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INVERSE OPTIMAL TRANSPORT*
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Abstract. Discrete optimal transportation problems arise in various contexts in engineering,
the sciences, and the social sciences. Often the underlying cost criterion is unknown, or only partly
known, and the observed optimal solutions are corrupted by noise. In this paper we propose a
systematic approach to infer unknown costs from noisy observations of optimal transportation plans.
The algorithm requires only the ability to solve the forward optimal transport problem, which is a
linear program, and to generate random numbers. It has a Bayesian interpretation and may also be
viewed as a form of stochastic optimization. We illustrate the developed methodologies using the
example of international migration flows. Reported migration flow data captures (noisily) the number
of individuals moving from one country to another in a given period of time. It can be interpreted as
a noisy observation of an optimal transportation map, with costs related to the geographical position
of countries. We use a graph-based formulation of the problem, with countries at the nodes of graphs
and nonzero weighted adjacencies only on edges between countries which share a border. We use
the proposed algorithm to estimate the weights, which represent cost of transition, and to quantify
uncertainty in these weights.

Key words. optimal transport, international migration flows, linear program, parameter
estimation, Bayesian inversion

AMS subject classifications. 90C08, 62F15, 656K10

DOI. 10.1137/19M1261122

1. Introduction.

1.1. Background. There are many problems in engineering, the sciences, and
the social sciences, in which an input is transformed into output in an optimal way
according to a cost criterion. We are interested in problems where the transforma-
tion from input to output is known, and the objective is to infer the cost criterion
which drives this transformation. Our primary motivation is optimal transport (OT)
problems in which the transport plan is known but the cost is not. More generally
linear programs in which the solution is known, but the cost function and constraints
are to be determined, fall into the category of problems to which the methodology
introduced in this paper applies. We illustrate the type of problem of interest by
means of an example.

Example: International migration. Quantifying migration flows between
countries is essential to understand contemporary migration flow patterns. Typically
two types of migration statistics are collected—flow and stock data. Migration stock
data states the number of foreign born individuals present in a country at a given time
and is usually based on population censuses. Stock data is available for almost all
countries in the world. Migration flow data captures the number of migrants entering
and leaving (inflow and outflow, respectively) a country over the course of a specific
period, such as one year; see [1]. It is collected by most developed countries, but no
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TABLE 1.1
Harmonized migration flow statistics for the period 2002-2007; see [9].

From To
CZ DE DK LU NL PL
CZ R 0 9,218 262 4 511 45
S 0 560 24 3 81 583
DE R | 1,362 0 4,001 454 9,182 2,876
S | 8,104 0 3,095 1,686 9,293 100,827
DK R 46 2,687 0 11 475 34
S 179 2,612 0 1,387 602 833
LU R 2 2,282 162 0 161 5
S 13 911 99 0 97 23
NL R 255 13,681 864 27 0 163
S 298 10,493 533 191 0 1,020
PL R | 1,608 136,927 2,436 19 5,744 0
S 63 14,417 111 23 577 0
Tot: S | 3,273 164,795 7,725 515 16,073 3,123
R | 8,657 28,993 3,862 2,041 10,650 103,286

international standards are defined. For example, the time of residence after which a
person counts as an international migrant varies from country to country. Because of
the different definitions and data collection methods, these statistics can be hard to
compare. International agencies, such as the United Nations Statistics Division or the
Statistical Office of the European Union (Eurostat), publish annual migration flow
estimates. These estimates are often based on Poisson or Bayesian linear regression.
For more information about the estimation of migration flows using flow or stock
statistics we refer to [2, 4, 20, 21]. For the purposes of this paper the main issue to
appreciate is that migration data is available but should be viewed as noisy.

Flow data is typically presented in an origin-destination matrix, in which the
(i,j)th off-diagonal entry contains the number of people moving from country ¢ to
country j in a given period of time. This origin-destination data can be reported by
both the sending (S) and the receiving (R) countries. Hence two migration flow tables
are available, often desegregated by sex and age groups. Table 1.1 shows harmonized
data, which was preprocessed to improve comparability, reported by 6 European coun-
tries for the period 2002-2007. The numbers of the sending and receiving countries
vary significantly. For example, Germany reported that 136,927 people immigrated
from Poland, while Poland reported 14,417 individuals who left for Germany. These
very different numbers naturally raise the question of the true migration flows. In
many settings it is natural to place greater weight on receiving data rather than de-
parture data. But even this data is not subject to uniform standards, and therefore
providing reliable estimates and quantifying uncertainty is of great interest.

We interpret the reported origin-destination data maps (when appropriately nor-
malized) as a noisy estimate of a transport plan arising from an OT problem with
unknown cost. It is then natural to try and infer the transportation cost, as it carries
information about the migration process. O

The preceding example serves as motivation, and we will come back to it through-
out this paper. However, we reemphasize that the proposed identification method-
ologies that we introduce in this paper can be used for general inverse OT and linear
programming problems; further examples will serve to illustrate this fact.

1.2. Literature review. OT originates with the French mathematician Gas-
pard Monge who, in 1781, investigated the problem of finding the most cost-effective
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way to move a pile of sand to fill a hole of the same volume. Kantorovich intro-
duced the modern (relaxed) formulation of the problem, in which mass can be split,
in 1942. In more mathematical terms Kantorovich considered the following setup:
given two positive measures (of equal mass) and a cost function, find the transporta-
tion map that moves one measure to the other minimizing the transport cost. The
corresponding infimum induces a distance between these two measures—the so-called
Wasserstein distance. The Wasserstein distance plays an important role in probability
theory, partial differential equations, and many other fields in applied mathematics
[27, 30]. Furthermore the techniques and methodologies developed in OT have found
application in a variety of scientific disciplines including data science, economics,
imaging, and meteorology [13].

With the spread and application of OT into different scientific disciplines the
interest in computational methodologies has increased. Commonly used numerical
methods broadly speaking fall into two categories: linear programming [8] and meth-
ods specific to the structure of OT. Linear programs are classic problems which have
been extensively studied in the field of optimization and operations research. Many
computational methodologies have been developed, such as the famous simplex algo-
rithm (and its many variants), the Hungarian algorithm, and the auction algorithm.
All these methods work well for small to medium sized problems but are too slow
in modern applications such as imaging or supply chain management. Recently a
significant speed up, of linear programming, was achieved by considering a regular-
ized OT problem, leading to the Sinkhorn algorithm (or variants thereof) in which an
additional entropic regularization term is added to the objective function; this allows
efficient computation of the corresponding minimizer and induces a trade-off between
fidelity to the original problem and computational speed. This family of efficient
algorithms resulted in the rapid advancement of computational OT in recent years,
especially in the context of imaging and data science; see [7, 19, 22].

Inverse problems for linear programming received considerable interest in the
engineering literature. The paper [3], building on earlier work in [32], studies the
problem by seeking a cost function nearest to a given one in ¢? for which the given
solution is an optimal linear program; this problem is itself a linear program in the
case p = 1. The formulation of an inverse problem for linear programming in [10]
took a slightly more general perspective, as it does not assume that the given data
necessarily arises as the solution of a linear program, and rather seeks to minimize
the distance to the solution set of a linear program. Recent application of the inverse
problem for linear programming may be found in [26], for example. The most closely
related work to this paper is the recent publication by Li et al. (see [16]) in which the
authors minimize the log likelihood function to estimate the underlying cost. These
papers on inverse linear programming are foundational and have opened up a great
deal of subsequent research. However, the methods used in them do not account
in a systematic way for noise in the data provided and for the incorporation of prior
information. We address these issues by adopting a Bayesian formulation of the inverse
problem for linear programming, concentrating on OT in particular; the ideas are
readily generalized to inverse linear programming in general. The Bayesian approach
not only allows for the quantification of uncertainty but also leads to algorithms which
may be viewed as stochastic methods for exploring the space of solutions, constrained
by the observed data. An overview of the computational state of the art for Bayesian
inversion may be found in [15]. The specific methods that we introduce have the
desirable feature that they require only solution of the forward OT problem and the
ability to generate random numbers.
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1.3. Our contribution. Our contributions to the subject of inverse problems
within linear programming are as follows.

e We formulate inverse OT problems in a Bayesian framework.

e We provide a computational framework for solving inverse OT problems in
an efficient fashion.

e We give a systematic discussion of identifiability issues arising for finite di-
mensional inverse OT.

e We introduce graph-based cost functions for OT, using graph-shortest paths
in an integral way.

e Graph-based OT has considerable potential for application, and we introduce
a new way of studying migration flow data using inverse OT in the graph-
based setting.

We emphasize that, while the graph-based formulation of cost corresponds to
a rather specific way of designing cost functions for discrete linear programs, the
framework and algorithms developed in this paper apply quite generally to inverse
linear programming and hence to OT in general. We develop the methodology in
general, using graph-based migration flow as a primary illustrative example. In section
2 we define OT as a linear program, describe the cost criteria considered, and formulate
inverse OT in a Bayesian setting; in this section we discuss the identifiability issue
for finite dimensional inverse OT. Section 3 presents algorithms for the forward and
inverse OT problem, and section 4 contains numerical results.

We will use the following notation throughout this manuscript. Let | - | and (-, )
denote the Euclidean norm and inner-product on R™ and the Frobenius norm and
inner-product on R™*™. The spaces of probability matrices, probability vectors, and
probability matrices with specified marginals are defined as

Prxn = {BGRnxnlBij >0, Z Bij:1}7 P = {uER”:uj ZO,Zujzl},
j=1

ij=1
Spq = {B € Prxn: Bl = p, BT1 = q for p,q € Pn}, where 1 = (1,...,1)T € R™.

2. Inverse OT. In this section we introduce the forward OT problem and dis-
cuss specific cost criteria, before formulating the respective inverse OT problem in the
Bayesian framework.

2.1. Forward problem. We consider two discrete probability vectors q € P,
and p € P, and a given cost C' € P, x,. Then the OT problem corresponds to finding
a map transporting p to q at minimal cost. Note that in OT the cost matrix has
nonnegative entries, which can be normalized to be an element of P,,«,, without loss
of generality. The respective forward OT problem is to find

(2.1) T € argmingcs, (C,T).

Problem (2.1) falls into the more general class of linear programs. Linear programs
(and their many variants) arise in various specific settings—such as the earth mover’s
distance [25] or cost network flows [5]—in different scientific communities. The prob-
lem (2.1) has, by virtue of being a specific class of linear programs, at least one
solution; this solution lies on the boundary of the feasible set of solutions (defined
by the equality constraints). If the solution is unique, then we define mapping
F 1 Prn X Pp X Prxn — Paxn by

(2.2) ™ =F(p,q.C).
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In the nonunique setting we define F(p,q,C) to be a unique element determined by
running a specific nonrandom algorithm for the linear program to termination, started
at a specific initial guess.

We now consider (2.1) regularized by the addition of the discrete entropy, an
approach popularized in [7, 19] and which has led to considerable analytical and com-
putational developments. Besides the advantageous analytical and computational as-
pects, the proposed regularization term can be interpreted as an inherent uncertainty
in the cost due to the heterogeneity of agents. Galichon and Salanie [13] propose the
same regularization in the context of marriage market and matching problems. The
resulting problem is

(2.3) H(T) = —(T,log(T)) + Tx(T) = = > T ;(log T} ; — 1),

i,j=1

where the matrix logarithm operation is applied elementwise. Then
(2.4) T = argming g, | ((C, T) + eH(T)).

This problem has a unique minimizer T*, since H (T') is strongly convex. Following our
previous notation we define the corresponding mapping by Fe¢ : Pn X Pn X Ppn — Prxn

(2.5) T = Fe(p,q,0).

It is, in contrast to the optimal solution of (2.1), not sparse. It is known that solutions
to (2.4) converge to minimizers of (2.1) as € — 0. Determining the rate of convergence
is still an open problem. The special structure of this regularized problem can be
used to construct efficient splitting algorithms. These methods are based on the
equivalent formulation of finding the projection of the joint coupling with respect to
the Kullback—Leibler divergence

D, (T||K) := (T,1log(T/K)) — Tr(T) + Tr(K) = Z T, log K-J- ~Ti;+ Kij,
ij=1 2,3

where the matrix logarithm and division operations are applied elementwise and K
is the Gibbs kernel

Cij

(2.6) K;j=exp
In particular
(2.7) T = argmingcs, Dy (T K).

The Kullback—Leibler divergence can be computed extremely efficiently using prox-
imal methods, yielding, for example, the celebrated Sinkhorn algorithm. We will
briefly outline the underlying ideas in section 3.1.

2.2. Cost criteria. Problems (2.1) and (2.4) are formulated for general cost
matrices C—the specific structure of C' depends on the application considered. We
will investigate the behavior of the proposed methodologies for C being

(i) Toeplitz

(ii) nonsymmetric

(iii) determined by an underlying graph structure.
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e

Fic. 2.1. Network defined by the European countries used in our example.

We assume that all individuals move; hence T;; = 0 for all # = 1,...n in all three
cases. Therefore staying is penalized by setting

(2.8) Ci=C>1 foralli=1,...n.

If C is Toeplitz the cost depends on the difference between indices and C' has 2n — 3
degrees of freedom. Case (ii) corresponds to general nonsymmetric transportation
cost, which in the context of migration flows could include factors such as sharing the
same language, the ratio of the gross national income per capita, or their European
Union membership. In case (iii) we assume that costs are related to an underlying
discrete structure. In the context of migration flows the geographical position of
countries defines an underlying graph with edges only between countries which share
a border; see Figure 2.1. We assume that the total transportation cost corresponds to
the sum of the individual costs of moving from one country to another along edges of
the graph. In defining cost this way we are implicitly assuming that, between the Eu-
ropean countries studied here, migration is primarily via land. This resulting discrete
underlying structure, which relates the cost matrix to a directed graph representing
the migration network between countries, is detailed in the following.

Let (V,E) be a directed graph with n = |V| vertices and a (possibly non-
symmetric) weighted adjacency matrix A € R™*™. We can then define a cost matrix
W e R™*™ whose (i, j)th entry W; ; is the shortest path cost of moving from vertex i
to j according to the weighted adjacency matrix A. Let m be the number of nonzero
entries of A and f € R™ the vector defining the nonzero entries. Then we may define
a mapping & such that W = £(f). This W € R"*™ can then be normalized to give a
C € Ppxn, and we may define the solution of the resulting OT problem via (2.2). For
this graph-based cost the solution of the OT problem may be viewed as a function of
p,q, and f. The minimal cost of moving between vertices of a graph can be computed
using Dijkstra’s algorithm, recalled in section 3.1 below.

We define a similar mapping in the case of Toeplitz cost. Here the respective cost
matrix C' has 2n — 2 free entries, before normalization to a probability vector and
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recalling that we fix the diagonal to penalize not moving, and so we define a mapping
& f € R?™2 — R'P™; normalization then gives C'= My, (E(f))-

2.3. Inverse problem and identifiability. The inverse OT problem is to find
p, g, and C from the solution T to the OT problem (2.1) or its regularized counterpart
(2.4). We tackle this problem by introducing a space of componentwise positive and
real-valued latent variables u,v, W or u,v, f which map to the unknowns p,q € P,
and C € P,xn. It is easier, and more natural, to specify priors in terms of these
real-valued latent variables. To this end we introduce mappings from R into P,, and
from R™™ into Py« as follows: M, : R +— P, is defined by

Mo (u)j = u;/ (Z W) ;
(=1

and Mo, xp : RT™ = Pp iy, is defined by

Mpsin(W)i; =W/ Z Wh.e

k=1

Note that M,,(Au) = M, (u) for all A € R; the same holds for M, x,. Then the
forward problem (2.2) can be written as

(2.9) T* = G(u,v, W) := F(My(u), My (v), My xn(W)),
or, in the case of graph-based cost or Toepliz cost, we have
(2.10) T = G(u,v, f) :== F(Mu(u), Mp(v), Mypxn(E(S))).

This is readily generalized to the use of regularized OT as the forward model, simply
replacing F by F..

We wish to invert the map G, given noisy observations of 7. Such problems are in
general ill-posed; hence suitably regularized versions have to be considered. Different
approaches can be found in the literature—we focus on the Bayesian framework, which
allows us to estimate the posterior distribution of u,v, and W (or f).

Depending on the structure of the cost matrix the inverse problem related to (2.9)
or (2.10) can be over- or underdetermined. We recall that in case of Toeplitz cost the
matrix C' has 2n — 3 degrees of freedom. Then we have n? — 1 equations for 4n — 5
unknowns (taking into account the normalization of u, v and W). Hence the inverse
problem is overdetermined for n > 2. If C' is a general cost matrix with a set penalty
on the diagonal, that is, case (ii), the cost matrix has n? — n degrees of freedom. In
total we have n? +n — 3 unknowns, and therefore the problem is underdetermined for
n > 2. For graph-based cost (case (iii)) the matrix C' has m degrees of freedom, and
therefore the problem is only underdetermined if

(2.11) 2n+m—3>n*—1.

Recall that n denotes the dimension of the space on which the marginals live. In
summary the situation in which the entire cost is unknown, and no structure is placed
on it, is generically not-identifiable if n > 2. Cost structures which impose a linear
number of unknowns are generically identifiable when n is large enough; indeed the
graph-based example is generically identifiable when n is large enough, provided that
the number of edges grows sublinearly with n.
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2.4. Bayesian formulation of inverse problem. We define a Bayesian for-
mulation of the inverse problem, working in the case where u, v, W are the unknowns;
the extension to u,v, f as unknowns is similar.

2.4.1. Prior. Let P(u,v, W) denote the prior information concerning w,v and
W. To be concrete we assume throughout this paper that u, v, and W have indepen-
dently and identically distributed (i.i.d.) entries uniformly distributed in [0, 1], and
denote the set of vectors and matrices which satisfy this componentwise constraint by
U. In view of the scale invariance of M, () the choice of unit interval [0, 1] is imma-
terial; any bounded interval [0, A] would deliver an identical posterior on u, v, W. We
emphasize that we have also experimented with different priors, such as Gaussians,
obtaining qualitatively similar results.’

2.4.2. Likelihood. We assume that the observed transport maps 71" are cor-
rupted by noise:

(2.12) T =G(u,v, W) +mn,

where 7 is a mean zero noise. To be concrete we assume throughout this paper that
7 is a Gaussian random matrix with i.i.d. entries of variance o%; other noise models
are readily accommodated into the methodology proposed here—they simply result
in different functions ®. Since the algorithms used here require only evaluation of ®
they are extended to different noise models very easily.

The conditional probability distribution of T', given (u,v, W), that is, the variable
T | (u,v, W), defines the likelihood. This is given by

(2.13) P(T|u, v, W) o exp(—®(u,v, W;T)),
where the misfit ® is defined, under our assumptions on 7, by

1
(2.14) ®(u, v, W;T) = 2—2|T—g(u,v,W))|2.

o

2.4.3. Posterior. Using Bayes’ formula
1

(2.15) P(u,v, W | T) = WP(T | w, v, W)P(u,v, W)

and the preceding prior and likelihood constructions, the posterior distribution of u, v,
and W given the noisy observed transport map 7" is defined by

1 1 )
(2.16) P(u, v, WIT) = eXp(—@|T — Gu, v, W)] >1U(u,v, W)

with a normalization constant
1
7= /U exp(—fﬂm — G(u, v, W)|2>dudv AW .

We can either sample from the posterior (2.16) (which corresponds to the full Bayesian
approach) or maximize the posterior probability (2.16), which leads to the optimiza-
tion problem of minimizing ®(u,v, W;T) over U. The first approach allows us to
quantify uncertainty in the estimates of w, v and W, the latter gives a single estimate.
We discuss how to sample from the posterior, using a random walk Metropolis (RwM)
method, in section 3.2. This method may also be viewed as a form of stochastic ex-
ploration of the solution space, constrained by observed data.

'In this case we used the preconditioned Crank-Nicolson method [6] rather than the random

walk Metropolis method used in the experiments reported here.
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3. Algorithms for inversion. In the following we present the numerical meth-
ods used in the computational experiments in section 4. Since the proposed Bayesian
framework requires the solution of an OT problem (2.1) (or its regularized version
(2.4)) in every iteration of the sampling algorithm, computational efficiency is essen-
tial. We start by presenting the solvers for the forward OT problem followed by the
Markov chain Monte Carlo methods used to sample from the posterior.

3.1. Computational OT. Numerical methods for linear programming go back
to the seminal works of Dantzig on the simplex method; see [8]. Solutions to the
linear program (2.1) lie on the boundary of the feasible polytope, which is defined by
the constraints. The simplex method iterates over the vertices of this polytope to find
the optimal solution; see [18]. The method works well in practice; however, examples
in which the performance scales exponentially with the dimension of the problem can
be constructed. Different approaches to speed up computations have been proposed:
for example, network simplex algorithms are based on the fact that specific linear
programs can be formulated as minimization problems on graphs. The particular
structure of the underlying graph can be used to speed up the simplex method signif-
icantly. Further information on computational methods for linear programming can
be found in [9].

More recently computational techniques, which are based on the regularized OT
problem (2.4), have been proposed in the literature. These methods are extremely
efficient, since they are based on the formulation of the OT problem in terms of the
Kullback—Leibler divergence (2.7). Its minimizer is given by

T;; = a; K ;b;.
Here K is the Gibbs kernel (2.6), and the vectors a and b satisfy the mass constraint
(3.1) diag(a)K1 = p and diag(b)K”1 = q.
This mass constraint can be enforced iteratively via

(3.2) o+ = ﬁ and U+ — %

This splitting, known as Sinkhorn’s algorithm, is very efficient as it involves matrix
vector multiplications only. Since the entropic regularization term (2.3) introduces
blurring in the otherwise sparse solution, one is interested in keeping e as small as
possible. Since the convergence of Sinkhorn’s algorithm (3.2) deteriorates as e — 0,
it is important to keep a balance between regularization and computational stability.
In practice small values of € lead to diverging scaling factors in (3.2) and subsequent
numerical instabilities. These problems can often be remedied using suitable scalings;
see [28].

If the transportation costs depend on an underlying discrete structure, such as
for our graph-based migration problem, then the computational burden of computing
this cost must be taken into consideration. For our example the total transportation
cost corresponds to the sum of edge weights when between vertices traversed on
the shortest path. Note that the transportation costs are not necessarily the same
in both directions since we consider directed graphs. We use Dijkstra’s algorithm to
compute the shortest path from one node to all others in the graph; see [11]. Dijkstra’s
algorithm is based on continuous updates of the shortest distance to a starting point
and excludes longer distances in updates. It is the graph-based methodology that
underpins the fast marching method to solve the eikonal equation [29].
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3.2. Markov chain Monte Carlo and optimization. We propose the use of
Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribu-
tion (2.16). For the user interested simply in optimization the algorithm we propose
may be viewed as a stochastic optimization method to reduce the model-data misfit.
MCMC methods originated with the seminal paper [17] in which what is now termed
the RwM algorithm was introduced for a specific high dimensional integral required
in statistical physics. In our context the key desirable feature of the method is that it
requires only solution of the forward OT (or regularized OT) problem, together with
the generation of random numbers. Given a current (approximate) sample from the
posterior distribution, a new sample is proposed by adding a mean zero Gaussian to
the current one. This is rejected if the resulting new state leaves U, and otherwise
accepted with a probability designed to preserve detailed balance with respect to the
posterior. The covariance of the Gaussian is an important tuning parameter: intu-
itively it should be chosen such that the acceptance rate is close to neither 0 nor 1,
as either of these limits leads to successive iterates which are highly correlated. The
optimal scaling of RwM algorithms for different target densities has been investigated
in [23, 24]; although the theory developed there applies in rather restricted scenarios,
widespread experience and a variety of theories demonstrate that the work leads to
useful rule-of-thumb for tuning acceptance probabilities within the RwM algorithm
[31], arguably because it leads to average acceptance probabilities that stay away from
0 or 1.

In 1970 Hastings introduced a wide class of MCMC methods, now known as
Metropolis—Hastings algorithms [14], and in principle this provides a wide range of
variants on RwM that may be used for our Bayesian formulation of inverse OT. A
popular variation of MCMC that we have found useful in the inverse OT setting is
Gibbs sampling. In high dimensional spaces it can be hard to design proposals which
are accepted with a reasonable acceptance probability, and the idea of fixing subsets
of the variables, and proposing moves in the remainder, is natural. The Gibbs sampler
allows this to be achieved in a statistically consistent fashion. At each iteration one (or
several) components of the unknown parameter is updated by sampling from its full
conditional probability distribution and cycling through all the variables. The method
may be relaxed to allow a RwM step from the conditional probability distribution,
rather than a full sample. The corresponding RwM-within-Gibbs method is outlined
in Algorithm 3.1. In this algorithm we consecutively update u, v, and W (or f). We
generate proposals for each variable, which we accept or reject. Note that in general,
for all the methods described here, any proposal which decreases the value of ® and
remains in U is accepted with probability one. Thus Algorithm 3.1 may be viewed
as an optimization method which induces a stochastic gradient; the numerics will
demonstrate that this acts to minimize the misfit.

4. Numerical results. In this section we demonstrate the behavior of MCMC
methods for inverse OT, and Algorithm 3.1 in particular. We start by presenting
results for the migration flow example introduced at the beginning and use it as a
“proof-of-concept” for the proposed framework. We then continue with systematic
numerical investigation to study the identifiability of the cost matrix in a variety of
scenarios, as well as discussing the behavior of the proposed methodology. We focus
on the three cost criteria discussed in section 2.2: Toeplitz cost (i), nonsymmetric
cost (ii), and graph-based cost (iii). We use the following functions implemented in
the Python Optimal Transport library [12] to solve the linear program (2.1) as well
as its regularized version (2.4):
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Algorithm 3.1 Random walk Metropolis within Gibbs.

Initialize (u®,v°, W9) for k > 0 do
Generate &, ~ N(0,52) and propose new value z = u* + &,, y = v, Z=W*
if (z,y,7) ¢ U then (uf T oL WhHL) = (yF ok WF)
else
(ukJrl ,Uk?+1 WkJrl) — {($7 Y, Z) with probablhty a((ukv ’Uk7 Wk)7 (377 Y, Z))
’ ’ (uF, v*, W) otherwise

Generate ¢ ~ N(0,62) and propose new value y = v* + &, x = v, Z = W*
if (z,y,7) ¢ U then (ufT1 oL WhHL) = (uF ok WF)
else
(ukJrl vk:Jrl WkJrl) _ ({E, Y, Z) Wlth probablhty a((uk7 Uka Wk)7 ((E7 Y, Z))
’ ’ (uk, v* W) otherwise
Generate & ~ N(0,6%,) and propose new value Z = Wk + &y, ab = uk, y =
vF if (z,y,7) ¢ U then (uFT1 oF L W) = (uF oF TWF)

else
(ukJrl Uk+1 Wk+1) — (1'7 Y, Z) with probability a((ukv vkv Wk)v (xa Y, Z))
' ’ (uF,v* WF)  otherwise
Here

a((u,v,W),(x,y,2)) =

) 1 1
mln{l,exp(ﬁﬁ — G(u,v, I/V)|2 - Tﬂ‘T - g(:v,y,Z)|2)}.

e emd-this solver for linear programs is based on the respective network OT
flow formulation of the problem and was introduced in [5].
o sinkhorn—implements the Sinkhorn-Knopp scaling algorithm to solve the
regularized OT problem (2.4) as proposed in [7].
We test the proposed methodologies using simulated data as well as real migration
data. In making simulated data we compute the OT maps T for a given set of vectors
p, q, and f and add i.i.d. Gaussian noise with mean 0 and variance o?; see (2.12).
Note that the resulting perturbed map T may have negative entries and is not an
element of P, x,. Therefore we set all negative entries to zero and normalize it to
ensure that it is an admissible solution.

We illustrate the performance of the methodologies with plots of the running
means and the respective posterior distributions. All posterior distributions are cal-
culated after 500,000 RwM iterations with a burn-in of 300,000. The performed
numerical experiments indicate that this number is sufficient for the convergence of
MCMC. Note that we always plot the scaled vectors and matrices (unless stated oth-
erwise). The penalty C in (2.8) is set to 10. Numerical simulations show that its
absolute magnitude does not influence the posterior distributions significantly once
above a certain level. On the other hand numerical stability favors not choosing the
penalty too large. The resulting compromise led us to the value chosen.

4.1. European migration flows. We start by presenting estimates for the
European network shown in Figure 2.1. We recall that vertices represent countries and
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that edges connect countries sharing a border. The weights of these edges correspond
to the cost of moving from one country to another. The network shown in Figure
2.1 consists of n = 9 countries, which are connected by m = 30 edges. We use the
estimated transportation map reported in [21] and assume that the noise level is 4%.
The variance for the proposals is set to 62 = §2 = 63, = 0.04. We perform two runs of
the RwM-within-Gibbs algorithm, using the exact solver in the first and Sinkhorn’s
algorithm with € = 0.04 in the second. The acceptance rate of the exact solver is
50.8% ((53.8%, 53.7%, 44.9%) for the different components u, v, and f); for Sinkhorn
we have 82.9% (84.7%, 85.5%, 78.6%). The running averages of three components of
u, v, and f are shown in Figure 4.1 and the corresponding posterior distributions in
Figure 4.2. We observe that both runs give comparable results; however, the misfit
for Sinkhorn is smaller; see Figure 4.3. This difference might be explained by the fact
that we underestimate the noise level o or that the actual transportation maps look
more like solutions of regularized OT problems than the OT problem itself.

4.2. Graph-based cost. Next we investigate the behavior of the proposed
methodologies for graph-based cost more thoroughly. We will see the following:

e The identification of u, v, and f is robust with respect to the sampling vari-

ances; see Figure 4.4.

e The posterior estimates are consistent using different solvers; see Figure 4.5.
These results are obtained using noisy transportation maps 7™ for a graph connecting
n = 5 nodes with m = 12 edges. In doing so we solve problem (2.1) for given vectors
p, q, and f and add 4% noise. Note that this inverse problem is overdetermined since
2-54+12-3<5%—1.

Running average u Running average of v Running average of costs.
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Fic. 4.1. European network: Each plot shows the running average of three components of u,
v, and f. The colors refer to the different combinations the exact linear programming (LP) solver
(blue) and Sinkhorn (gold).
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Fic. 4.2. European network: Posterior distributions of components of u, v, and f using the
exact LP solver and Sinkhorn.
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Fic. 4.3. European network: misfit function for the exact LP solver (blue) and Sinkhorn (gold).

g| — LP# — P# L — Le#
— p#2 6| — LP#2 60 — P#2
s Sinkhorn LP#3 4 LP#3
. / 4
4 \
0 0 0
00 01 02 03 04 05 05 06 07 08 09 000 001 002 003
(a) Posterior ug (b) Posterior v2 (c) Posterior C 2
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Fic. 4.5. Graph based cost: Posterior distributions of components of w, v, and f when using
the exact LP solver in the RwM with Gibbs or regularizing the LP to employ the Sinkhorn algorithm.

Influence of the sampling variance §2. We start by investigating the impact
of the sampling variance 62. We perform MCMC runs for different combinations of
dus Oy, and 0y (listed in Table 4.1) and compute the running average and posterior
distributions of some components. Note that these parameters affect the rate of
convergence of the algorithm, but not the posterior distribution itself. The variance
of the samples determines how much new samples differ from the previous iterates—
the larger the variance the more adventurous the search. This corresponds to a lower
acceptance rate and leads to more correlated samples. On the other hand smaller
variance has a higher probability of accepting but is not adventurous and hence leads
to highly correlated samples. It is thus desirable to have an acceptance rate that is
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TABLE 4.1
Graph based cost: acceptance rates in % for different combinations of du, dv, and dy.

65 (512, 6]% a ay | ay | ay
0.02 | 0.02 | 0.04 || 65 | 80 | 52 | 62
0.04 | 0.04 | 0.04 || 51 | 65 | 26 | 62
0.04 | 0.02 | 0.04 || 60 | 65 | 52 | 62

Running average u Running average of v Running average of costs
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FiG. 4.6. Graph based cost: Each plot shows the running average of three components of u, v,
and f. The colors refer to the different combinations of § used—blue (62,62, 6?) = (0.02,0.02,0.04),

red (67,85,67) = (0.04,0.04,0.04), and gold (53, 67,8%) = (0.04,0.02,0.04).

close to neither 0 or 1. The running averages of three components of u, v, and W are
shown in Figure 4.6, the respective posteriors in Figure 4.4. We see that the results
are consistent for all combinations of ¢§’s. However, the respective convergence rates
vary; see Table 4.1. We observe a generally higher acceptance rate when sampling
from the marginal distribution of p and a decreased rate when increasing the sampling
variance.

Exact vs. Sinkhorn. Next we investigate the sensitivity of the results with re-
spect to the forward solver used in Algorithm 3.1. We run two RwM simulations—the
first one using the exact solver and the second one using the Sinkhorn algorithm. We
observe that both runs give similar posterior distributions if we choose the regular-
ization parameter € in a sensible way; see Figure 4.5. Generally speaking it seems
advisable to choose it similar to the noise level (as in the shown results). We will
investigate the impact of the regularization parameter in the next subsection in more
detail.

4.3. Toeplitz cost. In the following we present more detailed numerical exper-
iments if C' is Toeplitz. The findings of the numerical experiments performed in this
subsection can be summarized as follows:

e The posterior distributions of u, v, and f are consistent for varying ranges of
proposal variances J; see Figures 4.7 and 4.8.

e The exact solver and Sinkhorn’s algorithm converge to similar posteriors if
the entropic regularization parameter e is chosen sensibly; see Figures 4.9,
4.10, and 4.11.

e The variance of the posteriors increases with the noise level in the data, as
shown, for example, in Figures 4.12 and 4.13.

e Sinkhorn’s algorithm gives a higher acceptance rate and a more monotone
decrease of the data-misfit function; see Figure 4.14.
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We underpin these statements with numerical simulations using generated noisy trans-
portation maps. We recall that C' has 2n — 3 degrees of freedom in case of Toeplitz
cost (i). This defines, as in the case of graph-based cost (iii), a mapping from the
vector f € R?"73 to the cost matrix C, that is, £ : R?"=3 — P, ,,, with C = &(f).
Hence we generate proposals for the vector f, which define the entries of C.

We set n = 5 and generate a noisy realization T* for a given set of vectors
p, 9 € Ps and f € R” (which is mapped to the respective Toeplitz cost matrix C
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F1G. 4.9. Toeplitz cost: Running averages of three components of u, v, and f. The colors refer
to the used solver for the forward OT problem. Red corresponds to the exact LP solver, blue and
gold to the Sinkhorn algorithm with reqularization parameter e = 0.04 and € = 0.1, respectively.
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Fi1G. 4.10. Toeplitz cost: Posterior distributions of three components of u, v, and f. The colors
refer to the solver used for the forward OT problem. Red corresponds to the exact LP solver, blue
and gold to the Sinkhorn algorithm with regularization parameter € = 0.04 and € = 0.1, respectively.
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FiG. 4.11. Toeplitz cost: Running averages of three components of u, v, and f for data generated
by the Sinkhorn algorithm with € = 0.04. The blue plots are the running averages using Sinkhorn in
the RwM, the red ones the exact LP solver.

Psyx5). Then T* is obtained by adding noise 1 with variance o = 0.04 (unless stated
otherwise) and subsequent normalization of the distorted map. Note that this problem
is overdetermined, since C is Toeplitz and n > 2.

Influence of the sample variance §2. As in the case of graph-based cost, we
investigate the performance of the RwM-within-Gibbs algorithm for different com-
binations of d,, d,, and dy. Table 4.2 lists the considered d-combinations together
with the acceptance rates. The running average of the 3 or 4 different components of
the posteriors are shown in Figures 4.7 and 4.8. The figures show, as expected, that
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F1G. 4.12. Toeplitz cost: Posteriors of uz, vz, and C1,2 using data generated by the Sinkhorn
algorithm with € = 0.04.
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F1G. 4.13. Toeplitz cost: Posteriors of ui, vz, and Cs 1 using data generated by the Sinkhorn
algorithm with e = 0.1.
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F1G. 4.14. Toeplitz cost: First 10,000 iterations of the misfit function (2.14).

the posterior distributions are independent of the choice of the § parameters. They
also show that, in the ranges chosen, the rate of convergence does not vary in any
considerable way—the method is fairly robust.

Exact vs. Sinkhorn Next we take a closer look how results change if we use
Sinkhorn’s algorithm instead of the exact solver. In particular we investigate how the
size of the regularization parameter € as well as the way we generate data affects the
performance and results of the RwM algorithm.

We start by generating a noisy transportation map using the exact solver for
(2.1). Then we compare the posterior distributions using the exact solver for the
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TABLE 4.2
Toeplitz cost: Acceptance rates for different combinations of u, dv, and éy.

52 52 5? a ay ay ay
0.02 | 0.02 | 0.02 || 66.1 | 67.9 | 55.4 | 75
0.02 | 0.02 | 0.04 || 60.3 | 68.3 | 55.3 | 52.7
0.04 | 0.04 | 0.04 || 44.1 | 45.5 | 30.0 | 57

reconstruction in the first run and the Sinkhorn algorithm with ¢ = 0.04 and € = 0.1
in the next two test runs. Figure 4.9 shows the running average of three compo-
nents of the vectors p, ¢, and f (left to right). The color coding relates to the solver
used—red corresponds to the exact forward solver, blue and yellow when the Sinkhorn
algorithm was used. Figure 4.10 shows the posterior distribution of the second com-
ponent of p and q as well as the fifth entry of the vector f. We observe that we obtain
similar posteriors when using the exact solver (LP) and Sinkhorn with ¢ = 0.04. If
the regularization parameter € is chosen larger, which results in blurred (and there-
fore less sparse) transportation maps, the posterior distributions are less pronounced
and close to uniform on the respective scaled intervals (due to the normalization
constraint).

Next we generate the noisy transportation map using the Sinkhorn algorithm.
We set the regularization parameter e = 0.04, and we distort the computed map with
4% and 10% noise. In each case we perform two different RwM runs, first using the
Sinkhorn algorithm and then the exact solver. The respective posterior distributions
are shown in Figures 4.12 and 4.13. We observe no significant difference in the quality
of the posteriors. Figure 4.14 illustrates an interesting difference in the convergence
behavior of the RwM algorithm. The data misfit term (2.14) shows multiple drops
when using the exact solver. Such jumps have not been observed when using the
Sinkhorn algorithm. We recall that the Sinkhorn algorithm solves the respective
regularized (convex) optimization problem, which has a unique minimum. We believe
that the nonuniqueness of the exact forward problem leads to several local minima in
the inverse problem, in which the RwM algorithm gets stuck.

4.4. General cost. So far we have investigated overdetermined problems only.
Hence we conclude by considering general nonsymmetric costs, that is, case (ii), for
n = 5. This identification problem is underdetermined, and we expect poorer iden-
tifiability and quality of posteriors. This presumption is confirmed by our numerical
experiments; see, for example, Figure 4.15.
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F1a. 4.15. General cost: posterior distributions of different components of u, v and W. The
two colors refer to the different combinations of § - red to 62 = §2 = 53‘/ = 6§ = 0.02 and ones to
62 =62 =0.02 and 6%, = 0.04.
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We investigate the identification from generated data in case of 4% noise. We per-
form two RwM test runs using the exact solver to calculate the posterior distributions
of u, v, and W. In the first run we set the sample variance to 02 = §2 = 63, = § = 0.02
and in the second to 42 = §2 = 0.02 and 6%, = 0.04. Figure 4.16 shows the running
averages for 3 different components of u, v, and W for both runs. We observe that
the components of u and v converge much faster than the ones of W and that the
convergence is consistent for both sets of §’s. The posterior distributions of u and v
give reasonable results, while the posteriors of the cost matrix are close to uniform on
the respective scaled intervals (due to the normalization constraint). This indicates
that the components of the cost matrix W are difficult to identify. We expect that
the identifiability gets worse as the dimension n increases.

5. Conclusions. This paper introduces a systematic approach to infer unknown
costs from noisy observations of OT plans. It is based on the Bayesian framework
for inverse problems and allows us to quantify uncertainty in the obtained estimates;
however, the methodology may also be viewed as a stochastic optimization procedure
in its own right, tuning the unknowns so that the OT plan better fits the data. The
performance of the developed methodologies is investigated using the example of in-
ternational migration flows. In this context reported annual migration flow statistics
can be interpreted as noisy observations of OT plans with cost related to the geo-
graphical position of countries. We formulate the graph-based problem, estimate the
weights, which represent the costs of moving between neighboring countries, and quan-
tify uncertainty in the weights. Our numerical investigations show that the proposed
methodologies are robust and consistent for different cost functions and parametriza-
tions. We observed that the distributions as well as the costs can be accurately de-
termined for a variety of settings if the problem is overdetermined. The identifiability
declines as the dimensionality increases or if the problem becomes underdetermined.

The proposed framework provides the basis for a multitude of future research
directions in applied mathematics and other scientific disciplines. The next steps
will focus on several questions related to the use of the Sinkhorn algorithm in the
context of inverse OT, such as the convergence rate of the regularized problem (2.4)
as € — 0 or the optimal choice of € with respect to the noise level o; furthermore,
hierarchical algorithms which learn parameters such as these from the data would
also be of interest. In the context of migration flows, different modeling aspects, such
as the coupling to age structured population models or the formulation of the OT
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problem on the continuous level, will be investigated. Furthermore the application
of the developed methodologies for general linear programs, which play an important
role in transportation research, manufacturing, economics and demography, will be of
interest.
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