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ABSTRACT

This study examines the variability of tropical cyclone (TC) intensity asso-

ciated with stochastic forcings at the maximum potential intensity (PI) equi-

librium. By representing TC intensity in terms of the Wiener process in the

framework of TC-scale dynamics, it is shown that there exists an invariant in-

tensity distribution whose variance is proportional to and roughly half of the

variances of stochastic forcings. This result advocates recent findings that TC

dynamics possesses an intrinsic variability, which prevents the TC absolute

intensity errors in numerical models from being reduced below an arbitrarily

small threshold. Analysis of the invariant intensity distribution at the PI limit

reveals further that the stochastic forcing component associated with tangen-

tial wind and warm core anomaly in the TC central region have the largest

effects on TC intensity variability. These results suggest that future develop-

ment of stochastic parameterization in TC model should focus on representa-

tion of both tangential wind and thermodynamic structure to capture proper

TC intensity fluctuations.
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1. Introduction27

Stochastic processes are a natural property of all atmospheric systems. These random variabil-28

ities exist in various spatial and temporal scales, and are often related to unknown fluctuations in29

physical systems, especially at micro and turbulent scales (Hasselmann 1976; Palmer 2001; Pen-30

land 2003; Williams et al. 2016; Berner et al. 2017). Accounting for these stochastic processes31

in numerical weather prediction models is challenging either at resolved or unresolved model32

resolutions, due to our inadequate understanding of different physical components as well as non-33

linear interaction at different scales (Palmer 2001; Penland 2003; Tompkins and Berner 2008;34

Weisheimer et al. 2014). In practice, the atmospheric randomness is commonly accounted for in35

numerical models via an ensemble representation of stochastic physics, in which physical param-36

eterization schemes employ a random variation of model parameters or add random variations to37

model variables to mimic uncertainties in the atmosphere (Palmer 2001; Christensen et al. 2015;38

Dorrestijn et al. 2015).39

Given such a stochastic nature of the atmosphere, a fundamental question that has not been fully40

examined in the tropical cyclone (TC) research is how much of intensity errors in real-time TC41

forecasts are caused by stochastic forcings. This question is of significance to the current effort42

in improving the accuracy of TC intensity forecasts in numerical models, because it dictates the43

degree of intensity variability associated with random processes that we could never fully control.44

With the current 4-5 day intensity errors in operational TC models around 11-18 kt (Tallapragada45

et al. 2014, 2015; Bhatia and Nolan 2015; Emanuel and Zhang 2016; Kieu et al. 2018), determin-46

ing how much of these TC intensity errors are related to stochastic forcings will provide some47

additional information about our maximum ability in reducing TC intensity errors that we can48

achieve in the future.49
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Similar to any atmospheric system, TC intensity forecast errors in numerical models are gen-50

erally due to several factors such as the intrinsic nature of TC intensity variability, model errors,51

imperfect initial conditions, or random factors (see, e.g., Tallapragada et al. 2014; Jin et al. 2014;52

Tallapragada et al. 2015; Zhang et al. 2015; Penny et al. 2016; Doyle et al. 2017; Halperin and Torn53

2018; Kieu et al. 2018). It is difficult, if at all impossible, to isolate the relative contribution of54

these error sources in practice due to their nonlinear interaction once models are integrated. Using55

the TC-scale dynamics framework, Kieu and Moon (2016); Kieu et al. (2018) recently proposed56

that a substantial part of TC intensity errors in numerical models is related to the existence of a57

chaotic attractor at the TC maximum potential intensity (PI) limit. Even in an idealized environ-58

ment with a perfect dynamical model, the chaotic behavior of TC dynamics can be responsible59

for an intrinsic intensity fluctuation with a variance in the range of 6-8 ms−1 in the absence of60

any random processes. This result has a significant implication for operational TC forecasting,61

because it reveals internal characteristics of TC dynamics that prevent us from knowing precisely62

TC intensity at any given time, regardless of how accurate the observing systems or how perfect63

TC models are.64

Despite such insights about chaotic behaviors of TC intensity derived from the TC-scale frame-65

work, the deterministic chaos at the PI limit as proposed by Kieu and Moon (2016) is based only66

on the axisymmetrical dynamics of Rotunno and Emanuel (1987)’s model. While this full-physics67

model could provide detailed processes of TC dynamics and thermodynamics, the use of a nu-68

merical model to solve the TC governing equations immediately introduces new difficulties in69

quantifying the intrinsic TC intensity variability. Specifically, various numerical truncation errors70

and filtering schemes are implemented in the model to eliminate numerical noises and maintain71

the model numerical stability. Thus, the same model configuration and initial/boundary condi-72

tion could lead to different realization of atmospheric states when running on different machines73
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or compilation/libraries. These completely numerical artifacts produce very similar behaviors to74

models with stochastic forcings in the sense that the same model and initial condition result in75

different model outcomes. In this regard, it is natural to consider any TC model as a stochastic76

rather than a deterministic dynamical system. 1.77

As a result of this stochastic nature of TC models, the estimation of the size of the chaotic78

PI attractor presented in Kieu and Moon (2016) contains unknown contribution from stochastic79

processes that are in addition to the TC intrinsic dynamics. Hence, a very natural, yet open,80

question is how much of TC intensity variability at the PI limit is caused by stochastic forcings81

as compared to the chaotic variability. This question is significant because of the fundamental82

difference between chaotic and stochastic variability. That is, one could have a dynamical system83

whose state fluctuation in the phase space is completely chaotic without any stochastic forcings,84

and vice versa.85

Among different approaches to tackle the above question, the most compelling way is to use a86

numerical model with stochastic physics parameterizations so one can examine how TC intensity87

fluctuation changes when varying stochastic forcing amplitudes. Sampling an ensemble of outputs88

from these stochastic model simulations would then allow one to quantify TC intensity variability89

as a function of forcing variances. Although this stochastic ensemble approach appears to be90

promising and is indeed applied in current operational forecasting centers for TC applications91

(see, e.g. Zhang et al. 2015), the myriad of degrees of freedom in current numerical models makes92

it virtually impossible to isolate what stochastic components are most relevant for TC intensity93

variability. For example, there is no specific guidance on how to add random perturbations to94

temperature, moisture, model parameters, or wind variables. Likewise, one can arbitrarily add95

1Strictly speaking, a stochastic dynamics contains a collection of random variables indexed by time, which could lead to different trajectories

due to different realization of the random forcings when running the same model.
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random noises to upper levels, low levels, at the surface, or any part of the model domain. Such a96

large degree of freedom in implementing the stochastic forcing in full-physics TC models results in97

an infinite number of possibilities, which may not be helpful to understand TC intensity variability98

associated with stochastic processes.99

Recent studies by Kieu (2015); Kieu and Wang (2017, 2018) suggest a pathway to probe the100

problem of TC intensity fluctuation caused by stochastic forcing. Using TC scales as dynamical101

variables, they presented a fidelity-reduced model that could capture several fundamental aspects102

of TC development such as the PI equilibrium and stability, the consistency of the wind-induced103

surface heat exchange mechanism and the PI equilibrium, or an inherent timescale for TC rapid104

intensification. A particular feature of this TC-scale model is its explicit time-dependence with105

only 3 degrees of freedom, which correspond to the maximum tangential wind, the maximum106

radial wind, and the warm core anomaly at the TC center. The explicit time-dependence of this107

TC-scale model allows a transparent way to investigate the effects of stochastic forcings that are108

most relevant to TC dynamics in the absence of deterministic chaos. Furthermore, one can also109

quantify the relative importance of dynamical stochastic forcing versus thermodynamic stochastic110

forcing in TC development, which could not be obtained directly from full-physics simulations.111

Given the usefulness of the TC-scale dynamics model, two specific questions related to TC112

intensity stochastic fluctuations that we wish to present in this study are 1) how much of TC113

intensity variability can be induced by stochastic forcings at the PI limit, and 2) what stochastic114

forcing component plays the most important role in TC intensity fluctuations. These questions are115

of practical, as they provide more insight into the mechanisms that prevent us from reducing TC116

intensity errors below a certain threshold beyond the deterministic chaos. Moreover, knowing the117

relative role of different stochastic forcing components will allow us to properly design stochastic118

ensemble forecasting for future TC intensity forecast applications.119
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The structure of the paper is organized as follows. In the next section, a brief introduction of the120

TC-scale model and its extension for a stochastic system will be presented. Section 3 derives some121

theoretical estimations of the probability density at the PI limit, and Section 4 presents numeri-122

cal analyses of the Monte-Carlo integration of the stochastic TC-scale model. Some concluding123

remarks are summarized in the final section.124

2. Formulation125

a. TC-scale model126

Using scale analyses for the TC governing equations, Kieu and Wang (2017, 2018) obtained the127

following set of nondimensionalized equations for TC scales under the wind-induced surface heat128

exchange (WISHE) feedback parameterization:129





u̇ = pv2 − (p+1)b−uv

v̇ =−uv− v2

ḃ = bu+ su+ v− rb

(1)

where (u,v,b) denote the non-dimensional scales of the maximum surface radial wind, the max-130

imum surface tangential wind and the temperature anomaly in the eye region respectively; p is131

a constant proportional to the squared ratio of the depth of the troposphere to the depth of the132

boundary layer, s denotes the effective tropospheric static stability, and r represents the Newtonian133

cooling. Details derivations of this TC-scale system can be found in Kieu and Wang (2017).134

Despite its simplicity, the TC-scale model (1) contains several important proprieties. First, this135

system possesses a unique stable point (1,1,1) in the phase space of (u,v,b) that corresponds ex-136

actly to Emanuel’s PI solution under the strict moist neutrality condition (i.e., s= 0). This is a non-137

trivial result, as the derivation of the PI solution from the TC-scale dynamics is very different from138
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the previous approaches based on the energy cycle or the gradient wind balance (Emanuel 1986,139

1988). Second, this system could demonstrate that the WISHE feedback is dynamically consistent140

with the PI equilibrium, a result that has largely been demonstrated by numerical simulations but141

not rigorously proven. Third, the PI equilibrium derived from the above TC-scale model indicates142

that this equilibrium must be simultaneously constrained by three variables (u,v,b), rather than143

just the value of the maximum tangential wind v as in the classical PI theory (Emanuel 1986,144

1988). For example, a TC vortex with the maximum tangential wind that is exactly equal to the145

PI value (i.e., v = 1), but a too weak or a too strong warm core (i.e., b < 1 or b > 1) would lead146

immediately to a strong fluctuation of TC intensity with time before settling in the PI equilib-147

rium. Last, the TC-scale model suggests two different time scales for TC development; a shorter148

timescale is related to the oscillation of TCs around the gradient wind balance state, and a longer149

timescale is associated with rapid intensification of the TC vortex toward a balance between the150

frictional forcing and the absolute angular momentum convergence. More detailed discussions of151

these results can be found in Kieu (2015); Kieu and Wang (2017, 2018).152

b. A stochastic extension153

While the TC-scale model of Eq. (1) is appealing and is able to capture several key features154

of TC dynamics, this deterministic model does not contain any stochastic components that exist155

in real physical systems. As such, we examine in this study a stochastic extension of Eq. (1) to156

address a specific question related to TC intensity fluctuation caused by stochastic forcings. Our157

main aim is to quantify the asymptotic probability distribution of TC intensity variability with158

different stochastic variances, and then determine which component of the stochastic forcings has159

the largest impact on TC intensity fluctuations at the PI limit.160
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For this purpose, we consider a TC-scale stochastic model in which the random forcings are161

represented by three independent Wiener processes Wt =(W 1
t ,W

2
t ,W

3
t ). Specifically, the extended162

TC-scale model is given as follows:163

dXt = F(Xt)dt +σ dWt , (2)

where Xt ≡ (u,v,b) denotes a vector of continuous-time Markov processes in the phase space164

of (u,v,b), F ≡ ( f1, f2, f3) ≡ (pv2 − (p+ 1)b− uv,−uv− v2,bu+ su+ v− rb) are deterministic165

forcings of the TC-scale model as given in Eq. (1), and σ a constant 3×3 diagonal matrix that166

characterizes the magnitude and covariance among three stochastic forcing components.167

Our first aim is to analyze the long time behavior of Eq. (2) such that the variance of the TC168

intensity distribution can be quantified in terms of the model parameters as well as the stochastic169

forcing matrix σ . Before deriving several important properties of the intensity distribution, we170

recall a well-known theorem that Eq. (2) has a unique solution X, since the function F is lo-171

cally Lipschitz. This solution represents a diffusion process with an invariant measure µX(~x) that172

satisfies the stationary Fokker-Planck equation 2
173

3

∑
i=1

σ2
i

2

∂ 2µX(~x)

∂x2
i

−
3

∑
i=1

∂ ( fi(~x)µX(~x))

∂xi
= 0 (3)

where~x = (x1,x2,x3) = (u,v,b) and ( f1, f2, f3)≡ (pv2− (p+1)b−uv,−uv−v2,bu+ su+v− rb)174

defined in the half space R×R+×R (i.e. cyclonic wind v ≥ 0), along with the Dirichlet boundary175

condition.176

Introducing a normalizing constant C =
∫
R×R+×R

µX < ∞, the marginal distribution of the v-177

component in µX will then have a probability density given by178

µX ,2(x) =
1

C

∫

R

∫

R

µX(x1,x,x3)dx1 dx3, x ≥ 0. (4)

2Mathematically, the invariant distribution can be precisely defined as
∫

L f (x)µ(dx) = 0 for all f in the domain of the infinitesimal generator

L associated with (2).
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Thus, the desired mean and variance of the v-component in µX are179

v̄ =
∫

R

x µX ,2(x)dx, σv =
∫

R

x2 µX ,2(x)dx− v̄2. (5)

While it is not known whether and how fast the solution to Eq. (2) converges to µX , assessing the180

stationary intensity distribution in terms of model parameters could at least help answer a central181

question of how much of TC intensity variability inside the PI chaotic attractor proposed in Kieu182

and Moon (2016) is related to stochastic forcings as mentioned in the Introduction. In the next183

section, we will derive a few key asymptotic properties of Eq. (2) at the PI equilibrium under184

some specific approximations. Full numerical integration of Eq. (2) and related analyses will be185

followed in Section 5.186

3. Stochastic framework187

In order to make sense of the stochastic term in (2), we first recall some definitions and some188

properties of real-valued Brownian motion or Wiener process and stochastic processes.189

Definition 3.1 A σ - algebra is a collection U of subsets of Ω with these properties190

i. /0,ω ∈ U191

ii. If A ∈ U then Ac ∈ U .192

iii. If A1,A2, ... ∈ U , then

∩∞
k=1Ak ∈ U , ∪∞

k=1 Ak ∈ U

Here, Ac := Ω−A is the complement of A.193

Definition 3.2 Let U be a-algebra of subsets of Ω. We call P : U → [0,1] probability measure194

provided:195

i. P( /0) = 0, P(Ω) = 1.196
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• If A1,A2, ... are disjoint sets in U , then

P(∪∞
k=1Ak) =

∞

∑
k=1

P(Ak)

Definition 3.3 A triple (Ω,U ,P) is called a probability space provided Ω is any set, U is a197

σ -algebra, and P is a probability measure on U .198

Definition 3.4 Let (Ω,U ,P) be a probability space. A mapping

X : Ω → R
n

is called an n-dimensional random variable if for each B ∈ B, we have

X−1(B) = {ω : X(ω) ∈ B} ∈ U

where B denotes the collection of Borel subsets of Rn, which is the smallest σ - algebra of subsets199

of Rn containing all open sets.200

Definition 3.5 (Stochastic processes)201

i. A collection {X(t)|t ≥ 0} of random variables is called a stochastic process.202

ii. For each point ω ∈ Ω, the mapping t → X(t,ω) is the corresponding sample path.203

Definition 3.6 We call

E(X) =
∫

Ω
XdP

the expected value ( or mean value) of X.204

Definition 3.7 We call

V(X) =
∫

Ω
|X−EX|2dP

the variance of X.205
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Let (Ω,U ,P) be a probability space and let X : Ω → R
n

206

Definition 3.8 (Distribution functions)207

i. The distribution function of X is the function FX : Rn → [0,1] defined by

FX(x) := P(X ≤ x),∀x ∈ R
n

ii. If X1, ...,Xm : Ω → R
n are random variables, then joint distribution function is

FX1,...,Xm
(x1, ...,xm) := P(X1 ≤ x1, ...,Xm ≤ xm), ∀xi ∈ R

n, i = 1,2, ...,m.

Definition 3.9 Suppose X : Ω → R
n is a random variable and F = FX its distribution. If there

exists a nonnegative, integrable function f : Rn → R such that

F(x) = F(x1, ...,xn) =
∫ x1

−∞
...
∫ xn

−∞
f (y1, ...,ym)dyn...dy1,

then f is called the density function for X.208

Example 3.1 If f : Ω → R has density

f (x) =
1√

2πσ2
e
−|x−m|2

2σ2 , x ∈ R,

we say X has a Gaussian( or normal) distribution, with mean m and variance σ2. In this case, let209

us write X is an N (m,σ2) random variable or Gaussian random variable.210

Example 3.2 If f : Ω → R
n has density

f (x) =
1√

(2π)ndetC
e
−1(x−m).C−1.(x−m)

2 (x ∈ R
n)

for some m ∈ R
n and some positive definite, symmetric matrix C, we say X has a Gaussian (211

or normal) distribution, with mean m and covariance matrix C. We then write X is an N (m,C)212

random variable.213
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Definition 3.10 A real-valued stochastic process W (·) is called a Brownian motion or Wiener214

process if215

i. W (0) = 0 a.s.,216

ii. W (t)−W (s) is N (0, t − s) for all t ≥ s ≥ 0217

iii. For all time 0< t1 < t2... < tn, the random variable W (t1),W (t2)−W (t1), ...,W (tn)−W (tn−1)218

are independent.219

Theorem 3.1 (Itô’s formula) Suppose that X(·) has a stochastic differential

dX = Fdt +GdW

Assume u : R× [0,T ]→ R is continuous and that ∂u
∂ t
, ∂u

∂x
, ∂ 2u

∂x2 exist and are continuous. Then the

process Y = u(X(t), t) satisfies the stochastic differential

dY =

(
∂u

∂ t
+

∂u

∂x
F +

1

2

∂ 2u

∂x2
G2

)
dt +

∂u

∂x
GdW

Theorem 3.2 (Itô product rule) Suppose220





dX1 = F1dt +G1dW

dX2 = F2dt +G2dW

(6)

Then,

d(X1X2) = X2dX1 +X1dX2 +G1G2dt.

4. Invariant intensity distribution221

A traditional approach to the problem of determining the probability density in a stochastic222

differential equation is to construct a Fokker-Planck equation for the given equation, and then solve223

this Fokker-Planck equation to obtain the probability density (see, e.g. Durrett 2010; Ø ksendal224
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2003). Once the probability density function is known, the asymptotic behaviors can be explicitly225

found by taking the limit t →∞ (i.e., by explicitly solving equation (3)) as discussed in the previous226

section. While the full time-dependent Fokker-Plank equation for the stochastic TC-scale model227

(2) can be easily constructed, it is virtually impossible to solve this equation due to the nonlinear228

terms in Eq (2). Furthermore, the particular deterministic forcing terms fi in Eq. (2) does not229

ensure the positive or negative definiteness for all points in the phase space. As such, analytical230

approach for this Fokker-Plank equation will not be pursued here.231

The existence of a unique asymptotically stable point of the TC-scale model in the absence of232

random processes presented in Kieu and Wang (2017) suggests however a different pathway to233

this problem. Since we are more concerned with the variability only near the stable point, it is234

possible to study the intensity distribution by linearizing the stochastic TC-scale model around235

the PI equilibrium, assuming that the stochastic forcings are sufficiently small that do not create236

new equilibria in the phase space of (u,v,b). This assumption is strongly supported by numerical237

analyses of the TC-scale model in Kieu (2015); Kieu and Wang (2017), which showed that the238

PI equilibrium in the TC-scale dynamics is extremely resilient to any perturbation. Regardless of239

initial TC intensity and model parameters, the TC-scale dynamics will always converge to a single240

point in the phase space due to the strong balance between frictional forcing and absolute angular241

momentum convergence. Provided that the elements of the stochastic forcing matrix σ are not too242

large, we will hereinafter assume that the PI equilibrium in the TC-scale model also exists, even243

with the stochastic extension as will be verified by numerical analyses in Section 4,244

With the above consideration, we study now a linearized Eq. (2) around a critical stable point245

xc of the TC-scale model, which is given by xc ≡ (−
√

1− s,
√

1− s,(1− s)) in the absence of246

the radiative cooling (i.e., r = 0). This critical point can be shown to correspond to the PI limit as247

discussed in Kieu (2015). Note that the main effect of radiative cooling in the TC-scale model is to248
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introduce a trapping region near the origin (0,0,0) in the phase space of (u,v,b) with little change249

to the PI equilibrium. In full-physics model simulations, many previous studies have also confirm250

the minor role of the radiative cooling to the PI limit (see also Rotunno and Emanuel1987, Wing251

et al. 2020). Thus, we will simplify our analysis in this study by focusing on the PI equilibrium252

such that radiative cooling impacts on the stability as well as the value of the PI limit can be253

neglected.254

Let A = (ai j)
3
i, j=1 be the Jacobian matrix of the TC-scale model at the critical point xc and shift255

the origin of the TC-scale model to xc as X = Y+ xc, it is readily then to obtain the following256

linearized system for the perturbation variable Y257

dYt = AYt dt +σ dWt (7)

where Wt is the standard three-dimensional Brownian motion, and A is given by (see Eq. (35)258

Kieu and Wang 2017).259

A =




−
√

1− s (2p+1)
√

1− s −p−1

−
√

1− s
√

1− s 0

1 1
√

1− s



, (8)

Note that a stochastic solution X to the original Eq. (2) will not necessarily stay near xc (corre-260

sponding to cyclonic wind v > 0), but in principle can visit any other potential stable critical point261

xc once stochastic forcings included. However, given our above assumption of the unique stable262

PI attractor, it is expected that the stationary intensity distribution of Y will be close to that of263

X around the equilibrium xc. Thus, Y+ xc is a good approximation to X when X is sufficiently264

close to xc. For the sake of terminology, we will hereinafter define an invariant intensity distribu-265

tion (a.k.a. stationary distribution) of Yt as a probability measure µY such that if Y0 ∼ µY , then266

Yt ∼ µY for all t ≥ 0.267
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Note that for the special case when A is symmetric and negative definite, the invariant distribu-268

tion µY is a multivariate normal distribution (the Gaussian distribution) with a mean 0 ∈ R3 and269

the co-variance matrix is just the inverse of the product −1
2σA−1σT , as shown in Appendix 1. For270

the TC-scale model, we note however that A is not symmetric as shown in Eq. (8). Therefore,271

the negative definiteness is not ensured, even when the solution Yt approaches the stable point 0.272

This asymptotic convergence is related to the property of the TC-scale dynamics, which possesses273

a simple Lyapunov stability instead of uniformly asymptotic stability at 0 3. Because of the un-274

known definiteness of A, we will seek an invariant intensity distribution for the strong solution Yt275

to Eq. (7) indirectly. Indeed, apply Itô’s Lemma to the function F(t,Yt) = e−tAYt , the (strong)276

solution Yt to Eq. (7) is then obtained formally as277

Yt = etAY0 +
∫ t

0
e(t−s)Aσ · dWs, t ≥ 0. (9)

Note that
∫ t

0 e(t−s)Aσ · dWs is a centered Gaussian random variable with a co-variance matrix278

ρ(t) =
∫ t

0
e(t−s)Aσ (e(t−s)Aσ)T ds =

∫ t

0
e(t−s)AσσT e(t−s)AT

ds =
∫ t

0
esAσσT esAT

ds, (10)

which converges, as t → ∞, to a 3 by 3 matrix279

ρY =
∫ ∞

0
esAσσT esAT

ds. (11)

Under the assumption of the Lyapunov stability of the TC-scale dynamics, the strong solution280

Yt to Eq. (7) exists for all time and has a unique invariant distribution µY , which is a centered281

Gaussian random variable N (0,ρY ) with a co-variance matrix ρY . Furthermore, since A possesses282

3 distinct eigenvalues {λi}3
i=1 that all have negative real parts,Yt converges in distribution to µY283

exponentially fast as t → ∞.284

3The subtlety between two types of the stability can be directly seen using the linearized equation xT dx
dt

= 1
2

d(xT x)
dt

= xT Ax. Apparently, it is

possible that
d(xT x)

dt
> 0 for some time t0, even when limt→∞ x(t) = eAt → 0. So, the negative definite property of A is not conclusive.
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To find the covariance matrix ρY explicitly without the complication of integrating the matrix

exponent in Eq. (11), one can look for a more direct approach that determines the time dependence

of the covariance matrix ρ(t)≡ E[YtY
∗
t ] at each time t. Indeed, applying the Itô product formula

to the function ϕ(t,ω) = Y(t)Y∗(t), we obtain

d(Y(t)Y∗(t)) = YdY∗+Y∗dY+σσ∗dt

We then apply the expected value to each side and note that A is a non-random matrix and285

E(Y dWt) = E(Y ∗dWt) = 0286

Ed(Y(t)Y∗(t)) = d(E(Y(t)Y∗(t)) = dρ = E

(
[(dY)Y∗]+ [YdY∗)]+ [(σσ∗)dt]

)
(12)

= E

(
Y∗AYdt +σY∗dWt +YAY∗dt +σ∗YdWt +σσ∗dt

)
(13)

= E[AYY∗dt]+E[YY∗A
∗
dt]+σσ∗dt (14)

= AE[YY∗]dt +E[YY∗]A∗dt +σσ∗dt (15)

=

[
(Aρ +ρA∗)+σσ∗

]
dt (16)

Thus, the matrix differential equation for the covariance density ρ(t) is given as follows287

ρ̇ = Aρ +ρA∗+σσ∗ (17)

The covariance matrix ρY of the invariant density in Eq. (11) can be then obtained by setting ρ̇ = 0288

in Eq. (17) to yield:289

AρY +ρYA∗+σσ∗ = 0 (18)

As can be seen from either Eq. (11) or Eq. (18), the calculation of the invariant distribution µY290

requires an explicit expression for the stochastic forcing matrix σ . Although it is difficult to solve291

Eq. (18) for a general case in which stochastic forcings are strongly correlated (i.e.,σi j 6= 0, i 6=292

j), the calculation will be much simplified when σ is a diagonal matrix σ = diag(σ1,σ2,σ3).293
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That is, the stochastic forcing components are uncorrelated to each other such that σσT = σ2.294

Physically, this assumption of a diagonal stochastic forcing matrix σ means than stochastic forcing295

components in the TC-scale model are independent for different variables, which is reasonable in296

the real atmosphere due to the isotropic property of randomness.297

Under this assumption of uncorrelated stochastic forcings, one can derive a formal expression298

for the covariance matrix ρY in terms of eigenvalues and eigenvectors of A. Indeed, applying the299

Schur decomposition A = QDQ∗, where D is an upper triangular matrix with eigenvalues on its300

diagonal and Q is Hermitian matrix satisfying QQ∗ = I, we have301

QDQ∗ρY +ρY QD∗Q∗ =−σσ∗ (19)

Multiplying Eq. (19) by Q∗ from the left and Q from the right and defining ρ̄ = Q∗ρYQ, and302

L̄ =−Q∗σσ∗Q, the co-variance matrix ρY then satisfies the following general Sylvester equation303

Dρ̄ + ρ̄D∗ = L̄ (20)

Therefore, the procedure to find the invariant distribution matrix ρY essentially consists of three304

basic steps: 1) applying the Schur decomposition to matrix A to obtain D and Q, 2) solving the305

Sylvester equation (20) for ρ̄ , and 3) inverting the relationship ρ̄ = Q∗ρYQ to obtain ρY . Note that306

D and D∗ are the upper and lower triangle matrices, respectively. As such, one can solve Eq. (20)307

for each entry ρ̄i j at a time, using the back substitution once the diagonal entries of the left and the308

right hand side of (20) are solved first (see Appendix 3 for the formal solution to Eq. (20)).309

Without all the details of solving the Sylvester equation, we list here several important remarks310

from the derivations of the invariant intensity distribution. First, the above computation of the311

invariant distribution based on (20) requires explicit knowledge of the unknown matrices Q and312

D as well as all eigenvalues. Assuming general values of the Jacobian matrix Q,D, Appendix313

3 shows a detailed derivation of all elements of ρ̄ . Even under this most general form of the314
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matrices Q,D, one can see clearly the linear dependence of ¯rho on the variances of the stochastic315

forcing matrix σ , and inverse dependence on the eigenvalues of A. Of course, the closed form for316

ρ̄i j requires explicit expressions of A and its eigenvalues, which are computationally difficult to317

derive. However, the formal integral invariant distribution given by Eq. (11) or the solution to Eq.318

(20) is still important, because it shows that an invariant Gaussian distribution exists and how to319

obtain it. Second, due to our asymptotic approach, the exponential decay of the tail distribution is320

not known from either the close integral form or the stationary limit of ρ̇ = 0. This question must321

be therefore verified by using a numerical approach that we will present in the next section. Last,322

the above analysis should, in principle, work for any dimension, and so it can be also extended to323

other types of stochastic forcings such as non-diagonal or degenerate matrix σ if necessary.324

5. Numerical analyses325

a. Invariant density of TC intensity variability326

In this section, we will use a numerical approach to verify and provide additional details into the327

analyses presented in Section 3. Specifically, we wish to extract the variance of the v-wind com-328

ponent σv defined in (5), which is also contained in the general covariance intensity matrix (11),329

given the variances σ2
1 ,σ

2
2 ,σ

2
3 . This v-variance is practically meaningful, because it represents330

the variability of TC intensity that forecasters most concern from the operational perspective. In331

addition to extract σv, it is necessary to confirm also the exponential decay of the tail distribution332

of TC intensity towards an invariant distribution at the PI limit as assumed in Section 3. Unlike333

the analytical derivations that are linearized around the maximum potential intensity critical point,334

direct numerical integration of Eq. (2) allows for addressing the above questions explicitly in the335

full nonlinear form.336
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To have a broad picture of full nonlinear behaviors of the stochastic TC-scale model (2), we337

consider a set of parameters shown in Table 1, which are typical for TCs under a real atmospheric338

environment (see Kieu 2015; Kieu and Wang 2017). By default, Eqs. (2) are numerically in-339

tegrated for 10000 time steps, using the standard Runge-Kutta fourth-order scheme with a time340

step dt = 0.001 (in nondimensional unit) similar to that in Kieu and Wang (2017). Due to the341

random nature of the stochastic forcings, the Monte-Carlo ensemble method is employed in all342

experiments, with 1000 different realizations of the model integration for each set of parameters343

and initial condition.344

Among several model parameters, we note specifically in our numerical experiments that the345

standard deviations σ1,σ2,σ3 of the stochastic forcings in Eq. (2) are set to be the same with346

values of (0.01,0.01,0.01) to ease our comparison with the analytical solution presented in Section347

3. These nondimensional amplitudes correspond to a random forcing variation of ∼ 0.2 ms−1 per348

hour for the (u,v) components, and ∼ 0.003 m2s−2 per hour for the buoyancy variable in the349

physical space (i.e., a random variation of ∼ 0.5 K per hour in terms of potential temperature).350

Such variations are well within the typical random fluctuations of atmospheric wind speed, which351

are the same in both the radial and tangential directions, and the temperature in the central region352

of real TCs (see, e.g., French et al. 2007; Zhang 2010).353

As an illustration, Figure 1 shows one specific realization of the numerical integration, starting354

from four arbitrary initial conditions in the phase space of (u,v,b) One notices in Figure 1 that355

consistent with our assumption of the existence of a unique attractor in the phase space of (u,v,b),356

all trajectories of Eq. (2) converges quickly towards the PI attractor, even with the stochastic357

forcing included. Provided that the variances of stochastic forcings are smaller than 0.3 (in non-358

dimensional unit), this attractor behavior is very robust, regardless of initial conditions. For any359

value of σ1,σ2 or σ3 larger than 0.3, the system (2) however becomes unstable and develops a wind360
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field with random negative values (i.e., an anticyclonic flow). As a result, the TC-scale model (1)361

will immediately blow up due to the emergence of an unstable critical point in the anticyclonic362

domain with v < 0 (see Kieu 2015; Kieu and Wang 2017). The existence of such a unique stable363

attractor in the stochastic TC-scale model is important, because it verifies our assumption of the364

convergence of the model flows towards an intensity invariant distribution ρY , as examined in365

Section 3.366

Along with the existence of a stable region in the phase space with an invariant intensity distri-367

bution ρY , one can see apparently from Figure 1 that the orbits are now no longer smooth curves as368

in the original deterministic system. Instead, the flows are strongly fluctuated as they approach the369

attractor in the phase space, rather than a single unique stable point. In this regard, the invariant370

intensity distribution ρY as given by (11) can be seen as the bounded region in the phase space in371

which TC intensity variation is most likely located as expected.372

We should particularly emphasize at this point that while an invariant density distribution of a373

stochastic system differs from a chaotic attractor of a deterministic system, it is practically impos-374

sible to distinguish the variability of TC intensity within the invariant density distribution from that375

inside the chaotic attractor. One could in principle wait for a sufficient long time such that a large376

fluctuation of TC intensity associated with the invariant probability distribution could be realized,377

which helps indicate if the attractor is chaotic or stochastic. However, for all real TC development,378

TCs may not have much time to stay at the PI limit before weakening due to landfalling or mov-379

ing to higher latitudes. Therefore, the fluctuation of TC intensity in real TC development could380

be a manifestation of both TC chaotic dynamics and the stochastic nature of atmosphere that one381

cannot fully separate.382

To help quantify the characteristics of the invariant intensity distribution at the PI equilibrium,383

Figure 2 shows the projection of the flow orbits onto the v direction for the three orbits shown384
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in Figure 1. The random effects are clearly manifested in this time series, with a rapid fluctu-385

ation of TC intensity during the entire TC development very similar to the actual TC intensity386

observed from high temporal resolution aircraft observation (French et al. 2007; Zhang 2010). Of387

more interest is the fluctuation of TC intensity at the asymptotic limit t → ∞, which represents388

the invariant intensity distribution µY examined in Section 3. For the control experiments with389

σ1 = σ2 = σ3 = 0.01, the corresponding standard derivation of the TC intensity variation in the390

v direction σv is ∼ 0.0056, which is less than 1% of the typical PI value. For example, if one391

assumes a PI value of 65 m s−1 and a time scale of 3 hours as given in Table 3, the fluctuation of392

TC intensity at the PI limit due to the stochastic forcing is only ∼ 0.4 m s−1, which is relatively393

small compared to the typical TC intensity errors in real-time forecasts (see, e.g. Tallapragada394

et al. 2014; Kieu and Moon 2016; Kieu et al. 2018).395

Because of the dependence of µY on the amplitudes of stochastic forcings, Figure 3 shows the396

standard derivation σv for TC intensity at the asymptotic limit t → ∞ for a range of σ1 = σ2 =397

σ3 ∈ [0.01−0.1]. Despite the nonlinear behavior of the stochastic TC-scale model (2), one notices398

in Figure 3 that σv varies almost linearly with σi and is roughly half of the standard derivation σi.399

Such a linear dependence of σv on the variance of the stochastic forcing σi is consistent with the400

analytical derivation in Section 3 (see also Appendix 3). Indeed, if one applies σ1 = σ2 = σ3 = σ f401

to the Sylvester equation (20), the explicit solution (see Appendix 3) to this equation will give402

σv that is linearly proportional to the variance of the stochastic forcing, i.e., σ2
v ∼ σ2

f as expected.403

The numerical simulations in this regard confirm the asymptotic analyses presented in the previous404

section.405

As a way to further examine the derivation of the asymptotic invariant intensity distribution ρY406

as given by Eq (11), we note that the linear dependence of σv on the stochastic forcing variance407

σi is realized not only for the special case σ1 = σ2 = σ3 but also for each individual variance408
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of stochastic forcing (i.e., σi 6= 0, but σ j,k = 0, i 6= j 6= k) as can be directly seen in the explicit409

expression of σv shown in Appendix 3.410

To verify this property, Figure 4 shows the standard derivation σv for a range of the stochastic411

forcing variance. That is, only one σi is varied, while setting the other two variances σ j, j 6= i equal412

to zero. As shown in Figure 4, the TC intensity variance σv indeed increases linearly with each σi413

as expected from the linearized analyses. Among the three variances of the stochastic forcings, it414

is of interest to note however that σv is most sensitive to the tangential wind forcing (i.e., σ2) and415

the temperature forcing (i.e., σ3), while it is much less sensitive to the radial wind forcing (i.e.,416

σ1 as seen from the scale of the y-axis in Figure 4). This result has some significant implication,417

because it indicates that the fluctuation in tangential wind v or the temperature anomaly b will have418

far more reaching impacts on TC intensity variability. Therefore, future effort of optimizing a TC419

vortex initialization should focus more on the tangential wind and temperature structure than on420

the secondary circulation for operational purposes.421

From the physical perspective, an important question for the above numerical results is whether422

or not the assumptions for the stochastic matrix σ are reasonable. While the numerical results423

obtained in this section and the analytical derivations in Section 3 confirm the importance of424

stochastic forcings in TC intensity fluctuation during TC development as well as at the PI limit,425

one notices that stochastic intensity fluctuation shown in Figure 3 is significantly less than the426

variability due to the deterministic chaos or real-time intensity errors found in Kieu and Moon427

(2016); Kieu et al. (2018). Only for a stochastic forcing standard derivation as larger as 2 ms−1
428

per hour does the standard derivation of TC intensity variation reach roughly 4 ms−1, which is429

still smaller than 8 m s−1 as obtained from the axisymmetric simulations in Kieu and Moon (2016)430

or real-time intensity errors Tallapragada et al. (2013, 2014); Kieu et al. (2018). Such a smaller431

value of TC intensity variability that is induced by random processes indicates that the existence432
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of the deterministic PI chaotic attractor is indeed needed to fully account for the observed intensity433

variation.434

On the other hand, the fact that TC intensity can vary with a standard deviation as large as 4ms−1
435

at the PI limit due to random forcing reiterates that the absolute intensity errors in a numerical436

model, especially for models with a stochastic parameterization scheme such as the Hurricane437

Weather Research and Forecasting model (Zhang et al. 2015), will have an intrinsic barrier of 4438

m s−1 that one cannot reduce further. The combination of the stochastic variations as found in this439

study and the potential existence of a chaotic PI attractor as found in Kieu and Moon (2016); Kieu440

et al. (2018) thus imposes a very strong upper bound on the accuracy of TC dynamical models in441

the future, if the metric for TC intensity is based on the maximum 10-m wind.442

b. Stochastic nonlinear versus linear effects443

Although the numerical integration of the stochastic TC-scale model could capture an invariant444

probability distribution of TC intensity that supports the linearized analyses at the PI limit, an445

important question that has not been examined so far is whether the invariant density µX from446

the nonlinear model (2) accords with µY obtained from the linearized model (7). In addition, it447

is also necessary to examine if the dependence of the invariant intensity density on the model448

parameters is consistent between these nonlinear and the linearized models. By varying the two449

model parameters p and s and comparing the variances of the TC intensity distribution obtained450

from the linearized and the full nonlinear models, it is possible to assess the nonlinear effects on451

TC intensity density that we wish to explore in this subsection.452

In this regard, Figure 5 shows the variances of TC intensity distributions from Eqs. (2) and (7)453

when one of the model key parameters p or s is varied while all other parameters are fixed. Recall454

here that these two parameters encode significant amount of TC dynamics; s represents the degree455
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of slantwise moist neutrality, and p is the squared ratio of the boundary layer depth over the tro-456

pospheric depth that is scaled by the drag coefficient. Unlike the linearized model whose invariant457

density can be derived explicitly, note that numerical integrations of the full nonlinear stochastic458

systems require a large number of experiments to capture as many realizations of random forcings459

as possible.460

One notices in Figure 5 that the nonlinear and linear models display an overall a consistent461

functional dependence on the model parameters. Specifically, both models capture an invariant462

density that increases with a larger parameter s shown in Figure 5a). Likewise, both models show463

an inverse relationship between the variance of intensity distribution and the model parameter p464

(Fig. 5b). Physically, these results indicates that a more stable troposphere would produce a higher465

intensity variability, given the same magnitude of random forcings. This is because a more stable466

atmosphere would allow a weaker PI limit, thus resulting a stronger fluctuation of TC intensity467

similar to a stochastic fluctuation inside a lower potential well. On the other hand, a higher value468

of p means weaker boundary layer frictional forcing, which tends to attain a higher PI limit that469

confines more the intensity fluctuation inside. Thus, a smaller intensity variance for a larger value470

of p is expected.471

Within the statistical significance level of the numerical simulations, one notices however that472

the nonlinear and linear models do not completely comparable in terms of the value of intensity473

variance. In fact, full nonlinear model captures a higher intensity variance for a range of param-474

eters p and s. The two models are only comparable when the effective static stability parameter475

s is sufficiently high (> 0.6), or the aspect ratio p is sufficiently small (< 300). Beyond these476

ranges, the nonlinear model tends to capture a higher intensity variance than that obtained from477

the linearized model at the PI limit. In this regard, the above result could highlight the regime in478
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the parameter space where the invariant density distribution derived from the linearized model is479

acceptable for analytical purposes.480

6. Conclusion481

In this study, a low-order stochastic model based on TC scales was presented to study the asymp-482

totic probability density of TC intensity at the PI equilibrium. By introducing stochastic forcings483

to the TC-scale model in the form of Wiener processes, a number of important findings related to484

the asymptotic properties of TC intensity variability have been obtained. First, it was shown that485

there exists an invariant intensity distribution at the PI equilibrium whose variance is linearly pro-486

portional to the variance of stochastic forcings. That is, the larger the stochastic forcing variance,487

the more TC intensity fluctuation one would expect at the PI limit. Second, our analytical and488

numerical analyses showed that the standard deviation of this probability intensity distribution is489

roughly half of the standard derivation of the stochastic forcings in the nondimensionalized space.490

In the full dimensional form, this result indicates that a stochastic forcing with a wind speed vari-491

ation of 1-2 ms−1 per hour or temperature variation of 1-2 K per hour could lead to an intensity492

variation of ∼ 3−4ms−1.493

Third, among different stochastic forcing components, the stochastic forcings related to tan-494

gential wind and the temperature anomaly at TC central region have the largest impact on TC495

intensity variation, whereas stochastic forcing in the radial direction has a much smaller effect.496

The dominant role of tangential wind and warm core anomaly forcings advocate that future TC497

model development should focus more on improving an initial representation of tangential wind498

and TC thermodynamic structure to optimize TC intensity forecast accuracy.499

From the practical standpoint, these results are non-trivial because they suggest an inherent limit500

in the absolute TC intensity errors that one cannot reduce further in operational TC models where501
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random factors can never be eliminated. As long as the maximum 10-m wind is used as a metric502

to measure TC intensity, the absolute TC intensity forecast errors will have a barrier at which503

one cannot reduce further. We note that this limit in our capability to reduce TC intensity errors504

below a certain threshold associated with stochastic forcings fundamentally differs from that due505

to chaotic dynamics; the invariant density has an unbounded density distribution that could accept506

a probability of having an arbitrarily high intensity, whereas the chaotic dynamics has a strictly507

bounded attractor. For all practical purposes, the chaotic and stochastic intensity fluctuations are508

however not separable. They both contribute to TC intensity variability that prevents one from509

reducing TC intensity errors below a certain threshold.510

While the stochastic TC-scale model presented in this study could demonstrate the fluctuation511

of TC intensity associated with random forcing, a number of caveats must be acknowledged.512

First, the randomness introduced in this TC-scale framework is somewhat different from the true513

randomness in real atmosphere. This is because real atmosphere possesses some coherent structure514

whose random variables may not be completely uncorrelated as assumed in this study (i.e., the515

stochastic forcing matrix may not be diagonal). For analytical analyses, this correlated stochastic516

forcings results in such a complicated form of density matrix that there may exist no explicit517

form for the invariant density, even at the PI asymptotic limit. Second, the TC-scale dynamics518

used in this study is drastically simplified as compared to the dynamics of real TCs for which519

various subtle physical and thermodynamic processes are essential. Thus, the intensity variation520

obtained in this simplified TC-scale model cannot capture nonlinear interactions among different521

physical components of real TCs, thus resulting in some uncertainties in quantifying the intensity522

fluctuation related to stochastic forcings. In this regard, TC intensity variation due to stochastic523

forcings examined in this study can serve only as a lower bound for the actual intensity fluctuations524

in real TCs.525
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APPENDIX529

Appendix 1530

For the case of a symmetric Jacobian matrix A, we can re-write the linearized equation in terms of531

the gradient form as follows:532

dYt = ∇Φ(Yt)dt +ΣdWt , (A1)

where Φ(x) = 1
2xT Ax = 1

2 ∑
3
i, j=1 ai jxix j. Define the matrix533

Ã = 2(Σ−1)2 A =

(
2ai j

σ2
i

)

i, j

.

Suppose σi 6= 0 for all i ∈ {1,2,3} and A is symmetric. Then the (strong) solution Y to (7) is a534

symmetric diffusion with symmetrization measure eΦ̃(x) dx, where535

Φ̃(x) =
1

2
xT Ãx =

1

2

3

∑
i, j=1

2ai j

σ2
i

xix j.

Furthermore, if Z :=
∫
R3 expΦ̃(x)dx < ∞, then Y has a unique invariant measure536

µY (dx) =
eΦ̃(x) dx

Z
.

In particular, if Ã is symmetric, then µY is the multivariate normal distribution (the Gaussian537

distribution) with mean 0 ∈ R3 and co-variance matrix538

−




2a11/σ2
1 2a12/σ2

1 2a13/σ2
1

2a21/σ2
2 2a22/σ2

2 2a23/σ2
2

2a31/σ2
3 2a32/σ2

3 2a33/σ2
3




−1

= −1

2
A−1Σ2.

The condition Z :=
∫
R3 expΦ̃(x)dx<∞ is satisfied if A is negative definite in the sense that xT Ax<539

0 for all nonzero x.540
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(Sketch) The generator of the solution Y is541

L f (x) =
1

2

3

∑
i=1

σ2
i

∂ 2 f

∂x2
i

(x)+∇Φ ·∇ f (x)

=
1

2

3

∑
i=1

σ2
i

∂ 2 f

∂x2
i

(x)+
3

∑
i=1

(
3

∑
j=1

ai jx j

)
∂ f

∂xi
(x)

=
1

2

3

∑
i=1

σ2
i

{
∂ 2 f

∂x2
i

(x)+

(
3

∑
j=1

2ai j

σ2
i

x j

)
∂ f

∂xi
(x)

}

=
1

2ρ(x)

3

∑
i=1

∂
(

ρ(x)σ2
i

∂ f
∂xi

(x)
)

∂xi

where ρ(x) = eΦ̃(x).542

The condition Z :=
∫
R3 expΦ̃(x)dx<∞ is satisfied if A is negative definite, because Ã is negative543

definite if and only if A is negative definite. To see the last statement, observe that Ã = DA544

where D = 2(Σ−1)2 is a diagonal matrix with positive entries. Hence for each k ∈ {1,2,3}, the545

determinant of the upper left k by k sub-matrix of Ã has the same sign as that for A.546

Appendix 2547

The eigenvalues of the Jacobian matrix (38) in Kieu and Wang (2017) have negative real parts,548

so the critical point is stable in the ODE system (30)-(32) in that paper. In this Appendix, we inves-549

tigate how the absolute values of the real parts of the eigenvalues control the rate of convergence550

of the SDE (7) towards its invariant distribution µY .551

(L2-Exponential convergence) Let X be a Markov process with stationary measure µ . Let552

{Pt}t≥0 be the semigroup of X . We say that L2 exponential ergodicity holds for X if there ex-553

ists c ∈ (0,∞) such that554

∥∥∥∥Pt f −
∫

f dµ

∥∥∥∥
L2(µ)

≤ e−ct

∥∥∥∥ f −
∫

f dµ

∥∥∥∥
L2(µ)

(A2)

for all f ∈ Cb(S ) and t ≥ 0. This means the probability distribution of Xt converges to the555

stationary distribution exponentially fast. It is well known (van Handel 2014, Chapter 2) that for556
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reversible ergodic Markov processes with a positive spectral gap, L2 exponential ergodicity (A2)557

holds. This implies that (A2) holds for our multi-dimensional Ornstein–Uhlenbeck process Y ,558

since all eigenvalues of A have negative real parts.559

Appendix 3. Formal solution for the covariance matrix ρY560

To solve the Sylvester equation formally, let561

Q =




α1 α2 α3

β1 β2 β3

δ1 δ2 δ3




and562

ρ̄ =




ρ̄11 ρ̄12 ρ̄13

ρ̄21 ρ̄22 ρ̄23

ρ̄31 ρ̄32 ρ̄33




and563

D =




λ1 a1 a2

0 λ2 a3

0 0 λ3




We compute564

L̄ = Q∗σσ∗Q =




L̄11 L̄12 L̄13

L̄21 L̄22 L̄23

L̄31 L̄32 L̄33




where565

• L̄11 =−(α2
1 σ2

1 +β 2
1 σ2

2 +δ 2
1 σ2

3 )566

• L̄12 =−(α1α2σ2
1 +β1β2σ2

2 +δ1δ2σ2
3 )567

• L̄13 =−(α1α3σ2
1 +β1β3σ2

2 +δ1δ3σ2
3 )568
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• L̄21 = α1α2σ2
1 +β1β2σ2

2 +δ1δ2σ2
3569

• L̄22 =−(α2
2 σ2

1 +β 2
2 σ2

2 +δ 2
2 σ2

3 )570

• L̄23 =−(α2α3σ2
1 +β2β3σ2

2 +δ2δ3σ2
3 )571

• L̄31 =−(α1α3σ2
1 +β1β3σ2

2 +δ1δ3σ2
3 )572

• L̄32 =−(α2α3σ2
1 +β2β3σ2

2 +δ2δ3σ2
3 )573

• L̄33 =−(α2
3 σ2

1 +β 2
3 σ2

2 +δ 2
3 σ2

3 )574

By using the back substitution, we are able to derive the solution for the system (??) as follows575

ρ̄33 =
L̄33

2Re(λ3)
, ρ̄32 =

L̄32 − ā3ρ̄33

λ3 + λ̄2

,

ρ̄31 =
L̄31 − ā1ρ̄32 − ā2ρ̄33

λ3 + λ̄1

, ρ̄23 =
L̄23 − ā3ρ̄33 − λ̄2ρ̄23

λ2

ρ̄22 =
L̄22 − ā3ρ̄32 − ā3ρ̄23

2Re(λ2)
, ρ̄21 =

L̄21 −a3ρ̄31 − ā2ρ̄23 − ā1ρ̄22

λ̄1 +λ2

ρ̄13 =
L̄13 −a1ρ̄23 −a2ρ̄33

λ1 + λ̄3

, ρ̄12 =
L̄12 −a1ρ̄22 −a2ρ̄32 − ā3ρ̄13

λ1 + λ̄2

ρ̄11 =
L̄11 −a1ρ̄21 −a2ρ̄31 − ā1ρ̄12 − ā2ρ̄13

2Re(λ1)
(A3)

By utilizing the relation ρ̄ = Q∗ρYQ, all entries of the co-variance matrix ρY are found explicitly.576
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TABLE 1. Default values of all parameters in the stochastic TC-scale model that are used for the numerical

integration of Eq. (2)

658

659

Parameter Value Remark

Vc ∼ 65ms−1 Scale of the maximum surface wind at the PI equilibrium for sea surface temperature of 30oC.

Uc ∼ 10ms−1 Scale of the radial wind at the PI equilibrium.

Bc ∼ 0.4ms−2 Scale of the maximum buoyancy that corresponds to the warm core in the TC eye region

T ∼ 104s A characteristic time scale

p 200 nondimensional square ratio of the PBL depth over the radius of the maximum wind

r 0.1 a nondimensional parameter representing the radiative cooling

s 0.1 a nondimensional parameter representing the tropospheric stratification

σ1 0.01 nondimensional variance of the u-wind stochastic forcing component

σ2 0.01 nondimensional variance of the v-wind stochastic forcing component

σ3 0.01 nondimensional variance of the buoyancy stochastic forcing component
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FIG. 1. Orbits of the flow in the stochastic TC-scale model for three different initial conditions that are

obtained from the numerical integration of Eq. (2), assuming the parameter given in Table 1.
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FIG. 2. Time series of the v component for the three orbits shown in Figure 1.
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FIG. 3. Dependence of the standard deviation of the TC intensity (i.e., the v component) of the invariant

intensity distribution ρY as given by Eq. (11) of the stochastic TC-scale model on the standard deviation σ1 =

σ2 = σ3 of the stochastic forcing at the PI limit.
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FIG. 4. Similar to Figure 3 but for the dependence of the standard deviation of TC intensity of the invariant

intensity distribution ρY as given by Eq. (11) of the stochastic TC-scale model on the individual standard

deviation a) σ1 assuming σ2 = σ3 = 0, b) σ2 assuming σ1 = σ3 = 0, and c) σ3 assuming σ1 = σ2 = 0.
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FIG. 5. Dependence of the standard deviation of TC intensity as obtained from the full nonlinear integration

of Eq. (2) (black solid) and the approximated solution to the linearized system (red solid) on a) the model

parameter p, and b) the model parameter s assuming σ1 = σ2 = σ3 = 0.1.
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