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Abstract: The asymptotic wave speed for FKPP type reaction-diffusion equations on a
class of infinite random metric trees are considered. We show that a travelling wavefront
emerges, provided that the reaction rate is large enough. The wavefront travels at a speed
that can be quantified via a Varlatlonal formula involving the random branching degrees
d and the random branch lengths € of the tree T; ;- This speed is slower than that of the

same equation on the real line R, and we estimate this slow down in terms of d and £. The
key idea is to project the Brownian motion on the tree onto a one-dimensional axis along
the direction of the wave propagation. The projected process is a multi-skewed Brownian
motion, introduced by Ramirez [31], with skewness and interface sets that encode the
metric structure (c? , 57) of the tree. Combined with analytic arguments based on the
Feynman-Kac formula, this idea connects our analysis of the wavefront propagation to
the large deviations principle (LDP) of the multi-skewed Brownian motion with random
skewness and random interface set. Our LDP analysis involyes delicate estimates for an
infinite product of 2 x 2 random matrices parametrized by d and ¢ and for hitting times
of a random walk in random environment.
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1. Introduction

The FKPP equation, named after Fisher [11] and Kolmogorov, Petrovski, and Piskunov
[30], is one of the simplest reaction-diffusion equation which can exhibit traveling
wave solutions. This equation arises in ecology, population biology, chemical reactions,
plasma physics and other disciplines. It describes the dynamics of a certain quantity
u(t, x) at time ¢ and location x, written as

8u(t ) 10%u
Mo oy=-24
ot 2 9x2
u(0, x) = up(x) ,

(t, %) + f(u(t, 1)), (1.1)

where the reaction function f(u) = Bu(l — u) for some constant 8 > 0 which will be
called the reaction rate throughout this paper.

The asymptotic speed of the wavefront formed by (1.1) can be defined as a positive
real number o* > 0 such that for any & > 0,

lim sup u(t,x)=0and tlim inf  u(t,x)=1. (1.2)

1=y (a*+h)t —>00 x <(a*—h)t

It is well known from [11] and [30] that on the real line R, for step-like initial data
including the Heaviside function uo(x) = 1,<o, the solution to (1.1) forms a wavefront
that propagates through the real line R with asymptotic speed /28 !. Freidlin in [13]
presents an elegant argument to prove this statement that uses the Feynman-Kac for-
mula to connect the asymptotic speed with the large deviations principle (LDP) of the
Brownian motion on the real line.

For simplicity and to make the arguments more intuitive, we focus on this classical
case with diffusion coefficient D = 1 throughout this paper, but on trees rather than
on R. By the same arguments with simple modifications, our results can readily be
extended to the general FKPP-type case, in which f is a continuous function on [0, 1],
fO) =7F1)=0, f(0) = sup,e,1) S (u)/u and f(u) > 0 foru € (0, 1). We expect
the results will be the same when 8 is replaced by f”(0), and the asymptotic speed will
be multiplied by /D.

While asymptotic speed of FKPP wavefront on the real line is well studied, much less
is known about the formation and the speed of wave propagations in different environ-
ments such as a network. These are challenging problems because the topological and
metric structure of the underlying space interacts with the diffusion-reaction mechanism.

Nonetheless, it is of both practical and theoretical interests to consider equation
(1.1) on geometric structures other than a line. Such equations arise as scaling limits

| o 10%u ) D 9%u e
If the diffusion term — — in the equation (1.1) becomes — — for a general diffusion constant D > 0,
2 jx2 . 2 9x?
then it is easy to see from a spacial rescaling x — —— that the wave speed is /2Dp. Thus throughout the

VD

paper we stick to the case D = 1.
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Fig. 1. Symmetric d- -regular tree with branch lengths ¢, denoted by T> ap withdy =2,dy =3 and dr» = 4.
The projection = : T; ; — R maps x to the signed distance on T from x to the root p. Let (B;);>0 be a
Brownian motion on TJ i and define Y; = 7 (B;). Then the projected process ¥ = (¥;),>¢ is a multi-skewed
Brownian motion with skewness (see Definition 5) 2/3 at £ and skewness 1/3 at —£(

of reaction diffusion-equations in two-dimensional domains (see [4,5,16,18]) and of
interacting particle systems (see [9,10]), which provide descriptions of the effective
dynamics of much more complex systems. For example, in [18] the authors considered
a reaction-diffusion equation on a narrow random channel. The channel consists of a
main track and random “wings” added to it. As the channel width becomes thin, it
converges to a tree-like structure with many short branching edges added to the real line.
Such a tree is in a sense a “noisy” real line because it is the real line randomly adding
short edges to it. Making use of LDP for diffusion processes in random environment,
the authors of [18] derived a formula for the wave speed in this case.

QOur results. In this work, we consider the propagation of waves given by the FKPP
equation (1.1) on an infinite random tree T ; that is called symmetric d regular with

branch lengths ¢ (the precise definitions are given in Sect. 2.1). Here the random branch-
ing degrees d= (di)icz, (wesetZy = {i € Z,i > 0}) is such that 2 dy =2 and (d; )i>1
is an i.i.d sequence of bounded positive integers greater or equal than 2, such that all
vertices of T jrat generation i have degrees equal to d; (the root p is the node at gen-

eration 0). The random branch lengths (= (¢i)iez, 1s ani.i.d. sequence of positive real
numbers that are positively bounded from above and from below, such that the edges of
T ; between generations i and i + 1 are all of length equal to ¢;. A typical example of
’JT~ 7 is shown in the upper part of Fig. 1.

ThlS class of random trees includes many random trees of interest, and in particular
the deterministic d-regular tree for d > 2 with branch length ¢ € (0, o0). The latter,
called the constant-(d, £) tree in this paper, is an illuminating special case in which all
{€;};>0 are the same constant £ and all {d;};,>; are equal to the same constant d > 2. For
this particular case, if d = 2 we further obtain the degenerate case T = R.

Unlike the real line R, the random tree Tj ; is in general a one-dimensional metric
space with singularities at its vertices (nodes at different generations). Thus equation
(1.1), when considered on the tree T ; i should also be equipped with boundary condi-
tions at the vertices. Here we put symmetric gluing conditions at each of the vertices of
the tree T 3050 that the sum of the outward derivatives of the solution u at each vertex

2 For simplicity of presentation we assume dp = 2. However, our arguments work for all cases when dgy > 2
is an arbitrary fixed integer without affecting the wave speed.
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of the tree is equal to 0. This specifies that the flow-in equals flow-out of mass at each
vertex.

We also impose a step-like initial condition u(0, x) = uo(x) = 1y, (x) such that Uy
is a symmetric subset of the set of all of the dy edges attached to the root p. Intuitively,
these symmetric initial and boundary conditions will guarantee that as time ¢ evolves
the solution u(z, x) will also be symmetric with respect to all edges of the tree x € T
that are between the same two consecutive generations. In this way, following (1.2), we
say that a quantity ¢* > 0 is the asymptotic speed of the wavefront formed by (1.1) on
the tree T j if for any 71 > 0 and c* > hy >0,

lim sup u(t,x) =0and lim inf u(t,x)=1. (1.3)

=% dp(x.p)> (c*+hi)t =00 dr(x.p)<(c"=h)t

Here drt(x, p) denotes the geodesic distance of the point x € 'JI’* to the root p, i.e., it
is the length of the shortest path from x to p along the tree Tj ;.

The main result in this paper can be stated roughly as below the full statement is
encapsulated in Theorems 6 and 7.

Main Result. Let T ; be the random tree equipped with the aforementioned initial
and boundary condmom There exists B, € (0, 00) such that for all B € (B, 00), as
t — 00, the solution {u(t,x) : t € [0,00),x € TJ,Z} of equation (1.1) on Tizforms a
wavefront on the tree. The wavefront travels with an asymptotic speed that is less than
or equal to /2B, with equality holds if and only if the tree degenerates to the real line
R

The above result is a direct consequence of Lemmas 2.3, 2.4 and Theorems 6, 7.

It is not clear a-priori whether a wavefront exists for all 8 > 0, because intuitively
branchings of the tree can destroy pattern formation by spreading things out. This is in
contrast with FKPP on R. Our result guarantees that the wavefront sustains, provided
that g is large enough relative to the topological and the metric structure of the tree. The
quantity S, will be given by the right hand side of (6.4) in Sect. 6. For the constant-(d, £)

tree mentioned above, S, =

7d In(d — 1) increases to infinity at the asymptotic order

Ind
~ 0 <n7> as d increases to infinity. See Corollary 7.2 and Fig. 4. Note that this S,

vanishes when d = 2 (i.e. the tree is R) or when £ — oo. Technically speaking, the
lower bound of 8 is due to two reasons: to ensure that we can use the LDP and that there
is a unique wavefront; see Remark 6.1.

The slow down of the wave speed due to branching can also be heuristically explained:
the density of the mass concentration described by u spreads out to d; — 1 many edges as
it goes pass a vertex of degree d; (Fig. 1). In Remark 7.1, we provided a further intuitive
explanation of this slow down effect, which, roughly speaking, can be attributed to
the interaction between the “drift effect” caused by branching and the large deviations
principle. For the constant-(d, £) tree, the asymptotic speed is given by

¢* = inf Gl e (0.v26].
220 1 4p
20+ —1In
¢ <1+y2—\/(y2— 1)2+4Q2p — 1)2y2>
(1.4)

where p = (d — 1)/d and y := V2 The upper bound /28 is attained if and only if
d = 2 (i.e. the tree degenerates to R). See Corollary 7.2 and Fig. 4.




‘Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees 113

To prove our main result, we start from the classical idea (like the one presented in
Freidlin [13]) which connects the solution u(¢, x) of the FKPP equation (1.1) with the
functional integration over the trajectories of an underlying stochastic process, and we
then make use of the large deviations principle (LDP) of that process. Indeed, for the
classical FKPP case when x € R, the solution u(#, x) to (1.1) can be represented via
the well-known Feynman-Kac formula as the solution of an integral equation over the
trajectories of a standard Brownian motion on R. The result that the asymptotic wave
speed is given by a* = /2 then follows from LDP for the Brownian motion on R.
Similarly in our case, when u(t, x) to (1.1) is considered on the tree (i.e. x € TJ,Z)’ the
underlying stochastic process in the Feynman-Kac formula is replaced by a Brownian
motion B; on the tree T qi The Brownian motion B; on the tree behaves as a standard
1-dimensional Brownian motion in the interior of the edges, and at each vertex of the
tree, it chooses randomly and with equal probability to enter one of the edges adjacent
to that vertex.

Since dy = 2, we can associate any point x € T; ; with a unique horizontal coordi-
nate y € R which is the signed distance on T from x to the root p (i.e., y = £dr(x, p)
with + sign when x belongs to the right branch and — sign when x belongs to the left
branch), as illustrated in Fig. 1. We denote by 7 : T i~ R to be the projection map
sending x to its horizontal coordinate y. Due to the symmetric behavior of the Brownian
motion B; at each vertex of the tree, one can show (see Sect. 2.3 and in particular Lemma
2.3) that the solution u(¢, x) = v(t, 7 (x)), x € TJ,Z . Here v(¢, y), y € R is the solu-
tion of an integral equation, given by the Feyman-Kac formula, to which the underlying
stochastic process is given by the projection Y; of B, onto R: ¥; = 7(B;). Notice that,
when a Brownian motion on Tj 7 is at a vertex with degree d; that is on the right of the
root, the probability that it moves further away from the root (i.e. move to the right) in

. . -1 . . .
the next instance is . Thus the process Y; behaves like a Brownian motion except

i
at its interface points (barriers), i.e., those points on R that are the projections under x
of the vertices of the tree T ; . At these interface points, it moves to the right or left

-1
with respective probabilities p; = and 1 — p; (see the lower part of Fig. 1). Such

areal-valued process Y;, introduced inl [31], is called a multi—skewed Brownian motion;
precise definitions are in Sect. 3.

Our LDP of the multi-skewed Brownian motion Y; (see Theorems 4, 5 in Sect. 5)
in general follows the method of LDP for random processes in random environment in
[6,36], [12,28,29, Chapter 7]. However, these existing results do not apply directly to
Y or the embedded random walk at the interface points.

In fact, such LDP analysis for Y turns out to be remarkably delicate and interesting. It
first involves a calculation of the Lyapunov exponent given by the Laplace transform of
certain hitting time of the multi-skewed Brownian motion Y; (see Theorem 3 and Sect. 4).
Interestingly, such a quantity is calculated by making use of some existence results of
an infinite product of 2 x 2 random matrices parameterized by d , ¢ (see Proposition 4.1
and Theorem 2). This allows us to obtain a variational formula for the wave speed in
terms of d , ‘ (see Theorem 7 in Sect. 7). This variational formula enables us to show
that the speed of the wavefront on T ; is slower than the speed of the standard FKPP

equation on R, and we can estimate this slow down in terms of d and €.

Due to the random tree structure of T i the multi-skewed process Y; behaves as a
biased random walk at its interface points. The biasedness of Y; at the interface points
are away from the root, because d; > 2. When dy = 2, one can think of the effects of
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such biasedness as adding positive and negative drifts to a standard Brownian motion
on R. These “drift-like skewnesses” result in some interesting behaviors of the hitting
time of Y; (see Sect. 3.1), and they make the LDP of Y; substantially different from the
one for the standard Brownian motion. Intuitively, such drift effects make Y; harder to
come back to a neighborhood of the origin, so that the LDP has a lower rate function
(action functional). Moreover, there is a non-negative finite quantity at which the Laplace
transform of the hitting time of the multi-skewed Brownian motion Y; jumps to infinity
(see Theorem 1). A more careful analysis will demonstrate that the LDP will only hold
in a particular regime of the parameters (see Theorems 4, 5). Except for these features,
the exact shape of the LDP rate function may exhaust various different possibilities (see
Fig. 3). Correspondingly, the analysis of the wavefront propagation only works in the
regime when the reaction rate S is larger than some value §.. To the best of the authors’
knowledge, except for a short remark in [12, Section 7.6, Remark 4, pp.524-525] that
mentions the case when there is a drift, this is the first work that carefully addresses such
random drift phenomenon for the wavefront propagation of FKPP equations in random
environments via probabilistic method. The particular intricacy in our work is that we
are not working with a simple random drift that can be offset by a moving frame, but a
more complicated “drift effect” caused by the multi-skewness.

Discussion. In contrast with FKPP on R, it is not completely clear what happens to FKPP
on trees when the reaction rate 8 > 0 is smaller than the critical value 8. mentioned in
the main result above.

Our approach is based on the LDP analysis for processes in random environments,
which only works in a certain regime of the parameters (see Theorems 4, 5). The LDP
analysis that works for processes in random environments can only be applied to the
case when the reaction rate $ is larger than .. Moreover, with the LDP rate function at
hand this Assumption also guarantees the uniqueness of wavespeed in equation (6.1).
However, such approach does not exclude the possibility that there are other methods
that may work when g is small. We leave this issue for future investigation.

On the other hand, if the tree T 7.7 1s not random but has constant branching lengths
and branch degrees, we can employ a more straightforward method (based on the eigen-
function of an elliptic operator) to obtain the LDP (see [12, Chapter 7, Section 7.3])
rather than relying on the hitting time analysis for the multi-skewed BM in a random
environment (like what we have in Theorem 4), so that we may be able to analyze the
behavior of (1.1) on trees for small values of 8. This issue will be left to the theme of
another paper.

It is also worth noticing that our multi-skewed process Y; here is different from the
process Y; introduced in [16] in that the latter process is ergodic with respect to both
positive and negative shifts. In our case, the behavior of our multi-skewed Brownian
motion Y, is symmetric with respect to the origin. This leads to the fact that the wave
speed is the same along positive and negative axes (see Theorem 6) as well as a few
technical differences in the proof of the LDP and the wave propagation (see Sects. 5 and
6).

Reaction-diffusion systems on geometric structures that have branching and singular-
ities have long been attracting interest in the scientific community. For example, a lot of
physics literature discuss reaction-diffusion equation on fractals such as the Sierpinski
gasket and the Koch curve. In [2,3,27], approximate expressions for the wavespeeds on
fractal media have been obtained by physical intuition. See the Campos-Méndez-Fort
formula mentioned in the numerical work [35, equation (4)]. The wave equation is also
considered on fractal tree in the simulation work [24] as a model of sound propagation
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in the human lung. However, besides all these efforts, there have been very few works
that discuss these problems at the level of absolute mathematically rigor (except [18]
that discusses reaction-diffusion equation on a particular type of infinite tree). Our work
puts forward one more step in this direction and our wavespeed formulas are new.

Paper outline. Section 2 is dedicated to preliminaries, including the definitions and
assumptions of the random tree and the precise statement of the FKPP equation and
wavefront speed on the tree, as well as the basic idea of projecting the Brownian motion
on the tree to a multi—skewed process Y on R. Section 3 contains some hitting time
estimates for Y that will be useful in later sections. Section 4 provides a calculation
and an analysis for the auxiliary functions used in proving the LDP, that are based
on existence and propertles of the limit of an infinite product of 2 x 2 random matrices
parametrized by d and £.Tn Sects. 5 and 6 we analyze the LDP of Y; and the corresponding
wave propagation respectively. Finally in Sect. 7 we provide a variational formula for
computing the wave speed that shows the slow down of the wave on Tg 7 with some
concrete calculations.

2. Preliminaries

2.1. The Structure of the Random Tree. The class of infinite metric trees is described in
the following and in Fig. 1.

Definition 1 (symmetric j-regular tree). Let d:= (dp)nez, be a sequence of positive

integers with dy = 2. A symmetric d -regular tree T j is arooted tree such that all vertices
at generation n have the same degree d,, (the root is the node at generation 0).

In the above, the assumption that dy = 2 is only introduced for the sake of simplifying
the proof and to visualize the geometry, and the arguments in this paper can easily
be extended to the case when dy > 2, without affecting the asymptotic speed of the
wavefront (see Theorem 7).

As an example, suppose there is a positive integer d such thatd, = d for alln > 1.
Then we have two identical d-regular trees attaching to the root.

We put the following assumption on d:

Assumption 1 (bounded branching degrees). We assume that there exist some positive
integer d > 2 such that

2<d,=d, (2.1
foralln € Z,, and dy = 2.

Definition 2 (symmetric d- regular tree with branch lengths 6) Denote by T := Tj ; the

symmetric d—regular tree with branch lengths Z, that is, the d—regular tree whose edges
between generations n and n + 1 are all of length equal to ¢,.. See the tree in the upper

part of Fig. 1. We denote by V the vertex set of T and T:=T \ V to be its interior.
We put the following assumption on e

Assumption 2 (bounded branch lengths). We assume that there exist some 0 < £ < £ <
00 such that _
0<t<t,<l<o0, (2.2)

foralln € Zy.
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Definition 3 (distance on T). The tree T = T ;.7 1s made into a metric space equipped
with the metric dt: for any two points x; and x; on T belonging to the same edge of
T we define their distance dr(x1, x3) to be the length of the interval between them;
for x; and x, belonging to different edges of T it is defined as the geodesic distance
dr(x1, x2) = min(dr(x1, Oj,) +d1(0j, Oj,) +... +d1 (0}, x2)), where the minimum
is taken over all chains of vertices O, € V connecting the points x; and x».

We think of T as a continuous object, where each edge is a line segment. As mentioned
in the introduction and illustrated in Fig. 1, each point x € T has a unique horizontal
coordinate w(x) € R which is the signed distance on T from x to the root.

Our probability space (€2, &, P) for the randomness in the tree Tj ; is defined as

follows. The sample space 2 := N% x (0, 00)”* has generic sample point (3 , Z) and
is equipped with its Borel o -algebra &. We then assume the following

Assumption 3. (i.i.d and mutually independent branching degrees and branch lengths
sequences). Under P, {d;}i>1 and {{;}i>0 are two mutually independent sequences of
i.i.d. random variables such that almost surely Assumptions 1 and 2 hold.

Since we will be considering Brownian motion on the tree T 7.7+ S0 that the pair (c? , Z)
determines the environment under which the Brownian motion moves, we will also refer
to the measure P as the one that governs the random environment.

Assumption 3 includes many random trees of interest. For example, {d;};>1 can be
i.i.d. uniform on a finite integer set such as {2, 3, 2019}. The deterministic d-regular tree
with branch length ¢, called constant-(d, £) tree in this paper, is the case when all {£;};>0
are equal to a constant £ and all {d;};> are equal to a constant d.

2.2. FKPP Equation and its Wavefront Propagation. Our main results are about the
speed of wave propagation, as t — 00, for the FKPP equation on the random tree T} ;
under P. Explicitly, we consider the FKPP equation

ou 2y o

—(t,x) =z +Bu(l —u), (t,x) € (0,00) x T 7,

32‘ 28.}(2 ’ (2 3)
Vu(t,v) =0 , (t,v) e (0,00) xV | :
u(0, x) = up(x) cxety; :

where V' is the vertex set of T ; and T 3.7 =Tz 7\ V is the interior of the tree. The
condition Vu(t, v) = 0 is called the symmetric gluing condition, which specifies that
the flow-in equals flow-out of mass at each vertex. Specifically, V f (v) is the sum of the
outward derivatives of function f at vertex v, i.e., Vf(v) = )_; 9 f(v) in which 9; is
the outward derivative along the i-th edge attached to the vertex v. The initial condition
uo(x) = 158 (x) for some small 0 < § < £, soitis 1 on part of the two edges
connecting to the root and is 0 elsewhere.

Equation (2.3) first appeared explicitly as scaling limits of interacting particle systems
in [10]. Following [12, 18], we define a generalized solution of (2.3) with initial condition
1o to be a measurable function u that solves the integral equation

u(t, x) = E@-D [uo(B,) exp {,B /t (1 —u(t —s, BS))ds}] , 2.4)
0
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where (B;);>0 is the Brownian motion on the tree T R and E ,(Cd’z) is the mathematical
expectation with respect to (B;);>0o starting at x, under a fixed tree T i Notice that
since T} 7 is random under P, the process B; is indeed moving in a random environment
distributed as P.

The process (B;);>0 is the Markov process on T} ; associated with an infinitesimal
generator A, that is given by the Laplace operator with gluing boundary conditions.
Within each edge of the tree T ; ; the infinitesimal generator A of the process B; is given

2
by 3 % in which di is the derivative along that edge. The domain of definition D(A)

of the operator A is gi\)fcen by functions f that are twice continuously differentiable inside
each edge of the tree T 7, and satisfy the gluing condition V f (v) = 0 at each vertex v
of the tree T ;. This notion of solution (2.4) is motivated by the Feynman-Kac formula.
The process B; considered here is a typical example of Markov processes on manifolds
with singularity (such as graphs, see [14,15,17,19,21-23]).

Let us denote by B(S; [0, 1]) (respectively C(S; [0, 1])) the space of bounded Borel
measurable (respectively continuous) functions on any metric space S taking values
in [0, 1], equipped with the uniform norm || e ||o. Based on the contraction mapping
principle, as detailed in [12, Section 3, Chapter 5] and [18, Theorem 3], one immediately
obtains Lemma 2.1 below, which ensures the well-posedness of equation (2.3).

Lemma 2.1. Let d and € be deterministic sequences that satisfy (2.1) and (2.2) respec-
tively and let T := Ty ; be a fixed deterministic tree. Suppose the initial condition

ug € B(T; [0, 1]). Then there exists a unique generalized solution u of (2.3) with
u(t,e) € C(T; [0, 1]) forallt > 0.

Due to our symmetric construction of the initial condition and the symmetric nature of
the Brownian motion B; on T i the solution u to Eq. (2.3) satisfies u(t, x1) = u(t, x2)
whenever d(x1, p) = d(x2, p). Such a fact is actually a consequence of Lemma 2.3
below. Thus we can give the following definition of the speed of the wavefront:

Definition 4. A positive real number ¢* > 0 is called the asymptotic speed for the
wavefont of (2.3) if for any 41 > 0 and ¢* > hy > 0 we have

lim sup u(t,x) =0, lim inf u(t,x)=1,
170 dp(x,p)> (e* ) 1= o0 dr(x.p)<(c*=ha)t

where u(t, x) is the generalized solution to (2.4).

In a nutshell, the problem studied in this work can be formally stated as follows:

Statement of the Problem. For what values of the reaction rate 8 > 0 does the equation
(2.3) admits a wavefront, as t — 00, that satisfies Definition 4?7 When the wavefront
exists, can we analyze its asymptotic speed?

This problem is answered already in the introductory section, and the rest of the paper
is dedicated to solving it.

2.3. The Basic Idea of Projection. Our key observation is as follows: when a Brownian

motion on T} ; is at a vertex with degree d; that is on the right of the root (see Fig. 1),

the probability that it moves further away from the root (i.e. move to the right) in the
di—1

next instance is p; = —
i
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Wave u on T ;7 Brownian motion on T

Wave v on R

—h - Multi-skewed process on R
FTS o -

Fig. 2. Connection with multi-skewed Brownian motion via projection . [Vertical double-arrow] The
top-left part shows the graph of a solution u of (1.1) (the wavefront) on half of a tree, the other half of the tree
is symmetric. The wave will propagate to the right (dashed arrows) along all edges of the tree. The bottom left
shows an arbitrary semi-infinite branch. Knowing the wave v on it determines the wave u on the entire tree, and
vice versa, as described in Lemma 2.3. This is because the travelling waves on any two semi-infinite branches
are the same. This equivalence relation is symbolised by the vertical double-arrow. [Horizontal double-arrows]
Feynman-Kac formula allows us to write the solutions of reaction diffusion equations in terms of diffusion
processes, giving (2.4) in the upper horizontal double-arrow and (2.6) in the lower horizontal double-arrow.
[Vertical one-sided arrow] On the right, 7 is the projection that maps the Brownian motion on the tree T g

to a multi-skewed process ¥ on R

Therefore, instead of analyzing the large deviation behaviors of the Brownian motion
B; on TJ’ 7> we do so for the projection of B, onto a one-dimensional axis along the
direction of the wave propagation. The projected process is the multi-skewed Brownian
motion Y; € Rintroduced in [31]. LDP of Y then leads to the asymptotic speed of a wave
v travelling on R, via the Feynman-Kac formula. Our setting, specifically the collection
of trees and the initial condition u(0, x) = ug(x) = 1(_s,5)(x), guarantees that the
asymptotic speed of v is the same as that of the solution u of the reaction-diffusion
equation (1.1). Figure 2 illustrates this idea.

The interface set Z = (z,)nez is such that zo = 0, z;41 — z; = ¢; and z_; = —z; for
i > 0.Clearly z,, = Z::é ¢; = —z_,forn > 1. Assumption 2 ensures that 7 := {z;}icz
has no accumulation point.

The trajectories of process Y = (¥;);>0 behave like Brownian motion on R\ Z, and at
point z; > 0, the probability of hitting z; +& before hitting z; — ¢ is equal to p; := dld—l
as ¢ is tending to zero; see [31, Theorem 1.2]. This property of Y leads to the followling
lemma. We will formally define process Y in Sect. 3, Definition 5.

Lemma 2.2. 7(B) =Y in distribution in C (R, R).

Based on Lemmas 2.2, 2.3 below tells us that we can recover function u from its
restriction v on a single infinite branch, and that such a restriction v also enjoys a
Feynman-Kac formula involving path integrals for the multi-skewed Brownian motion

Y. In the below P;,d D Ey @) are the probabllmes and the mathematical expectation
with respect to (Y;);>0 startmg at y, under a given tree Tj ;.

Lemma 2.3. Let d and € be deterministic sequences that satisfy (2.1) and (2.2) respec-
tively and let T := T* 7 be a fixed deterministic tree. Suppose the initial condition



‘Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees 119

uo € B(T; [0, 1]) satisfies ug(x1) = ug(x2) whenever w(xy) = 7w (x2). Then
u(t,x) =v(t, r(x)) forall (t,x) e Ry x T, (2.5)

where v is the unique element in B([0, 00) x R; [0, 1]) such that

v(t, y) = Eff)[vo(y,)exp {,B /Ot (1 — ot —s, n))ds”, (2.6)

the process Y = (Y:);>0 is the multi-skewed Brownian Motion in Definition 5 and the
Sfunction vy € B(R; [0, 1]) is defined by voom = ug. Furthermore, v(t, -) € C(R; [0, 1])
forallt > 0.

Proof. Similar to the proof of the Theorem 3.1 [18], from the contraction mapping
theorem on the Banach space 67 := B([0, T'] x R; [0, 1]) with the uniform norm, for
the operator @ : ‘Br — ‘Br defined by

()t y) = ED [uo(¥) exp {4 fo (1-ra=sv0)as}|. femr,

where T € (0, 0o) is small enough, and then by extending to time intervals of arbitrary
length, it follows that there is a unique v € B([0, co) x R; [0, 1]) satisfying (2.6) on
[0, 00).

To check the details, forall 0 < ¢ < T, we have

D) ¥) = R, )| = ‘E;‘m[uom)exp [ﬁ/t (1= r@=s.))as]]
- - ° t
—E"O ug(vexp (B /0 (1-g-s. Ys))ds}]'

< luolloo | EO [ exp { /O (1= fe—s.10)ds]

— exp {ﬂfol (1- gt —s.v)as]]

< lluollooB exp(B)1|| f — glloc  (by Mean Value Theorem) ,

which is strictly less than || f — g||o for 7 small enough. Now we can extend the solution
tointervals [T, 2T], ..., [(n — )T, nT] for n € Z. The continuity of v will then follow
from Lemma 2.1 and (2.5).

It remains to prove (2.5). By the assumption on the initial condition, as well as the
symmetry of T 7 with respect to the horizontal direction at each bifurcation of the tree
TJ,Z (see Fig. 1), there exists a function w : R — [0, 1] such that u(¢, x) = w(t, 7 (x))
forallx € T and t > 0. By (2.4), we have

w(t, 7(x)) = E(J,Z)[w(o, 7 (B;)) exp {ﬂ fot (1 — w(t -, n(B,)))ds}] ,

where B; is a Brownian motion on the tree T. Since 77 (B) = Y in distribution by Lemma
2.2, we obtain that w solves equation (2.6) which implies that w = v by uniqueness of
solution to (2.6). |
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In particular, as we assumed ug(x) = 1(_s 5)(x), we obtain from Lemma 2.3 that
vo(y) = 1(=5,5)(y). From (2.5) in Lemma 2.3, we see that the wave speed for u (¢, x) on
']I‘d~ 7 defined in Definition 4, is the same as that for v(z, y) on R.

Lemma 2.4. A positive real number ¢* > 0 is the asymptotic speed for (2.3) (in the
sense of Definition 4) if the following holds: for any h > 0

lim sup  v(f,y) = lim sup v(t,y) =0, lim inf v(t,y)=1,

1700 o (c*+h)t 1=00 | (_c*—h)t 100 (—c*+h)t <y <(c*—h)t

where v(t, y) is the generalized solution to (2.6).

Our analysis of the wavefront propagation of the equation (2.3) on Tj 7 is reduced
by Lemmas 2.3, 2.4 to the analysis of the corresponding solution v(z, y) of the integral
equation (2.6) given by the Feynman-Kac formula. The rest of the paper is dedicated to
the surprisingly delicate analysis of the LDP of Y; and the wave propagation of (2.6),
that leads to the solution to our problem.

2.4. Notations and Convention. We collect some notations here for the reader’s con-
venience. Let N = Z.og = {n € Z,n > 0} be the set of positive integers and
Zy = Z=o = {n € Z,n > 0} be the set of non-negative integers, and similarly
Z<y =1{n € Z,n < 0} and Z<g = {n € Z,n < 0}. We let a vV b := max{a, b}
and a A b := min{a, b}. We denote an open §-ball centered at u € R to be Bs (uﬁ). A tree
T = T ; is equipped with two parameters: the branching degree sequence d = (d;)

and the branch lengths sequence (= (€i). 1f ¢; = 1foralli, then T ; = Tj. We define
di —
i > o
7_; = —z; fori > 0. The pair (d, £) uniquely determines (p, 7) and vise versa. Hence
we use them interchangeably.

The Brownian motion on T i is denoted by B; and the corresponding multi-skewed
Brownian motion on R is denoted by Y;. Notice that when the tree degenerates to R, this
also includes the case that B; stands for a standard Brownian motion on R. If these two
processes are written with superscripts, like B} or ¥;', then it stands for the corresponding
process starting at the initial point denoted by the superscripts x € T and y € R. The
probabilities and expectations for the Brownian motion and multi-skewed Brownian
Motion with a fixed environment are denoted by p.0 (P([7 ’Z)) and E@-9 (E » ’Z)). The
probabilities and expectations for the random environment are defined by P and E. We
set p _ P Li— 1Di

PTG = py b
Y; from Yy = s to r is defined by 7,¥. We let 7 be the k-th time the multi-skewed BM
Y hits the interface set 7 = (Zi)ieZ- We set n = —A to be two parameters of opposite

pi = and we set the interface points z; so that zo = 0 and z;4+1 — z; = ¢; and

and p' | = ¢’ = 1— p',. The first hitting time for

sign, and y; = ez , ¢ = 2p; — 1. A limiting random variable § = &, = &_, will be
introduced to analyze the wave speed.

3. Multi-skewed Brownian Motion in Random Environment

LetZ := {z;};cz be aset of real numbers with no accumulation point (sometimes we refer
to z;’s as barriers or the interface points, and 7 the interface set) and p := {p;}iez C (0, 1)
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(we refer to p as the skewness sequence). It follows from [25] that there is a unique
pathwise solution Y = (¥;),>0 to the stochastic differential equation

Y, = Y0+Bt+f LY@, x)du(x) , (3.1)
R

where B is the standard Brownian motion on R, LY is the local time of the unknown
process Y, and u is the bounded measure

w= @pi—1s,. (3.2

ieZ

Definition 5 (multi-skewed Brownian motion [31]). The unique diffusion process ¥ =
(Y1)r=0 on R solving (3.1) is called a multi-skewed Brownian motion with skewness
sequence p and interface set 7.

Suppose, as in Sect. 2.3, that z0 = 0, z;41 —z; = ¢; and z_; = —z; fori > 0, and
_di—1

7 (3.3)

Di:
The pair (57 , Z) uniquely determines (p, Z) and vise versa. The symmetric d -regular tree
with branch lengths ¢ can then be denoted either as Tj; ; or T z.

We denote the two probability measures governing the environment (5, 7) € (0, 1)%x
RZ and the diffusion Y with skewness sequence and interface set (p, Z) by, respectively,
P and P79 Their mathematical expectations are denoted by E and E #.2) respectively.
Following literature on random walk in random environments (RWRE) we refer to P (#.2)
as the quenched law 3.

Assumption 3 directly implies the following Lemma for the structure of the interface
set Z and skewness sequence p.

Lemma 3.1. The probability measure P on the space of “environments” (p, z) € (0, 1)%x
RZ that governs the structure of the multi—skewed Brownian Motion Y; satisfies the fol-
lowing:

(1) (i.i.d. skewness and branch lengths). Under P, (p;)i>1 is an i.i.d sequence of random
variables in (0, 1), ({; = zi+1 — zi)i>0 is an i.i.d sequence in (0, 00), and the two
sequences are independent.

(2) (p is symmetric). For P-almost all (p, 7), there exists a sequence of positive integers

1

- — d
d = (dy)nez, withdy =2and?2 < d, < d < oo, suchthat p; = y and p—; =

1

1 — pifori >0.
(3) (7 is symmetric). zo = 0, 7, := Zl":ol liand z_, = —z, forn > 0. For P-almost all
(p,andalln > 0,0 < £ < zu41 —2n < £ < 00.

We define pil and pi_1 by

_ Ci—1pi
Li(1— pi)+Li—1p;

pil : and pi_l =1- pil. (3.4)

3 The annealed measure PP is defined by P(A) = E[P(ﬁ*Z)(A)] = f(o Z xRZ pP2 (A) dP.
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Remark 3.1. (embedded random walk). The embedded random walk of ¥ on 7= {z}iez
is abiased random walk with transition probabilities { p’ ,, p' ,} given by (3.4). Precisely,
let 7o = 0 and for k£ > 0 we define

Teel i=10f{t > 74 1 Y, €7} (3.5)

to be the (k + 1)-th time that Y hits the set Z = (z;);ez. Then by [31, equations (2.9)-
(2.10)], the random walk {Y7, }x>( satisfies

P(YTk+1 = Zi+1|YTk = Zi) = p:-] and P(Y‘L’k+1 = Zi—1|yrk = Zi) = pl—] (36)

3.1. Hitting Time Estimates. For the multi-skewed Brownian motion Y; on R, and any
r, s € R, let us introduce the first hitting time to r starting at s

TP =inf{t >0,Yo=3s,Y =1} . (3.7
Let Sli be a standard p;-skewed Brownian motion (see [20]). That is,
Si =S+ B +@2pi — DL (3.8)

where B is the standard Brownian motion on R, LS is the local time of the unknown
process S at 0. Let o (i) := inf{r > O : Sti € {—¥¢;i_1,¢;}} be the exit time of the
standard p;-skewed Brownian motion Sf on the interval (—¢;_1, ¢;), starting at 0. The
probabilities and expectations with respect to the driving Brownian motion B; in (3.8)
are denoted as P and E, respectively.

Denote by Sil the event {Sfm.) = {;} and by Si] the event {S' 0 = —~¢;_1}. Then

o
Remark 3.1 asserts that P(Sil) = pil. Define
JLi=Ji = E [e"”@ 1{5,-ﬂ}] —E [e"”(i) | s;]] Pl (3.9)

We write p’ := pi, and ¢’ := p' | = 1 — p' to simplify notation.
For fixed A € R, we define the auxiliary function

w(x) = w; (x) = EPD I:e*)»TOX le*<oo] , xeR, (3.10)
which might be +00 when A < 0. Set n = —A, then we have
woy) = EPO [l 1], 3.11)
0

The following lemma summarizes some elementary properties of the function w(x).

Lemma 3.2. Let 7 := {zi}iez C R% and p = {pi}icz C (0, D7 satisfy Lemma 3.1.
The function w = wy, : R — [0, oo] defined in (3.10) satisfies the following properties:

(1) For x > 0, w(x) does not depend on the choice of {(z;, pi)}i <o. Similarly, for x < 0,
w(x) does not depend on the choice of {(zi, pi)}io-

(2) wx) = w(—x) forall x € R.

3) If A =0, then wo(x) = P("’*Z)(T(j‘ < 00).

@) If A > O, then w is strictly decreasing on (0, 00) and strictly increasing on (—o00, 0).
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Proof. (1) This is clear from the definition: if x > 0, then the trajectory of Y stays on
(0, 00) during time interval [0, T(j‘).
(2) For any Borel set A C (0, 00), we define its reflection set

—A={—x:x€A}.
Then we have . .
PPy, € A) = PPI(Y, € —A) (3.12)

due to the symmetry of (Z, p) described in Lemma 3.1.

(3) This follows from the definition of the function w(x) in (3.10).

(4) This can be checked by applying the strong Markov property of process Y to the
stopping times {Ty" } and the fact that, for x > y > 0, we have

Ty =Ty + TOyQTyx, (3.13)
where for any r < 0, 6, : C, — C, is the shift operator 6,x(s) = x(s + 1), x € Cs.
O

Recall that wg(z1) = P(ﬁ*z)(TOZl < 00) by Lemma 3.2 part (3). The following
auxiliary lemma about wq(z;) will be useful in the proof of Lemma 5.1. It asserts that
almost surely with respect to P, this probability is strictly positive.

Lemma 3.3. Let 7 = {zi}icz C R% and p = {pi}icz C (0, D7 satisfy Lemma 3.1.
Then

(2) Fori > 1, wo(zi) = —'— € (0, 1] where
1+o0;
p’ L;i(1—pj)
oi = Z]‘[ ! ZH ARSI < ke (3.14)
k>i j=I p+1 k=i j=1 j 1Pj

In particular, wo(z1) € (0, 1) if and only if o< 0.
(b) There exists some positive constant Cy, = Cy(l, 1, d) > O that depends only onl, 1, d
such that wo(z1) > Cy almost surely under P.

Proof. (a) Note that
T
Ti =) (@ —ti-1). (3.15)

where {7;};>1 is defined in (3.5), 7o = 0 and X =inf{k > 0: Y;, = 0}. Under the
bounded Assumptions (2.1) and (2.2), Tj < oo if and only if X < o0. Part (a) then
follows from standard results for random walks (see, for instance, [37, Chapter VI
section 5.1]).
(b) From part (a) and part (3) in Lemma 3.2, the hitting probability
ol
l+o;’

wo(zn) = PPI(TS < 00) =

where by (3.14) and (3.4)

R - LA et - I
o= [15 =211+ Zﬂm-

j
=1 =1 Pl k=1 j=1 tj-1pj k=1
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From this we see that P-a.s. we have

C
S t (b) holds with Cy, = ——.
o part (b) holds wi « =170
O
Let us define the critical exponent
ng :=sup{n € R: w_,(z1) < oo} € [0, oo]. (3.16)

Theorem 1 below gives an representation of 7 and yields that n’ < oo. Similar results
are obtained in [6, Lemmas 2 and 4], but we cannot directly apply them here.

Theorem 1 (existence of Y € [0, o0)). Under Lemma 3.1, the critical exponent nY
defined in (3.16) is the unique element in [0, 00) such that

1/k

2k
im (Y [/ vn—w] =1, (3.17)

k— o0 .
xeXy i=0
where J,;w xiay—x; JOUlows (3.9), and Xy is the set of nearest neighbor paths in Z. with
v,

2k + 1 steps that start at 1, end at 0 and that do not visit O during the first 2k steps,
defined by

. 2k+1 2k+1 .
Xk .={x = (xi)i:B € Z+ o X0 = 1, Xok+1 = 0,

xi >landx;i —xji_1 € {—1,1} for1 <i < 2k}. (3.18)

We first give a representation of w_ (z ;) which will be useful in the proof of Theorem
1 and other places.

Suppose Yp = z; > 0. Then the embedded random walk of Y takes j + 2k many
steps to hit zero for some k € Z,. In this event, there are exactly k steps to the right and
J +k steps to the left, in which the last step is to the left, and during the first 2k steps the
path does not touch 1. The set of such left-right paths (left = —1, right = 1) is denoted
by X jok-

Lemma 3.4. Forn e Rand j > 1,

2k+j

wfn(zj) = Z Z 1—[ J,;C’i;il_xiil € (0, +o0],

k=0 xeX; i=1

where X i is the set of nearest neighbor paths in Z,. with 2k + j steps that start at j,
end at 0 and that do not visit 0 during the first 2k + (j — 1) steps.
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Proof of Lemma 3.4. Let j = 1. From (3.15) we have,
3.2 [ 3! A DD s T,
w_,,(zl) =E‘" el"0 lTOZ'<oo = E\W | el =1\t = 1rx<oo

S 5 Ul
=Z Z EP? [6"21':‘ N VO SR for1§i§2k+l}]- (3.19)
k>0 xeX;

Recall S} = {S,; = &} and " = (S, = —Li—1}, where o (i) is equal in
distribution to the exit time of Y starting at z; from the interval (z;_1, zj+1).

By conditioning at 7; successively and the strong Markov property of Y, a term on
the right of (3.19) is

3D | XX @) s fas no(xi-1)
E e —'= l_[ X —Xioi=xi—xi1) | = 1_[ Ele l{gxi—l }
i=1

i=1 X —Xi—1

2k+1

_ Xi—1
- l_[ Jnyxl'*xifl’
i=1

where J} . = E [¢"7® | S,] pl, is defined in (3.9).
Putting the last display into (3.19), we obtain the lemma for the case j = 1. The
general case j > 1 follows the same proof. O

From Lemma 3.4, (3.17) follows from the elementary root test if klim were replaced
—00

by lim sup. Lemma 3.5 below shows that the limit indeed exists.
k—00

Lemma 3.5. The limit

ok 1/k

®, = lim > | T x| €10.00] (3.20)
xeXy i=0

exists for all n € R, is non-decreasing and is strictly increasing in n when it is finite.

Proof. We shall apply Kingman’s subadditive ergodic theorem in the same way it is
applied to prove existence of limiting free energy in random polymer models; see for
instance [32, Theorems 2.2 and 2.4].

For 0 < n < m we consider the point-to-point partition function

m m—n

— Vi _ Vi
Znm = Z Jn, Viel =i Z Jn,ym—yi ’ (3.21)

yenn,m i=n yEHO.mfn i=0

where I, ,, is the set of nearest neighbor paths in N that starts and ends at 1 during the
time interval [n, m], that is,

My, = {y =)L, m=ym=1yj=1landy; —y;_y e{=1,1}forn<j< m}
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Forany 0 < a < b < c we have Z, . > Z, Zp,, because concatenating a path
in I, ; with a path in I, . gives a path in I1, .. This gives sub-additivity In Z, . >
InZ, p +1In Zp ., from which existence of the limiting “point-to-point free energy”

1
lim - In Zo o = lim —ln Z ]_[J,;“'xl”_xl € [—o0, 0] (3.22)

k— 00
xeXy i=0

follows from Kingman’s subadditive ergodic theorem [26, Theorem 2.6 on page 277].
Monotonicity of ®, follows from the fact that g i 41 1s increasing in 7. The strict
inequality then follows from the fact that, under Lemma 3.1,

: i i
min (/5,41 = Jj, 21) > 0.

for all no > n; such that the limits ®,, and ®,, in (3.20) are finite. |

Proof of Theorem 1. From the series representation in Lemma 3.4, (3.17) follows from
the elementary root test and the existence of limit in Lemma 3.5. The uniqueness of n?
in Theorem 1 then follows from strict monotonicity of the function n > ©,, stated in
Lemma 3.5.

Observe that, for each path x € X, we have (i) x2; = 0 and (ii) the number of steps
from j to j + 1 is the same as the number of steps from j + 1 to j for all j > 1. So for
each x € Xy, there exists an index set {j;} such that

2k+1

i Xji
H Jr;cle—xl | = (Hjnjﬂ " 1) JO —1- (3.23)
i=1

Putting (3.23) into Lemma 3.4, we obtain the representation

wo,(lo) =Y Y. <]_[ I _1> 70 (3.24)

k>0 xeXy

By Lemma 3.1, there exists Be [0, co0) such that
. 1 ~
T = mnl] VAR A > forall n € [B, c0). (3.25)
Then from (3.24) we derive that for all n > B we have

. \k
wop(e) 2 I Y0 G (S) =400, (3.26)
k>0

where we have used the well-known fact that the number of paths | Xy | is the k-th Catalan
1 (2k)!

number Cy = Tl (k'k)' (see, for example, Corollary 6.2.3 and page 223 of [34]). By

properties of the Catalan number Cy, the above series is equal to +oo for n € [B, +00).

Thus n < B < oo. Since for any n < 0 we have automatically w_,(x) < oo, we also

know that n? > 0. Hence n? € [0, E) c [0, 00). o
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The following corollary provides a mild condition (3.27) under which 2 € (0, 00)
(see Remark 3.2).

Corollary 3.1. If
max pLiptl < 1/4, (3.27)
i>

then n? € (0, 00).

Proof. Let J,"™* := max J,;')l J,’;Ll] .If (3.27) holds, then because J,é’ 1 is monotonically

increasing in 1, there exists a unique Ac [0, o0) such that for any n < A we have

; . 1
ma: max __ +1
I s TP = max T IR = g (3.28)
From (3.24), we have
k
wfn(zl) SJ,?, —1 Z Ci (J,;ndx)
k>0
1— /1 —4 jmax -
:Jr?,—l - — ¢ (0, 00), forn e (—o0, A], (3.29)

2 Jmax

where we have used again properties of the Catalan number Cy (see, for example,
Corollary 6.2.3 and page 223 of [34]). Thus under (3.27) we have n > A > 0. O

Remark 3.2. The condition (3.27) holds, for instance, if £; = £ are constant for all i > 0
and p; > 2/3(d; = 3)foralli > 1.
4. Construction and Analysis of the Auxiliary Function

In this section we provide more constructions and analysis of the auxiliary function
wx) =w,)(x) = EPD [e_)‘TOXITg@o] ,xeR

that we introduced in (3.10) in the particular case when A > 0. This will be useful in
the analysis of large deviations principle for the multi-skewed Brownian motion Y;. Our
analysis will be based on some properties of the limit of an infinite product of 2 x 2
random matrices (see [1] for a general reference on this topic).

Recall the hitting time 7;° introduced in (3.7) and notice that when A > 0,

w(x) = EPD [67”‘5{] , x€R. 4.1)
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4.1. Results for Deterministic Skewness and Barriers. SetZ := {z;};c7 to be a set of real
numbers with no accumulation point and p := {p;}icz C (0, 1). Within this subsection
we assume there is no randomness in either 7 or p.

Let {P;};>0 be the semigroup of the process Y;. Generalizing the approach of [7],
one can check that for any f € Cp(R), the function F (¢, x) := P, f(x) is the solution in
C12((0, 00) x R\ Z, R) N C([0, o0) x R, R) of

d 1 92

EF(I’X)ZE@F(L)C) s fOI‘tE(O,OO),xER\{Zi}iQZ,

F(0,x) = f(x) , forx eR .42
F(t,z)) = F(t,z;) , fort € (0,00)and Vi € Z ,

pidy F(t,z)) = (1 — pi)d F(t,z;) , fort € (0,00) and Vi € Z\ 0

Here f(z7) and f(z*) denote respectively the left sided limit and the right sided limit
of a function f at z.

We make use of some ideas in [18] and [29] in the following analysis. The following
Proposition gives an explicit formula for the function w(x) = wy (x) defined in (3.10)
in case when A > 0. We shall use the notation H}=k71 M; = My_1My_»---M; and
the convention that it is the identity matrix when k = 1.

Proposition 4.1. Let A € (0, 00). Let 7 := {z;}iez be a set of real numbers and p :=
{pitiez C (0, 1). Let £x = zk+1 — 2k and My be the matrix

1 V21t — 1)eV2M
My = — ¢ 2pk — De 4.3)
2p \@px — De VP eV
Consider the sum of column entries of the product matrices:
1
(L Re) = (11) ] Mi fork=1. (4.4)
i=k—1
Suppose the following condition hold:
(liminf Ry) Vv (liminf L) € (0, oo], (4.5)
k— 00 k— 00
and there exist (possibly +00) limit
. Ly
£=§& = lim — € [0, o0l. (4.6)
k—o00 Ry

Then the function w(x) = w; (x) defined in (3.10) is explicitly given as follows: w(x) =
w(—x) for x € R and on [0, 00),
W) = ffeVPOT g e VRO ey g, k21, @)

where fi = (ff, fo) are given by

- 1 —1 |
fl_e«/ﬁug_e*x/ﬁm (S) and fk_§<

1
]_[ M,)fl fork>2. (4.8)
=k—1

i
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Proof of Proposition 4.1. The fact that w(x) = w(—x) for x € R follows from Lemma
3.2.

Fix A > 0. The restriction of w(x) = w; (x) on x € Ry = [0, c0) is the continuous
solution of the following Sturm-Liouville problem on R with skew boundary conditions
on the set {z;}i>1:

0= %33):’”(’5) —iw(x), forz € (0,00), x € (0,00) \ {zi}i>1 ,
pidxw(zi+) = (1 — p)dyw(zi—), fori > 1,
w(zi+) = w(z;i—), fori > 1, 4.9)
w(0) =1,

lim w(x)=0.
X—>+00

From the first equation of (4.9), The function w satisfies the eigenvalue problem
0= %fow(x) —aw(x), x € (Zp_1, %) (4.10)
for all k > 1. This linear second order ODE (4.10) has general solution
w(x) = ffeVPOw 4 eV forx € (gror, 21, @D
where fkjE are constants to be determined by the boundary conditions in (4.9). The
functions wy (x) = w(x) for x € (zx—1, zx) can be extended continuously to the end

points of the interval [zx—1, zk]. The collection {w(zx) }x>0 satisfies boundary conditions
of (4.9) that can be stated as the following:

w(zr—) = w(ze+) = w(zp), fork > 1,

(I = pr)oyw(zrk—) = prdyw(zx+), fork > 1,

liirol wx)=w0)=1, 4.12)
X

Iim w(zx) =0.
k—+00

Putting (4.11) into (4.12), we obtain the following system of equations for the un-
known { ", fi }k=1.

fE+ f = f]:rﬂe—«/ﬁ(zm—zk) + szlem(zm—u)’ fork > 1,
(11— pk)(fk+ — fi)=n (f}:r_'_le—«/ﬁ(z;m—z;c) _ fk:]e«/ﬁ(zml—mc))  fork > 1,
fre VP frevPa =1,

fif+fi = 0ask—o00.

Let s := w'(0+) then we have that (4.13)
fre VPa g freVda =1
{ V2 (ﬁfmzl - fl_emzl) =s.
Thus,
o jﬁ) ’ (4.14)
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From the first two equations of (4.13) for k > 1, we get

I — V2~ p (fk + Q2pr — 1)fk) ;

(4.15)
fk = 6_\/7(2’(“ ) (fk (Zpk - 1) + fk ) :

2pk

To simplify notation, we let fk = (f¢, f,:)T to be the transpose of (f;, f, ). Then for
all k € Z \ {0}, we have

Sier1 = My fi,

where

_ L oV 2M k1 =) Qpr — 1)ex/ﬁ(z1<+1—z1<)
T2 \@px — De V2 arn—) o= V2 (zka1—21) :

Iterating this equation, we have fk = Mr_1My_»---My) fl fork > 2.1.e.

" ! VT (L4 )
fi = ]_[ M; T (l_L , fork>2. (4.16)
i=k—1 27 /s

Now by the fifth condition of (4.13) we have w(zx) = fk+ +fr = 0ask — oo, s0

1 eV2hzi (l \?ﬁ)

— 1i . 8A

O_klglgo(l 1)( ]_[ Ml) s (__ ' ) . (4.17)
i=k—1 NG

Suppose Ly and Ry are real numbers such that

1

(1) [T Mi= (L Re) -

i=k—1
Then from (4.17), we have

0= lim eV (z f) Ly +e V22 (% - j;a) Ry

k— 00
= lim % (e‘/ﬁZl Li+e —V23z) Rk) + e*/ﬁZI Ly — e’*/ﬁz1 Rk) N

k—o00

«/_ﬁ (
Now by assumptions (4.5) and (4.6), it follows that
e\/ﬂZI g + e*«/ﬁm

s:me_le S (4.18)

for & € [0, co] (When & = +00, 5 = —+/2)).
Thus combining (4.14), (4.16) and (4.18) we get

Nz (1 4 e Ere VP
7x/71 —e 2/\415

= —1 nd fi = —1 |1| M;) fi fork>2
= a = i or .
1 2 —/2Xrz4 <1 eV2hz) E+e™ ™ 2hz ) k 2 ; | ! ! -

ik
e~ 2171 76‘/2“1 g’;
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Notice that

N [, P e 2e=V _ 2
e—V2h11 _ pV22z1 £ e—V201 _ V2221 £ e—V2h11 _ pV2221 £

and
V2 [ _ eV § + eV — V2 _26«/27»115 — —2

eV _ oV2hai g N eV _ oV2hai g T e—V2ha _ oV2hz g’
we obtain (4.8), which completes the proof of this Proposition. O

4.2. Results for Random Skewness and Barriers. In Sect. 4.1 (p, Z) are not random.
Now we suppose these are random vectors under P which satisfy Lemma 3.1. We want
to verify conditions (4.5) and (4.6) in Proposition 4.1 on {M;} in order to obtain an
explicit formula for w(x) defined in (3.10) in the case A > 0.

Recall that {p;};>1 are i.i.d. random variables that take values in [%, 1) and {z;+1 —
zi} = {£;}i>0 are also i.i.d. random variables taking positive values. Moreover,

Mo — L V2t Q2pi — 1)em€f
CT2pi \@pi = e VP eV

— 1 <V,‘2 fiyiz)
2pivi \& 1 )~

in which we denote y; := emei € (1,00) and §; = 2p; — 1 € [0, 1) for simplicity.
Recall also that

(4.19)

1
(Le Re) = (11) J] Mi eR} fork >2.
i=k—1

1

The “backward” process {(Lx R)}
“forward” process is. That is

k=2 is not a Markov chain, but the corresponding

k—1
(Le Re) = (1) [ [ M. k=2 (4.20)

i=1

is a Markov chain, with iterative relation (Zk+1 §k+1) = (Zk ﬁk) M. Furthermore,

(Lk Rk) 4 (Zk ﬁk) in R2 for each k > 2.
The following lemma ensures that condition (4.5) in Proposition 4.1 is verified for
the i.i.d. case.

Lemma 4.1. With probability one, Zk+1 + §k+1 > Zk + ﬁk and Zk > ﬁk > 0 for all
k>2.
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Proof. Define (Z 1 ﬁl) = (1 1). Then the following iterations hold for k > 1:

(Zk+l §k+1) = (Zk iék) My = (V,fzk + i R CkaZZk + ﬁk)-

2pryk

Adding the two entries gives Zk+1 + Ek+1 = yka + y,;1 ﬁk for k > 1 and so
(Lir1 + Ris)) — (L + R = e+ v ' =L+ (1 —y (L — Ro) . (4.21)

Since y; > 1, the first assertion Zk+1 + §k+1 > Zk + ﬁk follows from the second
assertion Ly > Ry. - -

It remains to prove the latter, Ly > Ry for k > 2. The initial case k = 2 holds:
R, < L, because

2pini(Ry = Lo) = Gy + 1) = (v +60) = (@1 = DOF = D) <.
Similarly,
2pkVe(Ricet — Liw1) = @y Lic + Ri) — (72 Li + G Ri)
= (G — DL — R - (4.22)
The proof is complete by induction. O
Lemma 4.2. With probability one, Ly — coask — oo.

Proof. We will show that Lk + Rk — 00, which implies Lk — 00 because Lk > Rk by
Lemma 4.1. From (4.21) and the fact that L r > Ry, we have ratio

~ ~ -1 -
Li+1 + Rt ety —2 W7
—— > 1 + =1

— =1+ >1. (4.23)
L+ Ry 2 2
2
L
Let 6 := 1+ M Then
k
Lis1 + Re > 2] [ 6i — o0
i=1

by the ergodic theorem. O

Remark 4.1. Unless the tree T; ; degenerates to R, ﬁk also tends to infinity P-a.s., since
later we will show by Theorem 2 that except for the case that the tree T ; degenerates

. . . L .
to R, in which case £ = lim =k 00, in general we always have & < oo P-a.s.
k—o0 Ry

The projective line PR = R2/ ~ is the set of the lines in R? passing through
the origin. Let 7 : R> — PR! be the projection map. We parameterize the projective

b
line PR! by 7(a, b) = arctan <—> € (—m/2,7/2] and equip PR! with the metric
a

L
p(01,602) := |01 — 6;]. Since ultimately we desire to study the ratio of ﬁ—k as defined in
k

(4.20) where Zk > Ek > (0 by Lemma (4.1), we are interested in 6 € [O, %)
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Observe that if

1
(A B) = (ab) My = T (via+ b Gkyla+b),

B b
then 1= CDk(—), where &y = @, ,,) is the random Mdobius transform defined as

a
cy?+z
P 7)) = ——. 4.24
& @) 711z (4.24)
This leads us to consider the map f; ) : PR' — PR! defined by
Cy?+tand
fie.y)(®) = arctan (¢, (tan 6)) = arctan (m . (4.25)

The following lemma says that f is a contraction if (¢, y) € [0, 1) x (1, 00).

Lemma 4.3. Let (¢, y) € [0, 1) x (1, 00) and consider the deterministic function f =
fic.y) : PR' — PR" defined in (4.25). Then

p(f@). F82) = Keopp®1. 02) foralior o€ [0.7] . @26
where
2 2 2 2
o [ra=  wa-gd
Ho = max { @+ D" @+ Do+ +4¢y2} SO e

Proof. Notice that for 6 € [0, %)

yra—1¢?

= >0 4.28
(C2+ 1) (y*cos2 0 +sin? 0) +2¢ y2 sin(26) (428)

1'®

To find an upper bound for f’(6) we notice that

% ((;2 +1)(y* cos2 6 + sin? 6) + 27 2 sin(29)> =0

has solution at

1 4
6, = — arctan (%)+Hf0rn el.
2 ¢ +Dhy*=1 2

Moreover, {6, },cz N [0; %] = {6p}, because
Now,

___ %Y ___ < (and so arctan §; > il
DD =5
9
= ((52 +1)(y* cos2 0 +sin? 6) + 2¢ 2 sin(29)> (60)

=2(¢%+ D(1 — y*)(cos(260) — 8¢y ? sin(20))(6o)

4cy
= 2({2 +1)(1— )/4) cos <arctan <m>>
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. 4Ly
— 8;)/2 Sin <aI’Ctan <m>>
1 4y
- 224 11—y — 8 2<—)}
Ty 1[(;+)( R et et
((;2+1><y4—1>) *

S [2<;2+ (1 —y%

(et
(&2+D(*=1

Thus, the minimum value of the denominator of (4.28) on [0, 7t /4] occurs at the endpoints
of [0, /4] and $0 0 < supycg z/41 /' (0) < K(z.y)- The proof of the lemma is complete
by the midpoint theorem. O

B 32;23/3
C+DoA -1

The following random version of Lemma 4.3 follows immediately.

Corollary 4.1. Let (¢, y) € [0, 1) x (1, 00) be a random variable with the same distri-
bution as ({1, y1) under P. The contraction (4.26) holds with random variable K ¢ )
satisfying K < 1 a.s. In particular, EK < co. and EIn K < 0 for all ) € (0, 00).

Corollary 4.1 verifies the contraction assumptions of [8, Proposition 1.1] and thus
gives the desired almost sure limit &. This ensures that condition (4.6) is verified for the
ii.d. case.

Theorem 2 (existence of the limit &). The limit

lim 2k [0, 1]
im — ,
&, k—o00 Ly

1
exists P-a.s. for all . € (0, 00). The distribution of — is the unique stationary distribu-

A
tion of the Ry -valued Markov chain {x;}x>1 defined by xy = &y o Pg_j0---0 P(1)
fork > 1, where

Proof. The process {f—i} is a backward (non-Markov) chain in the sense that % =

(O (f—’;) = ®jodjo0---0Pi(1). The corresponding forward iteration is the R -valued
Markov chain {x;}¢>1 defined by xg4+1 = @ (x¢) for k > 1 and x; = & (1).

Similarly, processes v := arctan (%) and 6 = arctan (xy) satisfy

Yk = Jervn © S o S (D
Ok = S © fm -0 S
where f(; ;) is defined as in (4.25). So in particular {6} is also a Markov Chain. By

Lemma 4.3, { f(¢,,y,)} is a family of Lipschitz functions from the Corollary 4.1 we know
it is contracting on average. Thus by [8, Theorem 1.1] the Markov chain {0} converges
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to a unique stationary distribution. In particular, the limit 6y — 6, exists in distribution.
So

lim x; = lim tan(6) < tan(doo) € [0, 1] .
—00 k—o0

In the above display the limit is less or equal to 1 by Lemma 4.1. Now by [8, Proposition
1.1] for backward iterations, there is an almost sure limit ¥/, and it has the same
distribution as 6. Thus,

1 . Rk . a.s. d
— = lim — = lim tan(y) = tan(oo) = tan(f) € [0, 1] .
& k—oo L  k—oo

The following is an immediate corollary of Theorem 2.

Corollary 4.2. Let A € (0, 00) be a fixed constant. Let (£, {) be a random variable that
is independent with &, and is equal to ({y, &) in marginal distribution, where k > 1 is
arbitrary. Then

Ldg ( ! ) (4.29)
€1 "o\ ) '
NorY, . L
wherey = e . Such random variable — is unique in distribution.
A

Based on Corollary 4.2, we can further derive the following corollaries about the
properties of £ = &;.

Corollary 4.3. Unless ¢ is identically O, i.e., d; is identically 2, or equivalently the tree
degenerates to the real line R, we have

A

1

E |:—i| >0. (4.30)
3

When the tree degenerates to the real line R, the above expectation is 0.

1
Proof. Set z = z;, = — > 0. It suffices to show that unless ¢ is identically 0, we have

A

P(z > 0) > 0. Suppose this is not the case, then with P-probability 1 we have z = 0.

2

+
C)z/ n {Z & z is 0 with probability 1. But since z > 0 and ¢
z

is not identically 0, we arrive at a contradiction.

On the other hand, when ¢ is identically 0, i.e., d; is identically 2, which means that
the tree degenerates to the real line R, O is a fixed point of the transformation (4.25) and
thus 1/§ = 0. O

By Corollary 4.2, we have

1

Remark 4.2. If ¢ is not identically 0, i.e., d; is not identically 2, then E_ € (0, 1] with
A

positive probability. Otherwise, when ¢ is identically 0, i.e., d; is identically 2, or in

other words the tree degenerates to the real line R and 5_ = 0. Moreover, if all d; > 3,
N

1

then C_ € (0, 1] with P-probability 1 since in this case P(¢ > 0) = 1 and O is not a
)

fixed point of the transformation (4.25).
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Corollary 4.4. For all A € (0, 0c0),

2020
— 716 L —1 .
P(& > 1+2(d) N ]> =1. 4.31)

1
Proof. By Theorem 2, P-a.s, we have & = &, > 1. Thus from (4.29), g < D, (A),

where y > etV2* > 1,¢ € (0, 1), A € (0, 1] and

cyr+ A 1
q’}/,{(A) = 5 = 2 .
Y +EA 1+(V - A1 -¢)
Y+ A
2
This implies that £ has the same distribution with 1 + (y“# Since ¢ <
_ 14
1 —2(d)~", our choice of y, ¢ and A guarantee that
2-Ma-9 2@_1&&@ —1
Y2+ A N 2V 4

where d is the upper bound of the number of branches in Assumption (2.1). Thus P-a.s.
we have

£ > 1+2(E)—1—62NH !
- e20V2h 41

5. Large Deviations Principle for Multi-Skewed Brownian Motion

Recall that Y; is the multi-skewed Brownian motion in an i.i.d. environment {(p, 2)}
under P and that Lemma 3.1 holds. Recall the probability measure P72 that determines
the quenched law of Y in a given tree T z,

As in the proof of part (2) of Lemma 3.2, we know from (1) in Lemma 3.1 that (3.12)
holds, i.e., for any Borel set A C (0, co) we have P(ﬁ'z)(Y, €A = P(ﬁ'z)(Y, e —A).
This fact indicates that in our case, we only have to consider wave-propagation in the
positive direction, and the wave speed in the negative direction should be the same as
that in the positive direction. To this end, we shall first establish Theorem 3 below, which
is parallel to Lemma 5.1 of [16].

Recall that the function w(x) = w; (x) = E@? [e*”ox 1T6‘<oo] as in (3.10). As in
Sect. 3.1, we fix a notational convention that = —A in the rest of this section. Thus we
can also write w(x) = w_,(x) = E(7:2 [e”Tg IT(')"<oo:|~

For any n € R we define the Lyapunov Exponent

1 = = to
un) = goE (m EP I lT(fom]) , (5.1)

in which we allow for some choices of n the quantity @ (n) to be +0o.
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Notice that by (3.10) we have

u(n) = Elng—ljon(eo) . (5.2)
Theorem 3 (Lyapunov Exponent identity). Let n € R be such that
E < In E?9 |:e"T<fO lT(f°<ooi| D < 00. (5.3)
Let 0 < ¢ < v. Then almost surely the following limit holds

The convergence is uniform with respect to v and c as they vary on the subset of (0, 00)
that is bounded with (v — ¢) > 0 bounded away from 0. Furthermore, this limit is
independent of v and c.

Proof. Fix a pair (p, 7). Forr, s € R we set

g(r.s.m) = E79 [ 17 | (5.5)

By the strong Markov property of the multi-skewed Brownian motion Y;, we have
forr <s <t that

Ing(r,t,n) =Ing(r,s,n) +1Ing(s,t,n) . (5.6)
Fix ¢ > 0. Let the number N (n) be such that zy(,) < cn and zy()+1 > cn, n € N.

Then lim

and (z;+1 —z; = €;);>0 are two i.i.d sequences of random variables, that are independent
of each other. By the Law of Large Numbers for ergodic sequences combined with (5.6)
we see that

= E{ holds P-almost surely. As we have in our Lemma 3.1, (p;)i>1

__Ing(0,cn,n) 3.3 [ 115"
Jim S =B (P [ 1 (])

holds P-almost surely, provided that we have (5.3). Therefore

. 1 L 1 Ing©0,cn,m) 1 (5.3 T
R R TR 7 G S A
N(n)

if (5.3) holds. Now we can derive (5.4) as in [29, Section 2, Proposition 1]. O

Theorem 3 will lead to the large deviations principle for both the hitting time 7,* and
the process Y;, and from there we will analyze the wave-front propagation on a random
T; 7 in Sect. 6. The proof here makes use of the arguments in the analysis presented in
[6,28,29,36], [12, Chapter 7] and [18], yet there are many technical differences due to
the presence of multi-skewness of the process Y; and the symmetric structure of the tree.

The following lemma summarizes basic properties of the function w (7). To emphasize
the dependence of the limit random variable £ = &, on A = —n from Theorem 2, we
will explicit this dependence § = &, = &§_,, throughout.
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Define
ne :=sup{n € R: u(n) < oo} . (5.7)
In the below, for a function f (1) that depends on n, we denote f (1.—) to be the limit
nli}lg{l_ f(n). The function f(n) can be w(n) or p'(n).

Lemma 5.1. The following properties of the function (n) hold.

(1) n(0) <0;
(2) When n < 0 we have

_ il a1
W) = /=21 + g E[l —— mzo]‘ (5.8)

In particular, u(n) < 0 forn < 0;

3) u(n) - —ooasn — —o0;

(4) We have n. € [0, 00), so that u(n) < oo when n < n. and u(n) = +o0o when
n=>1c;

(5) When n < n., () is a convex function of n and u’(n) is monotonically strictly
increasing in 1;

(6) For n < 7, the function w(n) is continuously differentiable with u'(n) > 0. In
particular, 0 < 1/(0) < u'(n.—) € (0, +oo] with the equality being satisfied when
ne = 0.

(7) We have n.u’(0) + w(0) < u(ne—) (f w(n.—) = +oo this is saying that n.u'(0) +

1 (0) < +00). In particular, if p(n.—) < 0, then ——— —#©) > e

w'(0)
Proof. (1) By (5.1) and part (3) of Lemma 3.2, setting n = 0 we get

1(0) = %E [m PP < oo)] (5.9)

Since PPI(T° < 00) € (0, 11, we get 1(0) < 0.
(2) By (4.7) in Proposition 4.1 we have w(fo) = w(z1) = f;" + f| . By (4.8),

w(lo) = fi + fi

1 éx
=— +
e«/ﬁfogk _ g—«/ﬁfo gmfogk — e—x/ﬁfo

_ & — 1

e\/ﬁfiog/\ — =21
_ ,—2xg | & —1
=e . v (5.10)

Thus we have
& —1

1 l -2 +In ———— .
nw(ly) = 0 ngk_e—Zflo

By (5.4) and the convention that n = —A,

R = E,—1
M(n)_—Eﬁo = 2n +E£ <El —E—n )
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3

“

(&)

6

which is (5.8).

=1
Forn < O we have &, — | < &_,, — e72V~21% 50 that In Enizm <0,

which ensures that ;£ (n) < 0 since we have the analytic formula (5.8) for () when

n <O0.
=1
Since In g_ﬂf:m < 0,as n — —oo we know that u(n) — —oo from the
analytic formula (5.8) for ©(n) when n < 0.
Let n be defined by (3.16) and 1} := ess inf n be the essential

(P.2)eQC,P()=1

infimum of n}¥ under P. Then n € [0, 0co). Assumption 2 ensures that E¢g € (0, 00).
By the proof of Theorem 1, the random variable n? given by (3.16) takes value in
[0, E) C [0, co) almost surely under P, where B is given by (3.25). Furthermore,
since both ¢; and p; are bounded above and below according to Lemma 3.1, there
exists some constant B* € (0, co) such that P(B < B*) = 1. Thus n} € [0, 00). If
n > n¥, then P(n > n.) > 0 which implies 1 (1) = +o0. Hence 0 < 1, < 5} < oo.
By Holder’s inequality, for any 71y, 72 < 5, we have

. . 1/2 > o 1 1/2
(3.9 [ o3 (m+n) (39 [p5m ] CE@D [ i ]
E [62 lT(f0<oo] =E [62 1Toe()<<><> E e 1TOZO<<>O

This implies that when n < n., () is a convex function of 7. Due to the condition
at which Holder’s inequality is satisfied, as long as 11 # 1, the above inequality
is a strict inequality. This further implies that () is strictly convex, i.e., u'(n) is
monotonically strictly increasing in 1;

By the same argument in the proof of part (vi) in [29, Lemma 2.2] we can show that

- - 4
EPITL0eT 1 4y ]
W =E fo =

7 > 0 . (5.11)
E P2 7)7 I
( ) e’ o T£0<

Assume that we have a sequence 1, — 1 < 71, as n — 00. Then there exist a
constant C = C (7., 1) that may depend on 7. and 1 such that

(P70 i Ty° (B2 nTy°
BT e Aty o < CEPEIT sy ]
We also have by Lemma 3.3 that there exists another C > 0 such that
> o Lo R ~
(P.2) [, T} POt
E”Z[e"01T050<OO]ZP”Z[T0°<OO]ZC.
So we have

> o Lo
(P10 o T
E [TO ¢ 1Tolo<o<>

- - ZO
(P2 ,nT;
= FETTET L1

)l a

14
B[ Ty°
EP2eno 1T0‘0<oo]

and we can thus apply the dominated convergence theorem to conclude that 1/ (17,,) —
uw'(n) as n, — n, i.e., u'(n) is continuous in n for n < 7.
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Moreover, (5.11) gives
1/ (0)=E [E(”’Z)[T(fOIT(fO@O]] € (0, +00] . (5.12)

Since 1/(n) is monotonically increasing in 1 as long as n < 7. due to part (1), we
get further

0 < u'(0) < wne—) € (0, +00] (5.13)
with the equality being satisfied as long as n. = 0;

(7) Since u(n) is a strictly convex function in 1 as long as n < n., we obtain by the
property of convexity that £ (0) +n.u'(0) < u(ne). If w(n.) < 0, we further obtain

2000
that 12(0) + e/ (0) < 0, which is —-- ©
1 (0)

> 1.

O

Remark 5.1. Consider the ratio p; := % where pil and p’ | are defined in (3.4). If we

assume E [p;] < 1, then by part (a) ofiemma 3.3 we have u(0) < 0. Moreover, the
condition E [p;] < | implies that E [In p;] < 0 by Jensen’s inequality, which yields the

law of strong large numbers tlim % > 0 under P by [33, Theorem 1.16].
—00
E.
By (3.4), E[p;] < 1 is the same as saying E |:—l] < 1. The latter is
Ci1(di — 1)

satisfied, in particular, if £; = £ is a constant and d; > 3 for all i.

Remark 5.2. When the tree T; ; degenerates to the real line R, it was proved in Lemma
2.2 and Proposition 2 in [29] that . = 0, «(0) = 0 and ©'(0) = oo.

A key quantity in large deviations theory is the Legendre transform of the Lyapunov
function 1 (n). Due to property (6) of Lemma 5.1, we can define the Legendre transform
of w(n) as a new function 7 (a):

I(a) = sup (an — pn(m)) . (5.14)
n=nc

The following lemma summarizes properties of the function 7 (a).

Lemma 5.2. The following properties of the function I (a) hold.

(1) I(a) is convex in a and I (a) > 0 for a € (0, 00);

(2) 1(a) is decreasing in a for a € (0, 1’ (0)] and is increasing in a for a € (u'(0), 00),
with I (' (0)) = —u(0) to be the minimum point of I (a) as a € (0, 00);

3) lirg I(a) = +o00;
a—0+

(4) I(a) is piecewisely differentiable on both intervals a € (0, u'(n.—)) and a €
(' (ne—), 00) and I'(a) < n. for all a € (0, 00);

(5) I(a) = ane — u(ne—) and I(a) > ane — p(ne—) when a € (0, ' (n.—));

(6) If W' (ne—) < oo, then I(a) = ane — ju(ne—) fora € [ (ne—), 00);

(D If W' (ne—) = oo, then I(a) > ane — p(ne—) for a € (0, 00) and I(a) — [an. —
u(ne—)] decreases to 0 as a — oo;

(8) If u(ne—) = oo, then I'(a) < n. forall a € (0, 00) and I'(a) — ¢ as a — oo.
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Proof. According to parts (1) and (6) of Lemma 5.1, for n < 7, the function @ (n) is
differentiable and w/(n) is continuous and monotonically strictly increasing. Thus for
any a € (0, i/ (n.—)) (including possibly the case u'(n.—) = 00), there is a unique
point denoted as n(a) € (—o0, n.) such that

wn) =a, (5.15)

and for any —oo < n1 < n(a) < n2 < n. we have

w'm) <a<p(mn). (5.16)

Let us consider the family of functions ¢(n; a) = an — wu(n) parameterized by
a € (0, 00), sothat I (a) = sup ¢(n; a). The function ¢(n; a) is differentiable in 7, such
N=nc

d
that d—L(n; a) = a — /(). This combined with (5.15) and (5.16) imply that for a
n
d d
fixed a € (0, ' (n.—)) we have d—L(n; a) > 0 for n € (—o0, n(a)), d—L(n; a) =0
n n

d
for n = n(a), and d—t(n; a) < 0 forn € (n(a), n.). Notice that ((n; a) = —oo when
n

n > n., we see that for any a € (0, u'(n.—)) we have I (a) = an(a) — u(n(a)).
Suppose 1/ (n.—) < oo and u(n.—) < 0 4 then due to (5.16) and part (5) of Lemma

d
5.1, we see that for a fixed a € [/ (n.—), 00) we have d—L(n; a)=a—pum =0

for all n € (—o0,n.) and t(n;a) = —oo when n > n.. Thus in this case, when
a € [ (ne—), 00) we have I (a) = ane — p(ne—).
In summary we have

__Jan(a) — nn(a)) fora e (0, W' (n.—)),
)= {aﬁc — u(me—) fora € [/ (ne—), 00) . (5.17)

From (5.15), n(a) = [w'17"(a) is also a continuous and increasing function of
a € (0, ' (ne—)), and thus it is almost everywhere differentiable on a € (0, u'(n.—)).
This combined with (5.17) and (5.15) tell us that for almost everywhere a € (0, 1’ (n.—))

we have I'(a) = n(a) +a' (@) — ' (1@)n' @) "= @) +an' (@) —an' @) = n(@).
Since 7 (a) is continuous, this further ensures that for all a € (0, u’(n.—)) we have

I'(a) = n(a) . (5.18)

(1) Since when 1 > n. we have an — u(n) = —oo due to the definition of 7. in (5.7),

we see that indeed I (a) = sup(an — w(n)) is the Legendre transform of the convex
neR
function (). This concludes the convexity of /(a). Since ©(0) < 0 due to part
(2) of Lemma 5.1, we have I (a) = sup (an — u(n)) > a -0 — w(0) > 0 for all
N=nec

a € (0, 00).

(2) Since 1/ (0) < ' (ne—), due to (5.15) we have n(u'(0)) = 0. This and part (5) of
Lemma 5.1 the monotonically strict increasing property of w’(n) imply that when
a < 1/ (0) we have I'(a) = n(a) < 0and whena > u/(0) we have I'(a) = n(a) >
0. This implies that I (a) is decreasing in a for a € (0, +/(0)] and increasing in a
for a € (u/(0), 00), and the minimum of I (a) is achieved at a = 1/ (0) such that

I1(1/(0)) = 1/ (0)n (' (0)) — u(n(p'(0))) = —p(0).

4 Notice that if u(ne—) = oo, then pt/ (ne—) = oo.
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(3) Since n(a) — —oo as a — 0, this property follows from part (3) of Lemma 5.1.

(4) This follows from (5.17) and the fact that n(a) < 5. when a € (0, i/ (n.—)).

(5) Since I'(a) — ne = n(a) — ne < 0 when a € (0, u'(n.—)), the function Z(a) =
I (a) — an, is monotonically decreasing in @ and we have Z(0) > —u(n.—). More-
over, due to (5.17), as a — u'(n.—) we have I(a) — an. — u(n.—), so that
Z(0) -» —u(ne—); and when a > u'(n.—) we have I (a) = an. — u(ne—), so that
Z(0) = —u(ne—). These imply the statement.

(6) This follows directly from (5.17).

(7) This follows from the proof of part (6) of this Lemma and the fact that n(a) — 7,
when a — oo in the case ' (7.—) = oo.

(8) Notice that when p(n.—) = oo we must have u'(n.—) = oo, and thus due to
(5.17) and (5.18) and the fact that in this case n(a) < n. for all a € (0, c0), we
have I'(a) < n. for all a € (0, 00). Since n(a) — n. when a — 00, we have
I'(a) — n. whena — oo.

O

We have demonstrated in Fig. 3 the shape of the function 7 (a) that exhausts 8 different
cases:

—u(0
(a-1) 1) = 0,0 < ' (ne—) < 00, 2O 5
(0% 0)
(@-2) p(ne—) = 0, j/ (=) = 00, ——= > 1.5
w'(0) 0
(b-1) p(ne=) = 0,0 < u'(5—) < o0, ’f(o) ne;
—u(0
(b-2) u(ne—) =0, w'(ne—) = o0, # < Ne;
w'(0)
(c-1) pn(ne—) < 0,0 < w'(ne—) < o0;
(c-2) pn(ne—) <0, ' (ne—) = 003 o
(A1) pGre—) = @' (ne=) = 00, == > p;
43
— () — K
(d-2) pme—) = pu'(ne—) = o0, o) e
Notice that due to part (2) of Lemma 5.1, the condition al) > ne or al) < Ne
w'(0) w'(0)

determines whether the point (u’(0), —(0)) (which is the minimum point of I (a)) is
above or below (or, to the left or right of) the line given by a + an,. This issue together
with the condition about the slope of 8 in Fig. 3 will be discussed in Sect. 6, Remarks
6.1,6.2.

The following Theorem gives the large deviations principle for the hitting time.

Theorem 4 (Large deviations principle for the hitting time). Let 0 < ¢ < v. Then P-

almost surely the following two estimates hold. For any closed set G C (0, (v —c)u'(0))

we have

. l (" Z) TCI;I . a

lim —InPPY¥ L eG)<x—-@w—c)inf I | — ) ; (5.19)
t aeG

t—o00 t

and for any open set F € (0, (v — ¢)i'(0)) we have

1 . Tvt
lim —In PP (% € F) > —(v—c)inf I (

t—oo t acF

) . (5.20)

vV—~¢C
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I(a) I
Ba W Ba

. ane ane

ane—i(1e—) I
7 e —it(e—

—p(0) }-- —p(0) f--A

| a - L} — sl a
' (ne=) é

_ane

/ ’ - ane

ane —i(ne—)
7 ane —p(ne—)
—p(0) —u(0) |-
i

e : a a
< W'(0) w'(ne=)
—ulne)” —ume)”
(1) (b-2)
I(a)
I(a) 8a Ba
\ / ane —pu(ne—) / ane —pu(ne—)
—u(0)
iy : .
(c2)
I(a) I(a)
. ane
—p(0) =7~ —u(0)
i a
e #'(0)
(d-1) (d-2)

Fig. 3. Graph of the function 7 (@) that exhausts all 8 different cases. The constant-(d, £) tree falls into Case
(c-2)

Proof. The proof follows similar ideas as those appeared in the proof of Theorem 2.3 in
[29] (see also Theorem 5.1 in [18]). We consider the upper bound first. By Chebyshev
inequality, for any « > 0 and any n < O:

1 . TUZ ] . v
lim sup — In P79 <L’ < oz) < limsup — In P79 (e”cht > e”"")
t—oo I t 1—00
1
< —no + lim sup — Ing(ct, vt, )

t—oo I
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=-—-na+@—-oum,

where in the last identity we have used (5.4). The above estimate works for any n < 0,
o)

1 . Tvt
lim sup — In P9 (Lf < oc) < inf (—npa + (v — c)u(n))
t—>oo0 I t n=<0
= —sup(na — (v — )u(n))
n=<0

o
=—(v—c)sup <77m — M(’?)) .

n=<0
-2 < w'(0), then (5.17) and the fact n(a) < 0 for a < wu'(0) due to (5.15)
v—rc

of Lemma 5.2 imply that sup (nL - /L(n)) is achieved at a point < 0. So by
n=nc v —
taking into account the definition of 7(a) in (5.14), we indeed have that in this case,

o o
1 ( ) = sup (n— — u(n)). Thus the above estimate enables us to obtain
v—2¢C ,75() v—¢C

1 _ . (T
lim sup — In P79 (L < oz) < —(v —c)I( i ) )
t t vV—cC

t—00

Since by part (2) of Lemma 5.2, the function / ( > is monotonically decreasing

vV—~¢C

in @ when < 1/(0), we see that the above estimate imply (5.19).
v—c

We then derive the lower bound. Set u € (0, (v — ¢)u’(0)) and § > 0. Let Bs(u) =
(u — &, u + 8) be the §-ball centered at u. Since < 1/ (0), (5.17) and the fact
v—c

n(a) < 0fora < u/'(0) due to (5.15) of Lemma 5.2 imply that there is a 7, < 0 such

that
u u
I = Nu — u(u) -
v—2¢C v—¢C

We now make use of the following Cramér’s change of measure (see [6,36]). Let

(P.2),u,t
dpf — enuTcUrtl vt
dP(l”Z) Su,t T, <00
where
s vt
Sy = EPI[emula lrv o]
Then we get

P60 (T o)) = emmut—stnd pGaru (T o gy} EGDEMTE L,
T $ l/t) = e T S 5(”) e T(.l;l<00 .



‘Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees 145

One can show in the same way as in [6, p.77] or as in [36, pp.1195-1196] via a
truncation argument, expectation identity, fourth moment estimates and Borel-Cantelli
Lemma, that we have

- Ty
Jim pPout (%’ € B(g(u)) =1. (5.21)

With (5.21) at hand, we can conclude that

v

1 o (T
lim inf — In P79 (% € Bg(u)) —nuu — 8|yl + (v — ) u(ny)

[N

(-0 [nuL - M(nu)} — 5l
v—¢C

Y <L>—8|nu|
vV—C

which implies the lower bound (5.20). ]

The following theorem gives the large deviations principle for the multi-skewed
Brownian motion ¥;’, which starts from YOy =yekR

Theorem 5 (large deviations principle for the multi-skewed Brownian motion Y;). Al-
most surely with respect to P the following estimates hold. Let v > 0 and k € (0, 1].
For any closed set G C [(1/(0))™!, 00) we have

1 = t—y" 1
lim sup — In P79 <”—“ € G> < —inf cl (-) : (5.22)
c

11— 00 Kt Kt ceG

and for any open set F C [(/,L/(O))_l, 00) we have

1 - t—YyYY 1
lim inf — In P79 (U—f c F) > _inf ¢l (-) . (5.23)

t—oo Kt Kt ceF c

For any closed set G C (—o0, —(u’(O))_l] we have

1 St — YV 1
limsup —In PPD (T2t c ) < —inf et [ — ) (5.24)
ceG Ic|

t—o00 Kt Kt

and for any open set F C (—0o0, —(M’(O))_l] we have

1 S —vt—Y U 1
liminf — In P79 <¥ € F) > — inf |c|/ (—) ) (5.25)

t—>o00 Kt Kt ceF lc|

Proof. Due to the symmetry identity (3.12), we see that (5.24) and (5.25) follow from
(5.22) and (5.23), respectively. So we can focus on the proof of (5.22) and (5.23). These
two identities are parallel to Theorem 5.2 in [18], Theorem 2.4 of [29] and [36, Section
5], and we will employ very similar methods in the proof. However, the symmetric
branching structure in our case will bring in new technical differences, as the reader will
notice in our use of Lemma 5.3 during the proof.
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First, for ¢ > 0 we have

o _ t . Tvt
pr2) <—vt o > c) < pd) <—(UCK)’ < K) . (5.26)

Kt t

Thus due to Theorem 4 we conclude that

1 so (vt =YY 1
lim sup — In P79 (v—'” > c) <—c inf [ (i) = —cl (—)

t—00 Kt Kt tlE(O,K) CK C

whenever ¢ > (i (0))~!. This proves the upper bound (5.22).
Letu > (/(0))"!. Lete > 0 and 8 > 0 be given. We have the identity

o (v Yl B2 (|yvt
PP ——* € Bsa) ) = P (|YY — (v — kw)t| < k18) . (5.27)
K

We apply the method in [36, Section 5]. By splitting the event {(1 —&)xt < T(” <

1
v—Ku)t
«t} into two parts depending on whether or not |YY — (v — ku)t| < k18,

pr-d ((1 — o)kt < T(';LW)Z < /ct)
< PPI (I — (v — k)| < k1)

+ PP (IYK”Z — (v —Kkwt| = k18 (1 — ekt < T

(v—ku)t

< Kl) . (5.28)
Combining (5.27) and (5.28) we see that
t
p#d <—” — Yo Bg(u))
Kt
> pP2) ((1 — &)kt < T(’T’LKM)[ < K[)

— pPa (!Y,ft’ — (v — Ku)t| > kt8; (1 — &)kt < T(‘;f_m)t < Kl) . (5.29)

The last term

p#:2) (|Y:t’ —(v— /cu)t| > «t8; (1 — &)kt < T(ll))t—l(u)t < Kt)

< prd sup ]Y;’t —(v— Ku)t] > Kkt
O<sz(’jJ’7Ku)t<6/<t

= pP3 < sup YT (y — Ku)t} > Kt5> : (5.30)
O<s<ext

where the first inequality is due to the fact that 0 < «¢ — T('jf_ cuye < K1 and the second
equality is due to the strong Markov property of Y;. We can then turn the above estimate

to the hitting time by duality to obtain that

P(ﬁ’Z) < sup

O<s<ext

Yyt _ (y — Ku)t‘ > Kt(S)
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_ p(.2) (v—rKu)t (v—rku)t
= P (T wts N Too—icuprrrs < 8"’)

(v—ku)t—
(p.2) (v—ku)t (p,2) (v—rku)t
< ppz (T(v—xu)z—m < 8Kl> + pipe (T(U—KM)Z+KI5 < 8Kl) . (5.31)
By Lemma 5.3,

1 - ..

i i (r.2) (v—rku)t p,2) (v—ku)t _
SIE)I}) htII_l)igp —In [P Pz <T(U—Ku)t—/(t6 < SKt) + PPt (T(v—Ku)t+Kt(S < 8/([)] =—00.
(5.32)

From (5.30), (5.31), (5.32) we obtain that

1 ..
lim lim sup — In P7-9 (|Y:f — (v — Ku)t| > k18 (1 — &)kt < TY!

< Kl) =—0Q.
e=0 100 (v—ku)t

(5.33)
Therefore by (5.29) and (5.33), combined with (5.20) in Theorem 4, we obtain

t—o00 t

1 o t—Yv
lim inf — In P9 (”—t’ € Ba(u)>
K

1 .
= liminflim inf —In P79 (T0, . € (1 = e)xr, k1))

e—~0 t—oo0 f

()
=—xul|—) ,
u

which proves the lower bound (5.23). O

Finally we provide the technical Lemma 5.3 that we have used in the proof of Theorem
5, and we will be using it again during the proof of some Lemmas that leads to the proof
of Theorem 6, in particular in Lemmas 6.3, 6.4.

Lemma 5.3. For any a, b € R such that a # b, there exist some gy = &o(a, b, Z, £, d,
Ely) > 0 depending on a, b and the constants €, £, d, E{ that are related to the tree
structure, such that for any 0 < ¢ < g9 and any M > 0, we have

1 .
lim sup A In P72 (Tlft’ < at) <-M, (5.34)

—00
almost surely with respect to P.
Proof. By Chebyshev’s inequality, for any A > 0,
pro (T < et) = pp2 (e—,\rb"; - e‘“’) < HEBD AT

and therefore

1 pdiid 1 =2 a
" In P2 (Tb“l' < st) < Ae+ " In EP-De T4 (5.35)

It now suffices to prove

1 - ar
limsup — In EPDe 2T < —CAlb —al, (5.36)

—00
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where C = C(¢, £, d,Ety) >0 depends on the structure of the tree T qi This is because
with (5.36) we can bound from (5.35) that

1 -
lim sup " In P79 (T < et) < e —AC|lb—a| = —A[C|b—al —e].  (5.37)

—>00

1 2M
We can then pick 0 < gg < §C|b — a| and choose A > —C|b | to conclude (5.34).
—a
It remains to prove (5.36). If @ and b have different signs, then by strong Markov

property of ¥; we have Tj%' = T + TIS. Thus without loss of generality we only need
to consider the cases 0 < a < b or 0 < b < a. We label the interface points z € (z;);ez
between at and bt as at < z(1) < z(2) < ... < z(n) < bt if0 < a < b) or
at > z(1) > z(2) > ... > z(n) = bt (if 0 < b < a). Here n = n(a, b, t) is the number
of interface points between at and bt. By Lemma 3.1,

I |z(n) — z(1)]

im —— =

t—00 n

El .

Since |b — al|t — 2¢ < |z(n) — z(1)| < |b — a|t, from the above we have

n
lim — = Cy|b —al, (5.38)
t—>o0 t
1
for constant C; = — > 0.
E¢y
We can then write
t _ gat z(1) z(n—1) z(n)
Ty = Tz‘zl) +T o)+ + Ty +T, . (5.39)

By the strong Markov property of Y;, the sequence TZZ((kszl) is a P(ﬁZ)-independent

sequence so that from (5.39) we obtain

2 a = = a - = z(1) > o z(n—1) > o z2(n
In EPD e T —1n EPDe il 110 EPDe 0 4 4ln EPDe ™ 41n EPD =T
(5.40)
If0<b <a,thenz(k) > z(k+1) > Oforall 1 <k <n— 1. By the same reason as

- o z(k)
we prove part (1) in Lemma 3.2, as well as Lemma 3.1, the sequence In E(? Do M)
is a stationary ergodic sequence with respect to P, so that by the Law of Large Numbers
for ergodic sequences and (5.40) we have, with P-probability 1, that

lim L1 EGD AT _ g (m E@»f)e_”;(%)) ~ (5.41)

n—oon

Combining (5.41) and (5.38) we see that

1 . a - oy pz(D)
lim - In EP9De 4 — Cy1b — a|E (ln EPDe Mo ) : (5.42)

t—oo t

By Lemma 3.1 we have that there exist some Cr» = C3 (@, £, d) > 0 that 7

> Cz
L 22 =
with P(P-2)_probability 1. Thus

. z(1)
E <ln E(p’z)e”z@)) < —ACy. (5.43)
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Finally (5.42) and (5.43) conclude (5.36) with C = C1C».
If0 <a <b,then0 < z(k) < z(k+1) forall 1 < k < n — 1. In this case the

n 7 —_ (k) . . . .
sequence In E(P-9e 641 is not a stationary ergodic sequence with respect to P, but
Y L) .
ast,n — oo and thus k — oo, the sequence In E?-9¢ M) becomes asymptotically
— o _ygak) .
stationary ergodic and its distribution tends to lim In E(P-9e¢ M1 Hence (5.41) will

k—o00

be replaced by

lim L0 EGDe T Z g lim (1n EG-De i )
n—-oon k— 00

o z(1)
Therefore, in this case we can still obtain (5.42) and (5.43) if we replace In E P D )

- (k)
by klim <ln E(”*Z)e”z(kﬂ)). So we still conclude (5.36). O
— 00

6. From LDP to Wave Propagation on Infinite Random Trees

Based on the large deviations principle established for the multi-skewed Brownian mo-
tion Y; as in Theorems 4 and 5 in Sect. 5, we establish in this section the wavefront
propagation for FKPP equation (2.3) on infinite random tree T ;.

Let us define a non-random constant ¢* > 0 as the solution to the equation

1
I <—*> =8, (6.1)
¢
where B = f/(0) is the constant in (2.3). The next lemma characterizes c*.
—u(0
Lemma 6.1. When 8 > max (nc, %) the equation (6.1) admits a unique solution
“w

c¢* > 0 with the following properties:

() ¢* > @ oOn~
(2) For any 8§ > 0 such that (¢* — 8, ¢* +8) C (0, 00), there exist some € = £(8) > 0
such that we have

1
cl (—) — B < —& whenever 0 < ¢ < c¢*—§, (6.2)
c

and

1
cl (—) — B > ¢ wheneverc > ¢* +§ , (6.3)
c

where the positive constant ¢ = ¢ depends on § and the choice of ¢ € (0, ¢* — §) U
(c* +8, 00).
1
(3) When ¢ > ¢* the function c/ <—> is monotonically increasing as c is increasing;
c
Proof. The validity of the statements in this Lemma can be seen from Fig. 3. To be
precise, by property (3) of Lemma 5.2, the function / (a) — Ba approaches +0o when
a — 0. Since I'(a) < n. forall a € (0, 00), and B > 7., the function I (a) — Ba is
monotonically decreasing in a and it approaches —oo as a — oo. Thus there exists a

1
unique a* € (0, co) such that I (a*) — Ba* = 0. We can then set ¢* = —-
a
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—u(0 1
(1) Since 8 > ﬂ and both the points | —, ﬁ and (' (0), —t(0)) lie on the
,U«/(O) c*’ c*
graph of I(a), we see that the intersection of the line fa with I (a) must happen

at a point with the a-coordinate less that p'(0). That is, a* = - < w'0), ie.,
c

R CA(O)

(2) As we have seen, the function [ (a) — Ba is strictly monotonically decreasing from
+00 to —oo as a goes from 0 to co. This 1mp11es thatforany § > Oand lanya > a 18
we have I (a) — Ba < —%, any a < a* — § we have I (a) — Ba > €, where € is a

~ 1
positive constant that may depend on § and a. Set ¢ = —, we get from here that for

B

1 ~
any § > 0, for any ¢ <c*—8wehave1<—) — — < —¢,and forany ¢ > ¢* + 48
c c

1 - ~
we have [ <—> — E > €. Set ¢ = cé€, we get the statement.
c c

1
(3) Bypart(2)of Lemma5.2, the function / <—

) is amonotonically increasing function
c

1
of ¢ when — < 1/(0), i.e., ¢ > [/(0)]~! = ¢*. This implies the statement.
c
O

Remark 6.1. Aswe will see in the arguments below that to prove Theorem 6, the condition
—n(0)
B>—
' (0) . . . .
wavefront propagation, and the condition 8 > 1, is to ensure that property (2) in Lemma
6.1 holds, which ensures the existence of a unique wavefront.

is to ensure that we can use the LDP Theorems 4, 5 in our analysis of the

Remark 6.2. According to part (7) of Lemma 5.1, once we have pu(n.—) < 0, then

—u(0) . —n(0) -
- > )¢, so that the condition > max | 1., —,—— | becomes the only condition
w'(0) 0 w'(0) 0
that 8 > _I/L( ) . However, when u(n.—) > 0, it might happen that —+O < 1. To
©'(0) E)O)
this end, Fig. 3 parts (a-1), (a-2), (d-1) demonstrate the case when 'lf(i))) > n¢, and
—n(0)
parts (b-1), (b-2), (d-2) demonstrate the case when 7 0) < 7Ne.

Due to Lemma 6.1, in the following we will obtain our result about the existence of
a travelling wavefront based on the assumption that § is large enough. Thus we have

Assumption 4. We assume that the reaction rate

B > max <nc, %E)(;)) =B . (6.4)

Our main result that characterizes the wave-speed is given by the following

Theorem 6 (wavefront propagation for FKPP equation on infinite random tree T} ;).
Assume Assumption 4 holds. For any closed set F C (—o0, —c*) U (¢*, 00) we have

lim supv(t,ct) =0 (6.5)

IA)OOCEF



‘Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees 151

almost surely with respect to P. For any compact set K C (—c*, ¢*) we have

lim inf v(t,ct) =1 (6.6)

t—>00 ceK

almost surely with respect to P.

Proof. The proof makes use of the arguments from the classical variational analysis
as in [12, Chapter 7, Theorem 3.1], [29, Theorem 4.1, Lemma 4.1, Lemma 4.2] and
[28, Theorem 1 and Theorem 2]. Lemma 6.2 provides the upper bound (6.5) for the
behavior of the wave outside (—c*, ¢*). Lemma 6.3 provides the lower bound (6.6) for
the behavior of the wave inside (—c*, ¢*). Lemmas 6.4 and 6.5 are of auxiliary nature,
but they are important in proving Lemma 6.3. Thus the Theorem is proved. O

The following lemma provides the upper bound (6.5) for the behavior of the wave
outside (—c*, ¢*).

Lemma 6.2. Suppose Assumption 4 holds. For any closed set F C (—o00, —c*) U
(c*, 00),
lim supv(t,ct) =0 (6.7)
—00 ceF

almost surely with respect to P.

Proof. We first consider the case when ¢ > ¢*. We can apply Lemma 2.3 and in particular
equation (2.6) and we obtain that, for the function v(¢, y) defined in (2.5) we have

. t .
u(t,y) = Ey"? [vo(Yz) exp {ﬂ fo (1= vt —s, Ys»ds” < exp(BNE P vo(Y,) .

Let the support of the function vg(y) be a compact set U C (—o0, 00), and further
assume that U = Bs = (-4, §) for some § > 0. Thus we have

u(t, ct) < [lvollexp(Br) PP (=5 < Y (1) < 6)

. 8 t—Y(t 8
= llvoll exp(r) PP (c+ 0z cf() > ;) .

c
some ¢ > 0 that may depend on c. Notice that since ¢* > (u/(0))~" due to part (1)

1
By Lemma 6.1, when ¢ > c¢*, we see from (6.3) that 8 — cI (—) < —¢ < 0 for

) )
of Lemma 6.1, as ¢ is large and ¢ > ¢*, we have | ¢ — o c+ ;) C (W (07, c0).
We can then apply Theorem 5 estimate (5.22) with k = 1 and v = ¢, and we obtain

€
that lim sup — Inv(z, ct) < —3 almost surely with respect to P, which implies that

—>00
lim sup  v(t, ct) = 0 almost surely with respect to P. The case when ¢ < —c*
=00 ceFN(c*,00)
can be argued similarly using estimate (5.24) in Theorem 5. O

The following lemma provides the lower bound (6.6) for the behavior of the wave
inside (—c*, c*).
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Lemma 6.3. Suppose Assumption 4 holds. For any compact set K C (—c*, ¢¥),

lim inf v(t,ct) =1 (6.8)

t—00 ceK
almost surely with respect to P.

Proof. The proof of makes use of ideas from [28, Section 5] and [12, Chapter 7, Theorem
3.1], but is adapted to the case when g is large (see Lemma 6.1). From (2.6) we have

. t
v(t, y) = E¥? |:vo(Yt)exp {,3/ (1—v(t—s, Ys))ds” . (6.9)
0

If t is any stopping time, we also have
- o INT
v(t, y) = E¥ [v(t —t AT, Yiar) exp {ﬁf (1 —v(t —s, Ys))ds}:| . (6.10)
0

Indeed, since Y; is a strong Markov process, given ?0 = Y7, the process Yr = Yunrt)+rs
0 <r <t —t A 7 has the same distribution as Y and hence satisfies (6.9), so that

- N 1—IAT "
vt —t AT, Yy = E%”Z) |:v0(Y,_,M)exp {ﬂ/ (1 —v({t—tAT—r, Yr)) dr”,
0

which translates, by setting s =t A T +7, to

> o 1

V(t — 1 AT Yypr) = EYY |:v0(Yt)exp {ﬁf (1 —v(t —s, Ys))ds}:| .
AT

The above equation, when plugged in, justifies (6.10).

Therefore, we can obtain estimates on v by choosing stopping times and restricting
the expectation to certain sets of paths. The exponential term inside the expectation will
be large when the path ¥, passes through regions where v is small; on the other hand,
if v(t —t A T, Yiar) is too small, then the expectation as a whole may be small.

For s € R we define the set

U(s) = {c e R; |c|] (%) - B =s} and ¥ (s) = {c eR;|c|I (%) —B < s} .

Forany § > O and 7 > 1 we define

Py =K x¥@IU | [ (i} x 1w ()

1<t<T

Notice that for | <t < tp we have I';;, C T, and theset ' = | J T defines the
l<t<oo
boundary of an unbounded region that spreads outward in z and is linearly in z. Due to part

1
(3) of Lemma 6.1, as |¢| > ¢* is monotonically increasing we have |c|/ |_| —-B8>0
&
is monotonically increasing. By the argument of Lemma 6.2 this indicates that outside
the region I', as 7 is sufficiently large, v(¢, y) may be close to zero. But on the boundary

of this region I, we have the crucial lower bound from Lemma 6.4, which gives

v(s, y) > e 2 forall (s, y) € I, 6.11)
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when ¢ is sufficiently large.
Let K be a compact set such that K C (—c*, ¢*). By (6.2) in Lemma 6.1, for any

1

¢ € K we have |c|] (ﬂ) — B <0.Sety =ctforsomec € K.Seth € (0,1) and
C

t > 0. We define the stopping times

op(t) = min{s € [0, t]; v(t —s, Y) > h},
or(t) = min{s € [0,¢]; (t — s, Y) € Ty},
6(t) = op(t) Nor(t) .

We then apply (6.10) with the stopping time & (1) we express v(f, y) as

5 Ao
o(t, y) = Y [v(t —1AG, Yi05)exp {ﬂ/ (1 —v(t —s.%)) ds} (La, + 14, +145) |,
0
(6.12)

where A1, A>, Az are disjoint sets separating the whole sample space

A ={w;o5(t) < t},

Ay ={w;op(t) > 1, or(t) = rt},

Az = {w;0o5(t) > t, or(t) <rt}
for some r € (0, 1) to be chosen.

Because A1, Aj, A3 are disjoint, the expectation (6.12) splits into three integrals. We
can bound the first integral over A; from below by

L ING L
E)(,P,z) |:v(t —t NG, Y 05)eXp {ﬂf (1—v(t —s, YS))ds} 1A1:| > hPPD(A)).
0

(6.13)
The second integral over A, can be bounded from below by
- o tAG
EPD vt —1 NG, Yips)exp | B / (1—v(t —s,Y))ds § 14,
0
> ¢ W1 PU=r p(PD (Ay) | (6.14)
where we have used (6.11).
Combining (6.13) and (6.14) we obtain that
u(t, y) = hPPD(A)) + e 21 PP pBD) (45) (6.15)

We will choose § = §(h, r) > 0 to be small so that —287 + B(1 — h)rt > 0. Then
since v(¢, y) € (0, 1) for all (¢, y), (6.15) implies that PP (A)) - 0 exponentially
fast as t — oo for small § > 0. Thus if we can show that P(ﬁ'z)(A3) — 0Oast — oo,
then we conclude that P(P?(A|) — 1 ast — oo, which then implies that v(t, y) > h
ast — oo forany h € (0, 1), that is (6.8).

It remains to show P (-9 (A3) > 0ast — oo. By Lemma 6.1 parts (2) and (3), we
see that W(0) = {£c*} and ¥ (§) = {£cy(§)} for some cy (§) > c¢*. Notice that the
initial point y = ct forc € K C (—c*, ¢*), and thus we have |c| < ¢* < cy(§). Thus
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or(t) > min{s € [0, ] : YSC’ = =c*(t — 5)}. Therefore we have the inclusion of the
events

{or() < rt} € {min{s € [0, 1] : Y{" = £c*(t — 5)} < rt} .
Notice that on the event {min{s €0,t]: Y =£c*(t —s)} < rt} we have
min{s € [0, 7] : Y = £c*(t —5)} > T*(l e A T%*(l o
so that we can simply bound
PPI(A3) < PP (op(t) < rt) < PPI(TY Sy A Tftc*(lfr)t <rt) =0,
when r > 0 is picked to be sufficiently small, due to Lemma 5.3. O

The following lemma helps to prove Lemma 6.3.

Lemma 6.4. Suppose Assumption 4 holds. For any compact set K C (—o00, —c¢*) U
(c*, 00),

liminf — ! In inf v(z, ct) > —max |:|c|l <|1|) ﬁ] . (6.16)

t—oo f ceK

Proof. We use the argument in [29, Lemma 4.1], [28, Lemma 7], [12, Lemma 7.3.2],
with various technical differences that come from Lemma 6.1. The compactness of K

1
implies that it suffices to show that given ¢ > 0 and any ¢ for which |c|/ (ﬂ) —-B >0,
c

we have

1 1
lim inf <t In _inf v(t,?t)) > B —|c|I (| |> g, (6.17)

=00 ce Bs(c)

for 6 > O sufficiently small. Due to part (2) of Lemma 6.1, we see that such a ¢ satisfies
|c| > c¢*. Without loss of generality we can assume that the initial data vo(y) > 1p;0)(y)
for some § > 0, and we can assume that ¢ > ¢* with Bgs(c) C (c*, 00). Let us define
the limit on the left-hand side of (6.17) as

1
g = liminf <?ln inf v(r, ct)) (6.18)

t—00 CeB;s(c)
The estimate (6.29) in Lemma 6.5 immediately implies that g > —oo. As above we
1
setc € K and ¢ > ¢* so that ¢/ (—) — B > 0. Suppose for the moment that ¢ is finite.
c

By the representation (6.10) we have for any « € (0, 1] that

Kt
inf v(t,¢t) > inf E(p 2 |:v(t —kt, Yit) exp: / (1 —v(—s,Yy)) ds} ~1A]
ceB;s(c) ceBs(c) 0
(6.19)

for some PP *2)—adapted set A. We pick some small # > 0 and choose A to be the set of
paths satisfying that for all ¢ € Bs(c) we have both

Y € Ba—is (1 —i0)tc) (6.20)

and 5
v(t —s, Y < hforalls € [0, k1] . (6.21)
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Then

.3) Kt
inf EJ* |:v(t —«t, Y )expip { / (1 —=v(—s, YS))ds} : 1A}

CeB;s(c)
> inf w((1 —i)t, (1 —k)p) - PR ipp pPD (A

CeBs(c) ceBs(c)

which gives

1
—In_inf w(t,Ct)
t ceBs(c)

In_inf v ((1 —«K)t, c(l—K)t)+K,B(1—h)+ ln 1nf PP (A) .

> (1 —
- ( K) (1 — K)t CceBs(c) €Bs(c)

Thus taking t — oo this gives

g = B(1 — h) +lim inf —ln inf PP (A). (6.22)
—00 Kt ceBs(c)

1
Since ¢ € K and ¢ > ¢* is chosen such that c/ [ — ] — 8 > 0, by Lemma 6.2 we
c

see that there is a 6 > 0 sufficiently small so that for any 4 € (0, 1) there is a constant
to > 0 depending on & such that

v(t,c't) < hforall ¢’ € Bgs(c) and all t > ¢ .
1
Now if 0 < k < > and for any ¢ € Bgs(c) we have
sup Y — (1 —s)c| < 381, (6.23)
s€[0,xt1]

then (6.21) is achieved along such paths when t > 2¢.
Next, if ¢ € Bgs(c) is written as ¢ = ¢ + A for |Aq| < 8, then define ¢ = ¢ + 2Aq,
and for any A, with [A3| < § we have

Ct —KIC+KIA) € B(1—iys: (1 — K)ct) (6.24)

1 ~_
when k € (O, 37 e —cl

> is sufficiently small. Indeed

(ct —kté+ktAy) — (L — k)t =1[A] — k(A — A))] .

We see from here that —(1 — k)§ < A; — k(2A1 — Ay) < (1 — k)5 ensures (6.24).
Thisreducestox (6 — (2A1 — Ap)) <§—Ajandk (6 + (2A1 — Aj)) < 6+ Ajq. Since
§—1A 1 IF—CI

3 36
This ensures that for each ¢ € Bg(c) thereis a ¢ € Bogs(c) such that (6.20) is achieved
whenever

—38 < 2A1—As < 35, wesee (6.24) is guaranteed if 0 < x <

th
- Yy € Bs(0) . (6.25)
Kt

Therefore by (6.23) and (6.25) we can estimate
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_inf PP (4A)
ceB;s(c)

5.z A G-y
> inf PRI sup Y& — (1 —s)c| <36rand KL € By() ) .
ceBs(c),ceBs(c) s€[0,kt] Kt

(6.26)
28

" 3max(1, ¢)

. . . N
sup PP sup |YE — (1 —s)c| >38t) < sup PPI| sup Y —ét| > —
ceBys(c) s€[0,xt] ¢eBys(c) s€[0,kt] 3

(p.2) Ct it
< sup P pe (T(2—5/3)z AT Gy < Kt) :
ceBas(c)

Fork € (O ) we see that

By Lemma 5.3, for any M > 0 we can pick « sufficiently small so that

1 . ~ N
limsup—In sup PP9 (ch_ ATY < fct) <-M,
im0 KT e (é—8/3)t (6+8/3)t
That is,

im sup ) o _

limsup—In sup P sup |Y; (t—s)c| >36t ) <—M. (6.27)

t—>o0 Kkt ¢€Bos(c) s€[0,kt]

Combining (6.22), (6.26) and (6.27) we see that
1 S (T — Y
g > B —h)+Iliminf — inf pr2 <C—’“ € Bg(é)) . (6.28)
1—00 Kt ¢eBas(c),ceBs(c) Kt

Set h > 0 and § > O sufficiently small. By part (1) of Lemma 6.1 we see that
B;s(¢) C B3s(c) C [(1/(0))~!, 00). Thus we can apply the estimate (5.22) in Theorem
5 and we see that (6.28) gives (6.17). |

The following Lemma helps to prove Lemma 6.4.
Lemma 6.5. Suppose Assumption 4 holds. For any bounded set A C (c*, 00) and any
small § > 0, there is a finite constant K1 > 0 such that
1 = ,
lim inf — ln< inf PP (v} e 35(0))> > —K; (6.29)
t—oo t yeBs(tc)
uniformly over all ¢ € A such that Bs(c) C (c*, 00).

Proof. Due to continuity of Y;, for any trajectory of ¥;” starting from y = ct + & and
hitting —4& before time ¢, there must exist a piece of this trajectory that starts from
some y € Bs(ct) and ends in Bs(0) before time 7. This gives us the event inclusion
[T < 1} € (¥} € B5(0), y € Bs(ct)}, which implies that

. . TCI+5
inf PP (v} e By(0)) = PPD [ = <1 .
t
yeBs(tc) t
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This further implies that

1 - TCI+5
liminf — In < inf PW3 (Yly € 35(0))> > lim inf —ln pPo =2 <

t—oo0 t y€B;s(tc) t—oo0 t r

t—oo t

1 . Tct
® liminf - In PPD <% < 1> .

ct+6 0
+T
Here () is due to the fact that 74" = TS+ + T¢' + T and that lim le =0

t—00

holds P(7-9-almost surely. Setting v = ¢ and ¢ = 0 in (5.20) of Theorem 4, we obtain
1 5o (T§! 1 15!
lim inf = In P9 (L < 1) > lim 1nf In PP ( € (0, cu (O)))
t—o00 t t t—00 t

a
> —c inf 1 (—) =-—-K;,
ae(0,cu’(0)) c

so that (6.29) follows. O

7. Variational Formula for the Speed

Theorem 6 indicates that to compute the speed ¢* in terms of the degrees (d;) and the

1

branch lengths (¢;), we need to solve the equation (6.1), i.e. c*l(—*> = B forc* >0
c

(assuming Assumption 4).

1
By part (1) of Lemma 6.1, we see that ¢* > (u/(0))~!, ie., 0 < - < w'(0).
c

1
Thus sup <—*n — u(n)) is achieved at a point < 0 due to part (1) of Lemma 5.1,
N=<nc c

1
saying that u’(n) is strictly monotonically increasing in 1. This implies that / (—*> =
¢

1
sup <C—*n — u(n)). Thus we have

n=0

1 1
Y (_*> =c sup( n—ﬂ(ﬂ)) =sup(n —c*u®m) =4.
c n<0 n=<0
This gives us
- A+
C* = inf n ﬂ = inf ﬂ .
n<0 w(m) 220 [u(=21)|

(7.1)

Here we have used the fact that ;(n) < 0forn < 0 (part (3) of Lemma 5.1). Equation
(7.1) provides a variational formula for the wave speed in terms of the Lyapunov function
w(n) that we introduced in (5.4). Using (7.1),we obtain in the followmg theorem that
gives the variational formula for the wave speed ¢* in terms of dand (.
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Theorem 7 (variational formula for the wave speed on Tj 7). Assuming Assumption 4.
The wave speed c* for the system (2.3) on Tj ; in the sense of Definition 4 is given by

- A>0 1 1 — 6*2«/5@0 ’ (7.2)
«/2K+ﬁE In{l4+ ———

& —1

where &, € [1, 00) is given by Theorem 2. In particular, ¢* < /2B with the equality
achieved if and only if the tree T ; degenerates to R.

Proof. By (5.8) in Lemma 5.1 we can calculate u(—A) in terms of d and ¢:

1 & —1
—A)=—V2A+—E|[In—— | . 7.3
HR) = VI [“&_ezm«o} (13)
Since £ = &, > 1, we further see that
J_ 1 1— 672\/550
M| =v2A+—E|In|{14+ ———— . 7.4
(=) EE|In - (74)

Formula (7.2) is an easy consequence of (7.1) and (7.4). We first demonstrate how
(7.2) gives the asymptotic speed ¢* for the FKPP equation on R,

du  19%u

1
In this case Tj ; degenerates to R and all p; = > Thus §& = +oo by Theorem 2,
Corollary 4.3 and Remark 4.2. By (7.2),

N
k= inf =28 (7.6)

Consider the general non-degenerate tree T ; case. Using the elementary inequality

for all x > 0, we can estimate

In(l +x) > 1x

+x
1 — e—Z\/ﬁZo
1 1 — e=2V2M0 1 £ — 1 1 | — ¢—2V20t0o
—E|In{l+ ——— >E| ———— | =zE| ———
Elo &—1 ¢ | — =220t U | & —e2v2t0
14—
& —1

v

1— e—ZJﬁﬁE 1
7 £, — e~2V2lo

1— e—ZJﬁﬁ 1
——E|—|>0
l ).

v
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by Corollary 4.3. Since the infinimum in (7.2) is taken at some A < /28, it ensures that
we have

. A+ B . A+B
k _ _— = *
“Tiz = i%fo 1 1 — ¢—2V20b0 = i‘;fo A V2B=ci.
V2h+ —E|[In|1l+ ——
E{g & —1
(7.7)
i.e., the wave speed is strictly slower than the one on R. O

Remark 7.1 (heuristic reason for the slow down of wave speed). The slow down of the
wave speed on Tj; ; can be heuristically explained. The seemingly very complicated
arguments that we employed in Sect. 6 which lead to the existence of the wavefront is
essentially based on an analysis of (2.6):

o(t, y) = E@O [vo(Yt) exp {ﬂ /Ot (1 — ot —s, n))ds}] .

From this equation we see that for those regions of y = ct that the value of v(z, y)
is small (indeed not close 1), the reaction term f(u#) = Bu(l — u) will be creating an
exponential birth of the particles at a rate of 8, i.e., an eP! factor in the solution v (¢, y)in

t
(2.6). However, this exponential term exp {ﬂ / (1 —vu(t —s, Ys))ds} is multiplied by
0

vo(Y;) = 1(—s,5)(Y:), the expectation of which is given by the large deviations principle

1
of Y; at arate of —|c|1(ﬁ)t, ie. an e~ M5! factor in the solution v(t, y)in (2.6). The

competition between these two effects, namely the exponential growth due to reaction
and the large deviation effect due to diffusion, results in the fact that the wavefront speed

1
¢* is formed by the equation ¢*/ <—*) = p. This is to say that the traveling speed
c

¢* (or —c*) to the direction of the wave propagation should be a speed so that, when
travelling at this speed, the rate of coming back to (—§, &) (the large deviations rate)
equals the birth rate 8. In our case, the local time term in the multi-skewed process Y;
from the stochastic differential equation (3.1) can be viewed as providing a drift that
directs towards the direction of the wave propagation, which results in more difficulty

1
for Y; to reach back (-4, §), i.e., larger large deviations rate |c|/ (ﬁ) for fixed speed
c

c. Noticing that c/ <—> is monotonically increasing when ¢ > ¢* and increases, for

c

—w(0) | .

fixed § > max , Ne |, tosatisfy ¢*1 | — ) = B, the speed ¢* in our case should
w (0) c*

be slower than the bare line R case /2 as we see in (7.7).

The slow down of the wave speed can be quantitatively estimated from (d;) and
(¢;) using our calculations in Corollary 4.4, formula (5.8) in Lemma 5.1 as well as the
variational formula for the wave speed (7.2). We have

Corollary 7.1. Under the same assumption of Theorem 7,
A+ P
gezﬁﬁi AV .
2 ’ e2V2ML _ 1)

0<cp —ca“r” < /2B — inf

2>0 78)

1
V2X + Zln (1 +
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Proof. By Corollary 4.4 we can estimate

1 — ¢—2V2000 | — e—2V20t
E|In 1+&—_1 Sln 1+ 2\/ﬁ£_l

1
2 mT

( dezfz[eztfz ])

=1n .

1+ =
2 e2V2it _

We see that in (7.2), the inf is taken at the point A = ¢*, and further by (7.7), we have
A=c*= C%N < 4/2B. So we further have

| — e—2v2000 JAN2V2BT AV _
E|In{l+ ——— <In{1+ . .
&1 2 AVIL |

Therefore by (7.2) we see that

“Ti: = 150 1 1 — o—220t0
Vor+ —E|In|{1l+ ———
| & —1
inf A+ B
> in )
120 1 gez«/zmi e4dﬂ-i 1
«/2)\+Zln 1+ 5 .ez*/ﬁﬁ—l

which gives the upper bound (7.8) on the magnitude of the slow down of the wave speed
on T ; compared to R. O

When TJ 7 1s deterministic with two identical d-regular trees attaching to the root,
the asymptotic wave speed is more explicit. See Corollary 7.2 and Fig. 4 below.

Corollary 7.2 (Constant-(d, £) tree). Suppose there exist deterministic constants d > 2
and £ € (0, 00) such that d; = d and ¢; = £y = € foralli > 1. Let p = <=1 € (0, 1).

Then
—u(0 2p—1 d—2
go= O _2p=1, (P ) _ In(d—1) (1.9)
w(0) 14 1—p td
and for B € (B¢, 00), the asymptotic speed is given by (1.4). Furthermore, ﬂlim ‘T*ﬁ =
—00

I, lim ¢*=0and lim lim ¢* =1for¢ > 0.
d—o0 d—o0 BB

Remark 7.2. The last assertion raises a curious point: if the reaction rate is maintained
at the critical reaction rate ., the speed is bounded even if the degree d — co. On other
hand, the LDP rate function falls into case (c-2) in Fig. 3.
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Fig. 4. [Left panel] Asymptotic speed c* versus reaction rate 8 for the constant-(d, £) tree. Top curve (blue)
is for R, i.e. d = 2, so it is exactly v/28; Middle curve (orange) is for (d, £) = (4, 1); Bottom curve (green)
is for (d, £) = (10, 1). Hence the speed decreases as d increases. [Right panel] ¢* versus p = dd;] Top
curve (orange) is for = 50; Middle curve (blue) is for § = 2.5; Bottom curve (green) is the “critical curve”

p = (Be(p). p)

Proof. Recall JT’}, +1 defined in (3.9). Basic stochastic calculus gives J,;Y = COS(’W =

Jy+foralli > 1andn € (O, %). From this we get n, = ﬁ arccos? (2«/p(l — p))
and w_,, (1) = 57— € (0, 1). Besides,

2"'71:&-
1— dw; (£ 1-
fimuwy@ = 2 c0.1) and im0 __p2 17P ).
210 A0 dA p2p—1)
(7.10)
Inw_,(£)
So from w(n) = T — and (7.10) we have
—u(0 —1 1 -
O _ oy, (—”) Qp—1 > n,
w'(0) ¢ P
giving (7.9).
By solving (4.29) we obtain
: 2¢ V@I —1D2+42y2 492 — 1
L= = ,
VO =1D2+427 41 — 2 2¢y?

where ¢ =2p — 1 = dd;z and y := Y2 The formula of ¢* now follows from (7.2).

Formula (1.4) allows further explicit calculations using calculus. View ¢ € (0, co)
as fixed always and write ® (8, p, A) as the function after the infinimum. For (8, p) €
(0, 00) x (1/2, 1), there is a unique positive number A g ,, at which infinmum on the right
of (1.4) is obtained. That is,

= inf ®(B. p.2) = P(B. p. 2p.p)- (7.11)

The function of two variables ¢* = ¢*(8, p) is continuous on (0, co) x (1/2, 1). It
can be checked that for fixed p € (1/2, 1), i.e. fixed degree d, the mapping S > c¢* is

increasing and ﬂlim )% = 1. From the latter we obtain lim =1 from (1.4).
— 00

<
p—00 V2B
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We further choose S to be the critical 8. in (7.9) and consider the “speed at critical”,
)‘ﬁz',P
B

c*(Be, p). As p — 1, we have B, — oo and — 0. From the latter we obtain
lim,,_, 1 ¢*(Bc, p) = 1 from (1.4). To see this, from (1.4) we have

1
l1 4p
Zﬂ.nl 2_\/ 2 12 +402p — 1)292
c Az (ve = D= +4Q2p — D7y¢

lim ¢*(Be¢, p) = lim
p—1 p—1

where y, = "2 5er Note that 1 — p= 37 decays linearly in d and B, given by (7.9)
grows like %. From these and the fact that dlim ﬁeCV Ind — 0 for all C € (0, 00), we

— 00

obtain lim (1 — p)yc2 =0and
p—1

., - (1 +y2 = JOZ D2 +40p - 1)2yg>
lim ———— =— lim
p=1¢c*(Be, p) L p—1 Be
n (1472 = JGZ+ D2 = 16p(1 = p)y2)
= lim
d—00 —Ind
In 16p(1-p)y?
. L+y2+a/ (2412 =16p(1—p)y?
= lim
d—o0 —Ind
8y2
. In ((1+y§)d)
= lim ———~%
d— o0 —Ind
=1.
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