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Stochastic partial differential equations (SPDE) on graphs were recently introduced by Cerrai and Freidlin (Ann.
Inst. Henri Poincaré Probab. Stat. 53 (2017) 865-899). This class of stochastic equations in infinite dimensions
provides a minimal framework for the study of the effective dynamics of much more complex systems. However,
how they emerge from microscopic individual-based models is still poorly understood, partly due to complications
near vertex singularities. In this work, motivated by the study of the dynamics and the genealogies of expanding
populations in spatially structured environments, we obtain a new class of SPDE on graphs of Wright—Fisher type
which have nontrivial boundary conditions on the vertex set. We show that these SPDE arise as scaling limits
of suitably defined biased voter models (BVM), which extends the scaling limits of Durrett and Fan (Ann. Appl.
Probab. 26 (2016) 3456-3490). We further obtain a convergent simulation scheme for each of these SPDE in terms
of a system of Itd SDEs, which is useful when the size of the BVM is too large for stochastic simulations. These
give the first rigorous connection between SPDE on graphs and more discrete models, specifically, interacting
particle systems and interacting SDEs. Uniform heat kernel estimates for symmetric random walks approximating
diffusions on graphs are the keys to our proofs. Some open problems are provided as further motivations of our
study.
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1. Introduction

Stochastic partial differential equations (SPDE) on graphs, more precisely SPDE whose spatial vari-
ables lie in a metric graph, first explicitly appear in Cerrai and Freidlin [9,10] as asymptotic limits
of SPDE on two-dimensional domains that shrink to a graph. Here a graph I" is a continuous object
consisting of all points on its edges, so the real line R is a trivial example which has one edge and
no vertex. These equations provide a “minimal” framework for the study of the interplay between
the solution of SPDE and the geometric properties of the underlying metric space, “minimal’” in the
sense that the metric space is essentially one-dimensional yet flexible enough to incorporate nontrivial
topologies and various boundary conditions on the vertex set. Such interplay between the evolution of
the quantity (e.g., density of a population or concentration of a chemical) modeled by the equation and
the spatial environment of the system is of fundamental importance in scientific modeling and control.
For example, an important problem in ecology is to identify mechanisms that permit the coexistence of
species in different geographical environments. The role of space and stochasticity in shaping compe-
tition outcomes and biodiversity has been intensively studied in spatial evolutionary games. It has also
been explored rigorously in the framework of interacting particle systems (a.k.a. stochastic cellular
automata), as in Durrett [28], Lanchier and Neuhauser [66,67] and Lanchier [65], to name just a few.
See the seminal articles of Durrett and Levin [30,31] about the importance of space in modeling.

A practical motivation for our study of SPDE on graphs is to provide a theoretical foundation for
previous experimental work [34,57] and on-going modeling work on co-infection spread of defective
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and normal viruses. Here co-infection means simultaneous infection by two or more different types
of virus particles. Instead of the traditional petri dish, designed micro-arrays of network structures are
used as the container of host cells [34,57]. Virus infections and co-infections are then systematically
initiated and observed. The aim is to predict the propagation speed and the spatial patterns for viral
co-infections in spatially structured populations of biological host cells. Insights obtained from these
laboratory studies are potentially applicable to more complex real life epidemic networks, which is
important in controlling epidemic spread [80].

Quantitative imaging and analysis of viral infection provides extensive spatial-temporal data for val-
idation and refinement of models. However, a reliable mathematical framework is still missing. Deter-
ministic models like PDE on graphs fail to capture the dynamics of viral particles or genomes, because
fluctuations of propagating infection fronts are typically observed. A more reasonable macroscopic
model is instead an SPDE on the graph formed by the host cell environment. The question, then, is to
deduce the “correct” SPDE on the graph, based on the local and spatial interactions between the viral
particles and the host cells. For example, where does the observed noise come from; more specifically,
what is the magnitude of the noise term in the SPDE in terms of microscopic rules? Can local interac-
tions near a vertex singularity lead to the emergence of new terms in the SPDE? In co-infection spread,
what population-level signatures reveal emergence of new levels of cooperation and conflict between
the defective and normal viruses? In an on-going work, the author is developing various stochastic spa-
tial models, including individual-based models [48] such as interacting particle systems and systems
of stochastic reaction-diffusion equations, to model the joint evolution of defective and normal viruses.
This paper provides the theoretical foundation for [34,57], which is still missing in the mathematics
literature.

Another broader motivation for this paper is related to our long term goal to understand the genealo-
gies in expanding populations and the resulting patterns of genetic heterogeneity. This is important
because medical treatments in cancer or epidemics may fail due to drug resistance, if one does not
have an accurate knowledge of the mutational types present. The genetic forces at work in a growing
cancer tumor or in an infection spread are very similar to those in a population expanding into a new
geographical area, in which most of the advantageous mutation occur near the front. See Lee and Yin
[69] and Edmonds et al. [33]. Existing studies for genealogies in expanding populations mostly rely
on computer simulations [60] and nonrigorous arguments [54-56,61,70,78]. The first rigorous analysis
for this is perhaps in Durrett and Fan [29], which provides a precise description of the lineage dynam-
ics in terms of a coupled SPDE of Fisher—Kolmogorov—Petrovsky—Piscounov (FKPP) type. However,
the spatial domain is restricted to R. A rigorous analysis for the genealogies in R for dimensions
d > 2 seems difficult. Even more, a solution theory for the stochastic FKPP is not yet available in two
or higher dimensions. Therefore, besides the “minimality” mentioned in the first paragraph, SPDE on
metric graphs provide a natural setting for further analysis. See Section A.3 for some concrete open
problems.

Main question and significance. Even though SPDE on graphs and their deterministic counterpart
arise naturally in scientific problems and discoveries, they are rather unexplored. In the mathematics
literature, a subset of these equations seem to first (and so far only) explicitly have appeared in the rather
recent work [9,10]. This is partly because SPDE is still considered to be a rather new and technical
modeling approach compared with deterministic models, but a more important reason is that it is not
yet clear how these equations emerge from interactions in the microscopic scale, especially interactions
near vertex singularities. This fundamental question, our focus in this work as suggested by our title,
needs to be carefully investigated in order to answer more specific questions such as those raised in
the previous paragraph about epidemic spread. With increasingly advanced technology, more and more
experimental data describe both cell-level and population-level behavior. Thus, connecting continuum
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models with discrete models not only can facilitate model validation at both scales, but also provides
complementary perspectives of the complex dynamics (such as tumor growth and virus spread) under
study. Increasing recognition of these benefits has stimulated efforts to connect discrete and continuum
models in a variety of biological and ecological contexts; see [30] for different modeling perspectives
and [14,28,31] for some reviews.

Known results. In standard settings such as domains in R?, there are rigorous approximation schemes
of SPDE by microscopic particle models, such as Sturm [87] and Kotelenez and Kurtz [62], where [87]
is for a stochastic heat equation with a multiplicative colored noise term and [62] is for SPDE of
McKean—Vlasov type. Particle representations of SPDE are obtained by Kurtz and coauthors in [17,
35,64]. Cox, Durrett and Perkins [16] showed that the rescaled long range voter model in dimension
d > 2 converges to a super-Brownian motion. Durrett, Mytnik and Perkins [32] showed convergence
of multi-type contact processes to a pair of super-Brownian motions interacting through their collision
local times. For genealogies of super-processes, see the snake process of Le Gall [68], the historical
process of Evans and Perkins [38] and the lookdown process of Donnelly and Kurtz [27]. Our two
practical motivations led us to first focus on the stochastic FKPP, the base case model for an expanding
population density exhibiting noisy wavefront, which is of the form

du=aAu+ Bu(l —u) +V/yu(l —u)W, (1)

where W is the space-time white noise, & > 0 is the diffusion coefficient representing the average
dispersal distance of the individuals, 8 > 0 accounts for an average increase and the last term represents
fluctuations during reproduction where y > 0 parametrizes the variance.

Muller and Tribe [77] gave the first rigorous convergence result that stochastic FKPP on R can arise
as scaling limit of long range biased voter models (BVM). In [29], we generalized this by scrutinizing
all possible scalings for which this type of connections between SPDE (1) and BVM are valid. These
BVM are idealized individual-based models for an expanding population on the 1-dimen rescaled
integer lattice L, 17 whose points are called demes. In the nth model in [29], there is one cell at each
point of the lattice

(L,'Z) x {1,..., My},

whose cell-type is either 1 (cancer cell) or O (healthy cell). Each cell in deme w € L,; 17 only interact
with the 2M,, neighbors in demes w — L;; Uand w + L, ! Type-0 cells reproduce at rate 2M,,r,, type-
1 cells at a higher rate 2M,,(r, + B,) due to higher fitness. When reproduction occurs the offspring
replaces a neighbor chosen uniformly at random. In the terminology of evolutionary games, this is
birth-death updating. It is shown in [29], Theorem 1, that under the scalings

r'n My B ﬁ 14

-, M, - =, - —,
2 ¢ nbn =3 M, 4

L, — o0 asn— 00, 2)

the local fraction of type 1 converges to the solution of equation (1) on R. The scalings (2) were
explained in [29], Section 1.2, and will be compared with those in this paper in Remark 3.

Connections between models of different scales, offered by these types of scaling limit theorems
and also Theorems 1 and 2 in this paper, not only provide complementary insights into the underlying
mechanisms of the complex dynamical system, but are also of fundamental importance for model
selection and analysis. For instance, the above convergence tells us that the variance of the noise is
of order L, /M, near the wavefront where u is bounded away from O and 1, which is important in
predicting the propagation speed [74]. See [6] for some behaviors that are expected to hold in general
for the class of the stochastic pulled fronts with weak noise.
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More related work. For SDE in infinite dimensions, which is an abstract framework containing SPDE
on graphs or on manifolds [89,90], see [22] for general background and [24] a comparison between dif-
ferent theories. Despite recent breakthroughs including [7,49,52,53], a solution theory for the stochastic
FKPP in the dimensions d > 2 is still open.

One might replace the white noise by a colored noise as in [23,87] to smooth out spatial correla-
tions. This standard approach indeed gives well-defined SPDE in higher dimensions, but the particle
approximation would be less intuitive. There is also a large body of literature about SPDE arising as
the fluctuation limits of interacting particle systems, which we do not attempt to give a survey. We refer
the reader to [46] for the stochastic burgers equation and [12] for reaction-diffusion equations, and the
references therein.

Mathematical contributions. Our main contributions are as follows.

1. Our scaling limit theorems give the first rigorous connections between SPDE on graphs and
discrete models. See Remark 3. Theorem 1 generalizes [29], Theorem 1, to the graph setting,
paying special attention to the new spatial heterogeneity and vertex singularities. A new stochastic
FKPP on graph emerges from a suitably defined BVM (Section 3). In Theorem 2, we give a
convergent simulation scheme for this SPDE in terms of a system of interacting Itd6 SDEs. This
scheme is useful when the size of the BVM is too large for stochastic simulations.

2. Besides having a different type of limit theorems compared to [9,10], we consider more general
diffusions on graphs I'. In fact, we identify suitable conditions on I' for the study of SPDE
on graphs and point out directions for generalizations. See Remark 2. Our SPDE have an extra
boundary condition at the sct of vertices, and the coefficients are typically non-Lipschitz. Well-
posedness of these SPDE is established via a new duality in Lemma 1.

3. An application of results like the conjunction of Theorems 1 and 2 is as follows: Given a complex
system (such as cancer cell dynamics) with fine details, one (i) starts with an individual-based
model which elucidate, at a more fundamental level, single-particle interactions, spatial compo-
nent and stochasticity of the system, then (ii) deduces the macroscopic evolution of the particles
that emerges, as in Remark 3, which might be an SPDE/PDE describing the evolution of the parti-
cle density, and (iii) simulates the SPDE/PDE which is robust against the size of the microscopic
system, using the interacting SDEs or numerical methods. We summarize this lesson for our case
as:

BVM — SPDE — interacting SDEs.

Benefits actually go both ways: an intuitive way to understand SPDE is through scaling limits
of discrete approximating systems, similar to the way one interprets Brownian motion as scaling
limits of random walks.

4. Besides vertex singularities, a technical challenge in the proofs is to obtain uniform estimates of
the transition kernel of random walks on a discretized version I'”* of I". For this we need to impose
an assumption on I". The volume-doubling property and the Poincaré inequality in Assumption 1
are enough for this paper, and we point to further generalizations in Remark 1. Uniform estimates
for the random walks and the diffusions obtained in Theorems 3-5 and also the local CLT are of
crucial importance in analyzing regularity properties of SPDE on I' in general.

5. The scalings discovered in Theorem 1 enable one to generalize, to the graph setting, scaling limit
results for coupled SPDE such as [29], Theorem 4. This is a key step towards the study of in-
teracting populations of more than one species. Broadly speaking, this paper points to directions
for various generalizations, such as defining SPDE on random graphs and on fractals, studying
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SPDE defined through Walsh diffusions instead of symmetric diffusions, extending scaling lim-
its of contact processes in [77] to the graph settings, etc. See Sections A.2 and A.3 for more
generalizations and open questions.

The paper is organized as follows: We give preliminaries in Sections 2 and 3, including assumptions
on the graph I', diffusions and SPDE and the construction of BVM, before stating our main results
in Section 4. Uniform heat kernel estimates for random walks on the discretized graph I'"* and the
local CLT are obtained in Section 5. Sections 6 and 7 are proofs for Theorem 1 and Theorem 2.
Some extensions of our method and some open problems are offered in Section A.2 and Section A.3,
respectively. Finally, the notions of weak solutions and mild solutions to SPDE on graphs are written
down in the Appendix for completeness.

2. Diffusions and SPDE on metric graphs

A metric graph (I, d) is a topological graph I' = (V, E, 0) endowed with a metric d, where V and
E are disjoint countable sets and 9 is a map. The elements of V and E are respectively, the vertices
and the directed edges of I'. The combinatorial structure of the graph is described by the map 9 : £ —
V x (V U{oo}) which sends every edge e to an ordered pair (e—, e ). For simplicity, we identify e with
its image d(e) = (e—, e4). We call e_ and e the initial vertex and the terminal vertex of e (self-loops,
ie., ex =e_, are allowed).

The degree of v € V is defined as deg(v) := |E(v)| = |[ET(v)| + |E~ (v)|, where E¥(v) :=={e € E :
e+ = v} consists of all edges starting (—) and ending (+) at v respectively, and E(v) := ET(v) UE ™ (v)
is their disjoint union.

There are two types of edges. If (e_,ey) € V x V, then e is called an internal edge; if (e_, e;) €
V x {00}, then e is called an external edge. Each internal edge is isomorphic to a closed and bounded
interval in R, and each external edge is isomorphic to [0, o). We identify I" with the union of all edges.
The metric d on I is defined in the canonical way as the length of a shortest path between two points
along the edges. Internal edges have finite lengths and external edges have infinite lengths. We equip
I" with the 1-dimensional Hausdorff measure m associated with d and write this metric measure space
as (I',d,m).

Denote by ¢é the interior of the edge ¢ and I' =T\ V = |, ¢ be the interior of T'. For a function
f:T — R, we define

e V fi(x) to be the one sided derivative of f at x € ¢, along e fowards ey,
o V f.+(v) be the one sided derivative of f at v = e € V, along e towards e

whenever they exist. A function f is said to be differentiable at x € ¢ if Vf (x) = -V f_(x), in
which case this quantity V f(x) = limg5, %@m is called the derivative of f at x € é. Higher
derivatives VX f (for k > 2) are defined similarly.

Recall that an edge e € E is isomorphic to a closed interval in R. The space of k-times continuously

differentiable on e is
Cke) = { geCk@):Vgis uniformly continuous on bounded subsets of ¢é for all r < k}

If g € C¥(e), then V" g continuously extends to the closed set e for all » < k. We also let

e C(T") be the space of continuous functions on I",
o CK(I):={feCI): fl. €C¥(e) for all e € E} where f|, is the restriction of f on e,
o CO(") :=[= CH(D),
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e C.(I") be the space of continuous functions with compact support on I",
o CE(IN):=CHT)NCAT),
o CX(I) :==C®(I") NC(I).

For an arbitrary sigma-finite measure p on I' (e.g., the Hausdorff measure m or the measure
2(x)m(dx) in (5)), we define the L2-norm of f

1l = /r |/ (0P utdx) = \/Z f 1700 )

and the Sobolev norm || flly1.2¢,y == 1 f 12 + IV fllL2¢)- The space L(T", ) is the set of -
measurable functions f with || f |2, < 0o and the Sobolev space

WhA(, ) = {f e L* (T, w) : Vf € LA(T, w)}.

Our focus is particle approximation to a class of parabolic SPDE on I'. Our notion of solution to
such an SPDE, detailed in the Appendix, involves a diffusion on I". This motivates us to construct such
diffusions next, under assumptions on I" and the diffusion coefficients.

Diffusions on metric graphs via Dirichlet forms. Although a nontrivial diffusion can be defined on
very general I' including fractals [4] and random graphs [1,2], we make the following assumption on
I, which ensures certain regularity on the transition density of symmetric diffusions. See Remark 1.

Assumption 1. The metric graph (I, d, m) has a positive infimum for the branch lengths and satisfies
the followings.

1. (Volume-doubling) There is a constant Cyp > 0 such that
m(B(x,2r)) < Cypm(B(x,r)) ()

forall x e I" and r > 0 where B(x,r):={y el :d(x,y) <r}isaball.
2. (Poincaré inequality) There is a constant Cpy > 0 such that

/ | £ () — fa’m(dy) < Cpir? / IV £ ()|’ m(dy) )
B(x,r) B(x,2r)

(x,

for all f € Wh2(,m), x € T, r > 0, where fp :=m~'(B) fB fdm is the average value of f
over B = B(x,r).

Remark 1. Any graph with finitely many edges satisfies Assumption 1 with Cyp =23 deg(v)
and Cpy = C? Zuev deg(v), where C is the same absolute constant in Theorem 2 in [37], Section 5.8,
with p = 2 and n = 1. Many infinite graphs also satisfy Assumption 1. These include any regular
infinite lattice such as Z" and any infinite regular tree with constant branch length. As we shall explain
in Section 5.3, the conjunction of (3) and (4) is equivalent to the existence of two-sided Gaussian
bounds for the transition density of symmetric diffusions on I". Assumption 1 can be significantly
relaxed.

We shall construct diffusions on graphs by the Dirichlet form method, under the following conditions
on the diffusion coefficients and the symmetrizing measure.
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Assumption 2. Suppose we are given two functions a, £ € W2(I", m) that are strictly elliptic, i.e.
bounded above and below by positive constants.

We now define the measure v on I" by
v(dx) = L(x)m(dx), (5

which has full support and is locally finite, and we consider the symmetric bilinear form
E(f.8) 1=/r0t(X)Vf(X) Vg (x)v(dx)

with domain Dom(£) = W12(I", v) NC!(I"). It can be checked that (£, Dom(E)) is a Dirichlet form in
L%(T, v) that possesses the local property. See, for instance, [13]. Furthermore, (£, Dom(&)) is regular
under Assumptions 1 and 2. This can be checked (for instance [1], Proposition 4.1) by showing that the
space C2°(T") of infinitely differentiable functions on I" with compact support is a core of the domain.
Hence by [43], Theorem 7.2.1, there is a v-symmetric diffusion X = {X,},;>0 on the graph I" associated
with this Dirichlet form. Henceforth we refer to X as the £-diffusion and denote by (2, F, {Py}xer)
the filtered probability space on which X is defined, where Py is a probability measure on (€2, F) such
that P, (Xo = x) = 1. Whenever PP appears in an expression, it denotes the probability measure on the
space on which the random variables involved in that expression are defined.

Remark 2. In [9,10,42] such a diffusion process is constructed by specifying its generator under
stronger assumptions: the set of vertices V is finite, @ = 1 is a constant function and £ is smooth in r.
We follow the notation in [9,10] for I', £ and v. Studying solutions to SPDE on graphs rely crucially
on our understanding about certain diffusion processes on graphs, which is a research topic by itself.
See [41,42] for theoretical foundation of diffusions on finite graphs, [71,79,91] for some interesting
applications.

As is known [13,43,72], the Dirichlet form method is more robust against irregularities of both
the diffusion coefficients and the underlying metric space. The price to pay, however, is that many
statements about the associated process X are valid apriori only for “quasi-everywhere”, that is, except
for a set of capacity zero. Fortunately, most of these statements can be strengthened to be valid for “all
x € I'”, provided that we have extra knowledge about its transition density. By the usual L? method
(see, e.g., [8]), X; admits a transition density p(¢, x, y) with respect to its symmetrizing measure v(dx).
That is,

P (X, edy) = p(t,x, y)v(dy) (6)

and p(t,x,y) = p(t,y,x) forall t > 0, v-almost all x, y € I". The previous ‘almost all’ can further be
strengthened to ‘all’ because (3) and (4) imply Holder continuity for p(#, x, y). See Theorem 5 for the
precise statement.

Gluing condition and generator. For any edge e € E, it is known (for example [43], Example 1.2.3)
that every function f € W!?2(e, m) coincides a.e. with an absolutely continuous function on é having
derivative defined m-a.e. and lies in Lz(e, m). In particular, under Assumption 2, the one-sided limits

Ut = lim a(x) and £,+:= lim £(x) existforallee E.
X—e+ X—>e+
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As in [42], Section 3, the L2(F, v) infinitesimal generator £ of X can be described as a second order
differential operator

1 .
Lf(x):= T(X)V(E(x)a(x)Vf(x)), xel, (7)

endowed with the gluing conditions

0= (Vouf - [Lal)(v), veV, ®)

where the following outward derivative of f at v is used:

(Vouf 8@ = Y Ve Wger+ Y. Vi er@®)ge . ©)

ecE*(v) ecE~(v)

The gluing condition (8) reduces to the Neumann boundary condition at vertices with degree 1. From
(8) and integration by parts, we can check that £(f, g) = ( — Lf, g)12(,) for f € Dom;2(£) and
g € Dom(€), where Dom; (L) is the domain of the generator £. See [13], Appendix A.4, and [72],
Chapter 1, for general relations among the generator £, the Dirichlet form and the semigroup {P;};>0
of X.

SPDE on graphs. In this work, we focus on the following stochastic FKPP type equation on I" with
nontrivial boundary condition:
du=Lu~+ Bu(l —u)++/yu(l—u)W onTl, (10)
Vouttt - [o] = —Bu(1 — u) onV,

where W is the space-time white noise on [0, 00) x T', the operator Vo is defined in (9), the graph
satisfies Assumption 1, the functions «, ¢ satisfy Assumption 2, and the functions S, y, B satisfy the
following assumption.

Assumption 3. Let 8,y : ' — [0, c0) be non-negative bounded measurable functions on I" and /§ :
V — [0, co) be a non-negative bounded function on V.

Here we adopt Walsh’s theory (named after Walsh’s St. Flour notes [92]) and regard (10) as a short-
hand for an integral equation. See Definition 2 in the Appendix for this integral equation and the
definition of a weak solution to (10).

Note that when ﬁ(v) is positive, the negative sign in the boundary condition corresponds to creation
of mass (growth of u) at v € V. To see this, note that Vo - [](v) is a sum of derivatives of u away
from the vertex v, and therefore towards the interior of the edges connecting to v. These inward normal
derivatives along the edges correspond to a growth rather than a decay of u.

While Assumptions 1 and 2 guarantee existence and basic properties of the diffusion process X on
the graph, Assumption 3 will be needed for the weak uniqueness of (10). The latter will be established
via duality (Lemma 1).

To have a cleaner description without losing much generality of the spatial heterogeneity across
edges, we further restrict to piecewise constant functions whenever a discrete approximation is involved
(namely, in Theorem 1, Theorem 2, Lemma 3 and Theorem 3).
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Example 1. Suppose a(x) = «, B(x) = B, and y(x) = Y, whenever x € ¢, where {«,, B,, Y.} are
non-negative numbers that are uniformly bounded and inf,cg o, > 0. Suppose ¢ = 1 constant. Then

SPDE (10) reduces to

B =oeAu~+ Bou(1 —u) +/yeu(l —u)W oné,

N (11)
Voutt - o] = —Bu(1 —u) onV.
In this case ?p+ = 0tp— ;= and forv e V,
(Vout - [e])(v) = Z (Lo = Viteqr (V) 4+ 1o, = Vite— () e (12)
ecE(v)

3. Rescaled biased voter model

In this section, we describe a sequence of biased voter models (BVM) indexed by n € N, which is a
natural generalization to the one in [29] described in the introduction.

For each edge e € E, we associate it with two sequences {L¢},>1 C (0, 00) and {M;},>1 C N, then
we choose a maximal countable subset ¢” of its interior ¢ such that neighboring points in ¢ are of
distance 1/L¢. Without loss of generality, by throwing away demes that are too close to the endpoints
of an edge if necessary, we suppose

1/L¢ <d(x,v) <2/L¢ (13)

whenever x € ¢" is neighboring to vertex v. Points in the discretized graph T" := |, " are called
demes. Each deme x € e represents an isolated location containing a subpopulation of M, particles.
Two different demes x, y € I'" are said to be neighbors (denoted x ~ y) if either they lie on the same
eand d(x, y) =1/L orif they are both adjacent to the same vertex v € V.

Our nth BVM is defined on the discrete lattices (Figure 1)

A=\ AL where Af = {(x.i):xee" ie{l.....M}}.

e

Points of A, are called sites. Each site contains one individual agent/particle, which is of either type
1 or type 0. In the context of cancer dynamics, we think of an agent/particle as a biological cell, type
1 (cancer cell) and type O (normal cell). A site z is said to be on edge e (denoted z € ") if z € A{; it
is said to be in deme x if z = (x, i) for some i. Two different sites z, w € A,, are said to be neighbors
(also denoted z ~ w) if they are located at two neighboring demes.

Figure 1. Lattice A, :=J, A§, together with sites w € ¢" and z € ¢" such that w ~ z.
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Dynamics of BVM. Particles in deme x only interact with those in neighboring demes. Let & (z) :=
&['(z) be the type of the particle at site z at time . Our BVM (&;);>( can be constructed using two
independent families of Poisson processes {P/" : z ~ w} with rates a®* and {P/"" : z ~ w} with
rates b>". At a jump time of P", the particle at z is replaced by an offspring of the one at w. At a
jump time of 15,“”, the particle at z is replaced by an offspring of the one at w only if w has type 1, so
there is a “bias” towards type 1. Under Assumption (1) the biased voter process (§/);>0 = (§/');>0 is a
Markov process with state space {0, 1}7.
We suppress the superscript/lowerscript n’s in &, a®>", b>%, L¢ and M* to simplify notation.

4. Main results

The following assumption, to be explained in Remark 4 right after the main result, is crucial to both
Theorems 1 and 2. For two different directed edges e, ¢ € E(v) where v € V, we let L“¢ = (d(x, v) +
d(v,y))~! where x € ¢" and y € &" are two neighboring demes in I'. For ¢ = & we let L*¢ = L°.

Assumption 4 (Symmetric conductances). Suppose {C% }¢ icE(),vey are positive numbers satisfy-
ing symmetry C) ; = C7 , and

sup sup |CZ, — L°O(ae. 0z)|LC — 0, asn — oo, (14)

veVe,ecE(v)

for some symmetric continuous function ® on (0, 00)? such that a < @(a, b) = (b, a) < b for all

Ce.e

> e

a < b and that ®(a, a) = a for all a € (0, 00). In particular. — Q.

Examples include ® (a, b) = +/ab and power means (#)UP with p € R\ {0}.

4.1. Scaling limit of BVM

The principal result in this paper says that the approximate densities of our BVM converge to SPDE
(11) under suitable conditions, where the approximate density at deme x € ¢" is defined by

[
uf () = o ) &), (15)
i=1

For v € V, we define u} (v) to be the average value of {u} (x)} among demes x which are adjacent to v.
We then linearly interpolate between demes (and also between vertices and demes) to define u} (x) for
all x € I'. Then for all # > 0, we have u}' € Cjo,11(I"), the set of continuous functions on I' taking values
in the interval [0, 1]. Furthermore, if we equip Cjo,1)(I") with the metric

Il == 27" sup [ (x)], (16)
i=1

xekK;

where {K;} is an increasing sequence of compact subsets of I" with the union of the sequence be-
ing I'. that is, uniform convergence on compact sets, then Co,17(I") is Polish and the paths ¢ > u} are
Cjo,17(I")-valued and cadlag. Our main theorem is a weak convergence result for the sequence {u"} in
the Skorohod space D([0, 00), Cjo,17(I")).
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Theorem 1. Let (I', d) be a metric graph satisfying Assumption 1. Let «, B and y be piecewise con-
stant functions as in Example 1, and ,é : V. — [0, 00) be a non-negative bounded function on V. Sup-
pose that as n — oo, the initial condition ug; converges in Cio,11(I') to fo, and that the following
assumptions for L¢, M¢, a** and b*™ hold.

(a) 1/L® — O uniformly for all e € E and (13) holds.

(b) 4L¢/M°® — y,/a. forall e € E.

(c) a®¥ = ZCS’EL"/M" forall z€e", w e e" such that 7z ~ w, where {Cg,e} are positive numbers
that satisfy Assumption 4.

(d) b>" = B} whenever w € €" is not adjacent to a vertex in V and z ~ w, where {Bl'} are non-
negative numbers such that 2B M® — B,.

(e) Foreachv €V, let x{ be the element on e" adjacent to v and x5 € e" be adjacent to x{. Suppose

-~ e e BN e e ~ . .
B} ,:=b"2"1 and B} ; := b"1""1 for e # e in E(v) are non-negative numbers and

422

ecE(v) écE(v)

— B(v). (17)

BZ’éMe
Le

Then the processes (ul});>o in (15) converge, in distribution in D([0, 00), Cjo,11(I")), to a continuous
Cro.11(I")-valued process (u;);=0 which is the weak solution to the stochastic partial differential equa-
tion (11) with ug = fo.

We explain this result in the remarks below.

Remark 3 (Identifying SPDE from microscopic rules). The significance of Theorem 1 lies in the
connection it establishes between the microscopic BVM and the new macroscopic SPDE model that
have fewer parameters. For example, the BVM is intractable to analyze or simulate when L or M* is
large, but with Theorem 1 one can take advantage of a new regularity (described by the SPDE, which
is robust against the size of the particle system) that emerges.

To compare these two models we must relate microscale and macroscale parameters. The micro-
parameters are (L€}, (M€}, {a®"} and {b*"}. The macro-parameters can be found from micro-
parameters as follows.

(i) ot = 21imy 00 C2,/L¢,
(i) ye = 4limy o ot L/ M,

(iii) Be =2lim,_. o B M*,

(iv) B(v) =4lim,_ ZeeE(v) ZéeE(v) B:,éMe/Le.

These are generalizations of (2). Conversely, given «, f3, /f} and y satisfying hypothesis of Theorem 1,
there exist micro-parameters such that (i)—(iv) hold.

Using this connection, one can either obtain macro-parameters from microscopic (e.g., cell-level)
measurements and experimental set up, or test hypothesis of microscopic interactions by using
population-level measurements, or even perform model validation at both scales. Different edges can
have different L¢ or My, allowing the flexibility to model situations in which cells of different types
and experimental configurations are situated on different edges [88]. This also enables us to take care
of the case when a solution is simultaneously deterministic (¥, = 0) on edge ¢ and noisy (y; > 0) on
another edge e.

Remark 4 (Random walk approximations). The numbers {CZ’E} in Condition (c) of Theorem 1 arise
naturally as the symmetric conductances of a random walk X" which, under (14), converges in distri-
bution to the m-symmetric diffusion X with £ =1 and ¢ = «, on é. More precisely, define the measure
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my on I'" by m,(x) := % whenever x € e”'. Let X" := {X]'};>0 be the continuous time random walk
(CTRW) on I'" := [ J, ¢" associated with the Dirichlet form £"(f, g) on L*(I'", m,), where

1
e"(f.8) =3 > (f@ = f)(ex) — g()Cy, and (13)

x,yel’”

19
0 if x and y are not adjacent in T'". (19)

cn {CZ’E ifxee',yee andx ~y,
xy *
Observe that X" is m,-symmetric since C)’Cly = C;’x for all x,y € I'". Under (14), we have
E"(f,g) = E(f,g) for f,g € C°(I'). With extra work, one can establish the weak convergence
X" — X, as precisely stated in Lemma 3.

Remark 5 (Uniform approximation). Condition (a) further implies a local central limit theorem
(local CLT) and a uniform Holder continuity for X”. The latter results, established in Theorems 4 and
5 in Section 5, will be used to obtain tightness of {u"} (Proposition 1). When 1/L¢ — 0 uniformly
for all e € E [for instance, when Condition (a) is in force], we shall fix an edge ex € E and take
&n :=1/L®*, a representative rate at which every 1/L¢ tends to zero. All {CY, y}xwy are then of the
same order O (1/g;,) asn — oo by (14).

Remark 6 (Generator £,). The transition rate of X" from x to y is
Ax,y) = C;'y/mn(x) =ClL® ifxecey,,yee,y~x.

Condition (14) implies that [A(x, ¥) — o (Le)2| — 0 uniformly for x, y € e, with y ~ x and for all e.
Hence, the generator £,, of X' can be approximated by

LaF(x)XaeAre F(x) (20)

whenever x € " \ {x{}, where A is the discrete Laplacian in (48), and

LoF (o) mae (L) (F(35) = F(e)) + 32 (F(xf) = F(xf))CeeL? o2
¢cE(v):e#e

whenever x{ is the element in e, which is adjacent to a vertex and x5 is the element in e, which is
adjacent to x{. The approximations ~ in (20) and (21) can be quantified by using Condition (14): the
absolute difference between the left and the right is at most o(g,,) || F|| .o Where o(e;) represents a term
independent of F and which tends to O uniformly for all x € I'" faster than &,,.

Remark 7 (Local growth at v € V). Results here for the simpler case /f} = 0 (no extra birth on V)
are already new. Condition (17) is crucially needed in (and only in) (69). It implies that, in order to
have nontrivial boundary conditions ,3 # 0, the bias rates b>" near vertices need to be of order at
least L¢/M¢ which is typically higher than those in the interior of the edges. For example, B =0if all
{b*™} are of the same order in n and so do all {M¢}. To try to give further interpretation, we suppose
for simplicity that L¢ are the same and that y, > 0 for all e € E. Condition (b) and (17) roughly say

that
s Y Y B Y (X B

ecE(v) ecE(v) ve ecE(v) ‘ecE(v) ve

where Y,y 32‘5 can be interpreted as a local growth at v contributed by e.
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Remark 8. When I' = R, Theorem 1 reduces to [29], Theorem 1. Under the same scalings, we can
obtain the corresponding generalization of [29], Theorem 4.

4.2. Interacting SDE as a numerical scheme

Theorem 1 enables us to derive an SPDE which captures the macroscopic evolution of the density of
particles in the BVM. See Remark 3. So when the number of particles are too large, one can simulate
the more robust SPDE instead of the stochastic particle system. The next question is then: how to
simulate the SPDE? 1t is known [5,26,50,62,64,84] that SPDE can arise as the continuum scaling limit
of interacting SDEs. These SDEs provide a numerical scheme for the solutions of the SPDE and also
the foundation for stochastic simulation algorithms (Gillespie algorithms [44,45]).

In this section, we construct a system of interacting SDEs that offer a semi-discrete approximation
to SPDE (11), where “semi-discrete” refers to the fact that the graph I' is discretized into demes but
populations in the demes are infinite. Our scheme utilizes the random walk X" defined by (18)—(19).

1. Specify step size. Fix a sequence {h,},>1 C (0, 00) which tends to 0.

2. Discretize T'. Construct I'" = Ue e" as in Section 3, but now with L% = h, for all e € E. For
x € ¢" that is not adjacent to any vertex in V, we let I, be the connected open interval {y e I":
d(y,x) < z—b,}.

3. Independent Brownian motions. For all x € ¢" that is not adjacent to any vertex in V, we let
By, = (Bx(t)):>0 be a standard Brownian motion and that these Brownian motions {By}, are
independent.

4. Interacting SDE {U, := U }xcr». Consider the system of SDEs

dU (1) = [LyUx + BeUr(1 = Ux) | dt + /e L¢U (1 — Uy) d By (1) (22)

whenever x € ¢, is not adjacent to any vertex in V, and

B . B
dU (1) = [C,, Ug+ L T2 )

U, —UX):| dt (23)

whenever x € e, is adjacent to v € V, where £, is the generator of the CTRW X" defined in
Remark 4.

Our second result says that the interacting SDEs (22)—(23) and the SPDE (11) are close at least
in distribution. Write U} = (U}}(?));e>0 and let {U}'};cr» be a weak solution of (22)—(23) for the
Ito SDE. We further interpolate over space to define U} for all x € I', as was done for (15). Let
C([0, 00), Cjo,11(I")) be the space of continuous functions from [0, o) to Cjo,1}(I"), equipped with the
topology of local uniform convergence.

Theorem 2. Let (I', d) be a metric graph satisfying Assumption 1. Let e, B and y be piecewise con-
stant functions as in Example 1, and ﬁ : V. — [0, 00) be a non-negative bounded function on V. Sup-
pose Condition (a) of Theorem 1 and Assumption 4 hold. Let u(t, x) be the weak solution of SPDE (11)
with initial condition ug € Cjo,11(I"), and {U}}xer» be a weak solution to (22)—(23) with initial condi-
tion {U(0) =uo(x)}xern. Let {U}xer be the linear interpolation described above. Then as n — oo,
the processes U™ converge to u in distribution in C([0, oc), Cjo,11(T")).

The proof of Theorem 2 will be given in Section 7.
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Remark 9 (Coupling). The above construction gives a coupling of the interacting SDEs (22)—(23)
and the SPDE (11) if we choose the Brownian motions to be

By (1) :=~LeW([0,1] x Iy), (24)

where W is the same white noise in (11), and if we can establish strong existence of solution for (22)—
(23). We do not know whether sup, .« E|U} () — u(t, x)|” converge to zero for some p > 0, under
Standard L? estimate as in Section 3 of Mueller [73] does not seem to work, due to the non-Lipschitz
square root terms for U" and u.

4.3. Duality for stochastic FKPP with inhomogeneous coefficients

Before turning to the proofs of Theorem 1 and Theorem 2, we settle the well-posedness of SPDE
(11). While existence of weak solution follows from tightness (Proposition 1) and (72) for free, weak
uniqueness requires a separate argument. We will establish a duality relation that implies weak unique-
ness.

Duality between the standard stochastic FKPP and a branching coalescing Brownian motion is a
known result due to Shiga [84] and [3]. Here we generalize this result to stochastic FKPP on a metric
graph I', with inhomogeneous coetficients and nontrivial boundary conditions.

Lemma 1 (Duality). Suppose that Assumptions 1,2 and 3 hold. Let u be a weak solution of the SPDE
(10) with initial condition ug € Cjo,11(I"), and {x;(t) : 1 <i < n(t)} be the positions at time t of a system
of particles performing branching coalescing &-diffusions on T, in which

e branching for a particle X; occurs at rate B(X;) dt + B(Xz) stV, where LIV is the local time on
the set of vertices V of X; that is, the particle splits into two when the additive functional

t
/0 B(X,)ds + B(X;)dLY (25)

exceeds an independent mean one exponential random variable.
e two particles X;, Y; coalesce at rate % dL;X’Y), where L}X’Y) is the local time of (X;, Y;) on
the diagonal {(x, x) : x € I'}; i.e. the two particles become one when the additive functional

/l YX) ypeen (26)
0 E(Xs) $

exceeds an independent mean one exponential random variable.

Then we have the duality formula

n(0) n(t)

EJ](1 = u(xi(@)) =E] [(1 —uo(xi())) forallt=0. 27

i=1 i=1

The local times LY and LY are defined as the positive continuous additive functionals (PCAF)
corresponding to, respectively, the Revuz measures (Chapter 4 of [13]) ), _, 8, on I' and m, on
I' x I', where m, is supported on the diagonal defined by m(A) = m.{(x, x) : x € A}. With this new
dual process, a proof of (27) follows by a modification of Section 8.1 of [29] and heat kernel estimates
of X (Theorem 5); more details of the proof are given in the Appendix.
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Lemma 1 is useful to obtaining distributional properties of (10). In particular, it yields the following
weak uniqueness.

Lemma 2 (Weak uniqueness). Suppose Assumptions 1,2 and 3 hold. Then there exists a unique weak
solution to SPDE (10). In particular, (11) has a unique weak solution.

Proofs. The rest of the paper is devoted to the proofs of Theorems 1 and 2. We start with some
uniform heat kernel estimates of independent interest.

5. Uniform heat kernel estimates

In this section, we establish some uniform estimates for the transition densities for both the random
walks X" (defined by (18)—(19)) and the £-diffusion X. The key point here is that the constants in-
volved do not depend on n, which in particular implies the local CLT. Besides having independent
interest, these results are essential to the proof of tightness in Theorem 1 and of Theorem 2.

5.1. Invariance principle

As pointed out in Remark 4, under (14) we have the following generalization of Donsker’s invariance
principle. Recall that v defined in (5) is equal to m when £ = 1.

Lemma 3 (Invariance principle). Let (I', d) be a metric graph satisfying Assumption 1 and ¢, o be
given in Example 1. Suppose Condition (a) of Theorem 1 and Assumption 4 hold. Suppose, as n — 00,
the law of X[} converges weakly to ju. Then for all T € (0, 00) the random walks X" converge in
distribution in the Skorohod space D([0, T],T") to X, the m-symmetric E-diffusion with initial distri-
bution (L.

Lemma 3 follows from the more general result [2], Theorem 1. The latter gives invariance principles
for random walks on random trees based on Dirichlet form methods.

5.2. Discrete heat kernel

Let p" (¢, x, y) be the transition density of the random walk X" defined in (18)—(19), with respect to
its measure m,,. That is,
P(X} = y|X3 =x)

it x,y) = . 28
pit,x,y) () (28)

Then p"(t,x,y) = p"(t,y,x) forallt > 0, x, y € I'". Recall from Remark 5 that &, is a representative
rate at which every 1/L° tends to zero.

Theorem 3. Suppose Assumptions 1,2 and 4 and Condition (a) of Theorem 1 hold. Then the transition
densities p"(t,x,y) enjoy the following uniform estimates: For any T € (0, 00), there exist positive
constants {Ck}Z:1 and o such that for alln e N and x,y € T'", the followings hold.
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1. (“Gaussian” upper bounds)

C _ul2
p"(t,x,y)gﬁexp(—czlx l ) fort €le,, T] and (29)
n
0 Cs lx — yl
plt,x,y) < 172 SXP —C4tlT forte(0,¢,]; (30
n

2. (Gaussian lower bound)

lx — |2
t

C
Pt x,y) > mexp<—cﬁ ) fort e (0,TI; 31)

3. (Holder continuity)

(It —01"2 4 x — x|+ 1y =y
(tAt’)(1+”)/2

|Pn(t’x,y)_l7n(t/sx,sy/)|§C7 (32)

forall (t,x,y), (', x',y)e (0, T] xI'" x I'".

Remark 10. It is known (for instance, [11,25]) that the standard Gaussian upper bound fails to hold
for small time for continuous time random walks, but we can use the weaker estimate (30). This small
time caveat is not present for the diffusion. See Theorem 5.

Proof. The proof is an application of the famous De Giorgi-Moser—Nash theory to the metric graph
setting. It is known, for manifold [82] and for discrete graphs [25], that the two sided Gaussian esti-
mates for reversible Markov chains is equivalent to the parabolic Harnack inequality (PHI), that these
estimates are characterized by geometric conditions, namely volume doubling (VD) plus Poincaré in-
equality (PI), and that (PHI) implies Holder inequality. See [63] for a review of results in this area.

By [25], Theorem 1.7, all these estimates hold for p, for fixed n, but the key point here is that
the constants involved do not depend on n. Recall that Assumptions 1, 2 and 4 and Condition (a) of
Theorem 1 are enforced throughout. These clearly give

n

C
inf inf —X>0 whereC":= Z c" (33)

n>1(x,y):x~y C;C' *z

javands

which implies that the geometric condition A(«) > 0 in [25], Theorem 1.7, holds uniformly in 7.

For the rest of the proof, we argue that a uniform (in n) PHI holds and that PHI implies all the
desired estimates for p". For simplicity, we assume L¢ = L, forall e € E. Then 1/L,, is the common
rate at which 1/L¢ tends to zero. We also assume the functions « and ¢ are positive constants. The
proof for Theorem 3 remains valid without this simplification: the constants will be different but still
independent of n.

Now m, (x) =1/L,, for all x € I'"* and n > 1. Furthermore, C)’C"y = L, in the sense that for some
constants «, K € (0, c0) independent of x,y € ' and n > 1, we have kL, < C;'y < kL,. From this,
we have

Vol (A) =< L2m,(A),

where Vol,(A) =" 4 C% is the “volume” in the graph setting in [25]. Denote by B(x,r) :={y e I':
d(x,y) < r} aball of the original metric graph I". Note that our ball B(x,r) N I'" is approximately a
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rescaled version of the usual and more discrete notion as that in [25]. Precisely, for x € I'", we let
B,(x,r):= {y el #(x,y) < r}

and #(x, y) is the number of edges in I'"* in a shortest path connecting x to y. Then due to (13), for
r > 3/L, and n large enough such that L, > 2, we have

By(x,r(Ly —2)) C B(x,r) NT" C By(x,r(Ly +2)). (34)

Using (5.2), (34) and our standing assumptions, we can verify the followings two geometric condi-
tions while keeping track of the constants: volume-doubling property and the Poincaré inequality. That
is, there are constants k1, k» > 0 such that for all n > 1, we have respectively,

my (B(x, 2r)N l"") < kKkymy (B(x, r)n I‘") (VD[«k1])

forall x e I'" and r > 0, and

ST 1F ) — Falma) < k2r?En(f 1) (PI[k2])

yeB((x,r)Nrk

for all functions f : I — R, points x € " and r > 0, where fp := m;l(B) Y e f(@mu(2) is the
average value of f over B = B(x,r) NI'".

Equipped with (VD[«k1]) and (PI[«>]) as well as (33), the Moser iteration argument as detailed in
[25], Section 2, yields the parabolic Harnack inequality for some constant k7, > O that is independent
of n. That is, for all xg € I', s € R, r > 0 and non-negative solution U, of the parabolic equation
0;U, = L,,U, on the space-time rectangle Q :=[s, s + r2] x B, (x0,rLy), we have

supU, <y infU,, (PHI[k3])
0- o+

where Q_ :=[s + 5,5+ 51 x By(x0, 5L,) and Q4 :=[s + 2>, s + 2] x By (x0, 5L).

The proof of (PHI[«3]) follows from [25], Section 2, which is an adaptation of [82]. Roughly,
(VD[«1]), (PI[k2]) and (33) imply a weighted Poincaré inequality [25], Proposition 2.2, and a Sobolev
inequality [25], Proposition 2.4. The Sobolev inequality and (VD[«1]) yield mean value inequalities
for positive sub- and super-solutions [25], Lemma 2.7. The weighted Poincaré inequality, on other
hand, yields information on the size of log v in [25], Lemma 2.8, for any positive super-solution v > 0.
This information and [25], Lemma 2.9, allows us to stick together mean value inequalities on v and
1/v, giving the parabolic Harnack inequality for positive super-solutions v > 0. This and the mean
value inequality for sub-solutions finally give the desired (PHI[«%]) for non-negative solutions. All the
constants involved in these inequality are independent of n > 1. Since the argument is standard, we
refer the reader to [25], Section 2, for the details of the proof.

Following standard arguments such as those in [82], Section 3.3, or [86], one can show that
(PHI[x%]) implies the desired inequalities (29)—(32). Indeed, the Gaussian upper bounds (29)—(30)
follow from [25], Propositions 3.1 and 3.4, since the constants in the latter results depend only on k.
[25], Propositions 3.1, also gives the on-diagonal lower bound that is uniform in n. This uniform (in n)
on-diagonal bound then gives the desired Gaussian lower bound (31) by a standard chaining argument
[86], page 329. Finally, the Holder inequality (32) is implied by the Gaussian bounds (29)—(31) by a
standard oscillation argument [86], Theorem II.1.8—Corollary II.1.9. (]

The uniform Holder continuity (32) together with the invariance principle imply the following local
central limit theorem.
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Theorem 4 (Local CLT). Suppose all assumptions in Theorem 3 hold. Then

lim sup sup |p"(t,x,y) —p(t,x,y)| =0
N—=>00 re] x,yeKNI'"

for any compact interval I C (0, 00) and compact subset K C I', where p is the transition density (6)
of an E-diffusion with £ and « given in Example 1.

Proof. The proof follows from a compactness argument, as detailed in [11], Theorem 2.12. For each
n>1landt > 0, we extend p"(t, -, -) to a continuous non-negative function on I' x I" by interpolation;
see how it was done for (15). We then consider the family {t1/2 p"}n>1 of continuous functions on
(0,00) x I' x I'. The Gaussian upper bound and the Holder continuity in Theorem 3 give us uniform
pointwise bound and equi-continuity respectively. Hence, by the Arzela—Ascoli theorem, any sub-
sequence has a further sub-sequence that converges to a continuous function g : (0,00) x I' x ' —
[0, 00) locally uniformly. Lemma 3 and the continuity of the transition density p then characterize the
limit. O

Related results and ideas can be found in Croydon and Hambly [21] who investigated general con-
ditions under which the local CLT for random walks on graphs is implied by weak convergence.

5.3. Heat kernel for diffusions on I

Holder continuity of p(¢, x, y) then follows directly from the local CLT and (32). The two-sided Gaus-
sian bounds for p(t, x, y) do not directly follow from Theorem 3, but we can establish them in the
same way. In fact, we will establish these estimates for general £-diffusion rather than only those in
Example 1: The volume-doubling property we need for the diffusion is exactly stated in Assumption 1.
Recall that v(dx) = £(x)m(dx). The PI in Assumption 1 implies that

[ 1ror=daf vy < (supe) [
B(x,r) r B

C t
- PI'(SUPF )rz €
infr o

)If(y) — Fs’m(dy)

(x,r

(f1B@x,2r)) (35)

forall f € WL2(I',m), x € T, r > 0. With the VD (3) and PI (35), it is well-known (see, for instance,
[47,51] and the references therein) that the transition density p(t, x, y) satisfies the parabolic Harnack
inequality, which is equivalent to two sided Gaussian estimates and implies the Holder continuity.

We summarize these important properties about transition densities p(¢, x, y) of diffusions on graphs
in the following theorem. These properties applies to the diffusions considered in [9,10,41,42].

Theorem 5. Suppose Assumptions 1 and 2 hold. Then the transition density of the E-diffusion on
I, defined in (6), enjoys the following properties: For any T € (0, 00), there exist positive constants
{Ck}]SC:1 and o such that we have

1. (Two-sided Gaussian bounds)

C x — yP2 Cs I — yP?
mexp<—C2 ty < plt.x.y) = 5 exp( ~Cy Y (36)

t

forallx,yeTl andt € (0, T]; and
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2. (Holder continuity)

(e =12+ = x| +1y —y'D7
(t At/)(IH+0)/2

|pt,x.y) = p(t'.x".y)| < Cs (37)

forall (t,x,y),(t',x',y)e 0, T]xT xT.

Theorem 5 implies many useful properties of the diffusion X, including exit time estimates and
strong continuity of the semigroup {P;} on C,(I"), the space of bounded continuous functions with
local uniform norm.

6. Proof of Theorem 1

Equipped with Theorems 3-5, we can follow the outline of the proofs in [29,77] to finish the proof of
Theorem 1. We shall emphasize new terms and new difficulties that did not appear in [29,77] in our
calculations. The dynamics of (&;),>( is concisely described by the equation

t
£ =@+ /0 (6 (w)— &) dPP"

t ~
+y fo Eo-(w)(1 — & (2)) d PV (38)

w~z

In the space-time graphical representation (see, for instance, [29], Figure 1), we draw an arrow z <— w
when there is a jump for the Poisson processes.

6.1. Approximate martingale problem
For functions f, g : T'" — R, we write

1
(f.8)er=7; D fWg() and (f.8):=(f. &), = {f.8): (39)

xee” e

We also identify f with a function on A, by setting f(z) := f(x) when z = (x, ).

Let ¢ : [0,00) x ' — R be a continuous function that is continuously differentiable in ¢, twice
continuously differentiable and has compact support in x € I' and satisfies the boundary condi-
tion

Vous - [e]) () =0 for =0, (40)
( )

where we write ¢;(x) = ¢ (¢, x) interchangeably.
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Figure 2. Tllustration of demes x; on the discretized graph I'".

Applying integration by parts to & (z)¢;(z), using (38), and summing over x, we obtain for all # > 0
and edge e, we have

t
), = g ), — [ 0], s

= (ML) 33 / £ () — & () by () dPE" (1)

ZEAG WL

Iy / B ) (1= & ()¢ () d P (42)

ZEAE w~zg
Note that w in (41) and (42) can be on a different edge ¢ € E (v) \ e if z is adjacent to a vertex v.

Outline. To describe the local behavior near a vertex and to simplify the presentation, we first consider
the case when I' consists of deg(v) positive half real lines starting from a single common vertex v. For
each e € E(v), we enumerate the set e” as (x{, x5, x5, ...) along the direction of e away from v, so x{
is closest to v. We also identify x; + (L¢)~" with x,fH. See Figure 2. Observe that when both z and w
are on e but not in x{, then a>" = a**. Hence, we split the double sum in (41) as

DD Mgy + (Z Do+ Z) = (@1)(0) + (41)(ii), 43)

ZEAG W™Z zexy W™ zex§wexy

where (41)(ii) is the term (Zzexl D w~s +Zzex2 Zwexl). The sum in (41)(i) is symmetric and we
shall makes use the gluing condition (40) to treat this term; while treatment of the (boundary) term
(41)(ii) required the choices of parameters in Conditions (a)—(c) of Theorem 1. The next 3 subsections
are computations for terms (41)(i), (41)(ii) and (42) respectively, which lead to the martingale problem
for u".

As we shall see, since ¢ has compact support and the branch lengths of I' is bounded below by a
positive constant (Assumption 1), all sums involving ¢ are finite sums and the proofs in Sections 6.1-
6.3 work equally well for any graph satisfying Assumption 1.

6.1.1. Term (41)(i): White noise, Laplacian and glueing condition

For (41)(i), some ideas in [29], Section 5, can be reused which we now briefly describe. Let &f (z) :=
1 — &;(2) and rewrite the integrand of (41) as

(&-(w) — &—(2))¢5(2)
= [£,— (W)ES_(2) — &—(DES_ (W) ] s (2)
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= &-(W)E_ (s (w) — &— ()&, (W) (2) (44)
+ & (WE(2) (b5 (2) — ds(w)). (45)
As we will see, the white noise will come from (44) while the Laplacian term and the gluing term

come from (45). To simplify notation, we denote A7 , :=2C g"eLe /M€, s0a*" =A%  in Condition (c)
in the statement of Theorem 1.

White noises. We first work with (44). Interchanging the roles of z and w in the first double sum and
writing Q5" = P — P&, this part of (41)(i) becomes a martingale

13
Ze@) = (ML) Y Y Az /0 E (E (W) (2)d QT (46)

ZEAG WZ

Since a*" = a"* and the quadratic variance process (Q"); = 2A7 ¢, we have quadratic variation
(Z¢(¢)), converges to

t
Ve / / s (0) (1 = us () s (¥)*m(dx) ds
0 Je

since Ay ,/L¢ — y./4 by Conditions (a)~(c) and by the smoothness assumption of ¢, assuming C-
tightness of {u"}. Details for this part is the same as those in [29], Section 5. Here, and in what follows
in this subsection, the claimed convergences follow once we have proved C-tightness. See Section 6.3
for the proof, which does not use any of the convergences claimed in this Subsection. See Remark 11.

Laplacian and gluing condition. Next, we work with (45). We write L = L¢ and M = M€ for simplic-
ity when there is no confusion, and denote the discrete gradient and the discrete Laplacian respectively
by

Vif) =L(f(x+L7") = f(x)) ifxee, (47)

Apf) =L (f(x+ L)+ f(x —=L7") =2f()) ifxee”\ {x¢}. (48)

We break (45) into the average terms and a fluctuation term

t
ML) Y T gy /O - (WE ()] ¢s(2) — ¢ (w) AL, ds (49)

ZEAL WZ

t
F ML) Y Nuzg) /0 E-(WE ()| ds(w) — ¢s ()] (dPFY — AL ds).  (50)

ZEAGW™Z

We can replace £ by 1 in (49) without changing its value, because by symmetry (valid since we are
summing over the same set for z and w),

DY b w)E—(2)[$s(x) — ps(w)] =0 forall s > 0.

. w~z
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Doing the double sum over w and then over z ~ w, and recalling that we identify x{ + (L)~! with
x,f 41, e see that the integrand of (49) is

(ML) 3 D gt ) 95(2) — s (w) | A

ZEAG W™Z
A" M
= —25= ) ul (DALY i (x3)[ s (x5) — ¢(x5)]
.X>.X3
A}ZL’M ’Z M n e e e
- 23 DALY () I ui_ (x3)[ s (x) — ¢ (x3)]
xzxz
Ag M1 ,
- 2 {(Z Zu?_(x)ALqﬁs(x))+u?_(x§)VL¢S(xf)}. s1)
xzxg

By our assumption on ¢, Ap¢s converges to A¢y uniformly on compact subsets of e and
n

e.e

limy, s o0 —75 =0, SO (49) converges to

t
o / ( / s (¥) Ay (x)dx) T 1ty (0) Vs by (V) ds. (52)
0 e

Using the gluing assumption (40), we see that the last term will vanish upon summation over e € E (v).
The other term, (50), is a martingale E,(l)(qb) with

(EV @), < (M e > / (@) — ps(w))*d

. w~z

n

2A" , 1
=—5 /0<1 IVLgs|?),ds — 0

since Ay ,/L® — y /4 and L® — 00, by (14).

6.1.2. Term (41)(ii): Matching boundary condition

We now deal with (41)(ii) which are the remaining terms » ___ X DowrtDoe X Y we X in (43). Our
goal is to show that this term converges to zero under the choice for CY,’s specified in condition (c) of
Theorem 1. For this, we further take a summation over all edges in E(v) to obtain

> (M ZZ[ E— (W) — &_(2))ps(2) d PFY

EEE(U) zexe w~z

LY ()Y Y / Eo () — £ ()b () dPE"

ecE(v) zEx2 wex1
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=Y Myt Y / Eom (W) = - ()5 (D) A P] (53)

ecE(v) eeE(v)\ezex1 wexl
+ Y (MeL)” (Z Yo+ Z) / (&-(w) = &)@ d PP (54)
ecE(v) zex wexl wex zex

We break (53) into an average term and a fluctuation term

PSS EED SIS / (- (W) = &-(2)$s (DA} ;ds (55)

ecE(v) ceE(v)\ezex1 wexl
+ > (M) 3 Y / E-() —§-()ds Q) (PP = A7 5 ds). (56)
ecE(v) eeE(v)\ezex{ wexl

Grouping terms in unordered pairs of distinct elements in E (v), the average term (55) is

X 5 — (W) = &-(2)) s (2) ds
ecE(v) eeE(v)\e zexl ngl
-y ¥ o / (- (o) — () o) s
ecE(v) eeE(v)\e

t ~
[ o2t )n ) () ds e o)

0 (e,e) unordered

=0+err (1), (58)

where

= [ Y 208000 - a6 () - GD)as. 59)

(e,e) unordered

The equality (58) says that the first sum in (57) is zero. To see this, we group the terms of this sum in
pairs in such a way that } ., ;) unorderea 18 OVer all unordered pairs of distinct elements in E(v). The
last equality (58) then follows by symmetry of the conductances.

The error term erry(t) is o(1), that is, tends to 0 as n — 00, since supc(o 7 SUP,>1 L|@s (x]) —
¢s(v)| < Cr and (by Remark 5)

sup Z Z cr (1 +£e)<oo, (60)

nz1l B (v) e E (v)
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The fluctuation term (56) has quadratic variation

Z Z (MeLg)QZ Zf Es—(w) —&— (Z)) ¢ (z)ds

ecE(v) ecE(v)\e ZEXI wex1
260 M (T (ul () ul_ (DY o,
-y ¥ I )2 e s
o U Me Mé
ecE(v) ecE(v)\e
sy oy ( i) [ e
5 (
e
ecE(v)ecE(v)\e M Me

which tends to 0 as n — o0 since

CiMe/ 1 1 MELT
e,e
2 Lo (WJF_)—CZW(W*W)_)O’ b
(e.e) (e.e)

by (14).
Similarly, we break (54) into an average term and a fluctuation term

Z Z Z/ (- (w) —&-(2))ps (2)a™

ecE(v) z€x2 wexl
+ (£-(2) = &—(w))¢s (w)a"*] ds (62)
+ 3 (L)Y > / £ () — & (2)) s (2) (A PF™ — a™ ds)
ecE(v) zex2 wexl
+ (65— () — &—(w)) s (W) (d P" — a" ds). (63)

The average term is equal to

2C%,L¢
S (mere) el 3o / i (W) — £ ()9 (D) + (6 (2) — - (W) (w) ds

ecE(v) z€x2 wexl
zx/zxaywwwwmmw
ecE®v)
=err (1), (64)

where errp(t) is the o(1) error term
2Cn Vl e e
err(t) = — p uy_ (xl))VLqﬁs (xl) ds. (65)
ceE(u)
The variance of the fluctuation term is

- ¥ G D 2 [ e - 6@ 05) + 25 as

ecE(v) zex wex



SPDE on graphs 1923

241, [t . ,
= 2 oo [ 6+ )]s

ecE(v)

4Cg€ ! e e
= % o [1030) 4 036)]ds 0

ecE(v)

since 1/M¢ — 0 and CJ, is of order L, as n — 00, by Remark 5.

6.1.3. Term (42)

Drift term. We break (42) into an average term and a fluctuation term

t
(MeLe)™ S 3 /O E— () (1 — &-(2)) s (2)D>" ds (66)
ZEAGW™Z
t ~
+ (ML) 33 /O 55— (w)(1 =& ()5 () (@ PP — b= ds). ©7)
ZEAG w™~Z

Recalling the definition of the density " in (15), we check that (66) becomes

Me t
—> / [ (x — L™ ](1 — u?_(x)) s (x) BE ds

M¢ d B ., .
+oe X [l @eweds

xee\{x{,x5
Mme (! -
2[00 ) 5B s
Mé¢ [t . .
b e [ G0 ()0 B s (69
GeE(v)\e

~ e e -~ e e
where By , = b*2"1 and B] ; = b"1""1. The sum of the first two terms converges to

t
%/ /2us(x)(l —uyg(x)) ¢y (x)dxds
0 Je

as n — oo by Condition (d). After a further summation over e, we see from (17) that the sum of the
last two terms tends to

@ /z 2us () (1 — ug (v)) s (v) ds. ©9)
0
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The second term (67) is a martingale E t(2) (¢) with

1 , )
(EQ@), = Grepep 2 2 /O 95 (b™" ds

ZEAG W2

(M)?B} + MM?B! ,(E@)| = 1) 1
< ’ / (1,5),ds
(MeL")2 0 Sle

B M°Bl,(E@w)|-D\ [, .,
= <(L:)2 + Le MeLe >/0 <1,¢S)eds—>0,

. B! By . -
since 757 — 0, —==* is bounded and % — 0.

Limiting martingale problem. Combining our calculations, we can characterize any sub-sequential
limit u of u". Suppose u is the distributional limit of a sub-sequence of " in D([0, 00), Cjo,17(I")).
Then there is a further sub-sequence that converges almost surely to # which, by our calculation in this
Section 6.1, satisfies the following: for any ¢ € Cé’z([O, 00) x I') which satisfies the gluing condition
(8) for all ,

t
/rut(X)cbz(X)m(dx)—uo(X)¢0(X)m(dX)—/O frus(X)asfﬁs(X)M(dX)dS
t
—/O /ra(X)us(X)Aqﬁs(X)—ﬁ(X)us(X)(l—us(X))Gﬁs(X)M(dX)dS

1 [t .
_ 5/0 Zﬁ(v)us(v)(l — us(v)) @5 (v) ds 70)

veV

is a continuous martingale with quadratic variation

t
/0 V(X)/FMS(X)(l—Ms(X))¢f(X)M(dX)dss (71)

which is the martingale problem formulation of (11); see pages 536-537 in [77]. From this, one can
construct on a probability space (see, for instance, [81], Section V20) a white noise W on the Polish
space I' x [0, co) such that (103) holds for all ¢ € C.(I") N C2(l°“). Hence u solves the (11) weakly.
We have shown that, under convergence in distribution in D ([0, 00), Cjo,17(I")),

any sub-sequential limit of {u"} solves the SPDE (11) weakly. (72)

Remark 11. All calculation in this section before taking n — 0o hold for a more general class of test
functions ¢. Namely ¢ : [0, 00) x I'"" — R is merely defined on I'" for the spatial variable, but it is
continuously differentiable in # and such that all sums that appeared in the above calculations are well-
defined (e.g., when ¢ is bounded and has compact support in I'). In particular, the gluing condition
(40) is not needed in the pre-limit calculations and it is legitimate to apply these calculations to the test
function to be defined in (74).

In the next two subsections, we establish tightness of {u"}. Weak uniqueness of (11) (Lemma 2)
together with (72) then completes the proof of Theorem 1.
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6.2. Green’s function representation

Following [29], Section 4, our proof of tightness begins with the Green’s function representation of
u". This will be obtained in (79)—(80) in this subsection. New terms that do not appear in [29] will be
pointed out in our derivations.

Denote (P/");>¢ to be the semigroup of X", defined by

Pl fx)=R[f(X))IXg=x]= Y fFO)p"(t,x, y)mn(y) (73)
yel™”

for bounded measurable functions f, where we recall from (28) that p" (¢, x, y) := P(X’+(|}X)°:x)

Observe that (f, g) defined before can be writtenas ) . f (x)g(x)m,(x) and that for any y € I'",
ul'(y) = < > lyeenmy> = (u} ¢).
e

where 1, is the indicator function and

s () = B (x) 1= {P"(I —s5,x,y) forsel0,1], (74)

0 otherwise.

Applying the approximate martingale problem (41)—(42) with test function ¢, := ¢§’y in (74) (see
Remark 11 for why we can do this) and using the facts that

o Jsps + aeAreps = o(1), where o(1) is a term which tends to 0 as n — oo, uniformly for x €
e"\ {x{},e€ E and s € (0, 00) (see Remark 6); and

o (ull, py”) = Plull(y) forall y e I,

we obtain
ul(y) = Plull(y) + Xe: % /Ot u (x¢) 35 s (x§) ds (75)
+ (7 @) + 2 @) + ELO ) + EX(9) (76)
+ Y (TE@) + UL (@) + VE@) + ELO(9) + ELH) () (77)

for t > 0 and y € I'". Here the terms Z7(¢), Et(l’e) (@), E,(Z’e)((b), Et(3’e)(¢) and E,(4’e)(¢) are defined
in (46), (50), (67), (56) and (63), respectively; Y/ (¢) is defined in (66); the new term

t
TS (p) ::/0 aeu?_(XS)VLqﬁs(xf) ds (78)

is obtained from (51); note that the o, A ¢s(x) term is killed due to our choice of ¢ in (74). New terms
> Uf (@) and }_, V(o) are defined in (55) and (62), respectively.

New technical challenge in proving tightness. The four terms (76) are analogous to terms in (36) of
[29], but all five terms in (77) and the d5¢ term in (75) are new: they come from boundary terms
at vertices of I'. Treating these new terms requires the uniform estimates for the transition density

p"(t, x, y) of random walks on graph, as well as the careful choice of Cj}, y in Condition (14).
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Cancellation and simplification. An important observation is that, by our choice of CY , equations
(75)—(77) simplify to

! (v) = Plup(y) + Y (YE(@) + ZE (@) + EO (@) + EF(9)) (79)
+ Y (EF @) + EFO (@) +o(D). (80)

To see this, note that Uy (¢) = erry(t) and V/(¢p) = erry(t) defined in (59) and (65) respectively. That
is,

U= [ 2020~ o) (0 (o]) i (v)) s

(e,é) unordered
t
Vi) =— /0 ote (4 (x3) — ug_(x7)) Vs (x7) ds.
On other hand, by (21)

LaF(xf) ~ e (L) (F(x5) = F()) + D (F(xf) = F(xf))Cl L,
ecE(v).ete

where the approximation ~ is quantified in the last sentence in Remark 6. So by our choice of ¢ and
Komogorov’s equation,

s () ~ e (L (0 (5) ~ 0, () = Y CLLo(al) - 0 ). 8D

¢cE(v):e#e

From these it is easy (for example V cancels with the first terms of (81), 7' cancels with part of U)
to check, by using symmetry C7 ; = C7 , that we have cancellations

1 t
0~ Z e /O uf (x7) 55 (xf) ds + T (@) + Uy (@) + V/ (9, (82)

giving the desired (79) and (80).

6.3. Tightness of approximate densities
Our goal of this section is to prove the following C-tightness result.

Proposition 1. Suppose the assumptions in Theorem 1 hold. Then the sequence {u"},>1 is tight in
D([0, T1, Cio,17(I")) for every T > 0. Moreover, any subsequential limit has a continuous version.

Tightness in D([0, T], M(I")), where M(I") is the space of positive Radon measures on I, is
much easier to prove than tightness in D([0, T'], Cjo,1;(I")) since the former can be reduced to one-
dimensional tightnesses (by integrating a fixed function against the measures). However, it is not easy
to identify subsequential limits of measures as those whose density solves SPDE (11) weakly.



SPDE on graphs 1927

Proof of Proposition 1. The desired C-tightness follows once we can show that (i) the “weak” compact
containment condition (condition (a) of Theorem 7.2 in [36], Chapter 3) holds and (ii) for any € > 0,
one has

lim lim sup ]P’( sup ||u;'1 — up, || > e) =0. (83)
-0 p—soo t1—tp <8
O<nr=ti<T

Here and in what follows the norm is the one defined in (16). It is enough to show that (83) holds with
u" replaced by any term in the decomposition given in (79)—(80).

First term in (79).  Upon linearly interpolating P/"u(x) in space, triangle inequality and the contrac-
tion property of the semigroup {P/'};>¢ gives

sup || Pug — Phug| < 2[ug = fol + sup [P fo— P Aol (84)
11—t <§ t—th<§
0<tr<t)<T O<n=n=T

where fj is the initial condition for u functions in Theorem 1. So to show that (83) holds with u}
replaced by P/'ug, it suffices to show that (83) holds with uj replaced by P/ fo. The latter can be
checked by using the uniform Holder continuity (32).

Second term in (79). For simplicity, we write

@) =Y (Y@ + ZE@) + BN (9) + EP(9)).

e

The next moment estimate for space and time increments is similar to [77], Lemma 6, and [29],
Lemma 4.

Lemma 4. For any p > 2 and T > 0 and compact subset K of I', there exists a constant Ct p g €
(0, 00) such that

) -p
Bl ) = 02)|” = Crpok (In = 17 +d (ot )7 + (inf ) ") (85)
forallO<t <ty <T,y;,y»€l'"NK andn > 1.

Proof of Lemma 4. The proof of this result requires a number of computations involving estimations
of the heat kernel p” (t, x, y). By (68), Y (¢) is equal to

MeBn t
e 2 fo [ (x = L7H)] (1 =l () gy (x) ds (86)
e pn t
Py / [ (e + L7H](1 = i (0)) g (x) s (87)
Le : 0
xee\{x{,x5}
M¢B,, (! 3
2020 [ a) (- (59)0 () s 59
MéBe e ! o o
b3 R [ D (e s 59

GeE®)\e



1928 W.-T.L. Fan

To estimate Yy (p" Y1) — Yy (¢™72), the key is to observe that all four terms (86)—(89) are sum of
integrals of the form

t
L(y):= /0 VI (x)¢s” (x) ds,

where |vf_(x)| <1 (for example, v{_(x) = [u}_(x — L= H1a - u!_(x)) for (86)), and that

|1, ) — 1, ()| =

1 5]
/ vﬁ’,(x)pi'lfs(x,yl)dsﬂtfo v )[ Pl Gey) = pr g (x, y2) | ds
n

1 [5)
5/ pt"l_s(x,yl)der/O [P} e y1) = plh s (x, y2)| ds.
5]

Hence,

|Y‘) (¢T1,y1) _ Y‘) (¢l2,y2)|

_2M°B] ) no )
Z ptl_s(x,yl)der i |y, y1) = ppy s (x, y2)| ds

xeen

M°B, .

n
- (/ Phsusonds+ [ It (5.0) = i (550 s
2
MéB - n %) } 3
+ Z Lee,e</t pfl,s(xf,yl)ds—i-/o |ptnls(xi,yl)—pgs(xi,yzﬂds).
2

GeE(v)\e

The new error terms EG© 4+ E*.©)

S (EPO@) + B 9)

e

= > (ML) Y 3y / (E- (W) — & ()¢5 () (d PF" — AL ds)

ecE(v) ecE(v)\e zexy wex?
+ 3 (ML) YN / b3 () = 55— (2)) s (D) (d PF" — AL d)
ecE(v) z€X5 wexy

+ (55— (2) — &—(w)) s (w) (d L7 — AP, ds)

can be treated in the same way, so do terms Z¢, E(¢ and E¢) . The proof of Lemma 4 can be
completed as in [29], Section 6, using the uniform estimates in Theorem 3. O

Observe that the last term in (85) lim,,_, , (inf, M¢)~? = 0, by Conditions (a)—(b) and the assump-
tion that inf, ¢, > 0. It can then be shown, as in [29], Section 5, that (85) implies (83) holds for ". This
idea is described in the paragraph before Lemma 7 in [77] and page 648 of [59]: we approximate the
cadlag process u" by a continuous process i and invoke a tightness criterion inspired by Kolmogorov’s
continuity theorem. Finally, the “weak” compact containment condition (condition (a) of Theorem 7.2
in [36], Chapter 3) follows from the fact 0 < u" < 1, (84) and Lemma 4 with t; = t>.

The proof of Proposition 1 is complete. O
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Proof of Theorem 1. The proof of Theorem 1 is complete by Proposition 1, (72) and Lemma 2. [J

7. Proof of Theorem 2

The proof follows the footsteps of that of Theorem 1, and many estimates are simpler and very similar.
So we provide only the key steps here. As before we begin with the approximate martingale problems
for U". Using this, we identify any sub-sequential limit and obtain a Green’s function representation
for U". The proof is complete by establishing tightness, based on the Green’s function representation.

Before proving convergence, we first argue that U", after the described interpolation, is an element
in C([0, 00), Cjo,11(I")). Indeed, if the initial condition U"(0) is bounded between O and 1, then there
exists a weak solution {U}'}ycr» to (22)—(23) with initial condition U"(0) and takes values in [0,1] for
all # > 0. This follows from an approximation argument as for the SPDE (10): one first approximates
J/x(1 = x) by Lipschitz functions {ay(x)}; taking values in [0, 1] such that a;(0) = a;(1) =0 and
constructs solutions {U"*}; using standard theory, then applies the comparison principle and passing
to a sub-sequential limit k — oo. See, for instance, [75], Section 2.1. Furthermore, weak uniqueness of
(22)—(23) follows from duality argument as in [26]. Therefore U" (¢) € Cjo,1)(I") for all # > 0. Finally,
since ¢ — U] (t) is continuous for each x € I'"", and a compact subset of I" contains only finitely many
x €I', we have U" € C([0, 00), Cj0.17(I")) based on the norm of Cjo,1j(I") in (16).

7.1. Approximate martingale problem

This section is similar to Section 6.1. Recall the inner products (39) and let ¢ : [0,00) x ' — R be a
continuous function that is continuously differentiable in ¢, twice continuously differentiable and has
compact support in x € I" and satisfies the gluing condition (40).

As before we focus on a single vertex v € V, and for each e € E(v) we enumerate the set e” as
(x{, x5, x5, ...) along the direction of e away from v; see Figure 2. From our construction (22)—(23),
fort >0and e € E(v),

t
U (1), 1), — (U™ 0), ), - /0 (U (5), s8), ds

t t
= % Z !/O ¢s(x)[£nUx + BeUx (1 — Ux)] ds +[) ¢s(x)/ ve LU (1 — Ux)de(S)} (90)

xee"\(x{}

L, Bv)

— LU+ LC—=—U{ (1 —-UY) |ds, 91
+ Le 0 ¢1[ nl + deg(v) l( 1) s ( )

where we used the abbreviations Uy := U x¢ and ¢y := ¢ (xp).

Laplacian and gluing condition. We first consider the terms involving the operator £, in (90)—(91).
The careful construction of the generator £, of the CTRW X" in Remark 4, including condition
(14) for the conductances {C, ;}, as well as the gluing condition for ¢, are crucial for the lemma
below.
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Lemma 5. Suppose {U"} converge almost surely in C([0, 00), Cjo,1\(r)) along a sub-sequence to a
limit U™. Then along that sub-sequence, almost surely,

> éZd)s(x)ﬁnU::(s)e > / U™ (s, X)Ag (s. x)m(dx)

ecE(v) xeen ecE(v) ¢

uniformly for all t € [0,00) and v e V.

Proof. By Condition (14),

sup% Yo LUt ) —aed LU )] > 0 ©2)

520 xee"\{x{}

uniformly for all edges and vertices, where Ay is the discrete Laplacian defined in (48); see Remark 6.
Applying summation by parts twice and omitting the superscript e for simplicity,

N N-1
Z(bk(VUk —VUi-1) =¢nVUN — $2VU = VON_1UN + V2 Uz + Z Uij(Vpj —Voj_1),
k=2 j=3

where VU = Uy — Uy. Since ¢ has compact support on I,

Do GEALUE =~ (L) (95 (U5 — Uf) + (95 — 95)US] + D US ALgS. 93)

k>2 j>3

From the above two displays and also (21), we see that by adding up the terms in (90)—(91) that involve
the operator L,,,

é Z ¢s (X)L, Uy

xeet
= Sed w3 - )+ (05 - e5)s) + s

Jj=3

1 _
+ p¢f{ae(Le)2(U§ -Uf)+ Y (Uf- Uf)ce,gLe} + kb5 llow

ecE(v):.e#e
= o L{— (65 — ¢3) U5 — (¢35 — 1) (U; — U7)} (94)
+60 Y (Uf = Uf)Cos+ T2 D US ALY + kil oo, 95)
ecE(v):e#e Jj=3

where, by (92), k, is a constant that tends to 0 uniformly for all e € E(v), v € V and s > 0.

We now sum over ¢ € E(v). Suppose {U"} converge almost surely along a sub-sequence. Then by
the gluing condition (40), the term (94) (after summing over e € E(v)) will tend to zero along that
sub-sequence. The first term of (95) also tends to zero (after summing over ¢ € E(v)), by the same
argument for (58)—(59) based on the symmetry of the conductances {C, ;} and the uniform continuity
of ¢. The second term of (95), converges to o, fe U (s, x)A¢ (s, x)m(dx). The proof is complete. []
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Limiting martingale problem. Convergences of the other terms in (90)- (91) follow directly from the
continuity of ¢. For example, for the term involving B(v),

t
/ oeL edﬁ(”) Us (1 —Uf)ds—>ﬂ(v)/ ds WU (s)(1 — U(s)) ds
eEE(U) ¢ ( ) 0

which explains the term deg(v) in the denominator. Combining our calculations as in (70)—(71), we
have shown that, under convergence in distribution in C([0, 00), Cjo.11(I")),

any sub-sequential limit of {U”} solves the SPDE (11) weakly. (96)

7.2. Green’s function representation

This section is similar to Section 6.2. We shall obtain a Green’s function representation of U" that is
analogous to (79)—(80). Such representation will be useful for proving tightness.

Applying the approximate martingale problem (90)—(91) with the same test function ¢; := ¢y in
(74), namely

b (x) =y (x):=p"(t —s,x,y) forsel0,1]

and zero otherwise, we obtain that d;¢s + L,,¢ps = 0 and hence for r > 0 and y € T'”,

t
UL (t) = (Pl'uo) () + / (U™ (5), Lagps) = (LaU"(5), ¢5) ds 7)
—Z > {/ ¢ (1) B Uy (1—U>ds+/¢s(x>\/yLLEU (1—U,)dBy (s)} (98)
xee\{x{}
L[! e PO e
+2 70 L i deary VT (1 - UD) ds. (99)

7.3. Tightness

This section is similar to Section 6.3. Our goal is to prove the following tightness result.

Proposition 2. Suppose the assumptions in Theorem 2 hold. Then the sequence {U"},> is tight in
C(0,T], Cio,11(I")) for every T > 0.

Proof. The desired tightness follows once we can show that (i) the “weak” compact containment
condition (condition (a) of Theorem 7.2 in [36], Chapter 3) holds and (ii) for any € > 0, one has

Jim lim sup ]P’( sup Ut ) — UM > e) —0. (100)
>0 n—oo t—tr <&
0<nr=<n=<T

To show (100), it is enough to show that (100) holds with U" replaced by any other terms in the
decomposition given in (97)—(99).
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Note that the summation-by-parts calculation (93) still holds if ¢ and U are interchanged. From this,
the fact that 0 < U™ < | and the Gaussian upper bound (29)—(30) for ¢, we obtain that the integral in
o7

t
/ (U™ (), Lubs) — (LU (). 5} ds| < kcu/7 (101)
0

for t > 0, where k, is a constant that tends to 0 uniformly for all e € E(v), v e V and ¢t > 0.

Furthermore, as in Lemma 4, if we let U ;l () = (98) + (99), then we have the following moment
estimate: For any p > 2 and T' > 0 and compact subset K of I, there exists a constant Cr,, g € (0, 00)
such that

BT (1) — UL )] < Crp k(11 — 01?* + d(y1, y2)7'?) (102)

foral0 <t <1 <T,y;,y2€T"NKandn>1.

The “weak” compact containment condition (condition (a) of Theorem 7.2 in [36], Chapter 3) fol-
lows from the fact 0 < U”" < 1 and (102) with ¢t; = #,. With (101), (102) and the uniform heat kernel
estimates in Theorem 3, the proof can be completed as in Section 6.2.

The proof of Proposition 2 is complete. U

Proof of Theorem 2. The proof of Theorem 2 is complete by Proposition 2, (72) and Lemma 2. [

Appendix

In this appendix, we specify the notions of weak solution and mild solution to SPDE on graphs, give a
proof of Lemma 1, point out some generalizations of our results and some open problems.

A.1. Solutions to SPDE on graphs

For completeness, we give the precise definition for the notions of weak solutions and of mild solutions
for SPDE (10):

Voutt - [] = —Bu(l — u) onV.

{alu —Lu+ Bu(l —u)+yu(l— )W onl,

These definitions are analogous to the usual ones (see [92]) but have extra boundary conditions.

Definition 1. Let W be the space-time white noise on I' endowed with the product of Lebesque
measures ;= m(dx) ® dt. That is, W= {W(A)}AE‘B(FXIO o)) are centered Gaussian random vari-
ables with covariance E[W(A)W(B)] = (A N B). The white noise process (W;);>o is defined
by W;(U) := W(U x [0,1]) where U € B(T"). Denote by F; to the sigma-algebra generated by
(We(U):0<s <t,U €B(I")} and call (F;);>0 the filtration generated by w.

It can be checked as in [92] that {W;(U), F;};>0,ue (1) 1s an orthogonal (hence worthy) martingale

measure, so that we have a well-defined notion of stochastic integral with respect to W for a class of
integrands which contains the collection of all predictable functions f such that

2
IE/ </|f(x,t)|m(dx)> dt < oo
0,71\Jr
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for all T > 0. By the Gaussian upper bound in (36), the stochastic integrals that appear throughout this
paper, including (104) below, are well-defined.

The notions of weak solution and mild solution are given below. Let Bjo,17(I") be the space of Borel
measurable functions on I taking values in the interval [0, 1]. Note that we do not need an absolute

sign inside the square root /yu(l — u).
Definition 2. A process u = (u;);>0 taking values in Bl(_),“(r‘) is a weak solution to SPDE (10) with
initial condition u if there is a space-time white noise W on I' x [0, co) such that (i) u is adapted to

the filtration generated by W and (ii) for any ¢ € C.(T')N C(1) satisfying the gluing condition (8), we
have

t
/rur(X)¢(X)v(dX)=/ruo(X)¢(X)v(dX)+%/O /FV(MV@(X)M(X)M(WMS

t
+/0 /rﬁ(X)us(X)(l—us(X))qb(x)v(dx)ds

+/[0 ] r¢(x)\/)/(x)bls(x)(l — U (X)) L(x) dW (s, x)
1%

1
+ % /0 Y ¢@B@ ) (1 — uy(v)£(v) ds (103)

veV
for all + > 0, almost surely, where v(dx) = £(x)m(dx).
Definition 3. A process u = (u;);>0 taking values in B[_o,“(r‘) is a mild solution to SPDE (10) with

initial condition u if there is a space-time white noise W on I" x [0, 00) such that (i) u is adapted to
the filtration generated by W and (ii) u solves the integral equation

t

s (x) = Prug(x) +/0 Pi_s(Bus(1 —uy))(x)ds

+/l0 | rp(t_Sv"’y)g(y)\/y(y)”s(”(l—us(y))dW(s,y)
JH X

t
+ %/0 Dt =5, x. 0)E)BIg W) (1 — us(v)) ds, (104)

veV
where p(t, x, y) is defined in (6) and P; f(x) = E, f(X;) = fr F)pt, x,y)v(dy).

A weak solution may fail to be a mild solution in general (see, e.g., [15]). However, we have the
following.

Lemma 6. Suppose Assumptions 1, 2 and 3 hold and ug € Cjo,1)(I"). An adapted process u with u; €
Bio.11(I") for all t > 0 is a weak solution of (10) if and only if it is a mild solution.

Proof. A proof follows from that of Shiga’s result [85], Theorem 2.1, thanks to our heat kernel esti-
mates in Theorem 5 and the boundedness of u. We provide a sketch of proof.

Suppose u is a weak solution of (10). Then (103) holds for the test function ¢ (x) = p(¢, y, x) for
x eI', where (¢, y) € (0,00) x I is fixed. This is because (i) ¢ € Dom;»(£) and hence ¢ satisfics the
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gluing condition, and (ii) Dom;2(£) C Dom(€) = Wb2(I", v) N CY(I") and so ¢ is the limit, under the
Sobolev norm || - [[y1.2(,, of a sequence in C.(I") N Cz(f‘) that satisfy the gluing condition. Further-
more, the time-derivatives of p(z, x, y) also possess Gaussian bounds and Holder continuity; see [51],
Theorem 2.32. This allows us to extend (103) to time-dependent test functions ¢ : [0, 7] x ' — R,
where ¢ (t,x) = p(T —t,y,x) and T, y are fixed. This gives

t
Pr_uity (x) = Prug(x) + /0 Pr_y(Bus(1 — up)) () ds

+/[0 | FP(T_S’X’ Y)f(y)\/)/(y)us(y)(l —us(y))dW(s’ y)
A%

t
+ %/0 Z p(T —5,%,0)LW)BW)us (v) (1 — us(v)) ds (105)

veV

and hence (104) by letting + — T'. Therefore, u is also a mild solution.
The converse is straightforward. Suppose u is a mild solution. We insert (104) into

1
/ / V(aVeo)(x)ug(x)m(dx)ds
0 Jr
and apply a stochastic Fubini theorem to verify (103). (]

For existence and uniqueness of solutions, results in [9] cannot be directly applied since we have
a non-Lipschitz coefficient \/yu(T — u). Nonetheless, existence of a mild solution taking values in
Bio,11(I") follows from an approximation and tightness argument. See, for instance, [75], Section 2.1.
Furthermore, weak uniqueness for (10) holds by Lemma 2.

Proof of Lemma 1 (Duality). Recall that Assumptions 1, 2 and 3 in force. Recall from (5) and (6)
that v(dy) = £(y)m(dy) and Py (X, € dy) = p(t, x, y)v(dy).

To simplify notation, we write p€(x,y) = p(e, x,y) for the transition density of the symmetric
diffusion X and define z:=1 —u and z;(x) := fr (V) pe(x, y)v(dy).

Using the weak formulation (103) with test function ¢*(y) = p®(x, y) (we can do so as explained
in the proof of Lemma 6), we obtain

1 13
Zt(x)—io(x)=§/0 /rVy(ﬁ(y)a(y)Vyp‘(x,y))zs(y)m(dy)ds

t
—/0 /rﬁ(y)zs(y)(l—zs(y))pe(x,y)ﬁ(y)m(dy)ds

t
+/0 /rpe(x,y)\/y(y)zs(y)(l—zs(y))ﬁ(y)dW(s,y)
1 [t R
+§/O D P Bz ) (1 = 25(v))E(v) ds.
veV

Fix x1,...x, and let £; be the generator of the process (z;(x1),...,Zz:(xn))>0. Using the Itd’s
formula [41], Lemma 2.3 (each process (Z;(x));>0 is a semi-martingale so this is legitimate), we see
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that as in Section 8.1 of [29],
olrift(ﬁZ [z (x,-)>
i

1 n
=52 [la6p /r Yy (@) Vy p (50, )z (7 (dy)

i=1 j#i
+> []z0n /F B[z () — 2] P (i, »EIm(dy)

i=1 j#i

n—1 n
+> > []z@w / y D[z (1= 2:0)]pe (i ) (xj, DIEGIM(dy)

i=1 j=it1ki,) r

1 ¢ R
+5 2. 2 [Tz (@) = 2w) pf (i, v)E). (106)

i=1veV j#i

The dual process is a system of branching coalescing particles performing £-diffusions on I". During
their lifetime all particles independently give birth (here means the particle splits into two) at rate S(x)
at the interior x € I" and give birth at rate [%(U)L;"” at vertex v € V. In addition, for i < j, particle j
is killed by particle i at rate %Li’j where L;’j denotes the local time of the process x; — x; at 0.
Writing L, for the generator of this particle system,

1 n
drift(ﬁx l_[Zt(x,-)) =52 [a0) Veva e

i=1 j#i

+) []z6n B[z (i) — 7 )]

i=1j#i
n—1 n
Y Y0 zt(xk)-[%zxxi)(l —zt(xj))]s{xj_xi}
i=1 j=i+1k#i,j !
1 o R
+5 2.2 [Ta6) Aw[Ew -2 @]sn= (107)
i=1veV j#i

in which we used the formal notation dLi’j = 8(x;(t)=xi(n) dt and dL;"“ =8y, (1)=v) dt.
We continue to follow [29], Section 8.1, to assert that

t
EF (Z;,x(0)) — EF (Zo, x(1)) = ]E/ G (Zr—s, X(5)) = H (Z1—s, x(5)) ds. (108)
0
with G(Z, x) = L:F(Z, x) and H(Z, x) = L F(Z, x), where

F(Z,x) = ]_[z(xi) ifx = (x1,...,%).

i=1



1936 W.-T.L. Fan

To prove the desired duality formula (27), i.e.

n(0) n(t)

E[]z(x©)=E]Jzx®). =0 (109)

i=1

it remains to argue that the RHS of (108) tends to zero as € — 0.

The first term in (106) agrees with that of (107) on the RHS of (108). The second and the third terms
of (106) and (107) can be teated in the same way as in [29], Section 8.1, thanks to Theorem 5 and
Assumption 3. The reason we need to divide y (x;) by £(x;) in the third term of (107) is as follows:
there are two p© factors but only one ¢ in the third term of (106). This explains why the coalescence
rate should be Z((x‘) L' rather than y (x;) L} as in [29], Section 8.1.

Finally, we consider the new contribution to the RHS of (108) from the last term of (106) and (107),
coming from the branchings in the vertex set V.

The contribution to (108) from the last term of (107) is

+ n(s)

/ Y Tz xj®) - B[z ) = 25 ()] dLE" (110)

i=1veV j#i

which converges as € — 0 (first by dominated convergence for fixed v € V and then by monotone

convergence for ), /) to

tn(_&) )
/ ZZY;;’dLg:“, (111)

i=1veV

where

Yol =] a-s () - B[} ) — 21— ()]
JF#l

is non-negative and bounded from above uniformly for 1 <i <n(s), s € [0, ¢] and v € V, according to
Assumption 3. The contribution to (108) from the last term of (106) is

; n(s)

—E/ do> v ) pe(xi(s), v)€(v) ds (112)

i=1veV

which also converges to (111) as € — 0, first by dominated convergence for fixed v € V and then
by monotone convergence for ZUEV (details as in pages 1724-1725 of [3]). The proof of (109) is
complete. (|

A.2. Generalizations

Assumptions 1 and 2 can both be significantly relaxed. The Dirichlet form method enables one to
construct more general processes, such as singular diffusions on graphs as in [58,83], and diffusions on
R-trees [1,18-20] and fractals [4]. These two assumptions should be compared with conditions on the
boundary of a domain and on the coefficients respectively, in the construction of reflected diffusions
[13]. The function £ contributes to a drift for the diffusion which we ignored for simplicity, i.e., we
assumed ¢ = 1. To incorporate such as drift in discrete approximations, see [39], Section 6.
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Furthermore, with the techniques developed in this paper, one can immediately generalize the cou-
pled SPDE in [29], Theorem 4, to the graph setting. This enables us to investigate the role of space
in shaping coexistence and competition outcomes of interacting species. In ongoing work, we plan to
apply such generalizations to study the interactions of virus and sub-virus particles during co-infection
in a population of susceptible cells.

A.3. Open problems

The study of SPDE on graphs leads to an explosion of interesting open questions. We mention only
three of the important ones below.

Problem 1 (Speed of FKPP on I'). Wavefront propagation and asymptotic speed for deterministic
FKPP on a class of regular trees has recently been obtained using large deviation techniques in [40].
Can we define and obtain the asymptotic speed of wavefront propagation for the weak solution of the
stochastic PDE (11) in terms of properties of I'? For instance, in terms of k (and «, 8, y) when I" is
the infinite k-regular tree with unit branch length? The duality formula in Lemma 1 can be very useful
for this study (see [6,26,74] for the case I' = R).

Problem 2 (Contact process). Techniques developed here enables one to analyse other SPDE on
graphs such as scaling limits of branching random walks and those of contact processes

atuz(xAu+ﬂLt—5Lt2+1/)/LtW onT. (113)

A fundamental and challenging question in epidemiology is to estimate (and show existence of) the
threshold infection rate B. € (0, 00) in terms of geometric properties of I', such that when 8 > S, the
infection sustain with positive probability, and when 0 < < f. the infection dies out with probability
one (assuming f is a constant function and ﬁ =0 on V for simplicity). See Muller and Tribe [76],
Theorem 1, for such a threshold when I" = R.

Problem 3 (Other SPDE and mixture models). In this paper, we obtain the term ,3 u(l —u)in (11)
because we specify biased voter rule not just on edges but also at the vertex set. Some other polynomial
terms can arise if we specify other microscopic rules (such as contact process) near the vertices. This
is left open for exploration. For example, the interacting particle system can be a mixture of the biased
voter model and the contact process. See Lanchier and Neuhauser [66,67] who introduced one such
mixture to investigate how the interactions in spatially explicit host-symbiont systems are shaping plant
community structure.
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