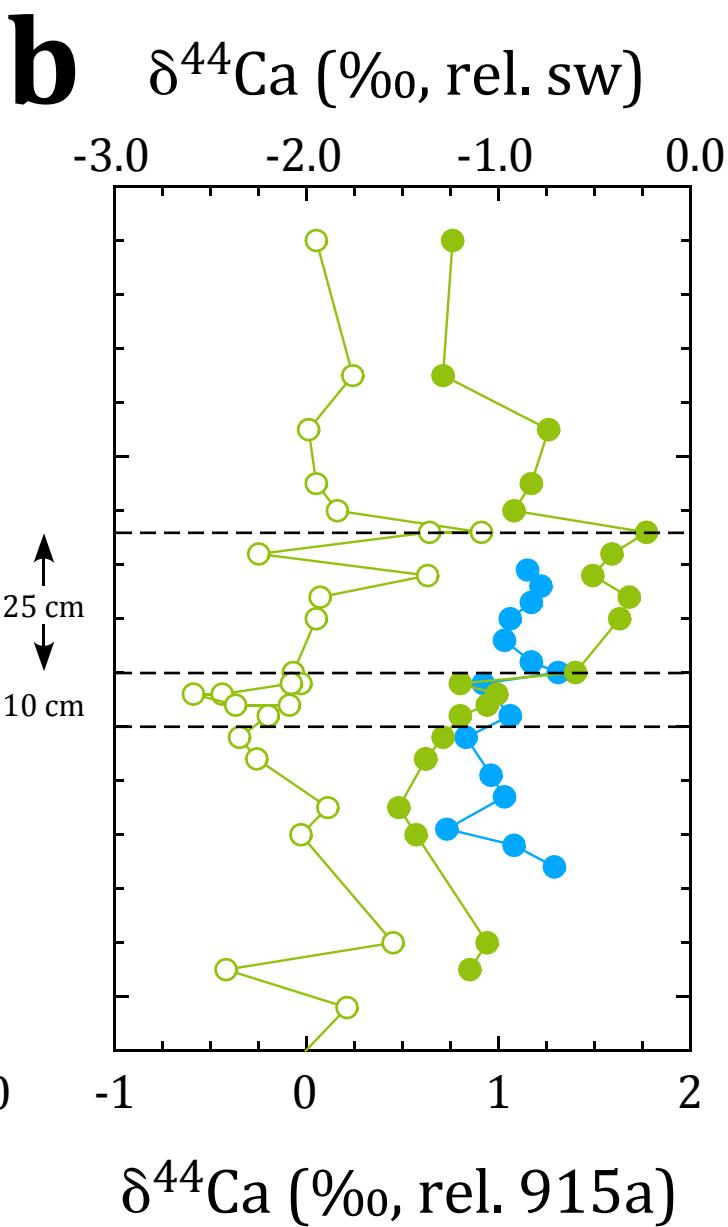
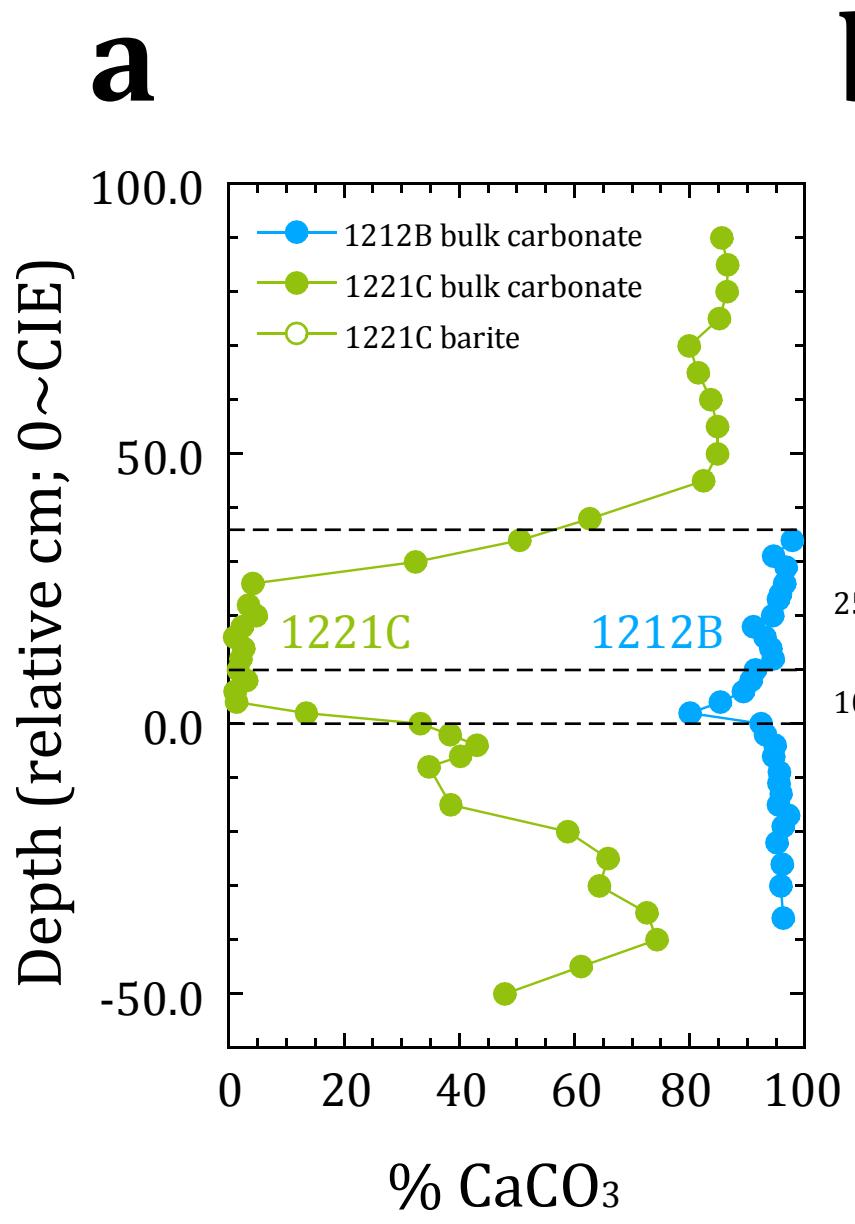
Figure 3 — Effect of authigenic carbonate addition on bulk sediment $\delta^{44}\text{Ca}$ and weight percent (wt. %) CaCO_3 . Mixing curves are shown in each panel as solid lines with tick marks; tick marks indicate discrete points at which mixing calculations were performed (see SI for calculation details). Each curve follows the trajectory of mixing for a sediment with an initial CaCO_3 content and $\delta^{44}\text{Ca}$, porosity, and the $\delta^{44}\text{Ca}$ of the endmember authigenic phase ($\delta^{44}\text{Ca} = 1.9\text{\textperthousand}$). Tick marks reflect the percentage of pore space filled (select values noted by tick mark labels; also included in parentheses are select values for wt. % CaCO_3); ticks marks are arbitrarily spaced in order to capture the shapes of the mixing trends (esp. at low initial % CaCO_3) but the spacing is consistent between mixing curves. (a) Bulk nannofossil oozes (ODP Sites 1212 and 1221) plotted as blue and green circles, respectively. Site 1262 cGENIE sedcore output (curves in red/green; blue/orange) shown for PETM-specific carbon flux scenarios (Gutjahr et al., 2017; Gibbs et al., 2016), respectively, and the two Ca isotopic fractionation factor-water chemistry relationships, described in the text. The cGENIE output has different delta values due to differences in the initial, pre-event steady state for each C flux scenario. In (b), blue and green curves indicate CrunchTope simulations described in the text; dashed lines indicate the effects of numerical mixing on the solid (see SI Section S2 for details). The green curve indicates “1221-like” conditions ($k=5\cdot10^{-11} \text{ mol/m}^2/\text{s}$; sedimentation rate=10 m/Ma), while the blue curve indicates “1212-like” conditions ($k=1\cdot10^{-11} \text{ mol/m}^2/\text{s}$; sedimentation rate=10 m/Ma). In (b), arrows indicate the initial lithology at the seawater-sediment interface (i.e., the upper 11 and 25 cm at Sites 1212 and 1221, respectively) at the beginning of the simulations and the primary burial lithologies assumed in the 1212- and 1221-like simulations (see Tables S1 and S2 for additional reactive transport modeling details).

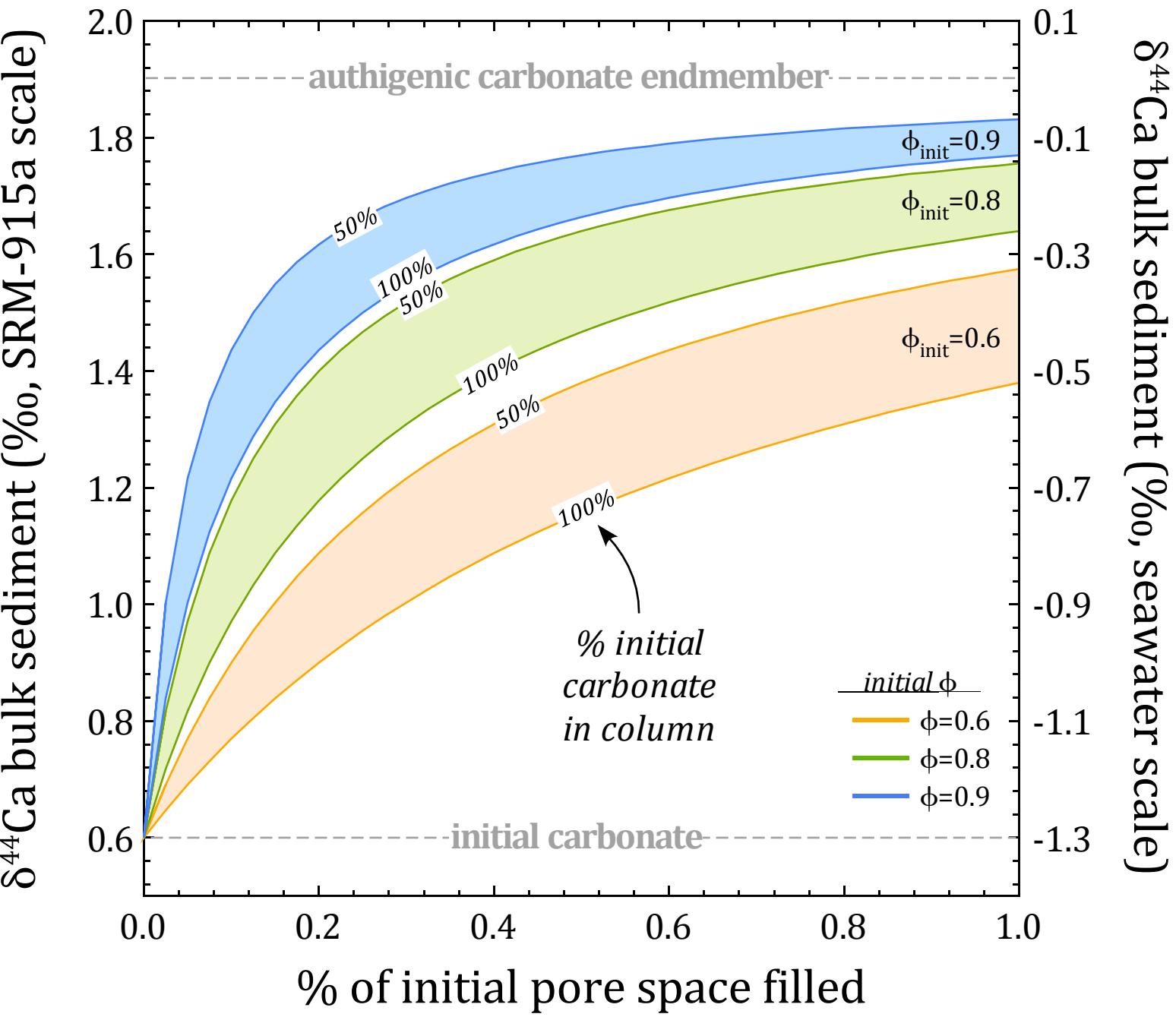
Figure 4 — cGENIE sedcore model output for three carbon flux scenarios: (a) Gutjahr et al. (2017), (b) Cui et al. (2011), and (c) Gibbs et al. (2016). All temperatures, alkalinites, and aqueous concentrations, including the relative saturation state ($\Omega_{\text{calcite}}(t)/\Omega_{\text{calcite}}(t_0)$), are those of bottom water at a given site. The weight percent CaCO_3 is the concentration of calcite that is buried. Thirty-five sites spanning the global ocean, indicated by each of the colored curves, are plotted; the locations of each are shown in Fig. S1.

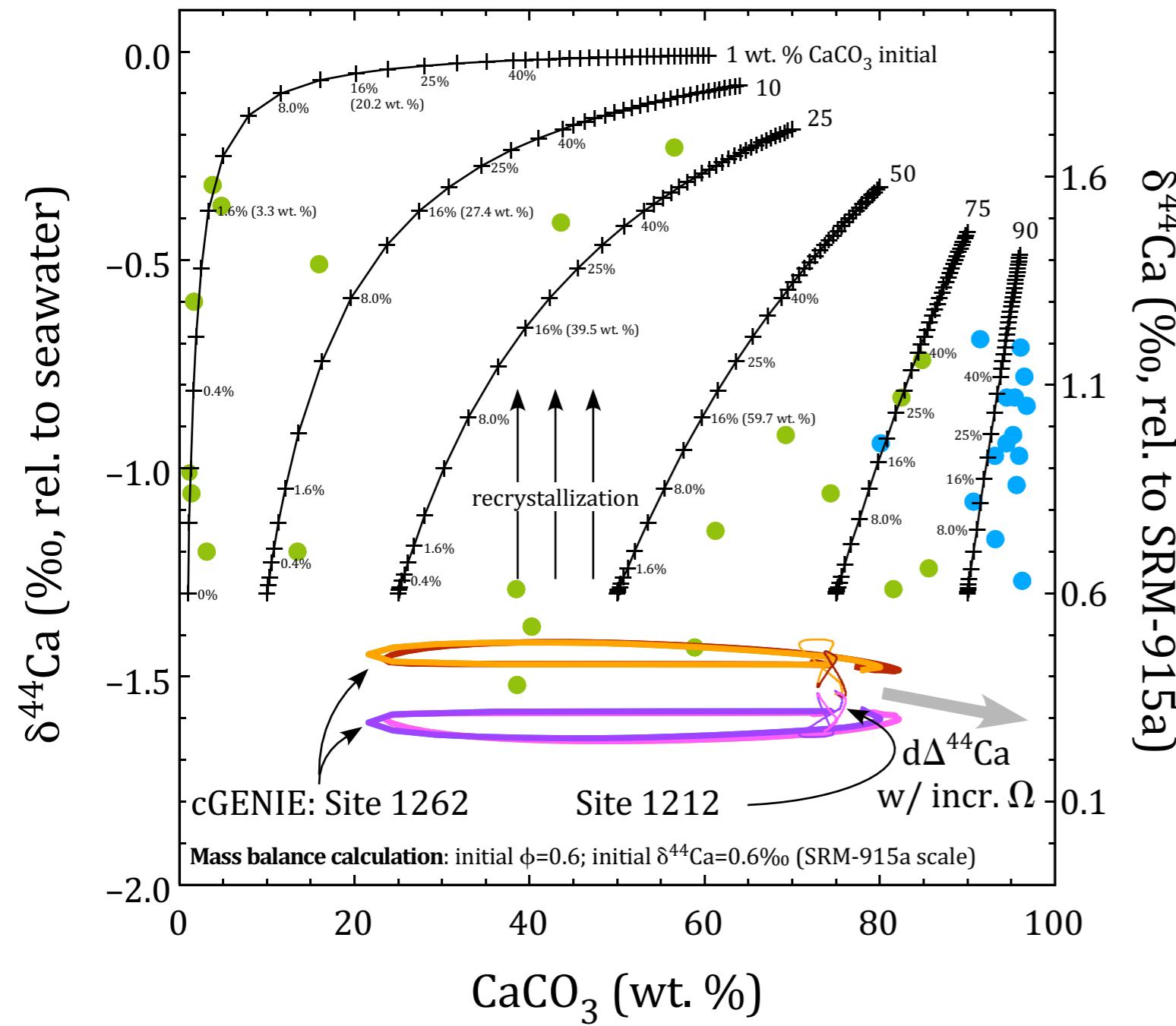
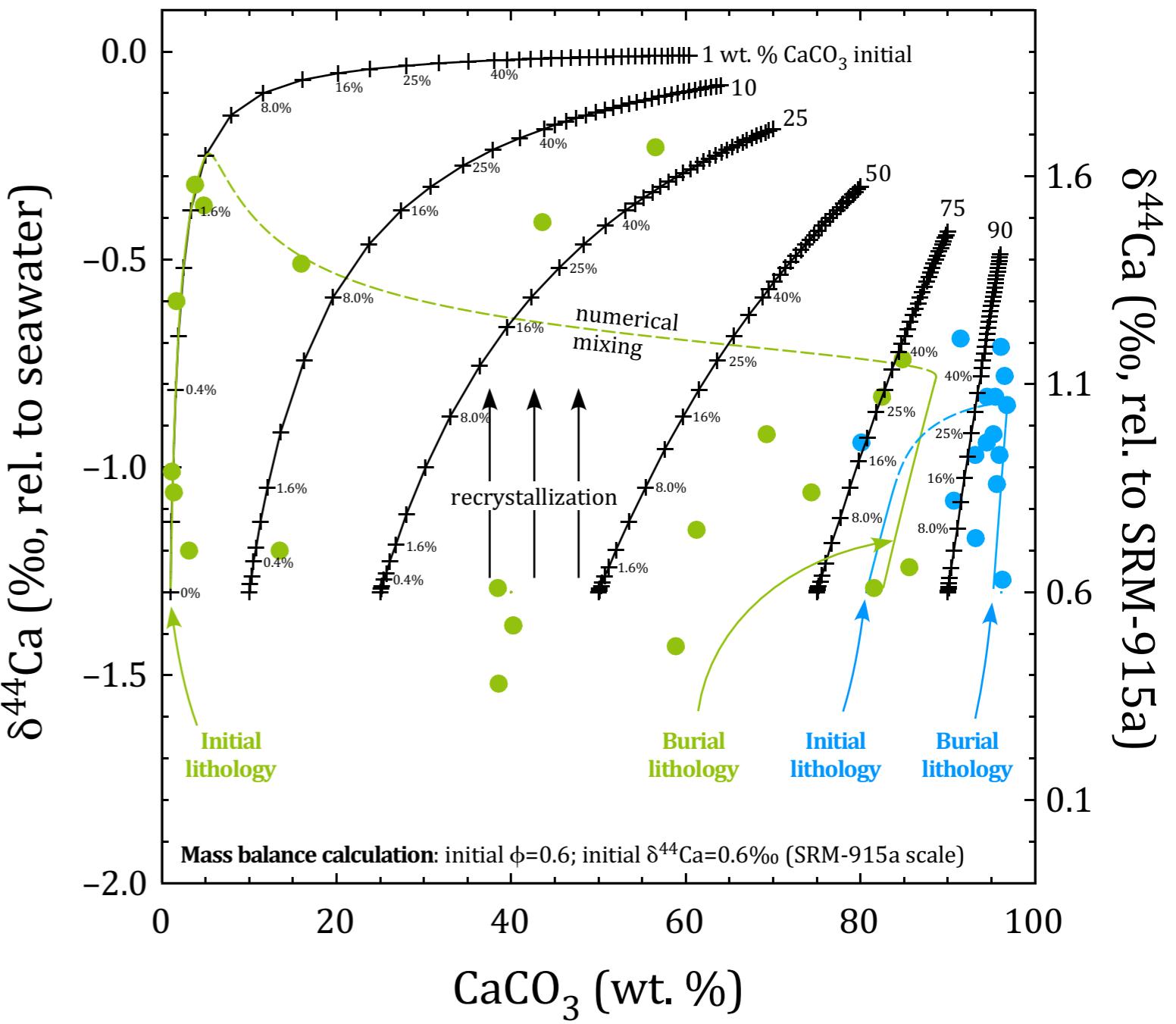
Figure 5 — cGENIE sedcore model output for the Gibbs et al. (2016) scenario at grid location 1607 (ODP Site 1262). The weight % CaCO_3 , carbonate $\delta^{44}\text{Ca}$ (‰), and carbonate $\delta^{13}\text{C}$ (‰) are shown.

Figure 6 — CrunchTope model output for calcite saturation state over the three-step overshoot perturbation detailed in Table S2. The two sets of curves refer to different rate constants assumed for calcite precipitation, which vary by a factor of ten in this example. Both the initial and burial porosity are assumed to be 0.75 in the simulations shown.

Figure 7 — Site 1221-like and Site 1212-like CrunchTope simulations over a PETM-like overshoot (see SI for details of simulation boundary conditions). In the simulations, precipitation is permitted but neither bulk mineral dissolution nor recrystallization are permitted. Site 1221-like: (a) schematic of initial sedimentary system (i.e., prior to alkalinity overshoot initiated at upper boundary) and burial lithology during overshoot (arrow), (b) $\delta^{44}\text{Ca}$ of bulk solid and pore fluid, (c) % CaCO_3 , and (d) comparison of results assuming a range of rate constants and a burial rate of 25 m/Ma instead of 10 m/Ma. Site 1221-like: (e) schematic of initial sedimentary system (i.e., prior to alkalinity overshoot) and burial lithology during overshoot (arrow), (f) $\delta^{44}\text{Ca}$ of bulk solid and pore fluid, and (g) % CaCO_3 . (h) Secular variability in calcite saturation state (Ω) and pH at the upper boundary of the model domain, as constrained by the cGENIE simulations. Data points in (d) are the Site 1221 bulk carbonate $\delta^{44}\text{Ca}$ values from Griffith et al. (2015).



Figure 8 — Site 1221-like (a) $\delta^{44}\text{Ca}$, (b) % CaCO_3 , and (c) schematic and Site 1221-like (c) $\delta^{44}\text{Ca}$, (d) % CaCO_3 , and (f) schematic from CrunchTope simulations with bulk recrystallization enabled. Data points in (a) are the Site 1221 bulk carbonate $\delta^{44}\text{Ca}$ values from Griffith et al. (2015).


Figure 9 — cGENIE model output for three carbon flux scenarios: (a) Gutjahr et al. (2017), (b) Cui et al. (2011), and (c) Gibbs et al. (2016). For each scenario, we show the atmospheric CO_2 concentration over the event, the sedcore bottom water $\text{O}_2(\text{aq})$ output at a range of sites throughout the global ocean (indicated in Fig. S1), and spatial maps of relative oxygen concentration in both the 2756.6 meter mid-depth interval and a longitudinal cross-section. Relative $\text{O}_2(\text{aq})$ concentrations are



calculated by normalizing minimum $O_2(aq)$ by initial $O_2(aq)$ concentrations (i.e., at 0.5 or 10 ka, depending on the model scenario).

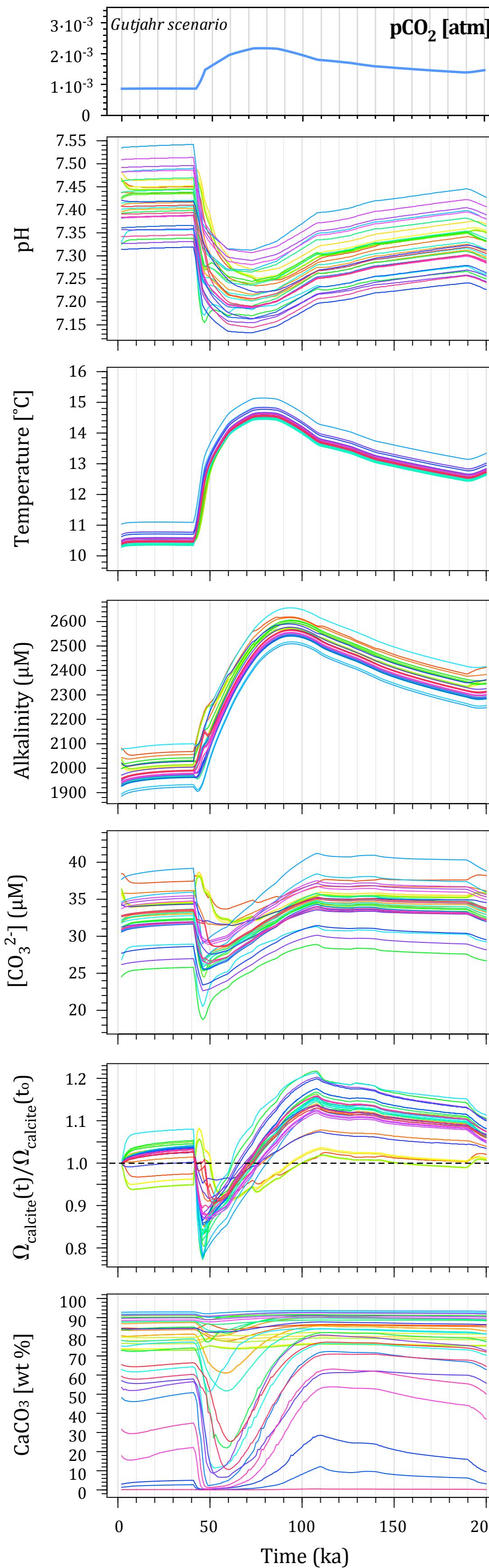
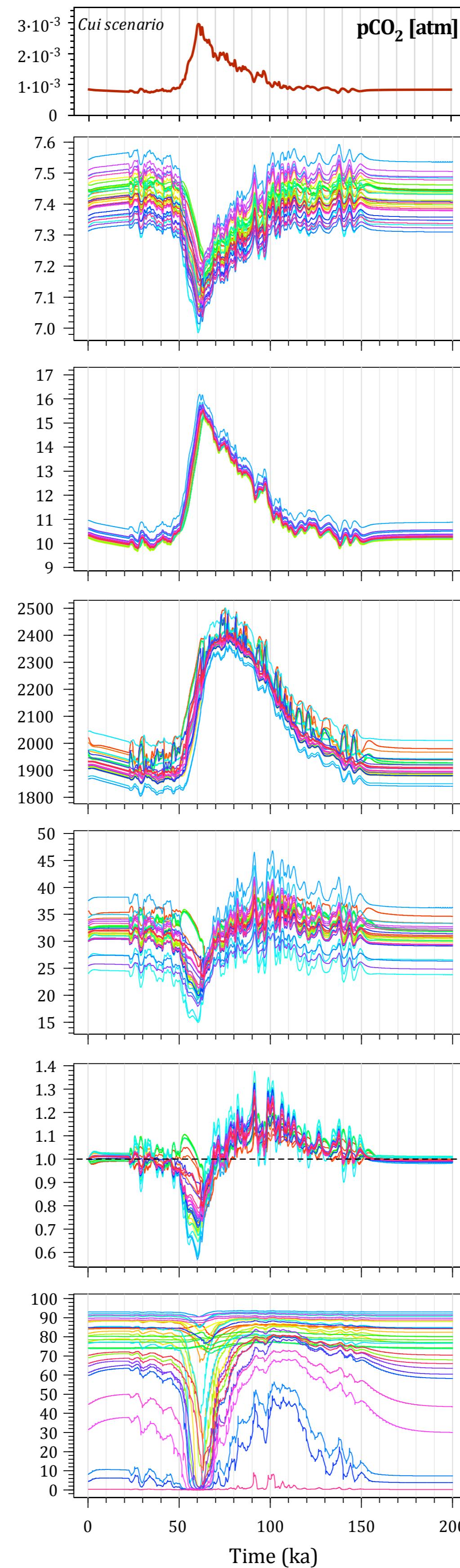
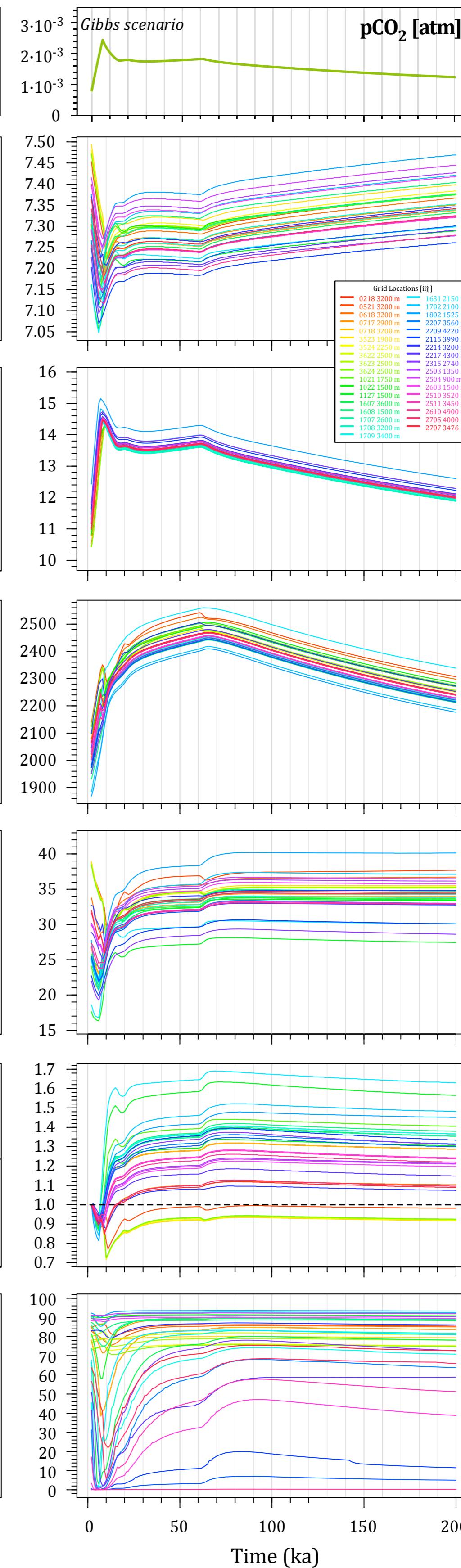



Figure 10 — Reactive transport simulation of acetotrophic sulfate reduction over a (a) PETM-like perturbation in which saturation state relative to calcite, pH, and aqueous oxygen concentration vary (see Table S3 for simulation details); the initial condition set in the column is indicated at $t=0$, while the time interval over which an initial steady state is reached is indicated by the dashed line. Plotted model output includes: (b) sulfate reduction rate (mol/kg water/year), as well as pore fluid (c) pH, (d) aqueous oxygen concentration (mol/kg water), (e) saturation state relative to calcite (Ω_{calcite}), and (f) volume fraction (%) of calcite in the modeled 1-D section. The colored curves reflect the model output at the times indicated in (f); the model is first run to a steady state sulfate reduction rate over 8 ka, then perturbed to lower pH values and lower $O_2(aq)$ concentrations in three pulses (6.5, 4.6, and 8.9 ka). The timing and bottom water chemistry of the perturbation pulses is constrained by the cGENIE model output. The vertical, red curve (~ 0 ka) is the initial chemistry at $t=0$.

Figure 11 — Mixing calculation for core data presented by Du Vivier et al. (2015) associated with OAE 2; assumptions are shown at the bottom of the panel (also see Fig. 3 caption for related details). The line labeled “environmental signal” is a catchall term that indicates any process occurring in the natural system, besides authigenesis/recrystallization. The mixing calculation was performed for ‘percentage of pore space filled’ in even increments, which is what the ticks marks represent; however, because of the way mixing works in this system, the tick marks don’t appear to be evenly-spaced in $\delta^{44}\text{Ca}$ -wt. % CaCO_3 space.

a**b**

a**b****c**

$\delta^{44}\text{Ca}$ of CaCO_3 (‰)

0.80

0.84

0.88

0.92

Time relative to CIE (ka)

200

150

100

50

0

-50

-100

0

25

50

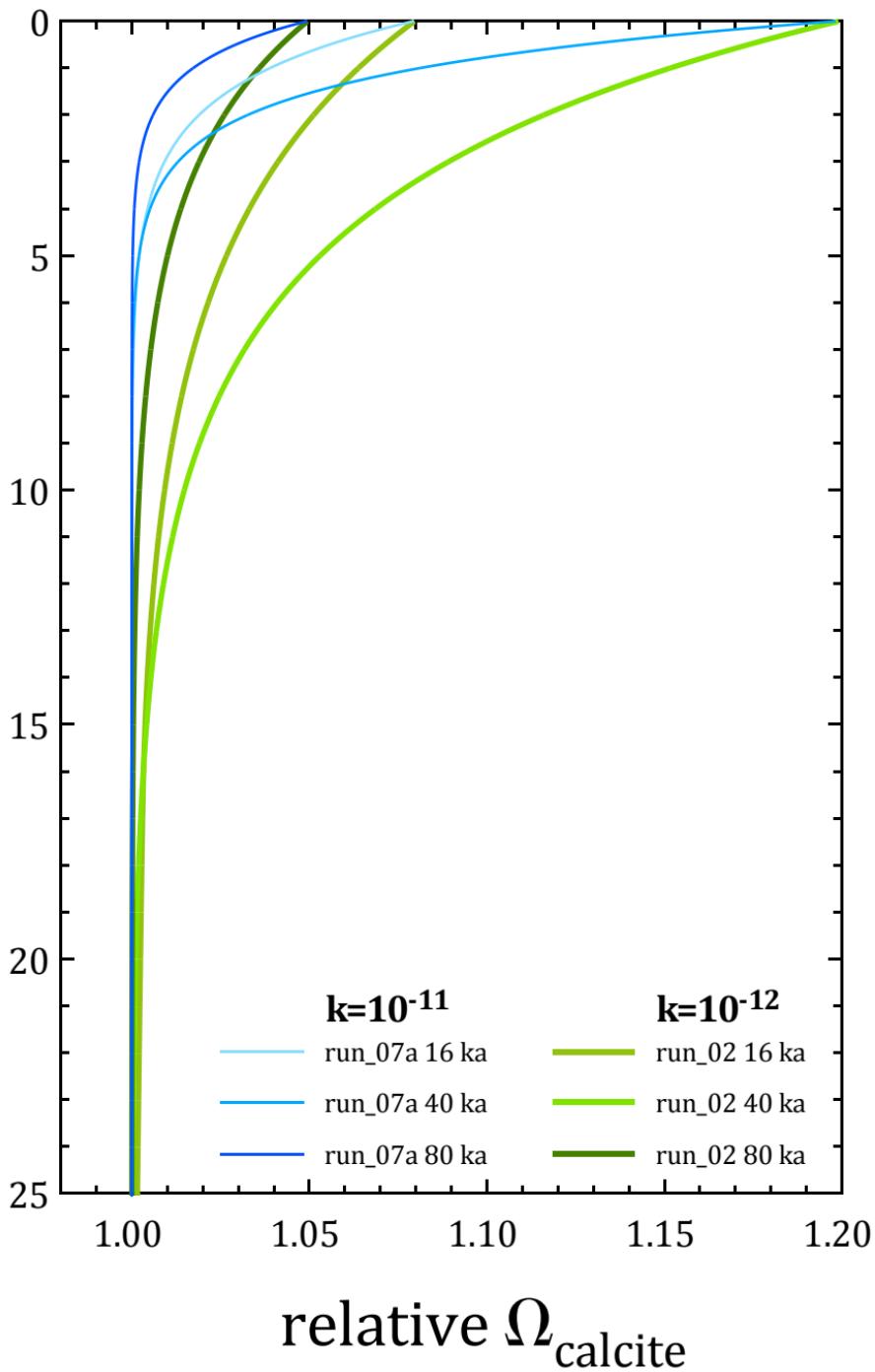
75

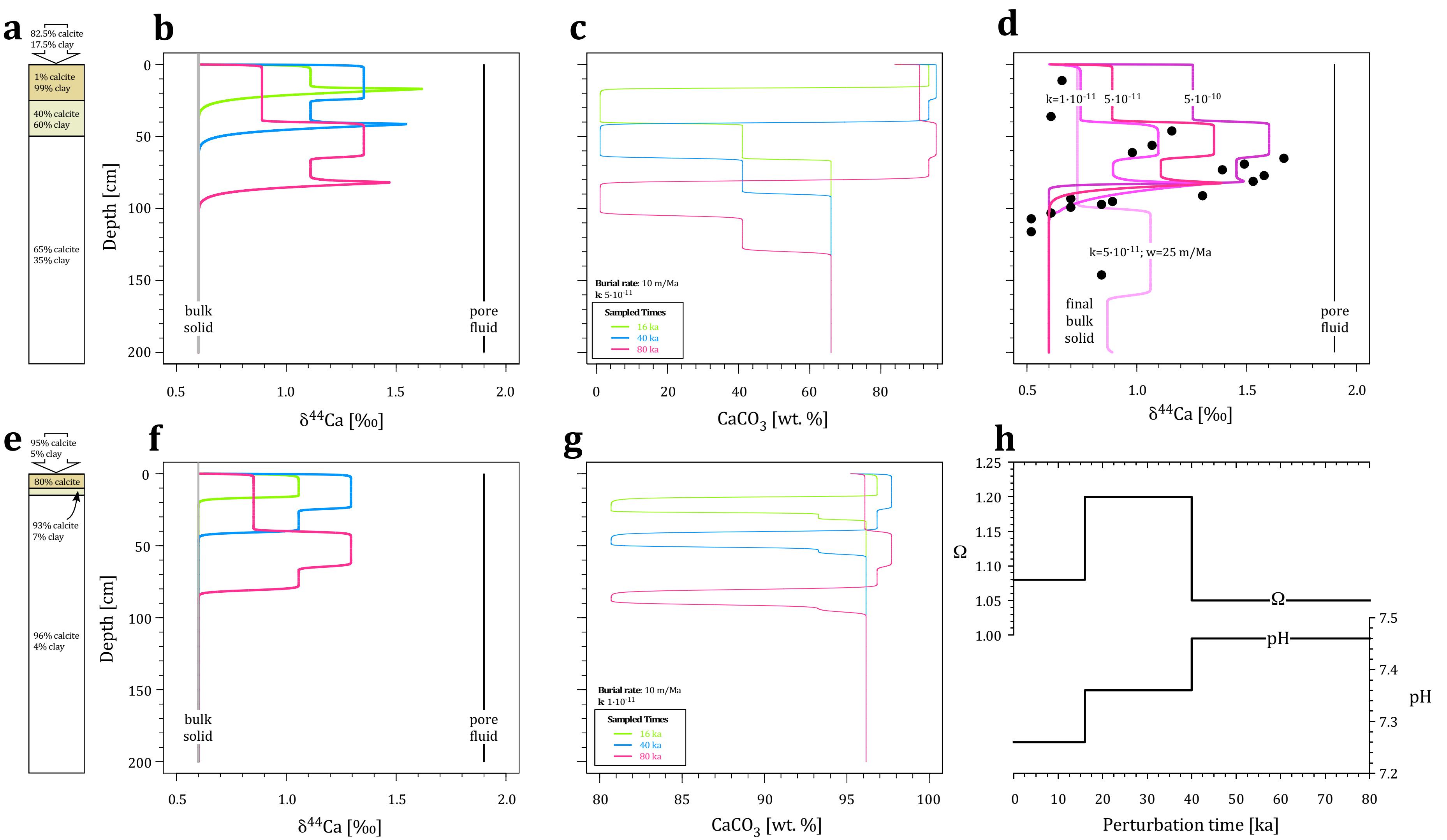
100

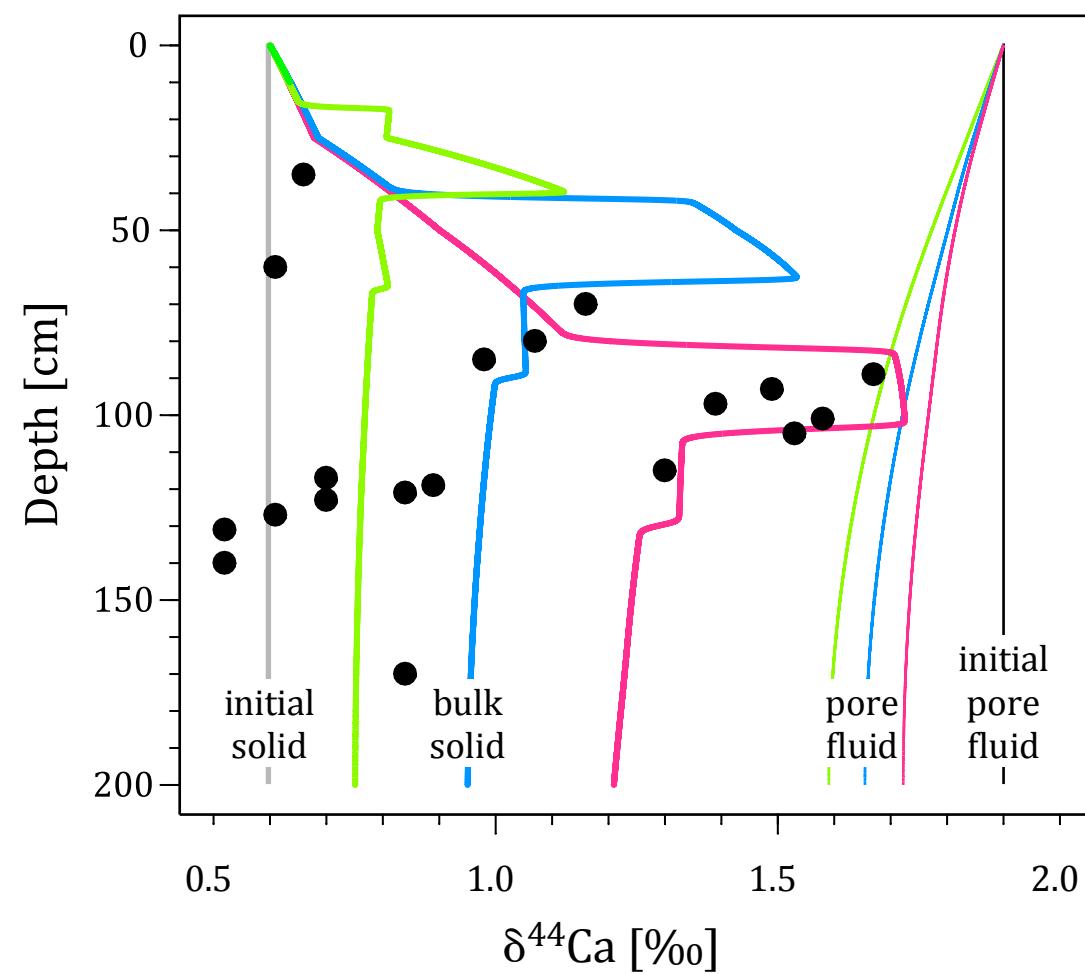
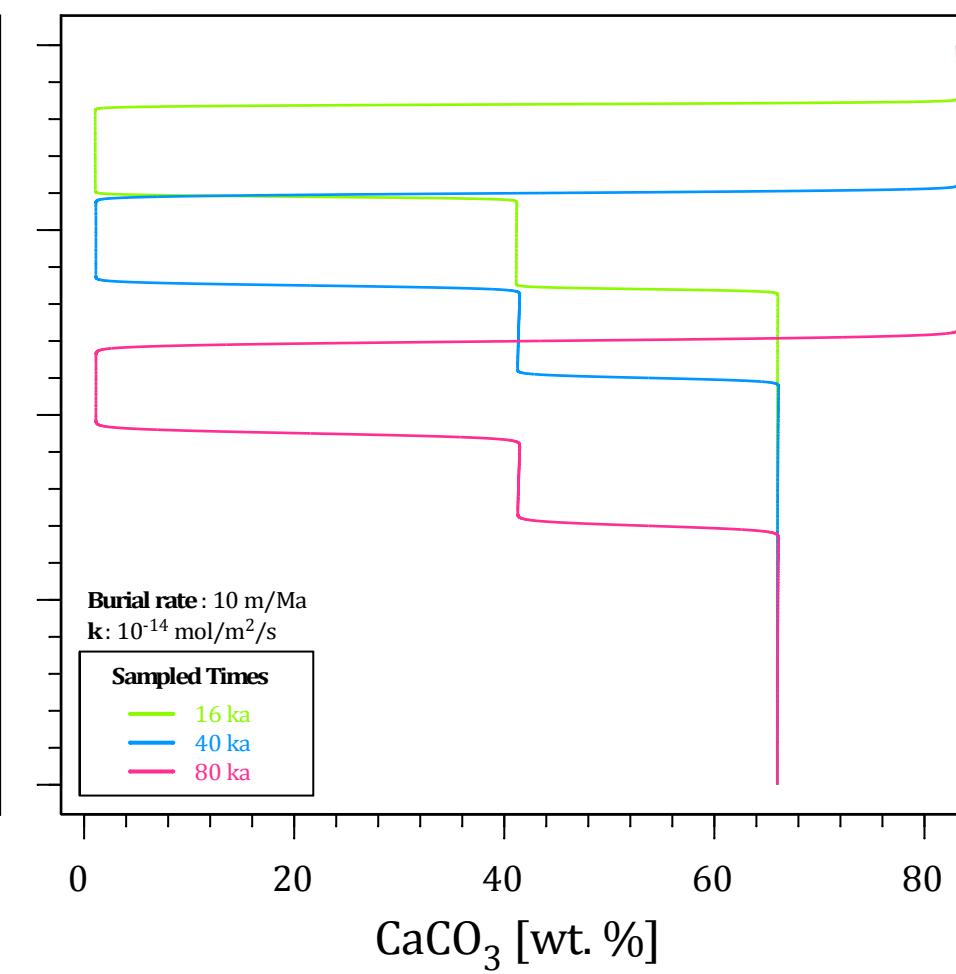
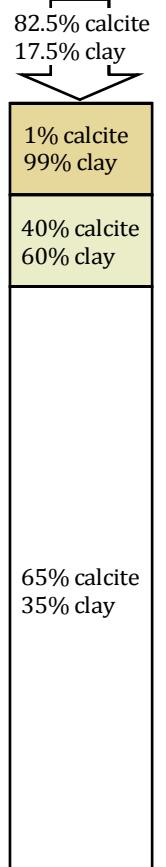
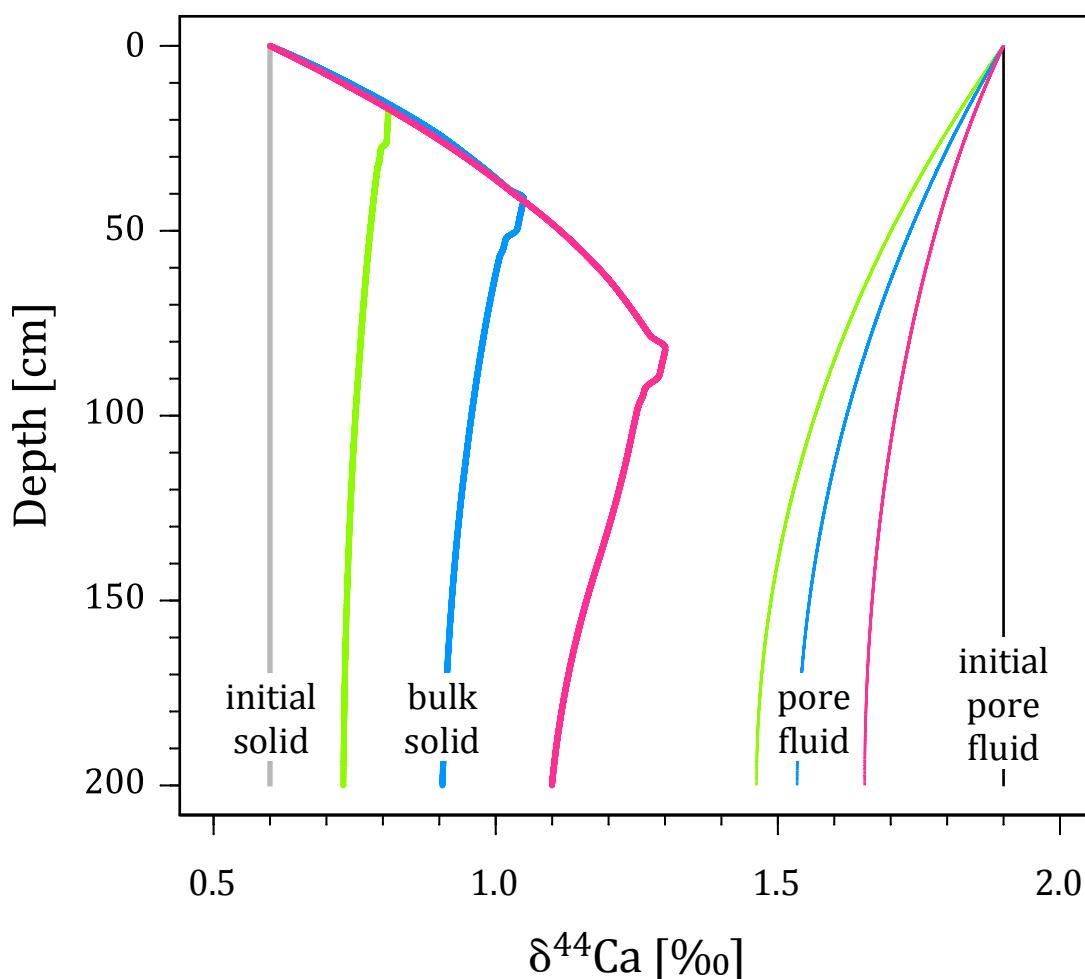
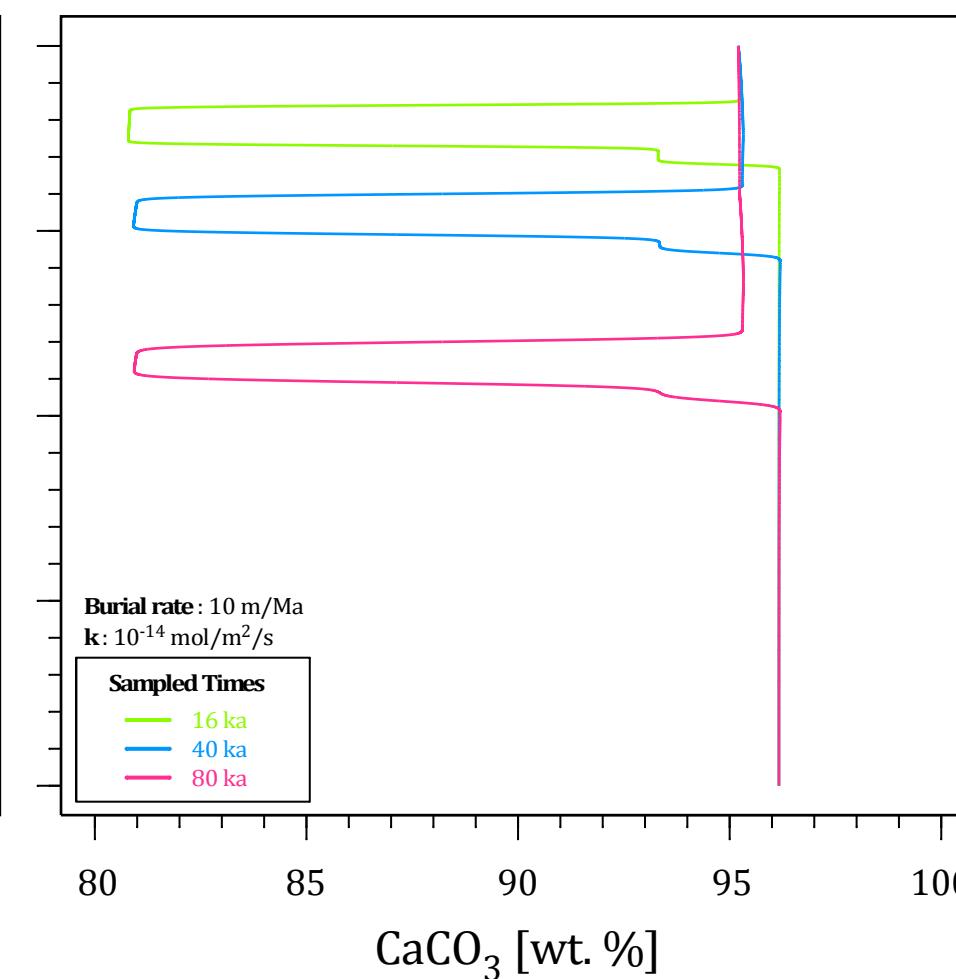
wt. % CaCO_3

$\delta^{44}\text{Ca}$

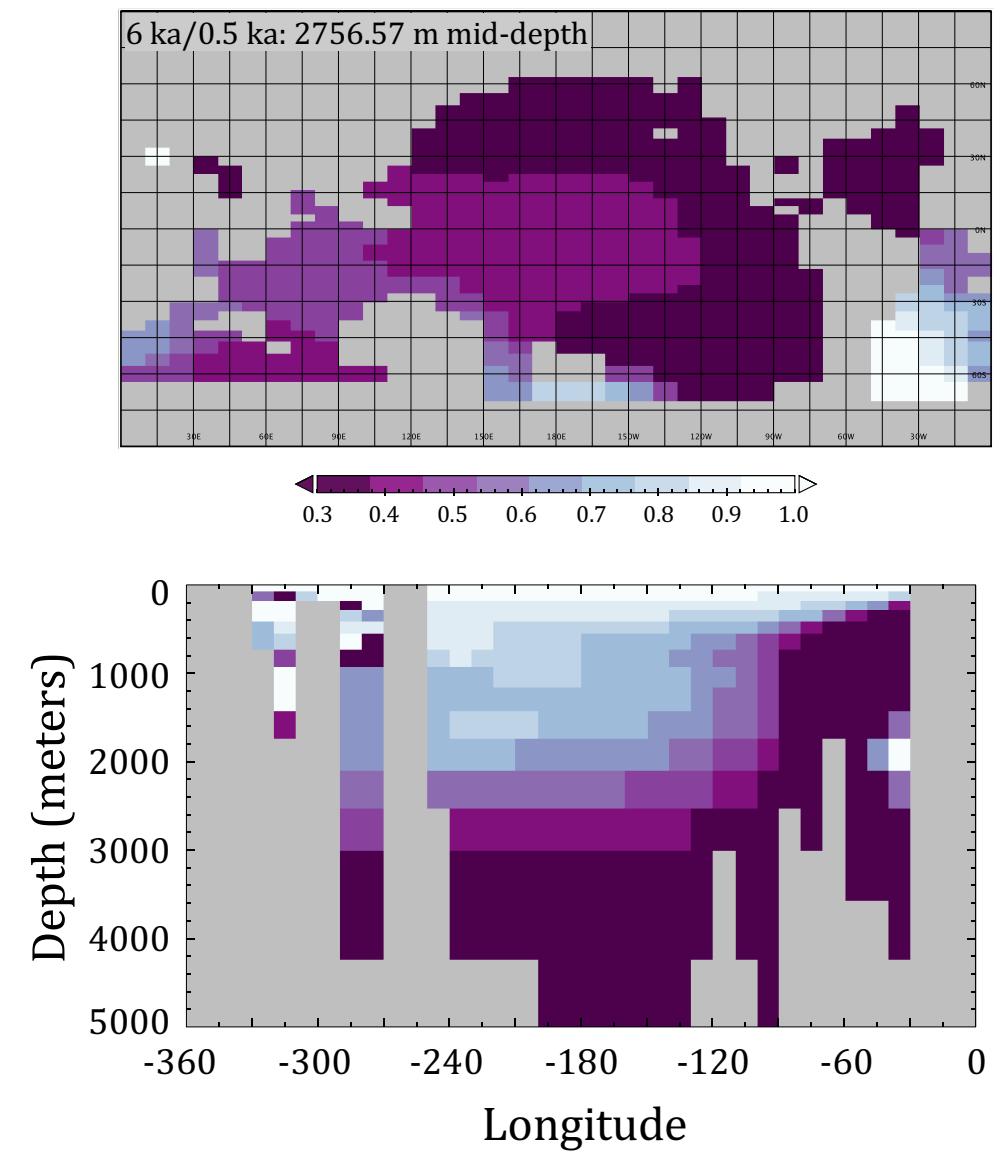
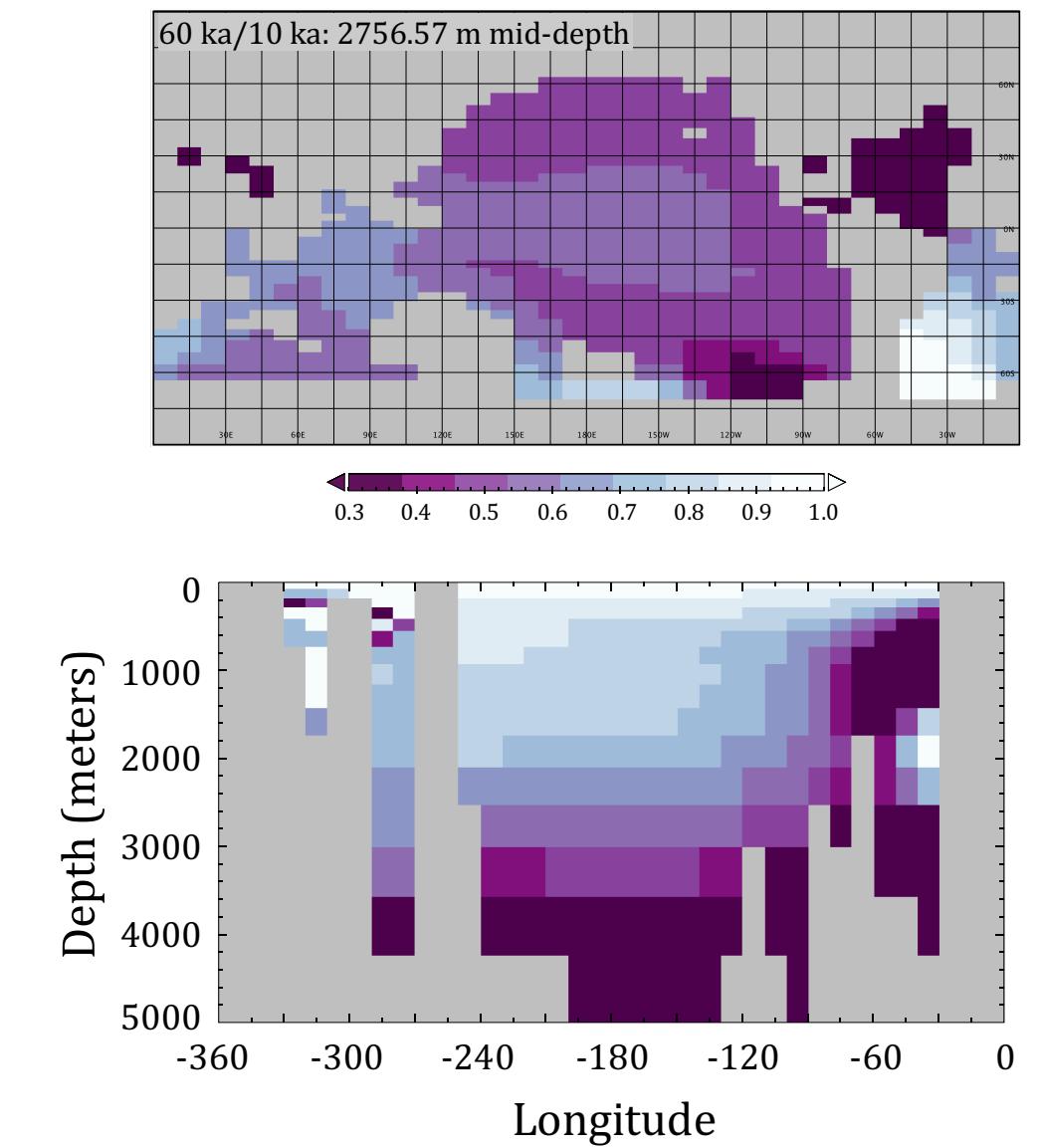
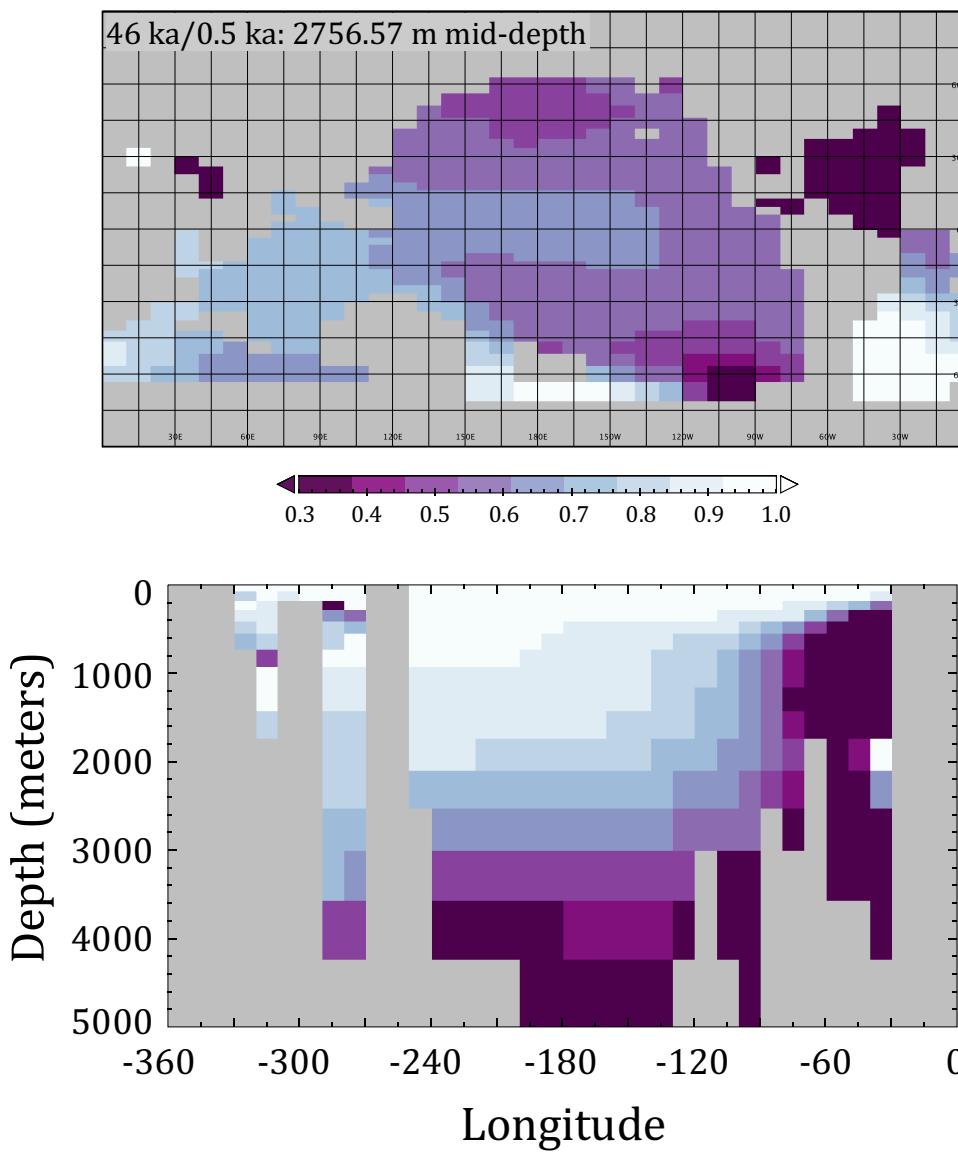
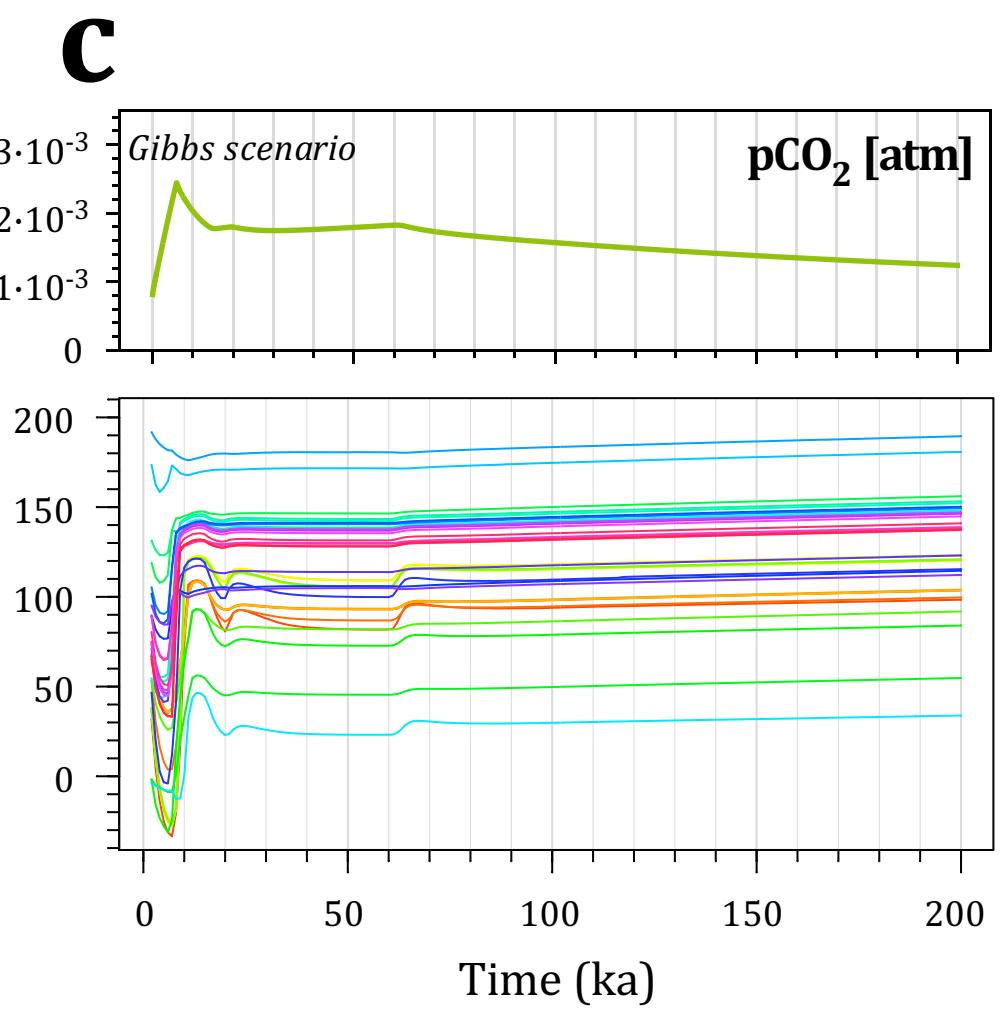
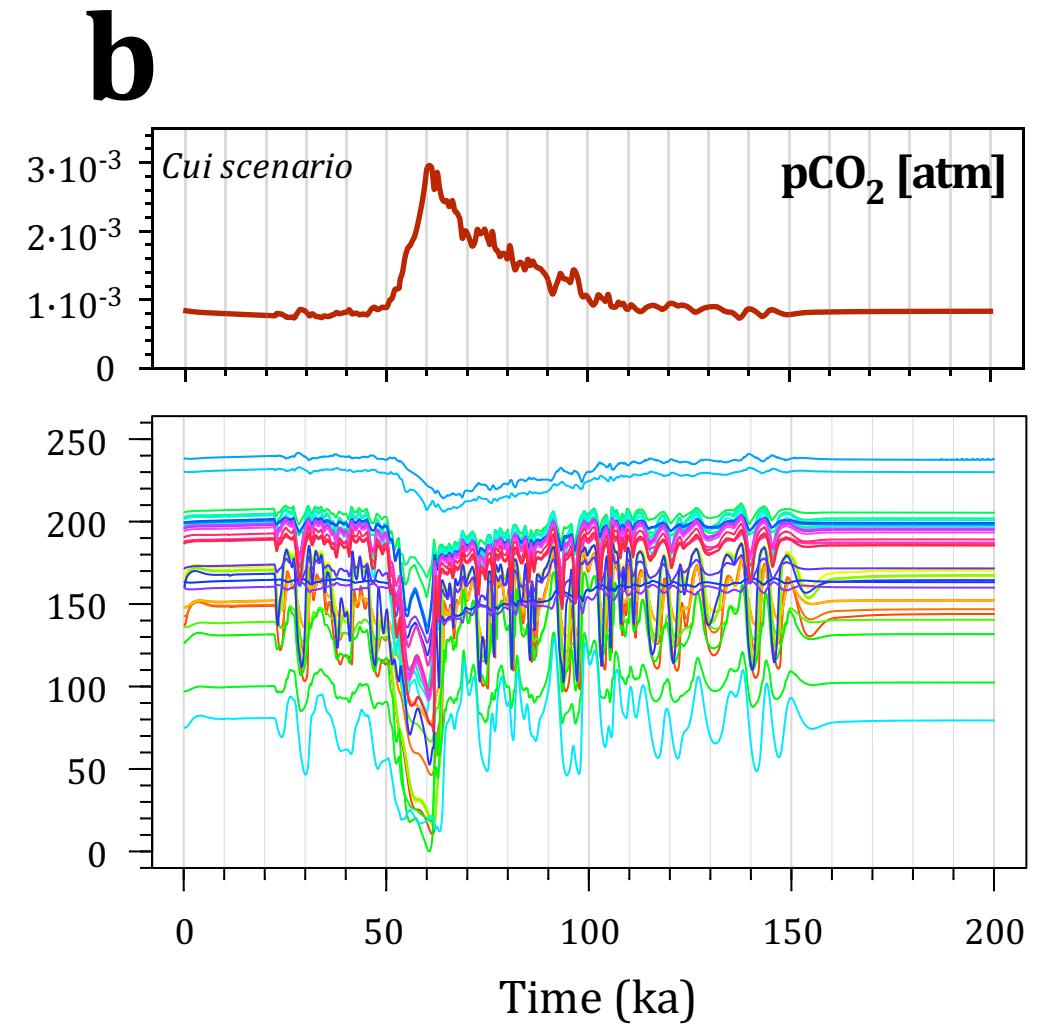
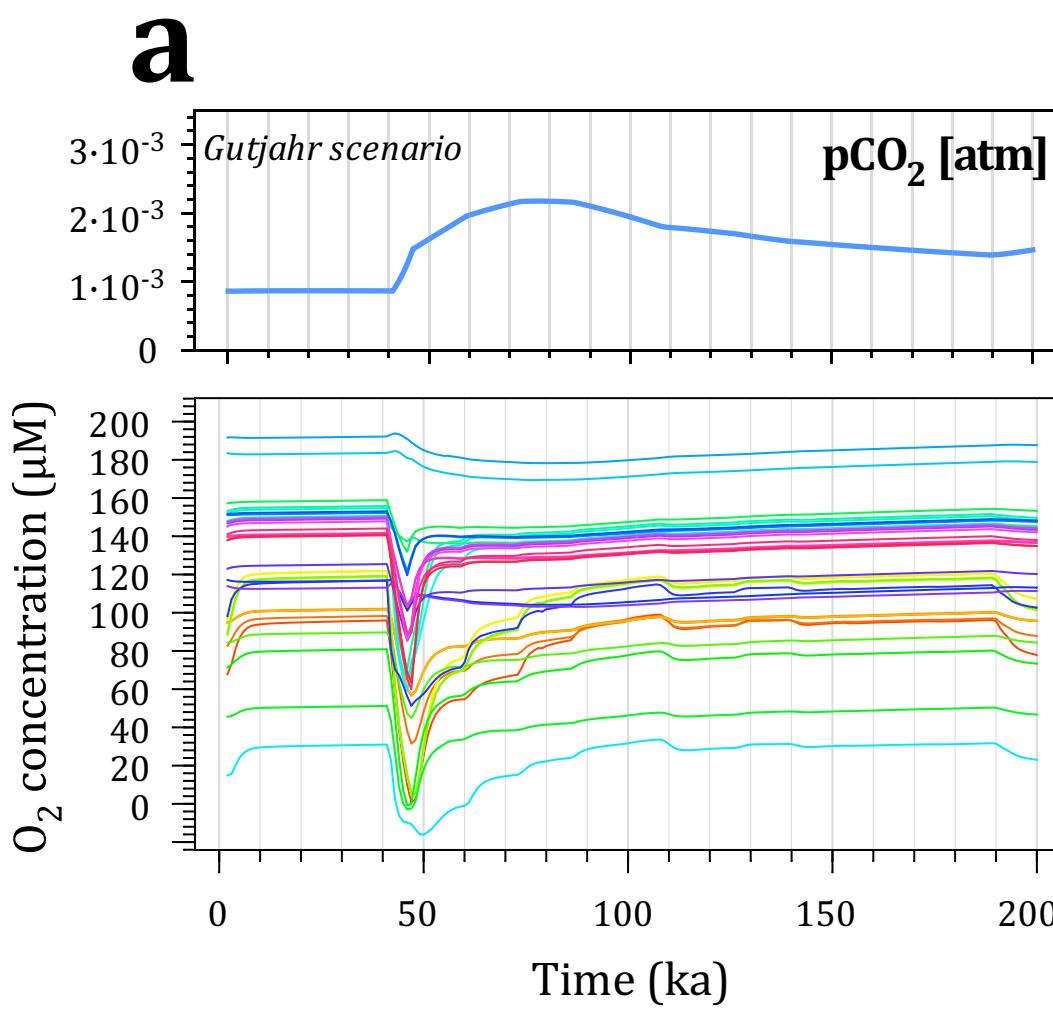
$\delta^{13}\text{C}$

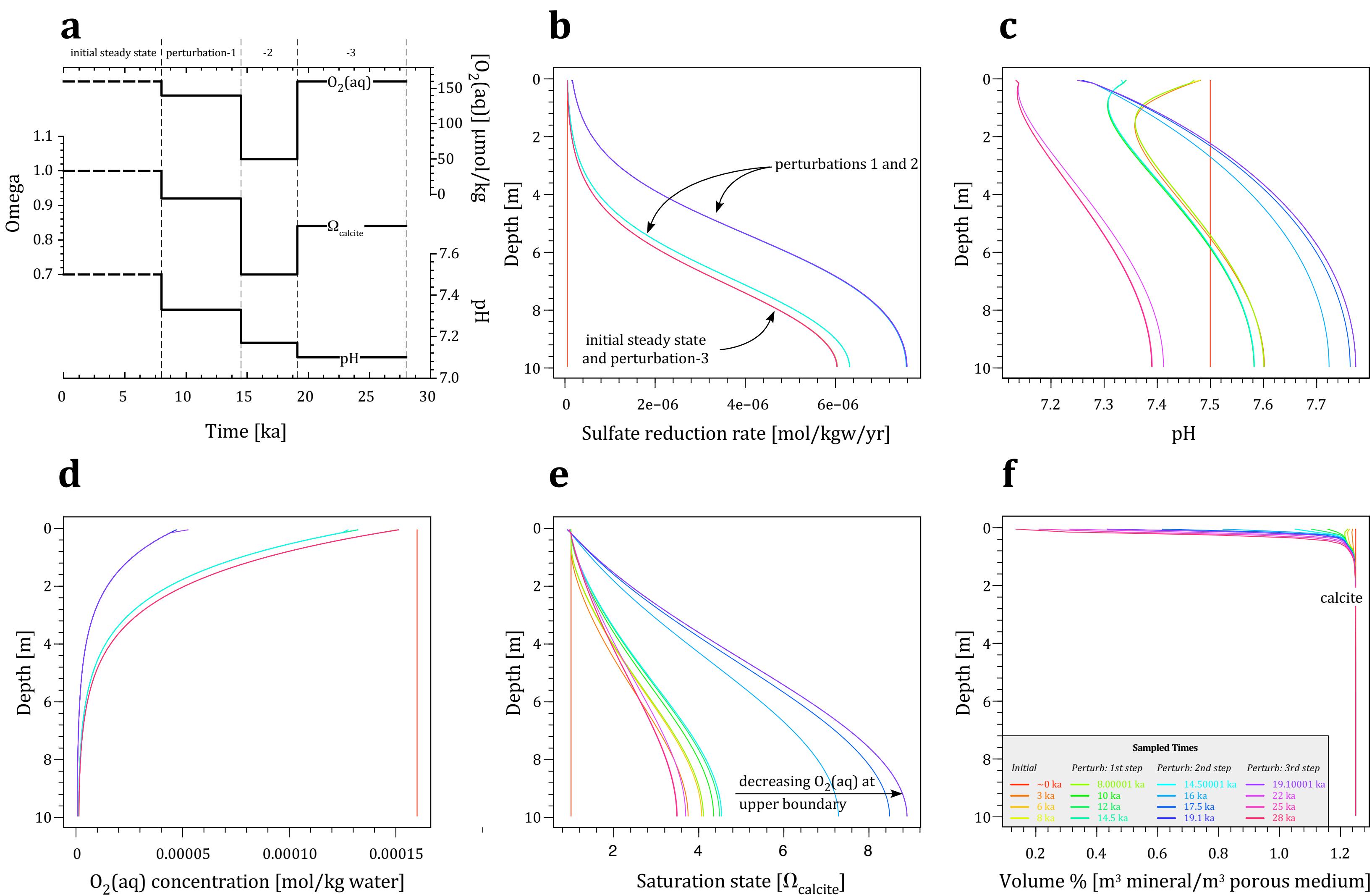

$\delta^{13}\text{C}$ of CaCO_3 (‰)

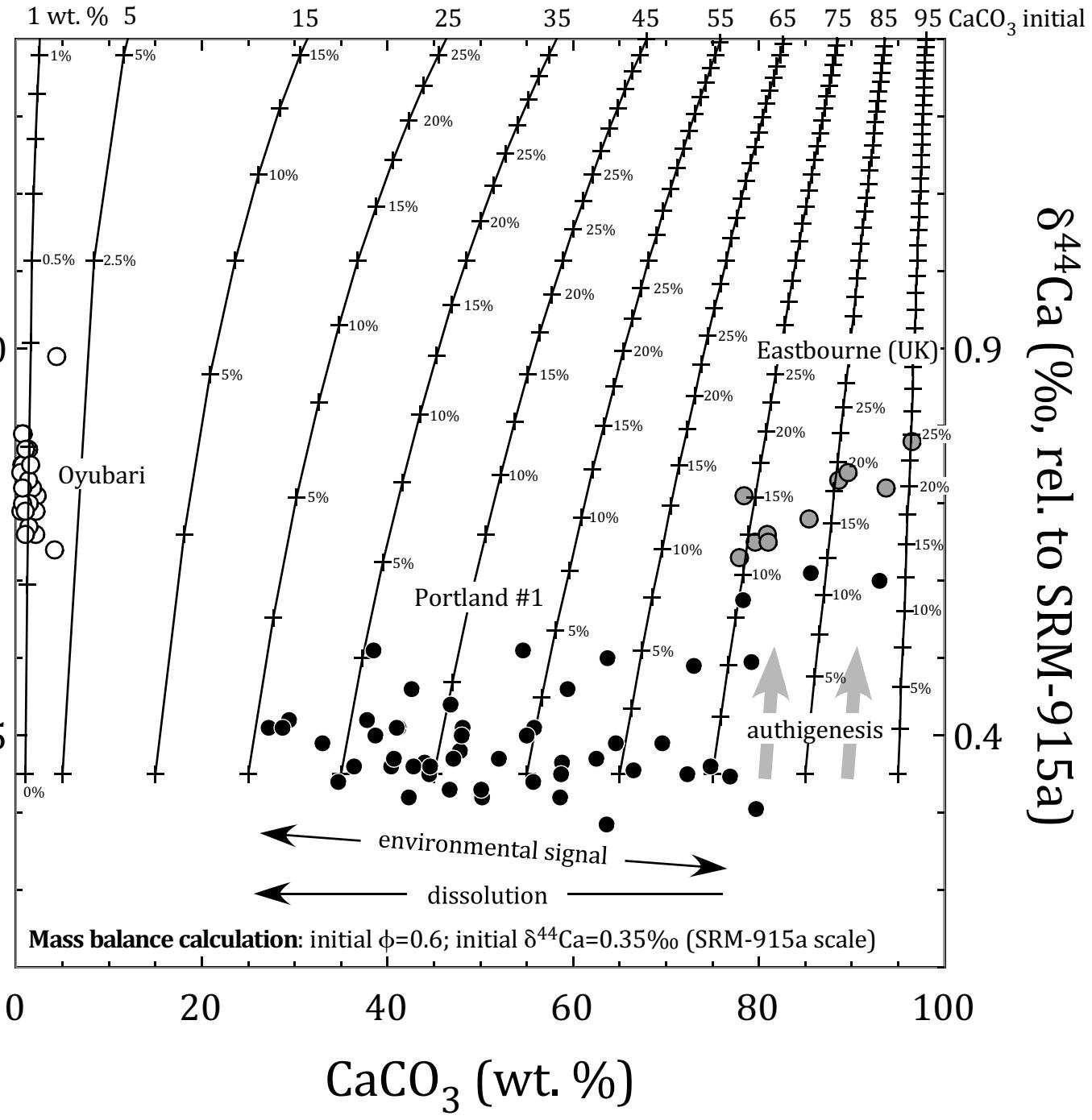

wt. % CaCO_3

$\delta^{44}\text{Ca}$







$\delta^{13}\text{C}$


Depth [cm]



a**b****c****d****e****f**

$\delta^{44}\text{Ca}$ (‰, rel. to seawater)

Calculation of Mixing Trajectories

The equations used to calculate the mixing trajectories in Fig. 3 are detailed below. The calculations assume an initial porosity (ϕ), initial $\delta^{44}\text{Ca}$ values for the carbonate and the authigenic endmember, and an initial CaCO_3 content (in weight percent CaCO_3). The calculations simply assume that the a proportion of the available pore space (volume, cm^3) is subsequently filled with pure CaCO_3 ($\rho=2.7 \text{ g cm}^{-3}$), and the resultant ϕ , $\delta^{44}\text{Ca}$, and wt. % CaCO_3 calculated as a result:

$$\phi = \frac{\phi_{init} \cdot V_{total} [\text{cm}^3] - N_{\text{CaCO}_3 \text{ added}} [\text{mol CaCO}_3] \cdot \frac{100.08 [\text{g mol}^{-1}]}{2.7 [\text{g CaCO}_3 \text{ cm}^{-3}]}}{V_{total} [\text{cm}^3]}$$

$$\delta^{44}\text{Ca}_{bulk} = \frac{(\delta^{44}\text{Ca}_{init} \cdot N_{\text{CaCO}_3 init} + \delta^{44}\text{Ca}_{added} \cdot N_{\text{CaCO}_3 added})}{N_{\text{CaCO}_3 total}}$$

$$\text{wt. \% CaCO}_3 = \frac{(mass_{\text{CaCO}_3 init} [\text{g}] + mass_{\text{CaCO}_3 added} [\text{g}])}{(1 - \phi)V_{total} \cdot 2.7 [\text{g sedt cm}^{-3}]} \cdot 100$$

The initial mass of Ca in the sediment is calculated from the initial wt. % CaCO_3 by:

$$N_{\text{CaCO}_3 init} = (1 - \phi) \cdot V_{total} \cdot 2.7 \text{ g sedt cm}^{-3} \cdot \frac{\text{g CaCO}_3}{\text{g sedt}} \cdot \frac{\text{mol CaCO}_3}{100.08 \text{ g}}$$

The bulk sediment density is assumed to be 2.7 g cm^{-3} , as is that of calcite, in order to simplify the calculations.

Model Description

S1. cGENIE Earth System Modelling

cGENIE simulates the ocean-(atmosphere)-sediment cycling of a range of elements (C, Ca, P, Fe, O) and their isotopes (where applicable), and includes a terrestrial weathering component to balance burial loss. Both organic (Hülse et al., 2018) and inorganic (i.e., carbonate) (Ridgwell and Hargreaves, 2007) carbon can be buried in the model, and the composition of the sedimentary column tracked over model time (Ridgwell, 2007), though no carbonate diagenetic processes – besides core top dissolution – are currently simulated.

In the current study, we employ an established late Paleocene tectonic and climatic model configuration (Ridgwell and Schmidt, 2010), with the spatial grid and locations of the relevant ODP sites shown in Fig. S2. The modeled Ca cycle has a global CaCO_3 budget based on recent Paleogene hyperthermal studies (Kirtland Turner and Ridgwell, 2013; Gutjahr et al., 2017). In this study, the steady state (and pre-event) global pelagic CaCO_3 burial rate in marine sediments is $14.4 \text{ Tmol CaCO}_3 \text{ yr}^{-1}$. Also consistent with these studies, we omit shallow, neritic sinks, such as is induced by corals today. Modern continental weathering studies generally partition the atmospheric CO_2 consumption during weathering between silicate and carbonate weathering in the ratio $\sim 12 \text{ Tmol CO}_2 \text{ yr}^{-1}$ to $7-12 \text{ Tmol CO}_2 \text{ yr}^{-1}$ (e.g., Gaillardet et al., 1999; Ludwig et al., 1998; Amiotte-Suchet et al., 2003; Munhoven, 2002). Assuming that (1) all silicate CO_2 consumption is associated with Ca^{2+} and that for silicate weathering, 2 mol CO_2 are consumed for every 1 mol Ca^{2+} released but (2) CO_2 is

consumed only in a 1:1 with CaCO_3 in carbonate weathering, leads to an approximate 2:3 split in riverine Ca^{2+} supply between silicate vs. carbonates. We therefore partition the total 14.4 Tmol Ca^{2+} yr^{-1} supply required to balance carbonate burial into 6 Tmol yr^{-1} from silicates, and 8.4 Tmol yr^{-1} derived from the weathering of terrestrial carbonates. We further assume that of the 6 Tmol yr^{-1} of silicate weathering, 4 Tmol yr^{-1} is Ca^{2+} and 2 Tmol yr^{-1} is Mg^{2+} . Because carbonate deposition and burial is assumed only to occur in the form of CaCO_3 in the model, we prescribe a fixed 2 Tmol yr^{-1} hydrothermal exchange of Mg^{2+} for Ca^{2+} , hence balancing the global budgets of both Ca^{2+} and Mg^{2+} .

In terms of the Ca isotope cycle (Fig. S2), the $\delta^{44}\text{Ca}$ of weathering calcium-silicate minerals is assumed to be 0.94 ‰, with 0.60‰ for the $\delta^{44}\text{Ca}$ of terrestrial carbonates (Fantle and Tipper, 2014). Hydrothermal $\delta^{44}\text{Ca}$ is assumed to have a $\delta^{44}\text{Ca}$ of 0.9‰ (Blattler et al., 2011). Finally, we set the fractionation factor between biogenic carbonates and seawater Ca^{2+} at $\Delta^{44}\text{Ca} = -1.1\text{‰}$ (Holmden et al., 2012), but discuss and test alternative assumptions regarding the fractionation factor below.

For completeness, we include carbon isotopes in cGENIE, as described in Kirtland Turner and Ridgwell (2016). To improve the balance of the long-term C cycle, we prescribe a fixed burial flux of organic carbon to marine sediments of 2.57 Tmol yr^{-1} , which is isotopically fractionated by -30.0‰ relative to the $\delta^{13}\text{C}$ of total dissolved inorganic carbon in the surface ocean. Balancing the carbon budget then requires 8.57 Tmol yr^{-1} of volcanic CO_2 outgassing ($\delta^{13}\text{C} = -6\text{‰}$), and a $\delta^{13}\text{C}$ of weathered carbonates on land of 3‰ – all plausible and modern-like values. Consequently, the mean $\delta^{13}\text{C}$ of newly deposited carbonate is that of weathering carbonates (3‰) and the geologic carbon isotope cycle is balanced (the specific organic carbon burial flux was chosen to simplify the C isotope budget). Carbonate and silicate weathering are both assumed to be responsive only to global mean surface land temperature, the parameterizations of which are utilized by Berner (1994) and Brady (1991), respectively, and described and evaluated in full by Lord et al. (2015). The reference value for the mean annual air temperature over land for both weathering processes is 19.0°C.

To spin up the isotope cycles in the model, we take the model spin-up from Gutjahr et al. (2017) which lacked explicit representation of $\delta^{44}\text{Ca}$, set the isotopic value of the dissolved calcium in the ocean (which has a mean concentration of 18.2 mmol kg^{-1}) to 1.92 ‰ (Fantle and Tipper, 2014), and then run the cGENIE model in an accelerated mode (Lord et al., 2015) for a total of 2 Ma.

The specific PETM simulations utilized a CO_2 emissions forcing to the atmosphere that was identical to that of (i) Gutjahr et al. (2017), or (ii) Gibbs et al. (2016) (i.e., twice the carbon flux of Zeebe et al., 2009). A simulation that matched the Cui et al. (2011) carbon emissions scenario was also run, though did not include Ca isotopes. Control scenarios that had no carbon forcing, as well as no change in Ca isotopic fractionation factor, were also conducted. All experiments were run following the spin-up for 200 ka from the start of PETM onset.

S2. CrunchTope modeling of sedimentary diagenesis

The multicomponent reactive flow and transport code CrunchTope (Druhan et al., 2013; Steefel et al., 2014) was used to simulate diagenetic reactions in the sedimentary column. CrunchTope considers both thermodynamics and kinetics, and includes a solid solution model for simulating isotopic exchange (accessed using the ISOTOPE block in the input file); the solid phase may either back-react ('bulk' option in the ISOTOPE block) or be unreactive ('none' option). The means by which recrystallization is simulated is described in Section 1.3 of Druhan et al. (2013). Mineral reaction rates are parameterized as transition state theory-like (TST) rate laws, in which rate constants, surface areas, chemical affinity dependencies, and saturation state may all be considered. Rate laws may be 'dissolution only' or 'precipitation only', in which cases precipitation or dissolution, respectively, are suppressed. Monod, as well as irreversible, rate formulations are also

available (see below). Modeled transport may be diffusive or advective, and diffusion may be considered on a species-by-species basis.

The modeled sections presented herein were assumed to be influenced only by diffusion, and species-specific diffusion coefficients were employed (at T=13°C; Table S1; Tables 4.3, 4.7, and 4.8, Eqns. 4.4, 4.57, 4.58, and 4.59 – P=1000 bar, S=35 permil where appropriate – in Boudreau (1997); aqueous silica from Rebreasu et al. (2008); glucose from Ribeiro et al. (2006)), and a cementation exponent (m : $D_{sedi} = \phi^{-m}$) between one and two was used. Burial rates varied between ~ 10 m/Ma and 150 m/Ma over all the simulations.

CrunchTope was used to simulate authigenic precipitation and recrystallization scenarios, in which the saturation state, oxygen, and pH outputs from cGENIE were used to constrain the temporal evolution of the upper boundary condition. The evolution of the upper boundary was necessarily stepwise, and not continuous, as CrunchTope does not permit the former. Instead, we utilized the stop-restart functionality in CrunchTope, which allowed us to change the upper boundary condition at specific times (Table S2). The 80 ka overshoot portion of the PETM was simulated in CrunchTope assuming two initial lithologies: carbonate-poor over the upper ~ 25 cm (ODP Site 1221 analog) and carbonate-rich (ODP Site 1212 analog). The initial and burial lithologies (i.e., volume fractions of minerals in the initial column and in the burial flux at the upper boundary), burial rates, and porosities of the clay-rich and carbonate-rich sections are also listed in Table S2.

In addition, the extent to which the solid is assumed to be open to back-reaction was also varied in the simulations: in some simulations, the pre-existing carbonate was assumed to be unreactive while in others, all of the carbonate solid was assumed to be open to back-reaction with the pore fluid. The implementation of this feature in CrunchTope is described in detail by Druhan et al. (2013). The siliciclastic solids (kaolinite and quartz) were constrained to be unreactive over the time scale of the simulations, while the rate constants of the carbonate solid were varied over a range of values. Porosity, therefore, only varied as a function of the initial state and the amount of calcite added.

The reactive transport model results presented are not steady state results (with respect to Ca isotopes). Because burial is in operation, and the solid lithology varies with depth, the model does not necessarily reach steady state with respect to the Ca isotopic composition of the solid and pore fluid. In the authigenic simulations, no dissolution of the solid phase is permitted; thus, the pore fluid does not vary with depth and could technically be described as at steady state. However, the solid in this scenario has authigenic carbonate being added to it constantly from the upper boundary, and is constantly being buried and moved away from the interface. Because the depth zone over which authigenic carbonate is added to the model section is limited, and burial operates, there are no cases in which the pore space is filled completely, which (in the absence of any removal flux) is what would be required to reach a steady state with respect to the solid. In any given time interval over which the chemistry of the upper boundary is constant, then, steady state is not necessarily achieved (nor is it expected). In the recrystallization scenarios investigated, the same is true of both the solid and the pore fluid $\delta^{44}\text{Ca}$; again, the primary driver here is the solid composition, which impacts pore fluid $\delta^{44}\text{Ca}$ via dissolution. However, the chemistry of the pore fluid in each simulated scenario (e.g., saturation state, pH) is generally in steady state in the depth regime over each of the three intervals.

It should be noted that there are numerical mixing effects on the solid phase in the CrunchTope simulations when burial is on. A variety of simulations were conducted to determine if changing the grid spacing (i.e., dz) or burial rate could reduce the effect, but neither did. Thus, we present the simulations with the caveat that they contain a small degree of numerical mixing in the solid (which is pointed out in the mixing figures), similar to what would be expected due to bioturbation.

In order to investigate the impact of variable $\text{O}_2(\text{aq})$ concentrations at the upper boundary, a simplified redox ladder consisting of aerobic oxidation of organic matter, denitrification, and

sulfate reduction was simulated. In CrunchTope, the BIOMASS formulation adapts the rate scheme for microbial reactions proposed by Jin and Bethke (2003; 2005), which are assumed to obey Monod-type kinetics:

$$rate = k_{max} m_B \frac{m_i}{m_i + K_{half}} \frac{K_{in} + m_j}{K_{in}} \left(1 - e^{-\frac{\Delta G_r + m \Delta G_p}{\chi RT}} \right) \quad [1]$$

where k_{max} is the maximum rate constant (yr^{-1}), m_B is biomass concentration, m_i is concentration of the electron donor or acceptor that controls the Monod dependence, m_j is concentration of the electron or acceptor that inhibits reaction, K_{half} is the half-saturation constant, K_{in} is the inhibition constant, ΔG_r is the Gibbs free energy of the redox reaction, ΔG_p is the phosphorylation potential, m is the number of ATPs synthesized in the reaction, and χ is the average stoichiometric number for the overall reaction (Jin and Bethke, 2005). Reactions utilizing acetate as the electron donor, as well as those using glucose as the electron donor, are shown in Table S3. Sulfide oxidation is included in the reaction network, and its rate assumed to be described by an irreversible rate law (*i.e.*, $rate = k \prod_i a_i^n$; Millero et al., 1987)

The Monod expression for sulfate reduction depends on total concentrations of the electron acceptor (acetate and glucose) and sulfate, and was inhibited by both $\text{O}_2(\text{aq})$ and nitrate concentrations (Table S3). In the simple construct employed, concentrations of the electron donor are maintained $<100 \mu\text{M}$ over the course of the simulations but never decrease to zero. The biomass concentration was assumed to be constant.

Maximum modeled sulfate reduction rates were $<10^{-5} \text{ mol } \text{SO}_4^{2-} \text{ kg}_{\text{water}}^{-1} \text{ year}^{-1}$, which is comparable to those in deep-sea sediments (e.g., Goldhaber and Kaplan, 1975; Canfield, 1991) and significantly lower than continental margin sediments in which sulfate concentrations are driven to zero over $\sim 1 \text{ m}$ to tens of meter length scales (rate $\sim <10^{-2} \text{ mol } \text{SO}_4^{2-} \text{ L}^{-1} \text{ year}^{-1}$; e.g., Dale et al., 2008).

The redox ladder model allows isotopically distinct calcium carbonate to dissolve but precipitation is not permitted. Thus, carbonate can dissolve and buffer pH in the sediment, which is modeled as a clay-rich sediment with 96.4% (by volume) unreactive kaolinite ($\log k = 10^{-30} \text{ mol m}^{-2} \text{ s}^{-1}$) and 3.6% CaCO_3 , the latter of which has a $\delta^{44}\text{Ca}$ value of 0.6‰ on the SRM-915a scale. Calcite dissolution rates are constrained by rate constants (10^{-3} to $10^{-5} \text{ mol m}^{-2} \text{ s}^{-1}$) that generate dissolution rates that are considerably slower than those observed in laboratory experiments at circumneutral pH (e.g., Shiraki et al., 2000). More appropriately, such rate constants create a dissolution zone that is generally less than 25 cm, which is consistent with what is assumed for chemical burndown during the PETM.

Supplemental Tables

Table S1: Diffusion coefficients used in CrunchTope TRANSPORT block.

Species name in CrunchTope input file	Diffusion coefficient ^a [m ² /yr]	
H+	0.23531	
Na+	0.03129	
Cl-	0.04823	
OH-	0.12653	
Mg++	0.01672	
Sr++	0.01857	
Ca40++	0.01869	
Ca44++	0.01869	
NH4+	0.04624	
NO3-	0.04525	
Acetate	0.02480	
Acetic_acid(aq)	0.02789	
SO4--	0.02490	
HCO3-	0.02723	
CO3--	0.02181	
Al+++	0.01585	
CO2(aq)	0.04255	
NH3(aq)	0.04952	
N2(aq)	0.04019	
O2(aq)	0.05385	
H2S(aq)	0.03984	
HS-	0.04356	
H2(aq)	0.04522	
<hr/>		
Relevant TRANSPORT block inputs	Value/range	Comments
space_units	meters	
time_units	years	
calculate_diffusion	0.020	Diffusion coefficient of any species w/ missing D_25 entry
cementation_exponent	1.0 – 2.0	
dispersivity	0.0	

a – Diffusion coefficients were calculated at 13°C using the following references: Tables 4.3, 4.7, and 4.8, Eqns. 4.4, 4.57, 4.58, and 4.59 – P=1000 bar, S=35 permil where appropriate – in Boudreau (1997); aqueous silica from Rebreasu et al. (2008); glucose from Ribeiro et al. (2006).

Table S2: Summary of conditions associated with CrunchTope reactive transport modeling.

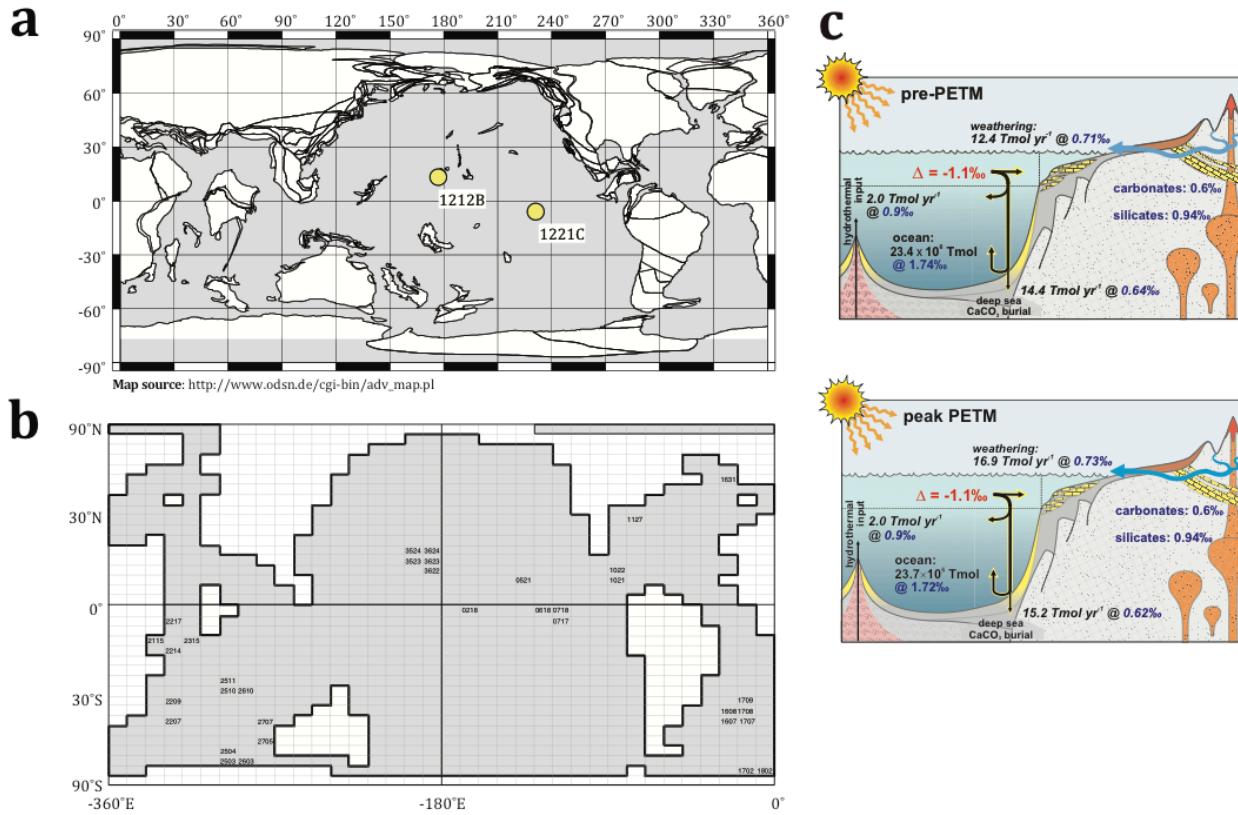
Parameter	Input file	'low O ₂ (aq)' runs — 20 ka ^a		
		Diss-1	Diss-2 restart file	Diss-3 restart file
<i>Variable in time</i>				
Upper boundary Ω ^b	0.92	0.70	0.84	
Column Ω ^b	1	na ^c	na ^c	
Temperature *	13°C	13°C	13°C	
pH (initial column)	7.50	na ^c	na ^c	
pH (upper boundary)	7.33	7.17	7.10	
O ₂ (aq) μ M	140	50	160	
Time interval	6.5 ka	4.6 ka	8.9 ka	
<i>Constant in time</i>				
Column height/dz	10 m/0.1 m	Mineral specific surface area	1 m ² /g ^e	
Lower boundary state	open/closed			
Initial porosity	0.65	<i>Ca isotope-specific</i>		
Burial porosity	0.65	Pore fluid $\delta^{44}\text{Ca}$ (initial)	1.9‰	
Burial lithology	3.6% CaCO ₃	Bulk solid $\delta^{44}\text{Ca}$ (initial)	0.6‰	
Burial rate	10-60 m/Ma	Solid $\delta^{44}\text{Ca}$ (burial)	0.6‰	
Diffusion coefficients ^d	$f(T, \phi)$	α diffusion	1.000	
Time step (max)	1 year	α precipitation	1.000	
Time step (init)	10 ⁻¹⁴ year	α dissolution	1.000	
<i>'authigenic precipitation' runs — 80 ka</i>				
Parameter	Input file	Precip-1	Precip-2 restart file	Precip-3 restart file
<i>Variable in time</i>				
Upper boundary Ω ^b	1.08	1.20	1.05	
Column Ω ^b	1	na ^c	na ^c	
Temperature *	13°C	13°C	13°C	
pH (initial column)	7.26	na ^c	na ^c	
pH (upper boundary)	7.26	7.36	7.46	
O ₂ (aq) μ M	na	na	na	
Time interval	16 ka	24 ka	40 ka	
<i>Constant in time</i>				
Column height/dz	2 m/0.01 m	Mineral specific surface area	1 m ² /g ^e	
Initial porosity	0.75	Burial porosity	0.75	
Initial lithology (1212-like)		Initial lithology (1221-like)		
Upper 11 cm	80% CaCO ₃	Upper 25 cm	1% CaCO ₃	
Lower 189 cm	93/96% CaCO ₃	Lower 175 cm	40/65% CaCO ₃	
Burial lithology (1212-like)	95% CaCO ₃	Burial lithology (1221-like)	82.5% CaCO ₃	
1% CaCO ₃				
Lower boundary state	closed	Time step (init)	10 ⁻¹⁴ year	
Burial rate	5-150 m/Ma	Time step (max)	1 year	
		Diffusion coefficients ^d	$f(T, \phi)$	
<i>Ca isotope-specific</i>				
Pore fluid $\delta^{44}\text{Ca}$ (initial)	1.9‰	α diffusion	1.000	
Bulk solid $\delta^{44}\text{Ca}$ (initial)	0.6‰	α precipitation	1.000	
Solid $\delta^{44}\text{Ca}$ (burial)	0.6‰	α dissolution	1.000	

^a — 'low O₂(aq)' do not consider a precipitating carbonate phase, only a dissolving phase with a fixed isotopic composition of 0.6‰.^b — Saturation state with respect to pure calcite.^c — 'na' indicates geochemistry picked up from end of previous simulation (i.e., during restart).^d — See Table S3 for diffusion coefficients used.^e — Specific mineral surface area the same for all minerals in simulations.^{*} — Over entire model domain; temperature (T) is not dynamically updated in CrunchTope, so no temperature perturbation is applied in the reactive transport simulations. The assignment of temperature impacts diffusion coefficients and equilibrium constants. In the 'low O₂(aq)' runs, the impact of T on equilibrium constants was not considered.

Table S3: Parameters used in aqueous kinetic database utilized in CrunchTope. All reactions are written for one electron (e^-) transferred.

Aerobic oxidation					$\log K^a$
e^- donor = acetate: $\frac{1}{2}CH_3COO^- + \frac{1}{4}O_2(aq) \leftrightarrow \frac{1}{4}HCO_3^- + \frac{1}{4}H^+$					18.3437
e^- donor = glucose: $\frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}O_2(aq) \leftrightarrow \frac{1}{4}HCO_3^- + \frac{1}{4}H^+$					19.6922
Type	K_{half}	K_{in}	k_{max}	bq^b	χ
MonodBiomass	Total acetate: 1e-03 $O_2(aq)$: 1e-03	none	1	2	1

Denitrification					$\log K^a$
e^- donor = acetate: $\frac{1}{2}CH_3COO^- + \frac{1}{5}NO_3^- + \frac{3}{40}H^+ \leftrightarrow \frac{1}{10}H_2O + \frac{1}{4}HCO_3^- + \frac{1}{10}N_2(aq)$					17.5697
e^- donor = glucose: $\frac{1}{24}C_6H_{12}O_6 + \frac{1}{5}NO_3^- \leftrightarrow \frac{1}{10}H_2O + \frac{1}{4}HCO_3^- + \frac{1}{10}N_2(aq) + \frac{1}{20}H^+$					18.9183
Type	K_{half}	K_{in}	k_{max}	bq^b	χ
MonodBiomass	Total acetate: 1e-03 $NO_3^-(aq)$: 1e-03	$O_2(aq)$: 1e-06	1	2	1


Sulfate Reduction					$\log K^a$
e^- donor = acetate: $\frac{1}{2}CH_3COO^- + \frac{1}{4}SO_4^{2-} \leftrightarrow \frac{1}{4}HCO_3^- + \frac{1}{4}HS^-$					1.0541
e^- donor = glucose: $\frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}SO_4^{2-} \leftrightarrow \frac{1}{4}HCO_3^- + \frac{1}{4}HS^- + \frac{1}{4}H^+$					2.4026
Type	K_{half}	K_{in}	k_{max}	bq^b	χ
MonodBiomass	Total acetate: 1e-03 $SO_4^{2-}(aq)$: 1 to 10e-03	$O_2(aq)$: 1e-06 $NO_3^-(aq)$: 1e-03	1	2	1

Sulfide oxidation					$\log K^a$
$\frac{1}{4}HS^- + \frac{1}{4}O_2(aq) \leftrightarrow \frac{1}{4}H^+ + \frac{1}{4}SO_4^{2-}$					17.2896
Type	Dependence (and n value)			k	
Irreversible	Total HS-(aq): 1.0 Total $O_2(aq)$: 1.0 H^+ : -0.16			0.5	

 a - $\log K_{eq}$ values calculated using SUPCRT (Johnson et al., 1992).

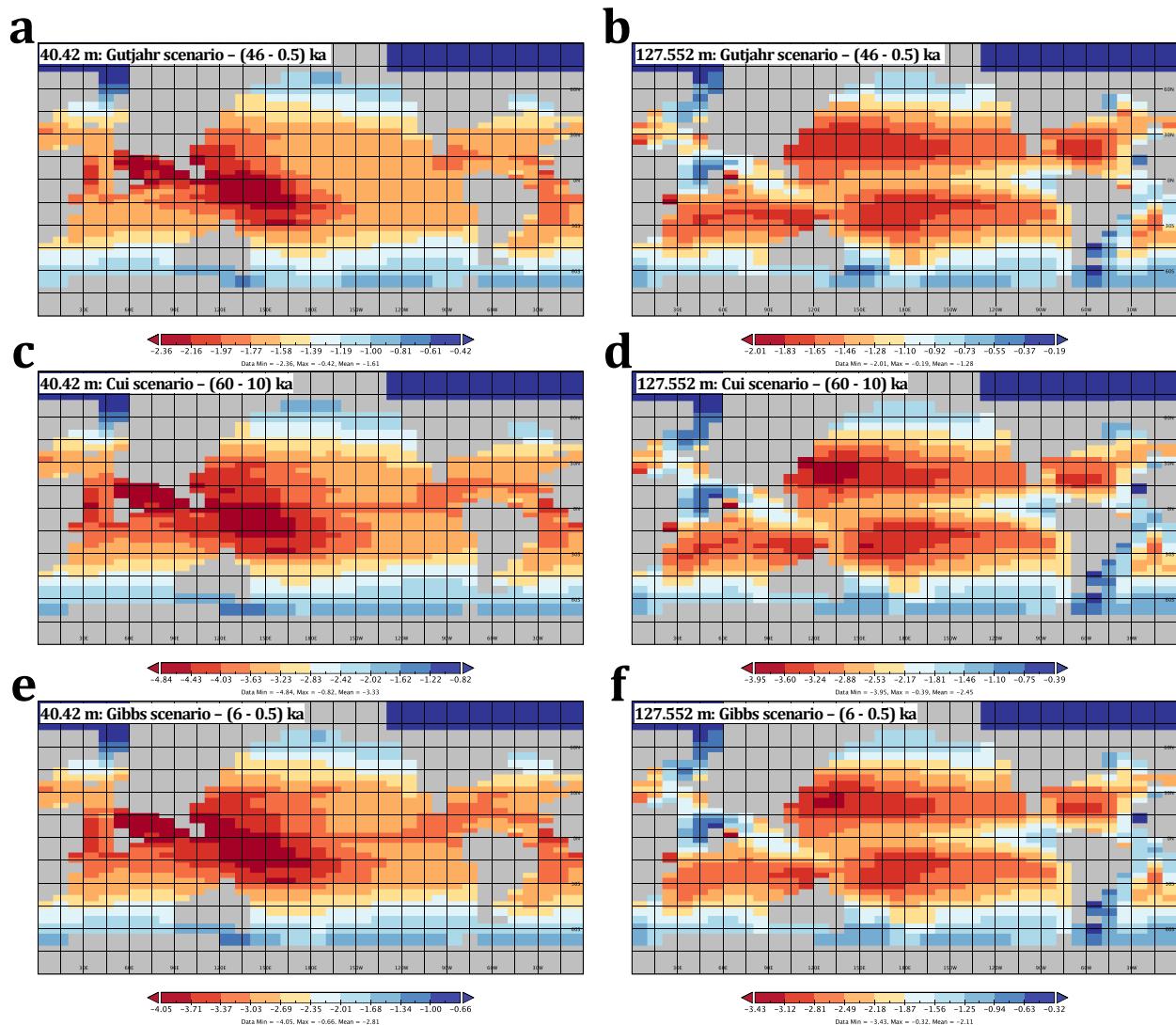

 b - $bq = m \cdot \Delta G_p$ (e.g., Jin and Bethke, 2003; 2005)

Figure S1

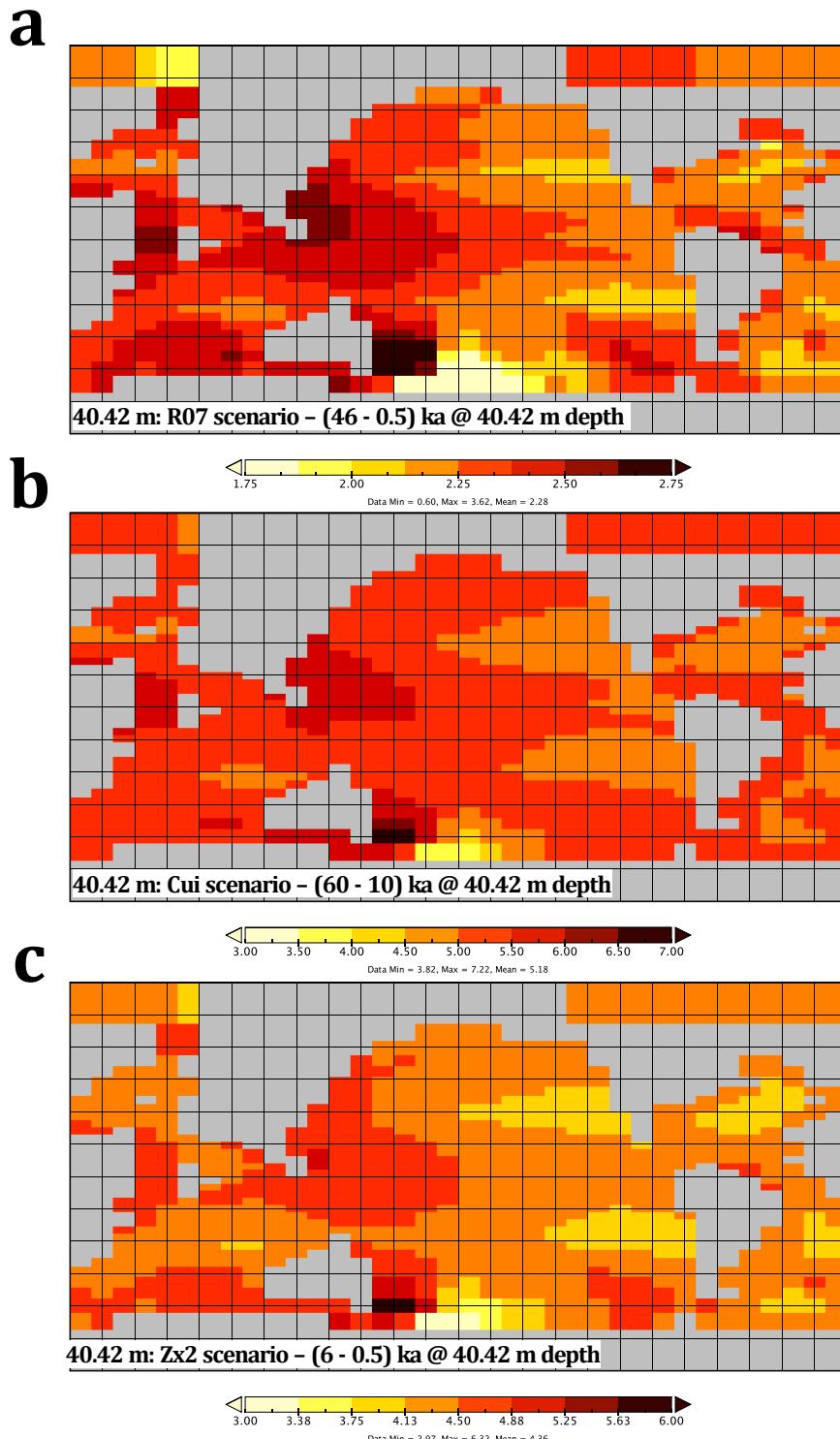

(a) Paleogeographical map at ~55 Ma (http://www.odsn.de/cgi-bin/adv_map.pl), with ODP Sites 1212 and 1221 shown. (b) cGENIE grid showing location and designations of sites saved in simulations presented. (c) Schematic diagrams of Ca cycle applied in cGENIE for pre- and peak-PETM conditions.

Figure S2

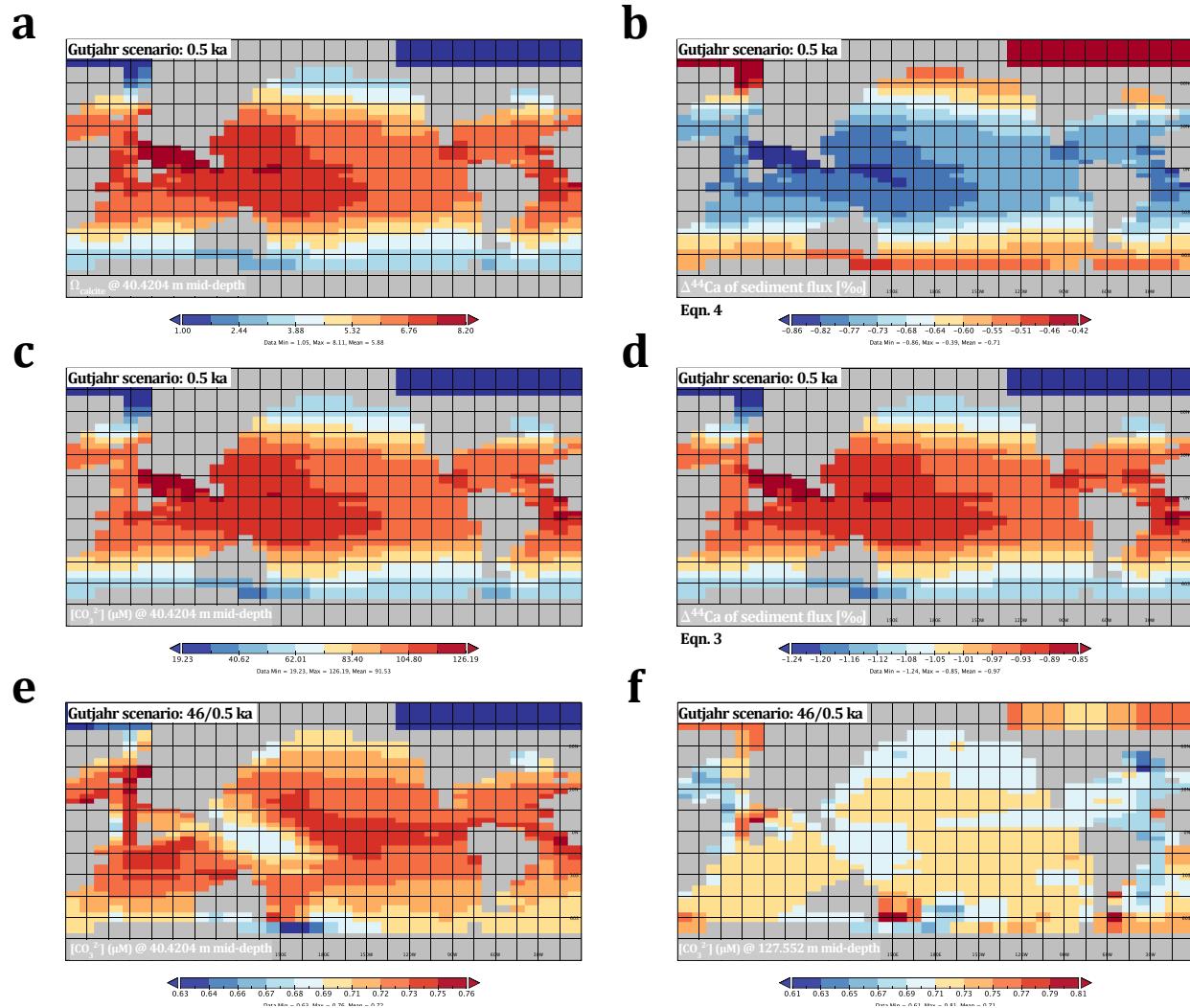

cGENIE model output for PETM scenarios described in the text and in SI Section S1. Saturation state (Ω_{calcite} , i.e., saturation state with respect to calcite) differences between pre- and peak-PETM in the surface ocean box (40.42 meters mid-depth) and the next, deeper water column box (127.552 meters mid-depth) for the three scenarios run: (a-b) Gutjahr et al. (2017), (c-d) Cui et al. (2011), and (e-f) Gibbs et al. (2016).

Figure S3

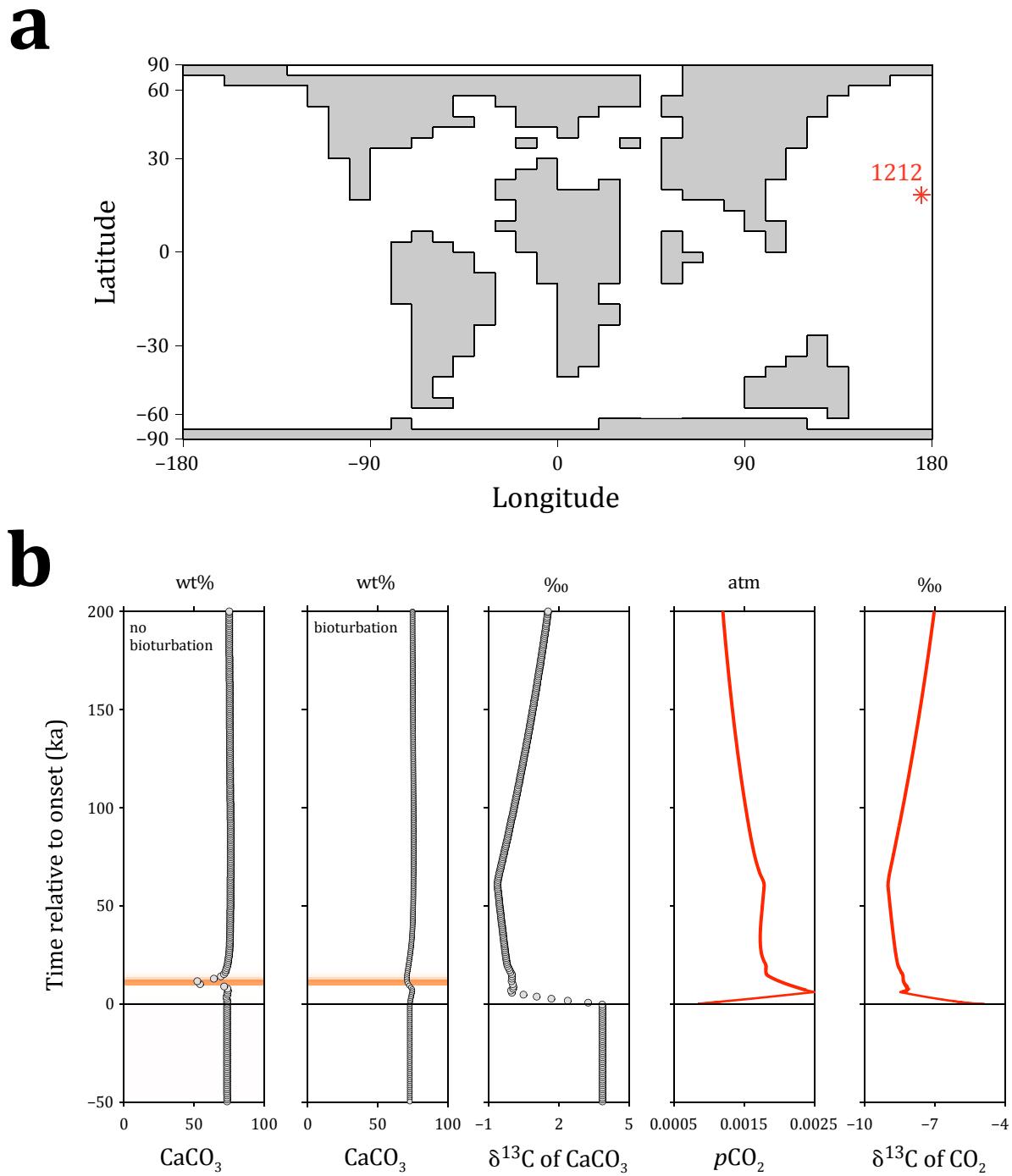

cGENIE model output for PETM scenarios described in the text and in SI Section S1. Temperature differences between pre- and peak-PETM in the surface ocean box (40.42 meters mid-depth) for the three scenarios run: (a) Gutjahr et al. (2017), (b) Cui et al. (2011), and (c) Gibbs et al. (2016).

Figure S4

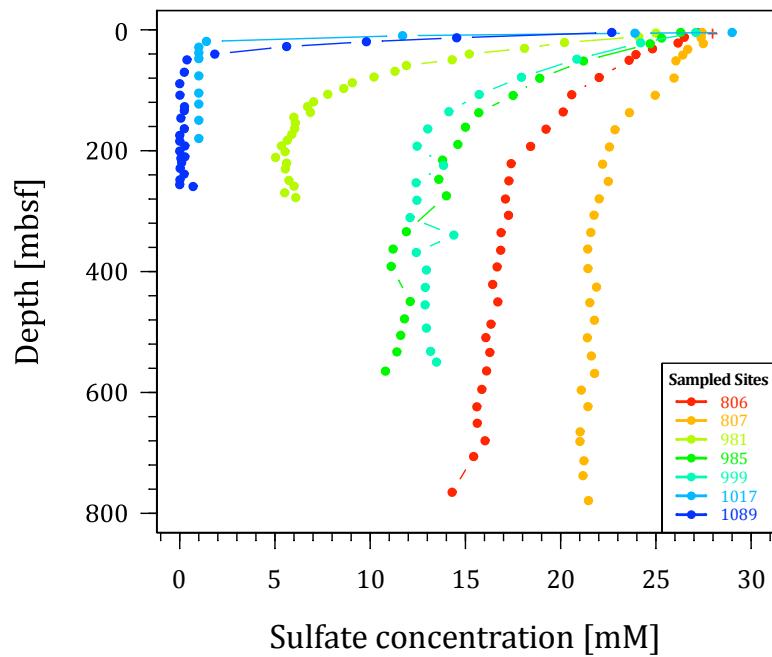

cGENIE model output for PETM scenarios described in the text and in SI Section S1. (a) Saturation state with respect to calcite (Ω_{calcite}) in the surface ocean, and (b) the corresponding $\Delta^{44}\text{Ca}$ (‰) of the carbonate output flux to the sedimentary column (relative to the surface ocean: $\delta^{44}\text{Ca}$ of sedimentation flux - $\delta^{44}\text{Ca}$ of surface ocean) at 0.5 ka simulation time (pre-event). (c) Carbonate ion concentration (µM) in the surface ocean, and (d) the corresponding $\Delta^{44}\text{Ca}$ (‰) of the carbonate output flux to the sedimentary column (relative to the surface ocean: $\delta^{44}\text{Ca}$ of sedimentation flux - $\delta^{44}\text{Ca}$ of surface ocean) at 0.5 ka simulation time (pre-event). Carbonate ion concentration (µM) at 46 ka (peak event) relative to 0.5 ka (pre-event) at (e) 40.4204 meters depth and (f) 127.552 meters depth. All panels refer to the Gutjahr et al. (2017) carbon flux scenario. The equation numbers indicated in panels (b) and (d) refer to in-text equations used to constrain the Ca isotopic composition of the output flux.

Figure S5

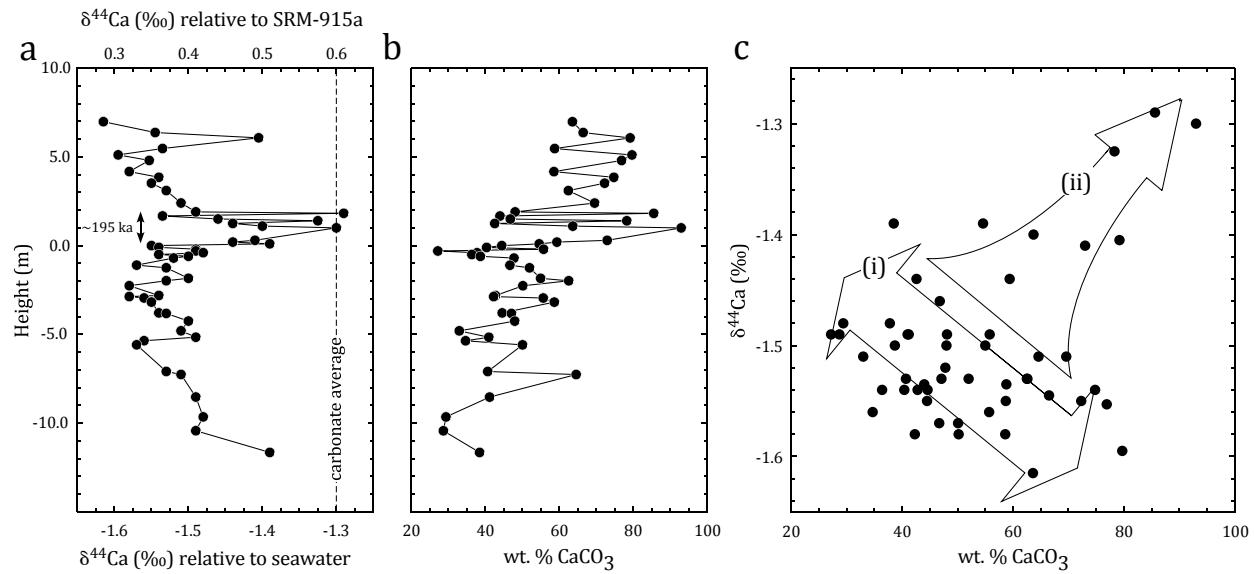

(a) Paleogeographical map with location of Site 1212 indicated, and (b) cGENIE model CaCO₃ (wt. %) output with bioturbation and no bioturbation (orange shading indicates the zone of dissolution associated with the PETM). Also included are model output for the δ¹³C of the CaCO₃ output flux (‰), the pCO₂ of the model atmosphere (atm), and the δ¹³C of atmospheric CO₂ (‰).

Figure S6

Sulfate concentration profiles at Ocean Drilling Program selected sites. Data from Janus database: <http://www-odp.tamu.edu/database/>. The red cross at depth = 0 mbsf is 28 mM, the approximate concentration of modern seawater.

Figure S7

(a) Calcium isotopic ($\delta^{44}\text{Ca}$, ‰ on the seawater and SRM-915a scales) and (b) carbonate concentration (wt. %) from the Portland #1 core, as reported by Du Vivier et al. (2015), plotted as a function of stratigraphic height (m). (c) Cross-plot of Ca isotope and CaCO_3 concentration data, the general trends of which are denoted by (i) and (ii). Note that neither trend highlighted by the arrows in (c) are meant to indicate any particular mechanism, but simply to highlight the two arrays that are present. One might, for instance, consider trend (i) to be a function of two mechanisms, one of which controls the increase in CaCO_3 (e.g., a decrease in clastic relative to carbonate deposition) and one of which controls the $\delta^{44}\text{Ca}$ increase (e.g., authigenesis).

References

Amiotte-Suchet, P., Probst, J.L. and Ludwig, W. (2003) Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. *Global Biogeochem Cy* 17.

Berner, R.A. (1994) 3GEOCARB-II – A Revised Model of Atmospheric CO₂ over Phanerozoic Time. *Am J Sci* 294, 56-91.

Blättler, C.L., Jenkyns, H.C., Reynard, L.M. and Henderson, G.M. (2011) Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. *Earth Planet Sci Lett* 309, 77-88.

Boudreau, B.P. (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin; New York.

Brady, P.V. (1991) The Effect of Silicate Weathering on Global Temperature and Atmospheric CO₂. *J Geophys Res-Sol Ear* 96, 18101-18106.

Canfield, D.E. (1991) Sulfate reduction in deep-sea sediments. *Am J Sci* 291, 177-188.

Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C., (2011). Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. *Nature Geoscience* 4, 481-485.

Dale, A.W., Regnier, P., Knab, N.J., Jorgensen, B.B. and Van Cappellen, P. (2008) Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. *Geochim Cosmochim Acta* 72, 2880-2894.

Druhan, J.L., Steefel, C.I., Williams, K.H. and DePaolo, D.J. (2013) Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior. *Geochim Cosmochim Acta* 119, 93-116.

Fantle, M. S. and Tipper, E. T., (2014). Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. *Earth Science Reviews* 129, <http://dx.doi.org/10.1016/j.earscirev.2013.10.004>, 148-177.

Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C.J. (1999) Global silicate weathering and CO₂ consumption rates deduced from the chemistry of large rivers. *Chem Geol* 159, 3-30.

Gibbs, S.J., Bown, P.R., Ridgwell, A., Young, J.R., Poulton, A.J. and O'Dea, S.A. (2016) Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. *Geology* 44, 59-62.

Goldhaber, M.B. and Kaplan, I.R. (1975) Controls and Consequences of Sulfate Reduction Rates in Recent Marine Sediments. *Soil Science* 119, 42-55.

Gutjahr, M., A. Ridgwell, A., Sexton, P.F, Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R.D., Thomas, E., and Foster, G.L. (2017) Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum Paleocene-Eocene Thermal Maximum, *Nature* 548, doi:10.1038/nature23646

Holmden, C., Papanastassiou, D. A., Blanchon, P., and Evans, S., (2012). $\delta^{44/40}\text{Ca}$ variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. *Geochimica Cosmochimica Acta* 83, 179-194, doi:10.1016/j.gca.2011.12.031.

Hülse, D., Arndt, S., Daines, S., Regnier, P. and Ridgwell, A. (2018) OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models. *Geoscientific Model Development* 11, 2649-2689.

Jin, Q. S. and Bethke, C. M. (2003) A new rate law describing microbial respiration. *Appl Environ Microbiol* 69, 2340-2348.

Jin, Q. S. and Bethke, C. M. (2005) Predicting the rate of microbial respiration in geochemical environments. *Geochim Cosmochim Acta* 69, 1133-1143.

Kirtland Turner, D. and Ridgwell, A. (2013) Recovering the true size of an Eocene hyperthermal from the marine sedimentary record. *Paleoceanography*, 28, 700-712, doi:10.1002/2013PA002541.

Kirtland Turner, S.K. and Ridgwell, A. (2016) Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM. *Earth Planet Sci Lett* 435, 1-13.

Lord, N.S., A. Ridgwell, M.C. Thorne, and D.J. Lunt (2015) An impulse response function for the 'long tail' of excess atmospheric CO₂ in an Earth system model, *Global Biogeochemical Cycles*, doi: 10.1002/2014GB005074.

Ludwig, W., Amiotte-Suchet, P., Munhoven, G. and Probst, J.L. (1998) Atmospheric CO₂ consumption by continental erosion: present-day controls and implications for the last glacial maximum. *Global Planet Change* 17, 107-120.

Millero, F. J., Hubinger, S., Fernandez, M. and Garnett, S. (1987) Oxidation of H₂S in seawater as a function of temperature, pH, and ionic strength. *Environ Sci Technol* 21, 439-443.

Munhoven, G. (2002) Glacial-interglacial changes of continental weathering: estimates of the related CO₂ and HCO₃⁻ flux variations and their uncertainties. *Global Planet Change* 33, 155-176.

Rebreanu, L., Vanderborght, J.P. and Chou, L. (2008) The diffusion coefficient of dissolved silica revisited. *Mar Chem* 112, 230-233.

Ribeiro, A.C.F., Ortona, O., Simoes, S.M.N., Santos, C.I.A.V., Prazeres, P.M.R.A., Valente, A.J.M., Lobo, V.M.M. and Burrows, H.D. (2006) Binary mutual diffusion coefficients of aqueous solutions of sucrose, lactose, glucose, and fructose in the temperature range from (298.15 to 328.15) K. *J Chem Eng Data* 51, 1836-1840.

Ridgwell, A. and Hargreaves, J.C. (2007) Regulation of atmospheric CO₂ by deep-sea sediments in an Earth system model. *Global Biogeochem Cy* 21.

Ridgwell, A. (2007) Interpreting transient carbonate compensation depth changes by marine sediment core modeling. *Paleoceanography* 22.

Ridgwell, A. and Schmidt, D. N. (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. *Nature Geoscience*, 3, 196-200, doi:10.1038/ngeo755.

Shiraki, R., Rock, P.A. and Casey, W.H. (2000) Dissolution kinetics of calcite in 0.1 m NaCl solution at room temperature: An atomic force microscopic (AFM) study. *Aquatic Geochemistry* 6, 87-108.

Steefel, C.I., Druhan, J.L. and Maher, K. (2014) Modeling Coupled Chemical and Isotopic Equilibration Rates. *Procedia Earth and Planetary Science* 10, 208-217.

Zeebe, R. E., Zachos, J. C., and Dickens, G. R., (2009). Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. *Nature Geoscience* 2, 576-580.