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Abstract. The Aldous–Broder algorithm provides a way of sampling a uniformly random spanning tree for finite connected graphs

using simple random walk. Namely, start a simple random walk on a connected graph and stop at the cover time. The tree formed by all

the first-entrance edges has the law of a uniform spanning tree. Here we show that the tree formed by all the last-exit edges also has the

law of a uniform spanning tree. This answers a question of Tom Hayes and Cris Moore from 2010. The proof relies on a bijection that

is related to the BEST theorem in graph theory. We also give other applications of our results, including new proofs of the reversibility

of loop-erased random walk, of the Aldous–Broder algorithm itself, and of Wilson’s algorithm.

Résumé. L’algorithme d’Aldous–Broder fournit un moyen d’échantillonner un arbre couvrant aléatoire uniforme pour des graphes

connexes finis en utilisant une marche aléatoire simple. Il procède de la façon suivante : commençons une marche aléatoire simple sur

un graphe connexe et arrêtons-nous au temps de couverture. L’arbre formé par toutes les arêtes de première entrée a la loi d’un arbre

couvrant uniforme. Nous montrons ici que l’arbre formé par toutes les arêtes de dernière sortie a également la loi d’un arbre couvrant

uniforme. Cela répond à une question de Tom Hayes et Cris Moore de 2010. La preuve repose sur une bijection qui est liée au théorème

BEST de la théorie des graphes. Nous donnons également d’autres applications de nos résultats, comprenant de nouvelles preuves de

la réversibilité de la marche aléatoire à boucles effacées, de l’algorithme d’Aldous–Broder lui-même, et de l’algorithme de Wilson.
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1. Introduction

Let G = (V ,E) be a finite connected graph and let T be the set of spanning trees of G. Obviously T is a finite set. The

uniform spanning tree is the uniform measure on T , which is denoted by UST(G).

In the late 1980s, Aldous [1] and Broder [4] found an algorithm to generate a uniform spanning tree using simple

random walk on G; both authors thank Persi Diaconis for discussions. The algorithm is now called the Aldous–Broder

algorithm. It generates a sample of the uniform spanning tree as follows.

Start a simple random walk (Xn)n≥0 on G and stop at the cover time, i.e., stop when it first visits all the vertices of G.

Collect all the first-entrance edges, i.e., edges (Xn,Xn+1) for n ≥ 0 such that Xn+1 �= Xk for all k ≤ n. These edges form

a random spanning tree, T . Then this random tree T has the law UST(G). The simple random walk can start from any

vertex of G, and so X0 can have any initial distribution.

The proof of this result depends on ideas related to the Markov chain tree theorem. Namely, let (Xn)n∈Z be a biinfinite

stationary random walk on G. Let the last exit from a vertex x before time 0 be λ(x) := max{n < 0;Xn = x}. Then the

random spanning tree {(x,Xλ(x)+1);x ∈ V \ {X0}} of last-exit edges has the uniform distribution. One then proves the

validity of the Aldous–Broder algorithm by reversing time and using reversibility of simple random walk; see, e.g., [8,
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Section 4.4] for a proof. The algorithmic aspects were studied by [4], while theoretical implications were studied by [1]

and, later, Pemantle [10].

In 2010 (“domino” forum email discussion, 9 Sep.; published in [9, p. 645]), Tom Hayes and Cris Moore asked whether

the tree formed by all the last-exit edges starting at time 0 and ending at the cover time has the law of the uniform spanning

tree. Here we give a positive answer to this question.

Theorem 1.1. Let G be a finite, connected graph. Start a simple random walk on G and stop at the cover time. Let T be

the random tree formed by all the last-exit edges. Then T has the law UST(G).

Remark 1.2. As we will show, the corresponding result holds for every finite, connected network and its associated

network random walk.

We call this algorithm the reverse Aldous–Broder algorithm.

Our proof shows a remarkable strengthening of this equality: Notice that the Aldous–Broder algorithm run up to time

n gives a tree Tn on the vertices {Xk; k ≤ n}. The evolution of the rooted tree (Tn,Xn) to (Tn+1,Xn+1) is given by a

Markov chain. For this chain, Tn+1 contains Tn and may be equal to Tn. Furthermore, if τcov denotes the cover time,

then Tn = Tτcov for all n ≥ τcov. Similarly, the reverse Aldous–Broder algorithm run up to time n gives a tree T n on the

vertices {Xk; k ≤ n}. The evolution of (T n,Xn) to (T n+1,Xn+1) is also given by a Markov chain. For this chain, T n+1

need not contain T n. In addition, T n need not equal T τcov for n > τcov. Our theorem above is that the distributions of Tτcov

and T τcov are the same. Our strengthening will show that for every n, the distributions of Tn and T n are the same, even

though the two Markov chains have different transition probabilities. Moreover, for every n, the distributions of Tn∧τcov

and T n∧τcov are the same. These are both proved as Corollary 2.2. It is also true that Tτ has the same distribution as T τ

for some other stopping times τ , such as the hitting time of a vertex; see Proposition 2.6. Using this fact together with the

Aldous–Broder algorithm, one obtains the well-known result that the path between two vertices in the UST(G) has the

same distribution as the loop-erased random walk; see Corollary 2.5.

In outline, our proof that Tn and T n have the same distribution proceeds as follows. We fix a starting vertex x and

an ending vertex y at time n. For a path γ of length n from x to y, there corresponds a first-entrance tree F(γ ) and a

last-exit tree L(γ ). We define a probability-preserving permutation � of the set of paths of length n from x to y such

that F = L ◦ �. This easily leads to our results. The key, then, is to define �. For this purpose, we consider two types

of multi-digraphs, one with a linear ordering on each set of incoming edges and the other with a linear ordering on each

set of outgoing edges. The former type also determines a spanning tree (of the multi-digraph) directed away from x via

first-entrance edges, whereas the latter type determines a spanning tree directed toward y via last-exit edges. A path γ

naturally yields a multi-digraph F̂ (γ ) of the first type and a multi-digraph L̂(γ ) of the second type. Reversing all edges

of one type of multi-digraph yields one of the other type, except that the edges on the path from x to y in the spanning

tree are not reversed. The correspondence of multi-digraphs to paths then allows us to define �.

Our proof is closely related to the BEST theorem in graph theory, named after the initials of de Bruijn and van

Aardenne-Ehrenfest [13] and Smith and Tutte [12]; we draw the connection below in Theorem 3.1. Interestingly, by using

the BEST theorem, we are able to provide a new proof of the validity of the Aldous–Broder algorithm. This is done in

Theorem 3.3: In outline, we note that the BEST theorem shows that given the transition counts of a random walk path of

length n, each directed tree is equally likely to correspond to the path. A simple formula connects the transition counts

with the likelihood of a tree, and letting n → ∞ yields a spanning tree whose probability is then easily deduced.

The BEST theorem has been used before to study statistics for Markov chains (see the survey by Billingsley [3]) and

to characterize Markov exchangeable sequences, as observed by Zaman [15].

2. Proof of the main theorem

We allow weights w : E → (0,∞) on the edges, so that (G,w) is a network, and the corresponding weighted uniform

spanning tree measure puts mass proportional to
∏

e∈T w(e) on a spanning tree T . We could also allow parallel edges

and loops in G, but this would merely require more complicated notation, so we assume that G is a simple graph. Write

w(x) for the sum of w(e) over all edges e incident to x.

Let x and y be two vertices of G. If there is an edge in G connecting x and y, then we write x ∼ y. We call γ =

(v0, . . . , vn) a path (or a walk) on G from v0 to vn if vi−1 ∼ vi for i = 1, . . . , n, and |γ | := n is called the length of the

path γ .

Let P
x,y
n denote the set of all paths in G from x to y with length n. Simple random walk is the Markov chain on

V with transition probabilities p(x, y) := 1
deg(x)

1{x∼y}. The network random walk on (G,w) has instead the transition
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probabilities p(x, y) :=
w(x,y)
w(x)

1{x∼y}. All results quoted earlier hold for network random walks, not only simple random

walks, and for the corresponding random spanning trees. In particular, the Aldous–Broder algorithm holds in this more

general context: the network random walk generates the weighted uniform spanning tree by collecting the first-entrance

edges up to the cover time [8, Section 4.4]. We henceforth assume that our graphs are weighted and use the corresponding

network random walks; the weighted uniform spanning tree measure is still denoted by UST(G).

Let T be the set of all subtrees of G, including those that are not necessarily spanning.

For a path γ = (v0, . . . , vn) ∈ P
x,y
n , where v0 = x and vn = y, we write V (γ ) = {v0, . . . , vn} for the set of vertices

of γ . For each u ∈ V (γ )\{x}, there is a smallest index i ≥ 1 such that vi = u; we call the edge (vi−1, vi) the first-entrance

edge to u.

Define the first-entrance operator F : P
x,y
n → T by setting F(γ ) to be the tree formed by all the first-entrance edges

to vertices in V (γ ) \ {x}.

Similarly, for each u ∈ V (γ )\{y}, there is a largest index i ≤ n−1 such that vi = u, and we call the edge e = (vi, vi+1)

the last-exit edge of u. Define the last-exit operator L : P
x,y
n → T by setting L(γ ) to be the tree formed by all the last-exit

edges of vertices in V (γ ) \ {y}.

For a finite path γ = (v0, . . . , vn) in G with length n started at v0, we write

p(γ ) := Pv0

[

(X0, . . . ,Xn) = γ
]

=

∏n−1
k=0 w(vk, vk+1)
∏n−1

k=0 w(vk)
, (2.1)

where Pv0
denotes the law of the network random walk on (G,w) started from v0.

The proof will go as follows: In Section 2.1, we state the key lemma (Lemma 2.1) and use it to derive Theorem 1.1,

together with other consequences. In Section 2.2, we start the proof of the key lemma by establishing the correspondence

between random walk paths and colored multi-digraphs. We finish the proof in Section 2.3.

2.1. The main lemma and its consequences

The main ingredient for proving our theorem is the following lemma, which can be viewed as an extension of Proposi-

tion 2.1 of [6].

Lemma 2.1. For every x, y ∈ V (G) and n ≥ 0, there is a bijection � : P
x,y
n →P

x,y
n such that F = L ◦ � and

∀γ ∈P
x,y
n p(γ ) = p

(

�(γ )
)

. (2.2)

Moreover, � preserves the number of times each vertex is visited as well as the number of times that each (unoriented)

edge is crossed.

It follows that � is also a measure-preserving bijection on each subset of P
x,y
n specified by how many times each edge

is crossed or which vertices are visited. For example, such a subset is the set of paths such that every vertex is visited and

y is visited only once and only after all other vertices are visited.

Before proving Lemma 2.1, we show how it gives our claims.

Consider the network random walk (Xn)
∞
n=0 on G with arbitrary initial distribution, and recall that τcov denotes the

cover time of the graph G. Write U
D
= V when U and V have the same distribution.

Corollary 2.2. We have for all n ∈N,

(i) F((X0, . . . ,Xn))
D
= L((X0, . . . ,Xn)) and

(ii) F((X0, . . . ,Xτcov∧n))
D
= L((X0, . . . ,Xτcov∧n)).

Proof. This is immediate from Lemma 2.1 and the remarks following it. �

Proof of Theorem 1.1. Letting n → ∞ in Corollary 2.2(ii) and noting that P[τcov ≥ n] → 0 as n → ∞, one obtains that

F
(

(X0, . . . ,Xτcov)
) D
= L

(

(X0, . . . ,Xτcov)
)

. (2.3)

By the Aldous–Broder algorithm, F((X0, . . . ,Xτcov)) has the law of UST(G), and thus so does L((X0, . . . ,Xτcov)). �
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The equation (2.3) holds for more general stopping times (but not all stopping times). Here we give a sufficient

condition.

Let Cn
e := #{j ;0 ≤ j ≤ n − 1, {Xj ,Xj+1} = e} denote the total number of crossings of the edge e in both directions

up to time n. If Iy :=
∑

e∋y Cn
e , then the number of visits to y by time n is ⌊(Iy + 1)/2⌋. Furthermore, any vertex y �= x

is visited at time n iff Iy is odd, and x is visited at time n iff Ix is even. If τ is a finite stopping time such that

∀n ≥ 0 {τ = n} ∈ σ
(

Cn
e ; e ∈ E(G)

)

, (2.4)

then τ satisfies the corresponding version of equation (2.3):

F
(

(X0, . . . ,Xτ )
) D
= L

(

(X0, . . . ,Xτ )
)

. (2.5)

For example, if K is a finite subset of V (G) and τ is the hitting time of K , then τ satisfies (2.5).

This implies that the path between two fixed vertices in the uniform spanning tree of a graph has the same law as the

loop-erased random walk from one of those vertices to the other. We state this as Corollary 2.5 below, which was first

proved by Pemantle [10] using Proposition 2.1 of Lawler [6]. Using Corollary 2.5 and the spatial Markov property of

UST(G), one can immediately get Wilson’s algorithm [14] for sampling UST(G) (in networks). This was observed by

Wilson [14] and Propp and Wilson [11]. We first recall the definition of loop-erased random walk.

Definition 2.3. Let γ = (v0, v1, . . . , vn) be a finite path on G. We define the loop-erasure of γ to be the self-avoiding

path LE(γ ) = (u0, . . . , um) obtained by erasing cycles on γ in the order they appear. Equivalently, we set u0 := v0 and

l0 := max{j ;0 ≤ j ≤ n,vj = u0}. If l0 = n, we set m := 0, LE(γ ) := (u0) and terminate. Otherwise, we set u1 := vl0+1

and l1 := max{j ; l0 ≤ j ≤ n,vj = u1}. If l1 = n, we set m := 1, LE(γ ) := (u0, u1) and terminate. Continue in this way:

while lk < n, set uk+1 := vlk+1 and lk+1 := max{j ; lk ≤ j ≤ n,vj = uk+1}. Since γ is a finite path, we must terminate

after at most n steps and get the loop-erased path LE(γ ).

Definition 2.4. Suppose that u and v are distinct vertices in the graph G. Start a network random walk on G from u and

stop at the first visit of v. The loop-erasure of this random walk path is called the loop-erased random walk from u to v.

Corollary 2.5. Let x and y be two distinct vertices in G, and let γx,y be the unique path in the UST(G) from x to y. Then

γx,y has the same law as the loop-erased random walk from x to y. In particular, the loop-erased random walk from x to

y has the same law as the loop-erased random walk from y to x.

Proof. Start a random walk on G from x. The stopping time τ := min{k;Xk = y} satisfies (2.4), whence also (2.5). By

the Aldous–Broder algorithm, γx,y has the same law as the unique path in F((X0, . . . ,Xτ )) from x to y. Thus γx,y has

the same law as the unique path in L((X0, . . . ,Xτ )) from x to y, which is just the loop-erased random walk from x to y.

The last sentence follows from the equality γx,y = γy,x . �

Stopping times that rely on more randomness can also satisfy (2.5). One interesting such case is to consider a geometric

random variable T independent of the random walk and let K be a finite subset of V (G). Define τ to be the time of the

T th visit to K . Then τ is such a stopping time that satisfies (2.5).

Proposition 2.6. If T is a random time independent of the random walk, and τ is a finite stopping time such that {τ =

n} ∈ σ(T ,Cn
e ; e ∈ E(G)) for all n ≥ 0, then τ satisfies (2.5).

Proof. For each path γ = (v0, . . . , vn) in G, we claim that

P
[

(X0, . . . ,Xn) = γ, τ = n
]

= P
[

(X0, . . . ,Xn) = �(γ ), τ = n
]

. (2.6)

By Lemma 2.1 and the independence between T and the random walk, we have for every k ≥ 0,

P
[

(X0, . . . ,Xn) = γ,T = k
]

= P
[

(X0, . . . ,Xn) = �(γ ),T = k
]

. (2.7)

Let me denote the number of crossings of the edge e in γ . Since � preserves the number of times each edge is crossed,

{

(X0, . . . ,Xn) = γ,T = k
}

∪
{

(X0, . . . ,Xn) = �(γ ),T = k
}

⊂
{

T = k,∀e ∈ E Cn
e = me

}

.
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By the assumption on τ ,

{

T = k,∀e ∈ E Cn
e = me

}

∩ {τ = n} =∅ or
{

T = k,∀e ∈ E Cn
e = me

}

⊂ {τ = n}.

In the former case,

P
[

(X0, . . . ,Xn) = γ,T = k, τ = n
]

= P
[

(X0, . . . ,Xn) = �(γ ),T = k, τ = n
]

= 0. (2.8)

In the latter case,

P
[

(X0, . . . ,Xn) = γ,T = k, τ = n
]

= P
[

(X0, . . . ,Xn) = γ,T = k
]

(2.7)
= P

[

(X0, . . . ,Xn) = �(γ ),T = k
]

= P
[

(X0, . . . ,Xn) = �(γ ),T = k, τ = n
]

. (2.9)

So we always have

P
[

(X0, . . . ,Xn) = γ,T = k, τ = n
]

= P
[

(X0, . . . ,Xn) = �(γ ),T = k, τ = n
]

.

Summing this equality over k yields (2.6).

Now it is easy to see that (2.5) holds for such stopping times τ : for each subtree t of G, one has that

P
[

F
(

(X0, . . . ,Xτ )
)

= t
]

=
∑

γ :F(γ )=t

P
[

(X0, . . . ,Xτ ) = γ, τ = |γ |
]

(2.6)
=

∑

γ :F(γ )=t

P
[

(X0, . . . ,Xτ ) = �(γ ), τ = |γ |
]

γ ′=�(γ )
=

∑

γ ′:L(γ ′)=t

P
[

(X0, . . . ,Xτ ) = γ ′, τ =
∣

∣γ ′
∣

∣

]

= P
[

L
(

(X0, . . . ,Xτ )
)

= t
]

. �

2.2. Augmented operators L̂ and F̂ and the reversing operator R

Note that if x = y, then Lemma 2.1 is trivial: take � to reverse the path. Thus, we assume from now on that x �= y.

We encode every path by a colored multi-digraph. We say a multi-digraph marked with a start vertex x and an end

vertex y is balanced if the indegree of each vertex u /∈ {x, y} equals the outdegree of u, the outdegree of x is larger than

its indegree by one, and the indegree of y is larger than its outdegree by one. The balance property is necessary for the

existence of an Eulerian path in a multi-digraph. The coloring is either of the following two types.

By an exit coloring of a multi-digraph, we mean an assignment to each vertex v of a linear ordering on the set Out(v) of

its outgoing edges. We call an edge lighter or darker if it is smaller or larger in the ordering. The maximal (darkest) edge

in Out(v) is regarded as black, except for v = y. For the entrance coloring, the ordering is on the edges In(v) incoming

to v instead, and there is no black edge leading into x.

Let L
x,y
n (resp., F

x,y
n ) denote the set of all colored multi-digraphs marked with the start x and end y satisfying the

following five properties:

(i) the vertex set of the multi-graph contains the start x and end y and is a subset of the vertex set of the original graph

G;

(ii) there are n directed edges in total, each one being an orientation of an edge from G;

(iii) the multi-digraph is balanced;

(iv) the coloring is an exit coloring (resp., an entrance coloring);

(v) all black edges form a directed spanning tree of the multi-digraph with all edges going from leaves to the root y

(resp., from the root x to leaves).

We define the augmented last-exit operator L̂ : P
x,y
n → L

x,y
n that, given a path, returns a colored multi-digraph in the

most obvious way: the vertex set consists of all the visited vertices, and we draw one directed edge for each step of the

path. This multi-digraph is clearly balanced. The exit coloring is naturally given by the order in which these outgoing

edges are traversed. Also recall that there is no black edge leading out of y. Note that the tree formed by all black
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edges, ignoring their orientation, is exactly the output of the last-exit operator L defined above, so L̂ can be viewed as an

augmentation of L. All conditions can be checked easily, so the map is well defined.

Similarly, we can define the augmented first-entrance operator F̂ : P
x,y
n → F

x,y
n . The only difference is that we con-

sider the entrance coloring on incoming edges instead of the exit coloring on outgoing edges, and we use the reverse of

the order in which incoming edges are traversed, so that black edges, in particular, are first-entrance edges.

Clearly L̂ and F̂ are both injections.

Lemma 2.7. The maps L̂ and F̂ are bijections.

Proof. We describe the inverse operator for L̂. Given a colored multi-digraph in L
x,y
n , we can associate it with a path by

starting from x and traversing the multi-digraph according to the following instruction:

always exit from the lightest unused edge until you run out of edges to use.

Notice that by the balance property, the algorithm always terminates at y. It remains to show that the path is Eulerian

(i.e., uses all n edges exactly once), so that the operator is well defined. Given this, since the above rule respects the exit

coloring, we may deduce that this traversal algorithm gives the inverse, L̂−1.

If the path is not Eulerian, i.e., if some edge has not been used, then some outgoing edge from some vertex u has not

been used. According to our instructions, it follows that the black edge leaving u has not been used. Let that black edge

be (u, v). By the balance condition, some outgoing edge from v has not been used, whence the black edge leaving v has

not been used (unless v = y). By repeating this argument and using condition (v), we arrive at the conclusion that some

edge leaving y has not been used, whence the path cannot have terminated, a contradiction.

The proof for F̂ is similar; it also follows from (2.10) below and the fact that the other functions there are bijections. �

The bijection L̂ was also used in the proof of the BEST theorem; see Theorem 3.1 and its proof for details, where we

use F̂ instead.

Define a reversing operator R : F
x,y
n → L

x,y
n that maintains the vertex set but reverses all edges, except that the

directions of the black edges on the unique path from x to y in the spanning tree remain unchanged. The coloring is

also maintained: for H ∈ F
x,y
n and a vertex u, the set In(u) in H is mapped to Out(u) in R(H), and so this set of edges

can maintain its linear ordering, except that if u /∈ {x, y} is on the path from x to y, then one black edge is replaced by

another, whereas x gains an outgoing black edge in R(H) compared to the incoming edges to x in H , and y loses an

outgoing black edge in R(H) compared to the incoming edges to y in H . It is not hard to see that the operator R does

have codomain L
x,y
n and is bijective.

2.3. Proof of Lemma 2.1

Proof of Lemma 2.1. We may now define the main construction, illustrated in Figure 1:

� := L̂−1 ◦ R ◦ F̂ . (2.10)

Since R maintains the coloring, the black edges that formed the first-entrance spanning tree in F
x,y
n now form the last-exit

version in L
x,y
n after reversal, that is, F = L ◦ �. Because F̂ , R, and L̂−1 are injections, so is �, which forces � to be

Fig. 1. An example of the bijection R, where we use the order that brown, dashed edges are lighter than gray edges and gray edges are lighter than

black edges. In addition, black edges are drawn thick; these form the spanning tree. Note that R reverses the orientation of every edge except for the

black edges that form a path from x to y.
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a bijection. The map � preserves the random walk measure because all edges and vertices are visited same number of

times: see (2.1). �

3. Concluding remarks

3.1. The BEST theorem and the Aldous–Broder algorithm

We will make explicit the relationship of our proof to the BEST theorem, and use the latter to give an alternative proof

of the validity of the Aldous–Broder algorithm. In addition, because of their possible interest, we show how similar ideas

lead to new proofs of the Markov chain tree theorem and the directed version of Wilson’s algorithm, although these are

not the shortest known proofs.

Suppose D is a multi-digraph marked with a start vertex x and an end vertex y. An Eulerian path in D is a directed

path that starts at x, ends at y, and uses each edge exactly once. An arborescence in D is a directed spanning tree of D

with each edge belonging to a directed path from the root x to a leaf. Each Eulerian path gives rise to the arborescence

formed by all the first-entrance edges of vertices in D except for that of x.

The original BEST theorem [13, Theorem 5b] was concerned with Eulerian circuits, which are Eulerian paths that start

and end at the same vertex. Depending on the context, they are viewed as loops either with or without a distinguished

start or end. Here we state a version of the theorem that holds more generally for Eulerian paths. We denote the indegree

of a vertex v by indeg(v).

Theorem 3.1 (BEST). Suppose D is a balanced multi-digraph marked with a start x and an end y. For each arbores-

cence � in D, there are exactly

indeg(x)
∏

v∈V

(

indeg(v) − 1
)

! (3.1)

Eulerian paths in D whose first-entrance edges coincide with the arborescence �. In particular, the total number of

Eulerian paths in D is given by

tx(D) indeg(x)
∏

v∈V

(

indeg(v) − 1
)

!,

where tx(D) is the number of arborescences in D directed away from the root x.

Proof. It suffices to show the formula in (3.1). The proof is a direct consequence of the bijection F̂ (see Lemma 2.7):

the number of Eulerian paths with first-entrance edges being � is equal to the number of entrance colorings of D whose

black edges correspond to �, while the latter is exactly (3.1). �

Remark 3.2. It is perhaps more natural to reverse the Eulerian paths and formulate Theorem 3.1 in terms of last-exit

edges. However, the first-entrance version will be useful for us to study the Aldous–Broder algorithm in Theorem 3.3.

Theorem 3.3 (Aldous–Broder). Let G be a finite, connected network. Start a network random walk (Xn)
∞
n=0 on G from

the vertex x and stop at the cover time. Let T be the random spanning tree formed by all the first-entrance edges. Then T

has the law UST(G).

Proof. Recall that the Aldous–Broder algorithm run up to time n gives a tree on the vertices {Xk; k ≤ n}. We denote this

tree by Tn. It suffices to show that for every spanning tree t ,

lim
n→∞

Px[Tn = t] =
∏

e∈t

w(e)
/

∑

t ′

∏

e∈t ′

w(e), (3.2)

where the summation is over all spanning trees of G.

For any pair of vertices (u, v), let

Nu,v(n) := #{j ;0 ≤ j ≤ n − 1,Xj = u,Xj+1 = v} (3.3)

denote the transition counts from u to v up to time n. Let N(n) : (u, v) �→ Nu,v(n) be the collection of such transition

counts. Note that N(n) uniquely determines the end vertex Xn. Based on N(n), we define a balanced multi-digraph Dn
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with start X0 = x and end Xn that has the same vertex set as G and contains exactly Nu,v(n) directed edges from u to

v for all pairs (u, v). By definition, all random walk paths of length n with the same transition counts N(n) occur with

equal probability. Therefore, the random walk path up to time n, conditioned on the transition counts N(n), has the same

distribution as the law QDn of a uniformly random Eulerian path in the multi-digraph Dn. Let
−→
G be the directed graph

obtained from G by replacing each edge with two oppositely oriented edges. For any subdigraph H of Dn, define H to

be the subdigraph of
−→
G formed from H by identifying each edge of Dn with its corresponding edge in

−→
G . Thus we have

Px

[

Tn = t | N(n)
]

=QDn

[

�n = �(t)
]

, (3.4)

where �n represents the arborescence generated by the random Eulerian path, and �(t) is the directed spanning tree in
−→
G if we view t as directed away from the root x.

By Theorem 3.1, each arborescence is equally likely to occur under QDn . Moreover, given a spanning tree t , there are

exactly
∏

(u,v)∈�(t) Nu,v(n) arborescences � in Dn with � = �(t). Thus, the right-hand side of (3.4) is given by

∏

(u,v)∈�(t)

Nu,v(n)
/

∑

t ′

∏

(u,v)∈�(t ′)

Nu,v(n). (3.5)

Now we take expectation on both sides of (3.4) and let n → ∞ in (3.5). This completes the proof of (3.2), since

lim
n→∞

Nu,v(n)

n
= lim

n→∞

Nu(n)

n
·
Nu,v(n)

Nu(n)
= π(u)p(u, v) =

w(u,v)
∑

u∈V w(u)
Px-a.s.,

where Nu(n) :=
∑

v∈V Nu,v(n), and π(u) := w(u)/
∑

u∈V w(u) represents the stationary distribution of the random

walk. �

A notable feature of our proof is that we never reversed time. Thus, essentially the same proof yields the following,

where
←−
p denotes the probability transitions of the reversed Markov chain and −e denotes the reversal of e:

Theorem 3.4 (Directed Aldous–Broder). Let X be an irreducible Markov chain on a finite state space. Let G be the

corresponding directed graph. Let X0 = x and stop X at the cover time. Let T be the arborescence formed by all the first-

entrance edges. Then there is a constant c such that for every arborescence t of G rooted at x, P[T = t] = c
∏

e∈t
←−
p (−e).

Proof. It remains to note that
∏

(u,v)∈t π(u)p(u, v) =
∏

(u,v)∈t π(v)
←−
p (v,u) =

∏

v �=x π(v) ·
∏

e∈t
←−
p (−e). �

It turns out that one can also deduce the Markov chain tree theorem in a similar fashion. To this end, we introduce a

random walk measure μn on the loop space. Let X be an irreducible Markov chain on a finite state space with stationary

probability measure π . Let G be the corresponding directed graph. Recall that P
x,y
n denotes the set of all paths in G from

x to y with length n. Let

Ln :=
⋃

x∈V (G)

P
x,x
n

be the space of all loops of length n in G. If r is the period of the Markov chain X, then Ln is nonempty iff n ∈ rN.

For simplicity in what follows, we will assume that X is an aperiodic chain, i.e., r = 1, although the proof is similar for

r > 1. Assuming r = 1, we define a probability measure μn on Ln by assigning to each path γ = (v0, . . . , vn = v0) ∈ Ln

the probability

μn(γ ) :=
1

Zn

p(γ ) =
1

Zn

n−1
∏

k=0

p(vk, vk+1),

where Zn is the normalizing constant. As n goes to infinity, the ergodic theorem implies that Znμn(P
x,x
n ) → π(x). Thus,

we have Zn → 1 and μn(P
x,x
n ) → π(x).

Corollary 3.5 (Markov Chain Tree Theorem). Let X be an irreducible Markov chain on a finite state space with

stationary probability measure π . Let G be the corresponding directed graph. Then there is a constant c such that for

every x, π(x) = c
∑

root(t)=x

∏

e∈t p(e), where the sum is over arborescences t of G directed toward the root x.
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Proof. The proof here follows closely that of Theorem 3.3. The main difference, however, is that we sample the path

(X0, . . . ,Xn) not from the network random walk, but from the random walk measure μn on the loop space Ln. Notice

that the definitions of N(n) and Dn below (3.3) still make sense as random variables on the loop space Ln. In this case,

the start of Dn coincides with its end, and the indegree of each vertex in Dn is equal to its outdegree. Let Do
n be the same

balanced multi-digraph as Dn, except that it does not distinguish any start or end. All Eulerian paths in Do
n are Eulerian

circuits, which we consider as loops with starts: different Eulerian paths may have different starts in V (Do
n).

Now note that the law of random loops μn, conditioned on the transition counts N(n), has the same distribution as the

law QDo
n

of a uniformly random Eulerian path in Do
n. Also note that the probability under QDo

n
for a certain arborescence

of Do
n to occur is no longer uniform, but proportional to the indegree of its root, according to (3.1). Therefore, for any

arborescence t of G directed away from its root, we have

μn

[

Tn = t | N(n)
]

= Nroot(t)(n)
∏

(u,v)∈t

Nu,v(n)
/

∑

t ′

Nroot(t ′)(n)
∏

(u,v)∈t ′

Nu,v(n),

where Tn is the arborescence formed by all the first-entrance edges. By a similar calculation as in the proof of Theorem 3.3

and 3.4, we conclude that there exists a constant c such that

lim
n→∞

μn[Tn = t] = c
∏

e∈t

←−
p (−e).

Thus

π(x) = lim
n→∞

μn

(

P
x,x
n

)

= lim
n→∞

∑

root(t)=x

μn[Tn = t] = c
∑

root(t)=x

∏

e∈t

←−
p (−e).

We complete the proof by reversing the process. �

Another consequence of Theorem 3.4 is the directed Wilson’s algorithm. Due to the spatial Markov property of UST

for digraphs, it suffices to show the following analogue of Corollary 2.5.

Corollary 3.6. Let X be an irreducible Markov chain on a finite state space. Let G be the corresponding directed graph.

Let x be a vertex in the digraph G and Tx be the collection of spanning trees of G such that all edges on the trees are

directed toward x. For t ∈ Tx , write 	(t) =
∏

e∈t p(e). Let UST = UST(G,x) be the uniform spanning tree measure, i.e.,

the probability measure on Tx such that UST({t}) ∝ 	(t). For a vertex y �= x, and let γy,x be the unique directed path in

the UST from y to x. Then γy,x has the same law as the loop-erased random walk from y to x.

Proof. Let
←−
P x denote the law of the reversed chain started at x. Let r = (r0, r1, . . . , rn) be a directed path in G and let

−r = (rn, rn−1, . . . , r0) be the reversed path in the reversed graph. Similar to (2.1), we let
←−
p (−r) =

∏n
j=1

←−
p (rj , rj−1).

For a directed self-avoiding path w from y to x in G, let Ry,x(w) be the set of directed paths r = (r0, r1, . . . , rn) on

G from y to x such that

• r0 = y, rn = x, and ∀i ≥ 1 ri �= y,

• the loop-erasure of the path r is w.

Thus, −Ry,x(w) := {−r; r ∈ Ry,x(w)} is just the set of all possible walks in the reversed chain from x to the first hit of

y such that the path from x to y in the tree formed by first-entrance edges of the walk is −w.

By Theorem 3.4, for a directed self-avoiding path w = (w0,w1, . . . ,wk) from y to x in G,

P[γy,x = w] =
∑

r∈Ry,x(w)

←−
p (−r) =

∑

r∈Ry,x(w)

π(y)

π(x)
p(r)

=
π(y)

π(x)

k
∏

j=1

p(wj−1,wj )

k
∏

j=1

GAj−1
(wj ,wj ), (3.6)

where Aj := {w0, . . . ,wj } for j = 0, . . . , k and GZ(a, a) is the expected number of visits to a strictly before hitting Z by

a random walk on G started from a. The last step of (3.6) can be seen by decomposing the path in a unique way as the

concatenation of edges (wj−1,wj ) and cycles at w1, . . . ,wn, with the cycle at wj avoiding Aj−1.
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Let ly→x denote the loop-erased random walk from y to x. Using the same technique of decomposing the path (or

using formula (12.2.2) of [7]), one has that

P[ly→x = w] =

k
∏

j=1

p(wj−1,wj )

k−1
∏

j=0

GAj−1∪{x}(wj ,wj ), (3.7)

where A−1 := ∅.

Comparing (3.6) with (3.7), we see that it suffices to show the following identity: for any simple directed path w =

(w0, . . . ,wk) from y to x,

π(y)

π(x)

k
∏

j=1

GAj−1
(wj ,wj ) =

k−1
∏

j=0

GAj−1∪{x}(wj ,wj ). (3.8)

By Cramer’s rule, GZ(a, a) = det(I−P)[Z∪{a}]
det(I−P)[Z] , where P is the transition matrix and for a matrix A indexed by V (G)

and Z ⊂ V (G), the matrix A[Z] is the matrix obtained from A by deleting all rows and columns indexed by an element

of Z. Using this, we may simplify (3.8) to

π(y)

det(I − P)[y]
=

π(x)

det(I − P)[x]
. (3.9)

Since (3.9) is easy to show by applying Cramer’s rule to the system of equations determining the stationary probability

measure π , we are done. �

Remark 3.7. In [7], Lawler proved another very interesting identity and used it to prove Wilson’s algorithm:

∀a, b /∈ Z GZ(b, b)GZ∪{b}(a, a) = GZ(a, a)GZ∪{a}(b, b).

From this identity one can easily deduce that the function in (12.2.3) on page 200 of [7] is a symmetric function. The

directed Wilson’s algorithm then follows from this symmetry easily; see (12.7.1) on page 212 of [7].

3.2. Infinite networks

Suppose G is a locally finite, infinite connected graph. An exhaustion of G is a sequence of finite connected subgraphs

Gn = (Vn,En) of G such that Gn ⊂ Gn+1 and G =
⋃

Gn. Suppose that Vn induces Gn, i.e., Gn is the maximal subgraph

of G with vertex set Vn. Let G∗
n be the graph formed from G by contracting all vertices outside Vn to a new vertex, ∂n. Let

Tn be a sample of UST(G∗
n). Then the wired uniform spanning forest is the weak limit of Tn. If we orient Tn toward ∂n and

then take the weak limit, we get the oriented wired uniform spanning forest of G. For details, see [2] or [8, Chapter 10].

Wilson’s algorithm [14] is another efficient way of sampling a uniform spanning tree for a finite connected graph using

loop erasure of random walks. It can be applied to recurrent networks directly. For transient networks, Wilson’s algorithm

can also be applied with a simple modification. This is called Wilson’s method rooted at infinity; see [2] for details.

The Aldous–Broder algorithm can also be used to sample the wired uniform spanning forest on recurrent networks

directly. However, the extension of the Aldous–Broder algorithm for sampling the wired uniform spanning forest on

transient networks was found much later by Hutchcroft [5] using the interlacement process.

Here we simply state a similar interlacement using last-exit edges. It is not directly related to our reverse Aldous–

Broder algorithm. Instead, it relates to the process created from the stationary random walk on the nonpositive integers

that we recalled in our introduction. The interested reader can refer to [5] for details on the interlacement process and the

interlacement Aldous–Broder algorithm.

Theorem 3.8. Let G be a transient, connected, locally finite network, let I be the interlacement process on G, and let

t ∈ R. For each vertex v of G, let λt (v) be the largest time before t such that there exists a trajectory (Wλt (v), λt (v)) ∈ I

passing through v, and let et (v) be the oriented edge of G that is traversed by the trajectory Wλt (v) as it leaves v for the

last time before t . Then {et (v);v ∈ V } has the law of the oriented wired uniform spanning forest of G.

The proof of Theorem 3.8 is simply an analogue to that of [5, Theorem 1.1]. This version can be used in place of that

used by Hutchcroft and is perhaps more natural.
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