

1 **Stochastic Variability of Tropical Cyclone Intensity at the Asymptotic**
2 **Potential Intensity Equilibrium**

3 Phuong Nguyen¹

4 ¹*Department of Mathematics, Texas Tech University, Lubbock, TX 79409*

5 Chanh Kieu² *

6 ²*Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405.*

7 Wai Tong Fan³

8 ³*Department of Mathematics, Indiana University, Bloomington, IN 47405*

9 *Corresponding author address: Chanh Kieu. Department of Earth and Atmospheric Sciences,
10 Indiana University, Bloomington, IN 47405
11 E-mail: ckieu@indiana.edu

ABSTRACT

12 This study examines the variability of tropical cyclone (TC) intensity asso-
13 ciated with stochastic forcings at the maximum potential intensity (PI) equi-
14 librium. By representing TC intensity in terms of the Wiener process in the
15 framework of TC-scale dynamics, it is shown that there exists an invariant in-
16 tensity distribution whose variance is proportional to and roughly half of the
17 variances of stochastic forcings. This result advocates recent findings that TC
18 dynamics possesses an intrinsic variability, which prevents the TC absolute
19 intensity errors in numerical models from being reduced below an arbitrarily
20 small threshold. Analysis of the invariant intensity distribution at the PI limit
21 reveals further that the stochastic forcing component associated with tangen-
22 tial wind and warm core anomaly in the TC central region have the largest
23 effects on TC intensity variability. These results suggest that future develop-
24 ment of stochastic parameterization in TC model should focus on representa-
25 tion of both tangential wind and thermodynamic structure to capture proper
26 TC intensity fluctuations.

27 **1. Introduction**

28 Stochastic processes are a natural property of all atmospheric systems. These random variabil-
29 ities exist in various spatial and temporal scales, and are often related to unknown fluctuations in
30 physical systems, especially at micro and turbulent scales (Hasselmann 1976; Palmer 2001; Pen-
31 land 2003; Williams et al. 2016; Berner et al. 2017). Accounting for these stochastic processes
32 in numerical weather prediction models is challenging either at resolved or unresolved model
33 resolutions, due to our inadequate understanding of different physical components as well as non-
34 linear interaction at different scales (Palmer 2001; Penland 2003; Tompkins and Berner 2008;
35 Weisheimer et al. 2014). In practice, the atmospheric randomness is commonly accounted for in
36 numerical models via an ensemble representation of stochastic physics, in which physical param-
37 eterization schemes employ a random variation of model parameters or add random variations to
38 model variables to mimic uncertainties in the atmosphere (Palmer 2001; Christensen et al. 2015;
39 Dorrestijn et al. 2015).

40 Given such a stochastic nature of the atmosphere, a fundamental question that has not been fully
41 examined in the tropical cyclone (TC) research is how much of intensity errors in real-time TC
42 forecasts are caused by stochastic forcings. This question is of significance to the current effort
43 in improving the accuracy of TC intensity forecasts in numerical models, because it dictates the
44 degree of intensity variability associated with random processes that we could never fully control.
45 With the current 4-5 day intensity errors in operational TC models around 11-18 kt (Tallapragada
46 et al. 2014, 2015; Bhatia and Nolan 2015; Emanuel and Zhang 2016; Kieu et al. 2018), determin-
47 ing how much of these TC intensity errors are related to stochastic forcings will provide some
48 additional information about our maximum ability in reducing TC intensity errors that we can
49 achieve in the future.

50 Similar to any atmospheric system, TC intensity forecast errors in numerical models are gen-
51 erally due to several factors such as the intrinsic nature of TC intensity variability, model errors,
52 imperfect initial conditions, or random factors (see, e.g., Tallapragada et al. 2014; Jin et al. 2014;
53 Tallapragada et al. 2015; Zhang et al. 2015; Penny et al. 2016; Doyle et al. 2017; Halperin and Torn
54 2018; Kieu et al. 2018). It is difficult, if at all impossible, to isolate the relative contribution of
55 these error sources in practice due to their nonlinear interaction once models are integrated. Using
56 the TC-scale dynamics framework, Kieu and Moon (2016); Kieu et al. (2018) recently proposed
57 that a substantial part of TC intensity errors in numerical models is related to the existence of a
58 chaotic attractor at the TC maximum potential intensity (PI) limit. Even in an idealized environ-
59 ment with a perfect dynamical model, the chaotic behavior of TC dynamics can be responsible
60 for an intrinsic intensity fluctuation with a variance in the range of $6\text{-}8\text{ }ms^{-1}$ in the absence of
61 any random processes. This result has a significant implication for operational TC forecasting,
62 because it reveals internal characteristics of TC dynamics that prevent us from knowing precisely
63 TC intensity at any given time, regardless of how accurate the observing systems or how perfect
64 TC models are.

65 Despite such insights about chaotic behaviors of TC intensity derived from the TC-scale frame-
66 work, the deterministic chaos at the PI limit as proposed by Kieu and Moon (2016) is based only
67 on the axisymmetrical dynamics of Rotunno and Emanuel (1987)'s model. While this full-physics
68 model could provide detailed processes of TC dynamics and thermodynamics, the use of a nu-
69 matical model to solve the TC governing equations immediately introduces new difficulties in
70 quantifying the intrinsic TC intensity variability. Specifically, various numerical truncation errors
71 and filtering schemes are implemented in the model to eliminate numerical noises and maintain
72 the model numerical stability. Thus, the same model configuration and initial/boundary condi-
73 tion could lead to different realization of atmospheric states when running on different machines

74 or compilation/libraries. These completely numerical artifacts produce very similar behaviors to
75 models with stochastic forcings in the sense that the same model and initial condition result in
76 different model outcomes. In this regard, it is natural to consider any TC model as a stochastic
77 rather than a deterministic dynamical system.¹.

78 As a result of this stochastic nature of TC models, the estimation of the size of the chaotic
79 PI attractor presented in Kieu and Moon (2016) contains unknown contribution from stochastic
80 processes that are in addition to the TC intrinsic dynamics. Hence, a very natural, yet open,
81 question is *how much of TC intensity variability at the PI limit is caused by stochastic forcings*
82 *as compared to the chaotic variability*. This question is significant because of the fundamental
83 difference between chaotic and stochastic variability. That is, one could have a dynamical system
84 whose state fluctuation in the phase space is completely chaotic without any stochastic forcings,
85 and vice versa.

86 Among different approaches to tackle the above question, the most compelling way is to use a
87 numerical model with stochastic physics parameterizations so one can examine how TC intensity
88 fluctuation changes when varying stochastic forcing amplitudes. Sampling an ensemble of outputs
89 from these stochastic model simulations would then allow one to quantify TC intensity variability
90 as a function of forcing variances. Although this stochastic ensemble approach appears to be
91 promising and is indeed applied in current operational forecasting centers for TC applications
92 (see, e.g. Zhang et al. 2015), the myriad of degrees of freedom in current numerical models makes
93 it virtually impossible to isolate what stochastic components are most relevant for TC intensity
94 variability. For example, there is no specific guidance on how to add random perturbations to
95 temperature, moisture, model parameters, or wind variables. Likewise, one can arbitrarily add

¹Strictly speaking, a stochastic dynamics contains a collection of random variables indexed by time, which could lead to different trajectories due to different realization of the random forcings when running the same model.

96 random noises to upper levels, low levels, at the surface, or any part of the model domain. Such a
97 large degree of freedom in implementing the stochastic forcing in full-physics TC models results in
98 an infinite number of possibilities, which may not be helpful to understand TC intensity variability
99 associated with stochastic processes.

100 Recent studies by Kieu (2015); Kieu and Wang (2017, 2018) suggest a pathway to probe the
101 problem of TC intensity fluctuation caused by stochastic forcing. Using TC scales as dynamical
102 variables, they presented a fidelity-reduced model that could capture several fundamental aspects
103 of TC development such as the PI equilibrium and stability, the consistency of the wind-induced
104 surface heat exchange mechanism and the PI equilibrium, or an inherent timescale for TC rapid
105 intensification. A particular feature of this TC-scale model is its explicit time-dependence with
106 only 3 degrees of freedom, which correspond to the maximum tangential wind, the maximum
107 radial wind, and the warm core anomaly at the TC center. The explicit time-dependence of this
108 TC-scale model allows a transparent way to investigate the effects of stochastic forcings that are
109 most relevant to TC dynamics in the absence of deterministic chaos. Furthermore, one can also
110 quantify the relative importance of dynamical stochastic forcing versus thermodynamic stochastic
111 forcing in TC development, which could not be obtained directly from full-physics simulations.

112 Given the usefulness of the TC-scale dynamics model, two specific questions related to TC
113 intensity stochastic fluctuations that we wish to present in this study are 1) how much of TC
114 intensity variability can be induced by stochastic forcings at the PI limit, and 2) what stochastic
115 forcing component plays the most important role in TC intensity fluctuations. These questions are
116 of practical, as they provide more insight into the mechanisms that prevent us from reducing TC
117 intensity errors below a certain threshold beyond the deterministic chaos. Moreover, knowing the
118 relative role of different stochastic forcing components will allow us to properly design stochastic
119 ensemble forecasting for future TC intensity forecast applications.

120 The structure of the paper is organized as follows. In the next section, a brief introduction of the
 121 TC-scale model and its extension for a stochastic system will be presented. Section 3 derives some
 122 theoretical estimations of the probability density at the PI limit, and Section 4 presents numeri-
 123 cal analyses of the Monte-Carlo integration of the stochastic TC-scale model. Some concluding
 124 remarks are summarized in the final section.

125 **2. Formulation**

126 *a. TC-scale model*

127 Using scale analyses for the TC governing equations, Kieu and Wang (2017, 2018) obtained the
 128 following set of nondimensionalized equations for TC scales under the wind-induced surface heat
 129 exchange (WISHE) feedback parameterization:

$$\begin{cases} \dot{u} = pv^2 - (p+1)b - uv \\ \dot{v} = -uv - v^2 \\ \dot{b} = bu + su + v - rb \end{cases} \quad (1)$$

130 where (u, v, b) denote the non-dimensional scales of the maximum surface radial wind, the max-
 131 imum surface tangential wind and the temperature anomaly in the eye region respectively; p is
 132 a constant proportional to the squared ratio of the depth of the troposphere to the depth of the
 133 boundary layer, s denotes the effective tropospheric static stability, and r represents the Newtonian
 134 cooling. Details derivations of this TC-scale system can be found in Kieu and Wang (2017).

135 Despite its simplicity, the TC-scale model (1) contains several important proprieties. First, this
 136 system possesses a unique stable point $(1, 1, 1)$ in the phase space of (u, v, b) that corresponds ex-
 137 actly to Emanuel's PI solution under the strict moist neutrality condition (i.e., $s = 0$). This is a non-
 138 trivial result, as the derivation of the PI solution from the TC-scale dynamics is very different from

139 the previous approaches based on the energy cycle or the gradient wind balance (Emanuel 1986,
140 1988). Second, this system could demonstrate that the WISHE feedback is dynamically consistent
141 with the PI equilibrium, a result that has largely been demonstrated by numerical simulations but
142 not rigorously proven. Third, the PI equilibrium derived from the above TC-scale model indicates
143 that this equilibrium must be simultaneously constrained by three variables (u, v, b) , rather than
144 just the value of the maximum tangential wind v as in the classical PI theory (Emanuel 1986,
145 1988). For example, a TC vortex with the maximum tangential wind that is exactly equal to the
146 PI value (i.e., $v = 1$), but a too weak or a too strong warm core (i.e., $b < 1$ or $b > 1$) would lead
147 immediately to a strong fluctuation of TC intensity with time before settling in the PI equilib-
148 rium. Last, the TC-scale model suggests two different time scales for TC development; a shorter
149 timescale is related to the oscillation of TCs around the gradient wind balance state, and a longer
150 timescale is associated with rapid intensification of the TC vortex toward a balance between the
151 frictional forcing and the absolute angular momentum convergence. More detailed discussions of
152 these results can be found in Kieu (2015); Kieu and Wang (2017, 2018).

153 *b. A stochastic extension*

154 While the TC-scale model of Eq. (1) is appealing and is able to capture several key features
155 of TC dynamics, this deterministic model does not contain any stochastic components that exist
156 in real physical systems. As such, we examine in this study a stochastic extension of Eq. (1) to
157 address a specific question related to TC intensity fluctuation caused by stochastic forcings. Our
158 main aim is to quantify the asymptotic probability distribution of TC intensity variability with
159 different stochastic variances, and then determine which component of the stochastic forcings has
160 the largest impact on TC intensity fluctuations at the PI limit.

161 For this purpose, we consider a TC-scale stochastic model in which the random forcings are
 162 represented by three independent Wiener processes $\mathbf{W}_t = (W_t^1, W_t^2, W_t^3)$. Specifically, the extended
 163 TC-scale model is given as follows:

$$d\mathbf{X}_t = \mathbf{F}(\mathbf{X}_t) dt + \sigma d\mathbf{W}_t, \quad (2)$$

164 where $\mathbf{X}_t \equiv (u, v, b)$ denotes a vector of continuous-time Markov processes in the phase space
 165 of (u, v, b) , $\mathbf{F} \equiv (f_1, f_2, f_3) \equiv (pv^2 - (p+1)b - uv, -uv - v^2, bu + su + v - rb)$ are deterministic
 166 forcings of the TC-scale model as given in Eq. (1), and σ a constant 3×3 diagonal matrix that
 167 characterizes the magnitude and covariance among three stochastic forcing components.

168 Our first aim is to analyze the long time behavior of Eq. (2) such that the variance of the TC
 169 intensity distribution can be quantified in terms of the model parameters as well as the stochastic
 170 forcing matrix σ . Before deriving several important properties of the intensity distribution, we
 171 recall a well-known theorem that Eq. (2) has a unique solution \mathbf{X} , since the function \mathbf{F} is lo-
 172 cally Lipschitz. This solution represents a diffusion process with an invariant measure $\mu_X(\vec{x})$ that
 173 satisfies the stationary Fokker-Planck equation ²

$$\sum_{i=1}^3 \frac{\sigma_i^2}{2} \frac{\partial^2 \mu_X(\vec{x})}{\partial x_i^2} - \sum_{i=1}^3 \frac{\partial(f_i(\vec{x})\mu_X(\vec{x}))}{\partial x_i} = 0 \quad (3)$$

174 where $\vec{x} = (x_1, x_2, x_3) = (u, v, b)$ and $(f_1, f_2, f_3) \equiv (pv^2 - (p+1)b - uv, -uv - v^2, bu + su + v - rb)$
 175 defined in the half space $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}$ (i.e. cyclonic wind $v \geq 0$), along with the Dirichlet boundary
 176 condition.

177 Introducing a normalizing constant $C = \int_{\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}} \mu_X < \infty$, the marginal distribution of the v -
 178 component in μ_X will then have a probability density given by

$$\mu_{X,2}(x) = \frac{1}{C} \int_{\mathbb{R}} \int_{\mathbb{R}} \mu_X(x_1, x, x_3) dx_1 dx_3, \quad x \geq 0. \quad (4)$$

²Mathematically, the invariant distribution can be precisely defined as $\int \mathcal{L}f(x)\mu(dx) = 0$ for all f in the domain of the infinitesimal generator \mathcal{L} associated with (2).

179 Thus, the desired mean and variance of the v -component in μ_X are

$$\bar{v} = \int_{\mathbb{R}} x \mu_{X,2}(x) dx, \quad \sigma_v = \int_{\mathbb{R}} x^2 \mu_{X,2}(x) dx - \bar{v}^2. \quad (5)$$

180 While it is not known whether and how fast the solution to Eq. (2) converges to μ_X , assessing the
 181 stationary intensity distribution in terms of model parameters could at least help answer a central
 182 question of how much of TC intensity variability inside the PI chaotic attractor proposed in Kieu
 183 and Moon (2016) is related to stochastic forcings as mentioned in the Introduction. In the next
 184 section, we will derive a few key asymptotic properties of Eq. (2) at the PI equilibrium under
 185 some specific approximations. Full numerical integration of Eq. (2) and related analyses will be
 186 followed in Section 5.

187 3. Stochastic framework

188 In order to make sense of the stochastic term in (2), we first recall some definitions and some
 189 properties of real-valued Brownian motion or Wiener process and stochastic processes.

190 **Definition 3.1** *A σ - algebra is a collection \mathcal{U} of subsets of Ω with these properties*

191 *i. $\emptyset, \omega \in \mathcal{U}$*

192 *ii. If $A \in \mathcal{U}$ then $A^c \in \mathcal{U}$.*

193 *iii. If $A_1, A_2, \dots \in \mathcal{U}$, then*

$$\cap_{k=1}^{\infty} A_k \in \mathcal{U}, \quad \cup_{k=1}^{\infty} A_k \in \mathcal{U}$$

193 Here, $A^c := \Omega - A$ is the complement of A.

194 **Definition 3.2** *Let \mathcal{U} be a σ -algebra of subsets of Ω . We call $\mathbb{P} : \mathcal{U} \rightarrow [0, 1]$ probability measure
 195 provided:*

196 *i. $\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(\Omega) = 1$.*

- If A_1, A_2, \dots are disjoint sets in \mathcal{U} , then

$$\mathbb{P}(\cup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

¹⁹⁷ **Definition 3.3** A triple $(\Omega, \mathcal{U}, \mathbb{P})$ is called a probability space provided Ω is any set, \mathcal{U} is a ¹⁹⁸ σ -algebra, and \mathbb{P} is a probability measure on \mathcal{U} .

Definition 3.4 Let $(\Omega, \mathcal{U}, \mathbb{P})$ be a probability space. A mapping

$$\mathbf{X} : \Omega \rightarrow \mathbb{R}^n$$

is called an n -dimensional random variable if for each $B \in \mathcal{B}$, we have

$$\mathbf{X}^{-1}(B) = \{\omega : \mathbf{X}(\omega) \in B\} \in \mathcal{U}$$

¹⁹⁹ where \mathcal{B} denotes the collection of Borel subsets of \mathbb{R}^n , which is the smallest σ -algebra of subsets ²⁰⁰ of \mathbb{R}^n containing all open sets.

²⁰¹ **Definition 3.5 (Stochastic processes)**

²⁰² i. A collection $\{\mathbf{X}(t) | t \geq 0\}$ of random variables is called a stochastic process.

²⁰³ ii. For each point $\omega \in \Omega$, the mapping $t \rightarrow \mathbf{X}(t, \omega)$ is the corresponding sample path.

Definition 3.6 We call

$$\mathbb{E}(\mathbf{X}) = \int_{\Omega} \mathbf{X} d\mathbb{P}$$

²⁰⁴ the expected value (or mean value) of \mathbf{X} .

Definition 3.7 We call

$$\mathbb{V}(\mathbf{X}) = \int_{\Omega} |\mathbf{X} - \mathbb{E}\mathbf{X}|^2 d\mathbb{P}$$

²⁰⁵ the variance of \mathbf{X} .

206 Let $(\Omega, \mathcal{U}, \mathbb{P})$ be a probability space and let $\mathbf{X} : \Omega \rightarrow \mathbb{R}^n$

207 **Definition 3.8** (*Distribution functions*)

i. *The distribution function of \mathbf{X} is the function $F_{\mathbf{X}} : \mathbb{R}^n \rightarrow [0, 1]$ defined by*

$$F_{\mathbf{X}}(x) := \mathbb{P}(\mathbf{X} \leq x), \forall x \in \mathbb{R}^n$$

ii. *If $\mathbf{X}_1, \dots, \mathbf{X}_m : \Omega \rightarrow \mathbb{R}^n$ are random variables, then joint distribution function is*

$$F_{\mathbf{X}_1, \dots, \mathbf{X}_m}(x_1, \dots, x_m) := \mathbb{P}(\mathbf{X}_1 \leq x_1, \dots, \mathbf{X}_m \leq x_m), \quad \forall x_i \in \mathbb{R}^n, i = 1, 2, \dots, m.$$

Definition 3.9 Suppose $\mathbf{X} : \Omega \rightarrow \mathbb{R}^n$ is a random variable and $F = F_{\mathbf{X}}$ its distribution. If there exists a nonnegative, integrable function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ such that

$$F(x) = F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(y_1, \dots, y_m) dy_n \dots dy_1,$$

208 then f is called the density function for \mathbf{X} .

Example 3.1 If $f : \Omega \rightarrow \mathbb{R}$ has density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-|x-m|^2}{2\sigma^2}}, \quad x \in \mathbb{R},$$

209 we say \mathbf{X} has a Gaussian(or normal) distribution, with mean m and variance σ^2 . In this case, let

210 us write \mathbf{X} is an $\mathcal{N}(m, \sigma^2)$ random variable or Gaussian random variable.

Example 3.2 If $f : \Omega \rightarrow \mathbb{R}^n$ has density

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det C}} e^{\frac{-1(x-m) \cdot C^{-1} \cdot (x-m)}{2}} \quad (x \in \mathbb{R}^n)$$

211 for some $m \in \mathbb{R}^n$ and some positive definite, symmetric matrix C , we say \mathbf{X} has a Gaussian (or normal) distribution, with mean m and covariance matrix C . We then write \mathbf{X} is an $\mathcal{N}(m, C)$ random variable.

²¹⁴ **Definition 3.10** A real-valued stochastic process $W(\cdot)$ is called a Brownian motion or Wiener
²¹⁵ process if

²¹⁶ i. $W(0) = 0$ a.s.,

²¹⁷ ii. $W(t) - W(s)$ is $\mathcal{N}(0, t - s)$ for all $t \geq s \geq 0$

²¹⁸ iii. For all time $0 < t_1 < t_2 \dots < t_n$, the random variable $W(t_1), W(t_2) - W(t_1), \dots, W(t_n) - W(t_{n-1})$
²¹⁹ are independent.

Theorem 3.1 (Itô's formula) Suppose that $X(\cdot)$ has a stochastic differential

$$dX = Fdt + GdW$$

Assume $u : \mathbb{R} \times [0, T] \rightarrow \mathbb{R}$ is continuous and that $\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}$ exist and are continuous. Then the process $Y = u(X(t), t)$ satisfies the stochastic differential

$$dY = \left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} F + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} G^2 \right) dt + \frac{\partial u}{\partial x} G dW$$

²²⁰ **Theorem 3.2** (Itô product rule) Suppose

$$\left\{ \begin{array}{l} dX_1 = F_1 dt + G_1 dW \\ dX_2 = F_2 dt + G_2 dW \end{array} \right. \quad (6)$$

Then,

$$d(X_1 X_2) = X_2 dX_1 + X_1 dX_2 + G_1 G_2 dt.$$

²²¹ **4. Invariant intensity distribution**

²²² A traditional approach to the problem of determining the probability density in a stochastic
²²³ differential equation is to construct a Fokker-Planck equation for the given equation, and then solve
²²⁴ this Fokker-Planck equation to obtain the probability density (see, e.g. Durrett 2010; Øksendal

225 2003). Once the probability density function is known, the asymptotic behaviors can be explicitly
226 found by taking the limit $t \rightarrow \infty$ (i.e., by explicitly solving equation (3)) as discussed in the previous
227 section. While the full time-dependent Fokker-Plank equation for the stochastic TC-scale model
228 (2) can be easily constructed, it is virtually impossible to solve this equation due to the nonlinear
229 terms in Eq (2). Furthermore, the particular deterministic forcing terms f_i in Eq. (2) does not
230 ensure the positive or negative definiteness for all points in the phase space. As such, analytical
231 approach for this Fokker-Plank equation will not be pursued here.

232 The existence of a unique asymptotically stable point of the TC-scale model in the absence of
233 random processes presented in Kieu and Wang (2017) suggests however a different pathway to
234 this problem. Since we are more concerned with the variability only near the stable point, it is
235 possible to study the intensity distribution by linearizing the stochastic TC-scale model around
236 the PI equilibrium, assuming that the stochastic forcings are sufficiently small that do not create
237 new equilibria in the phase space of (u, v, b) . This assumption is strongly supported by numerical
238 analyses of the TC-scale model in Kieu (2015); Kieu and Wang (2017), which showed that the
239 PI equilibrium in the TC-scale dynamics is extremely resilient to any perturbation. Regardless of
240 initial TC intensity and model parameters, the TC-scale dynamics will always converge to a single
241 point in the phase space due to the strong balance between frictional forcing and absolute angular
242 momentum convergence. Provided that the elements of the stochastic forcing matrix σ are not too
243 large, we will hereinafter assume that the PI equilibrium in the TC-scale model also exists, even
244 with the stochastic extension as will be verified by numerical analyses in Section 4,

245 With the above consideration, we study now a linearized Eq. (2) around a critical stable point
246 \mathbf{x}_c of the TC-scale model, which is given by $\mathbf{x}_c \equiv (-\sqrt{1-s}, \sqrt{1-s}, (1-s))$ in the absence of
247 the radiative cooling (i.e., $r = 0$). This critical point can be shown to correspond to the PI limit as
248 discussed in Kieu (2015). Note that the main effect of radiative cooling in the TC-scale model is to

249 introduce a trapping region near the origin $(0, 0, 0)$ in the phase space of (u, v, b) with little change
 250 to the PI equilibrium. In full-physics model simulations, many previous studies have also confirm
 251 the minor role of the radiative cooling to the PI limit (see also Rotunno and Emanuel 1987, Wing
 252 et al. 2020). Thus, we will simplify our analysis in this study by focusing on the PI equilibrium
 253 such that radiative cooling impacts on the stability as well as the value of the PI limit can be
 254 neglected.

255 Let $\mathbf{A} = (a_{ij})_{i,j=1}^3$ be the Jacobian matrix of the TC-scale model at the critical point \mathbf{x}_c and shift
 256 the origin of the TC-scale model to \mathbf{x}_c as $\mathbf{X} = \mathbf{Y} + \mathbf{x}_c$, it is readily then to obtain the following
 257 linearized system for the perturbation variable \mathbf{Y}

$$d\mathbf{Y}_t = \mathbf{A} \mathbf{Y}_t dt + \sigma d\mathbf{W}_t \quad (7)$$

258 where \mathbf{W}_t is the standard three-dimensional Brownian motion, and \mathbf{A} is given by (see Eq. (35)
 259 Kieu and Wang 2017).

$$\mathbf{A} = \begin{pmatrix} -\sqrt{1-s} & (2p+1)\sqrt{1-s} & -p-1 \\ -\sqrt{1-s} & \sqrt{1-s} & 0 \\ 1 & 1 & \sqrt{1-s} \end{pmatrix}, \quad (8)$$

260 Note that a stochastic solution \mathbf{X} to the original Eq. (2) will not necessarily stay near \mathbf{x}_c (corre-
 261 sponding to cyclonic wind $v > 0$), but in principle can visit any other potential stable critical point
 262 \mathbf{x}_c once stochastic forcings included. However, given our above assumption of the unique stable
 263 PI attractor, it is expected that the stationary intensity distribution of \mathbf{Y} will be close to that of
 264 \mathbf{X} around the equilibrium \mathbf{x}_c . Thus, $\mathbf{Y} + \mathbf{x}_c$ is a good approximation to \mathbf{X} when \mathbf{X} is sufficiently
 265 close to \mathbf{x}_c . For the sake of terminology, we will hereinafter define an *invariant intensity distribu-*
 266 *tion* (a.k.a. *stationary distribution*) of \mathbf{Y}_t as a probability measure μ_Y such that if $\mathbf{Y}_0 \sim \mu_Y$, then
 267 $\mathbf{Y}_t \sim \mu_Y$ for all $t \geq 0$.

268 Note that for the special case when \mathbf{A} is symmetric and negative definite, the invariant distribution μ_Y is a multivariate normal distribution (the Gaussian distribution) with a mean $\mathbf{0} \in R^3$ and
269 the co-variance matrix is just the inverse of the product $-\frac{1}{2}\sigma A^{-1}\sigma^T$, as shown in Appendix 1. For
270 the TC-scale model, we note however that \mathbf{A} is not symmetric as shown in Eq. (8). Therefore,
271 the negative definiteness is not ensured, even when the solution \mathbf{Y}_t approaches the stable point $\mathbf{0}$.
272 This asymptotic convergence is related to the property of the TC-scale dynamics, which possesses
273 a simple Lyapunov stability instead of uniformly asymptotic stability at $\mathbf{0}$ ³. Because of the un-
274 known definiteness of \mathbf{A} , we will seek an invariant intensity distribution for the strong solution Y_t
275 to Eq. (7) indirectly. Indeed, apply Itô's Lemma to the function $F(t, \mathbf{Y}_t) = e^{-t\mathbf{A}}\mathbf{Y}_t$, the (strong)
276 solution \mathbf{Y}_t to Eq. (7) is then obtained formally as
277

$$\mathbf{Y}_t = e^{t\mathbf{A}}\mathbf{Y}_0 + \int_0^t e^{(t-s)\mathbf{A}}\sigma \cdot d\mathbf{W}_s, \quad t \geq 0. \quad (9)$$

278 Note that $\int_0^t e^{(t-s)\mathbf{A}}\sigma \cdot d\mathbf{W}_s$ is a centered Gaussian random variable with a co-variance matrix

$$\rho(t) = \int_0^t e^{(t-s)\mathbf{A}}\sigma(e^{(t-s)\mathbf{A}}\sigma)^T ds = \int_0^t e^{(t-s)\mathbf{A}}\sigma\sigma^T e^{(t-s)\mathbf{A}^T} ds = \int_0^t e^{s\mathbf{A}}\sigma\sigma^T e^{s\mathbf{A}^T} ds, \quad (10)$$

279 which converges, as $t \rightarrow \infty$, to a 3 by 3 matrix

$$\rho_Y = \int_0^\infty e^{s\mathbf{A}}\sigma\sigma^T e^{s\mathbf{A}^T} ds. \quad (11)$$

280 Under the assumption of the Lyapunov stability of the TC-scale dynamics, the strong solution
281 \mathbf{Y}_t to Eq. (7) exists for all time and has a unique invariant distribution μ_Y , which is a centered
282 Gaussian random variable $\mathcal{N}(\mathbf{0}, \rho_Y)$ with a co-variance matrix ρ_Y . Furthermore, since \mathbf{A} possesses
283 3 distinct eigenvalues $\{\lambda_i\}_{i=1}^3$ that all have negative real parts, \mathbf{Y}_t converges in distribution to μ_Y
284 exponentially fast as $t \rightarrow \infty$.

³The subtlety between two types of the stability can be directly seen using the linearized equation $\mathbf{x}^T \frac{d\mathbf{x}}{dt} = \frac{1}{2} \frac{d(\mathbf{x}^T \mathbf{x})}{dt} = \mathbf{x}^T \mathbf{A} \mathbf{x}$. Apparently, it is possible that $\frac{d(\mathbf{x}^T \mathbf{x})}{dt} > 0$ for some time t_0 , even when $\lim_{t \rightarrow \infty} \mathbf{x}(t) = e^{\mathbf{A}t} \rightarrow \mathbf{0}$. So, the negative definite property of \mathbf{A} is not conclusive.

To find the covariance matrix ρ_Y explicitly without the complication of integrating the matrix exponent in Eq. (11), one can look for a more direct approach that determines the time dependence of the covariance matrix $\rho(t) \equiv \mathbb{E}[\mathbf{Y}_t \mathbf{Y}_t^*]$ at each time t . Indeed, applying the Itô product formula to the function $\varphi(t, \omega) = \mathbf{Y}(t) \mathbf{Y}^*(t)$, we obtain

$$d(\mathbf{Y}(t) \mathbf{Y}^*(t)) = \mathbf{Y} d\mathbf{Y}^* + \mathbf{Y}^* d\mathbf{Y} + \sigma \sigma^* dt$$

²⁸⁵ We then apply the expected value to each side and note that \mathbf{A} is a non-random matrix and
²⁸⁶ $\mathbb{E}(Y dW_t) = \mathbb{E}(Y^* dW_t) = 0$

$$\mathbb{E} d(\mathbf{Y}(t) \mathbf{Y}^*(t)) = d(\mathbb{E}(\mathbf{Y}(t) \mathbf{Y}^*(t))) = d\rho = \mathbb{E} \left([(d\mathbf{Y}) \mathbf{Y}^*] + [\mathbf{Y} d\mathbf{Y}^*] + [(\sigma \sigma^*) dt] \right) \quad (12)$$

$$= \mathbb{E} \left(\mathbf{Y}^* \mathbf{A} \mathbf{Y} dt + \sigma \mathbf{Y}^* dW_t + \mathbf{Y} \mathbf{A} \mathbf{Y}^* dt + \sigma^* \mathbf{Y} dW_t + \sigma \sigma^* dt \right) \quad (13)$$

$$= \mathbb{E}[\mathbf{A} \mathbf{Y} \mathbf{Y}^* dt] + \mathbb{E}[\mathbf{Y} \mathbf{Y}^* \mathbf{A}^* dt] + \sigma \sigma^* dt \quad (14)$$

$$= \mathbf{A} \mathbb{E}[\mathbf{Y} \mathbf{Y}^*] dt + \mathbb{E}[\mathbf{Y} \mathbf{Y}^*] \mathbf{A}^* dt + \sigma \sigma^* dt \quad (15)$$

$$= \left[(\mathbf{A} \rho + \rho \mathbf{A}^*) + \sigma \sigma^* \right] dt \quad (16)$$

²⁸⁷ Thus, the matrix differential equation for the covariance density $\rho(t)$ is given as follows

$$\dot{\rho} = \mathbf{A} \rho + \rho \mathbf{A}^* + \sigma \sigma^* \quad (17)$$

²⁸⁸ The covariance matrix ρ_Y of the invariant density in Eq. (11) can be then obtained by setting $\dot{\rho} = 0$
²⁸⁹ in Eq. (17) to yield:

$$\mathbf{A} \rho_Y + \rho_Y \mathbf{A}^* + \sigma \sigma^* = 0 \quad (18)$$

²⁹⁰ As can be seen from either Eq. (11) or Eq. (18), the calculation of the invariant distribution μ_Y
²⁹¹ requires an explicit expression for the stochastic forcing matrix σ . Although it is difficult to solve
²⁹² Eq. (18) for a general case in which stochastic forcings are strongly correlated (i.e., $\sigma_{ij} \neq 0, i \neq j$),
²⁹³ the calculation will be much simplified when σ is a diagonal matrix $\sigma = \text{diag}(\sigma_1, \sigma_2, \sigma_3)$.

294 That is, the stochastic forcing components are uncorrelated to each other such that $\sigma\sigma^T = \sigma^2$.
 295 Physically, this assumption of a diagonal stochastic forcing matrix σ means that stochastic forcing
 296 components in the TC-scale model are independent for different variables, which is reasonable in
 297 the real atmosphere due to the isotropic property of randomness.

298 Under this assumption of uncorrelated stochastic forcings, one can derive a formal expression
 299 for the covariance matrix ρ_Y in terms of eigenvalues and eigenvectors of \mathbf{A} . Indeed, applying the
 300 Schur decomposition $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^*$, where \mathbf{D} is an upper triangular matrix with eigenvalues on its
 301 diagonal and \mathbf{Q} is Hermitian matrix satisfying $\mathbf{Q}\mathbf{Q}^* = \mathbf{I}$, we have

$$\mathbf{Q}\mathbf{D}\mathbf{Q}^* \rho_Y + \rho_Y \mathbf{Q}\mathbf{D}^* \mathbf{Q}^* = -\sigma\sigma^* \quad (19)$$

302 Multiplying Eq. (19) by \mathbf{Q}^* from the left and \mathbf{Q} from the right and defining $\bar{\rho} = \mathbf{Q}^* \rho_Y \mathbf{Q}$, and
 303 $\bar{L} = -\mathbf{Q}^* \sigma \sigma^* \mathbf{Q}$, the co-variance matrix ρ_Y then satisfies the following general Sylvester equation

$$\mathbf{D}\bar{\rho} + \bar{\rho}\mathbf{D}^* = \bar{L} \quad (20)$$

304 Therefore, the procedure to find the invariant distribution matrix ρ_Y essentially consists of three
 305 basic steps: 1) applying the Schur decomposition to matrix \mathbf{A} to obtain \mathbf{D} and \mathbf{Q} , 2) solving the
 306 Sylvester equation (20) for $\bar{\rho}$, and 3) inverting the relationship $\bar{\rho} = \mathbf{Q}^* \rho_Y \mathbf{Q}$ to obtain ρ_Y . Note that
 307 \mathbf{D} and \mathbf{D}^* are the upper and lower triangle matrices, respectively. As such, one can solve Eq. (20)
 308 for each entry $\bar{\rho}_{ij}$ at a time, using the back substitution once the diagonal entries of the left and the
 309 right hand side of (20) are solved first (see Appendix 3 for the formal solution to Eq. (20)).

310 Without all the details of solving the Sylvester equation, we list here several important remarks
 311 from the derivations of the invariant intensity distribution. First, the above computation of the
 312 invariant distribution based on (20) requires explicit knowledge of the unknown matrices \mathbf{Q} and
 313 \mathbf{D} as well as all eigenvalues. Assuming general values of the Jacobian matrix \mathbf{Q}, \mathbf{D} , Appendix
 314 3 shows a detailed derivation of all elements of $\bar{\rho}$. Even under this most general form of the

315 matrices \mathbf{Q}, \mathbf{D} , one can see clearly the linear dependence of $r\bar{\rho}o$ on the variances of the stochastic
316 forcing matrix σ , and inverse dependence on the eigenvalues of \mathbf{A} . Of course, the closed form for
317 $\bar{\rho}_{ij}$ requires explicit expressions of \mathbf{A} and its eigenvalues, which are computationally difficult to
318 derive. However, the formal integral invariant distribution given by Eq. (11) or the solution to Eq.
319 (20) is still important, because it shows that an invariant Gaussian distribution exists and how to
320 obtain it. Second, due to our asymptotic approach, the exponential decay of the tail distribution is
321 not known from either the close integral form or the stationary limit of $\dot{\rho} = 0$. This question must
322 be therefore verified by using a numerical approach that we will present in the next section. Last,
323 the above analysis should, in principle, work for any dimension, and so it can be also extended to
324 other types of stochastic forcings such as non-diagonal or degenerate matrix σ if necessary.

325 5. Numerical analyses

326 a. Invariant density of TC intensity variability

327 In this section, we will use a numerical approach to verify and provide additional details into the
328 analyses presented in Section 3. Specifically, we wish to extract the variance of the v -wind com-
329 ponent σ_v defined in (5), which is also contained in the general covariance intensity matrix (11),
330 given the variances $\sigma_1^2, \sigma_2^2, \sigma_3^2$. This v -variance is practically meaningful, because it represents
331 the variability of TC intensity that forecasters most concern from the operational perspective. In
332 addition to extract σ_v , it is necessary to confirm also the exponential decay of the tail distribution
333 of TC intensity towards an invariant distribution at the PI limit as assumed in Section 3. Unlike
334 the analytical derivations that are linearized around the maximum potential intensity critical point,
335 direct numerical integration of Eq. (2) allows for addressing the above questions explicitly in the
336 full nonlinear form.

337 To have a broad picture of full nonlinear behaviors of the stochastic TC-scale model (2), we
338 consider a set of parameters shown in Table 1, which are typical for TCs under a real atmospheric
339 environment (see Kieu 2015; Kieu and Wang 2017). By default, Eqs. (2) are numerically in-
340 tegrated for 10000 time steps, using the standard Runge-Kutta fourth-order scheme with a time
341 step $dt = 0.001$ (in nondimensional unit) similar to that in Kieu and Wang (2017). Due to the
342 random nature of the stochastic forcings, the Monte-Carlo ensemble method is employed in all
343 experiments, with 1000 different realizations of the model integration for each set of parameters
344 and initial condition.

345 Among several model parameters, we note specifically in our numerical experiments that the
346 standard deviations $\sigma_1, \sigma_2, \sigma_3$ of the stochastic forcings in Eq. (2) are set to be the same with
347 values of $(0.01, 0.01, 0.01)$ to ease our comparison with the analytical solution presented in Section
348 3. These nondimensional amplitudes correspond to a random forcing variation of $\sim 0.2 \text{ ms}^{-1}$ per
349 hour for the (u, v) components, and $\sim 0.003 \text{ m}^2 \text{s}^{-2}$ per hour for the buoyancy variable in the
350 physical space (i.e., a random variation of $\sim 0.5 \text{ K}$ per hour in terms of potential temperature).
351 Such variations are well within the typical random fluctuations of atmospheric wind speed, which
352 are the same in both the radial and tangential directions, and the temperature in the central region
353 of real TCs (see, e.g., French et al. 2007; Zhang 2010).

354 As an illustration, Figure 1 shows one specific realization of the numerical integration, starting
355 from four arbitrary initial conditions in the phase space of (u, v, b) . One notices in Figure 1 that
356 consistent with our assumption of the existence of a unique attractor in the phase space of (u, v, b) ,
357 all trajectories of Eq. (2) converges quickly towards the PI attractor, even with the stochastic
358 forcing included. Provided that the variances of stochastic forcings are smaller than 0.3 (in non-
359 dimensional unit), this attractor behavior is very robust, regardless of initial conditions. For any
360 value of σ_1, σ_2 or σ_3 larger than 0.3, the system (2) however becomes unstable and develops a wind

361 field with random negative values (i.e., an anticyclonic flow). As a result, the TC-scale model (1)
362 will immediately blow up due to the emergence of an unstable critical point in the anticyclonic
363 domain with $v < 0$ (see Kieu 2015; Kieu and Wang 2017). The existence of such a unique stable
364 attractor in the stochastic TC-scale model is important, because it verifies our assumption of the
365 convergence of the model flows towards an intensity invariant distribution ρ_Y , as examined in
366 Section 3.

367 Along with the existence of a stable region in the phase space with an invariant intensity distri-
368 bution ρ_Y , one can see apparently from Figure 1 that the orbits are now no longer smooth curves as
369 in the original deterministic system. Instead, the flows are strongly fluctuated as they approach the
370 attractor in the phase space, rather than a single unique stable point. In this regard, the invariant
371 intensity distribution ρ_Y as given by (11) can be seen as the bounded region in the phase space in
372 which TC intensity variation is most likely located as expected.

373 We should particularly emphasize at this point that while an invariant density distribution of a
374 stochastic system differs from a chaotic attractor of a deterministic system, it is practically impos-
375 sible to distinguish the variability of TC intensity within the invariant density distribution from that
376 inside the chaotic attractor. One could in principle wait for a sufficient long time such that a large
377 fluctuation of TC intensity associated with the invariant probability distribution could be realized,
378 which helps indicate if the attractor is chaotic or stochastic. However, for all real TC development,
379 TCs may not have much time to stay at the PI limit before weakening due to landfalling or mov-
380 ing to higher latitudes. Therefore, the fluctuation of TC intensity in real TC development could
381 be a manifestation of both TC chaotic dynamics and the stochastic nature of atmosphere that one
382 cannot fully separate.

383 To help quantify the characteristics of the invariant intensity distribution at the PI equilibrium,
384 Figure 2 shows the projection of the flow orbits onto the v direction for the three orbits shown

385 in Figure 1. The random effects are clearly manifested in this time series, with a rapid fluctuation
 386 of TC intensity during the entire TC development very similar to the actual TC intensity
 387 observed from high temporal resolution aircraft observation (French et al. 2007; Zhang 2010). Of
 388 more interest is the fluctuation of TC intensity at the asymptotic limit $t \rightarrow \infty$, which represents
 389 the invariant intensity distribution μ_Y examined in Section 3. For the control experiments with
 390 $\sigma_1 = \sigma_2 = \sigma_3 = 0.01$, the corresponding standard derivation of the TC intensity variation in the
 391 v direction σ_v is ~ 0.0056 , which is less than 1% of the typical PI value. For example, if one
 392 assumes a PI value of 65 m s^{-1} and a time scale of 3 hours as given in Table 3, the fluctuation of
 393 TC intensity at the PI limit due to the stochastic forcing is only $\sim 0.4 \text{ m s}^{-1}$, which is relatively
 394 small compared to the typical TC intensity errors in real-time forecasts (see, e.g. Tallapragada
 395 et al. 2014; Kieu and Moon 2016; Kieu et al. 2018).

396 Because of the dependence of μ_Y on the amplitudes of stochastic forcings, Figure 3 shows the
 397 standard derivation σ_v for TC intensity at the asymptotic limit $t \rightarrow \infty$ for a range of $\sigma_1 = \sigma_2 =$
 398 $\sigma_3 \in [0.01 - 0.1]$. Despite the nonlinear behavior of the stochastic TC-scale model (2), one notices
 399 in Figure 3 that σ_v varies almost linearly with σ_i and is roughly half of the standard derivation σ_i .
 400 Such a linear dependence of σ_v on the variance of the stochastic forcing σ_i is consistent with the
 401 analytical derivation in Section 3 (see also Appendix 3). Indeed, if one applies $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_f$
 402 to the Sylvester equation (20), the explicit solution (see Appendix 3) to this equation will give
 403 σ_v that is linearly proportional to the variance of the stochastic forcing, i.e., $\sigma_v^2 \sim \sigma_f^2$ as expected.
 404 The numerical simulations in this regard confirm the asymptotic analyses presented in the previous
 405 section.

406 As a way to further examine the derivation of the asymptotic invariant intensity distribution ρ_Y
 407 as given by Eq (11), we note that the linear dependence of σ_v on the stochastic forcing variance
 408 σ_i is realized not only for the special case $\sigma_1 = \sigma_2 = \sigma_3$ but also for each individual variance

409 of stochastic forcing (i.e., $\sigma_i \neq 0$, but $\sigma_{j,k} = 0, i \neq j \neq k$) as can be directly seen in the explicit
410 expression of σ_v shown in Appendix 3.

411 To verify this property, Figure 4 shows the standard derivation σ_v for a range of the stochastic
412 forcing variance. That is, only one σ_i is varied, while setting the other two variances $\sigma_j, j \neq i$ equal
413 to zero. As shown in Figure 4, the TC intensity variance σ_v indeed increases linearly with each σ_i
414 as expected from the linearized analyses. Among the three variances of the stochastic forcings, it
415 is of interest to note however that σ_v is most sensitive to the tangential wind forcing (i.e., σ_2) and
416 the temperature forcing (i.e., σ_3), while it is much less sensitive to the radial wind forcing (i.e.,
417 σ_1 as seen from the scale of the y -axis in Figure 4). This result has some significant implication,
418 because it indicates that the fluctuation in tangential wind v or the temperature anomaly b will have
419 far more reaching impacts on TC intensity variability. Therefore, future effort of optimizing a TC
420 vortex initialization should focus more on the tangential wind and temperature structure than on
421 the secondary circulation for operational purposes.

422 From the physical perspective, an important question for the above numerical results is whether
423 or not the assumptions for the stochastic matrix σ are reasonable. While the numerical results
424 obtained in this section and the analytical derivations in Section 3 confirm the importance of
425 stochastic forcings in TC intensity fluctuation during TC development as well as at the PI limit,
426 one notices that stochastic intensity fluctuation shown in Figure 3 is significantly less than the
427 variability due to the deterministic chaos or real-time intensity errors found in Kieu and Moon
428 (2016); Kieu et al. (2018). Only for a stochastic forcing standard derivation as larger as 2 ms^{-1}
429 per hour does the standard derivation of TC intensity variation reach roughly 4 ms^{-1} , which is
430 still smaller than 8 m s^{-1} as obtained from the axisymmetric simulations in Kieu and Moon (2016)
431 or real-time intensity errors Tallapragada et al. (2013, 2014); Kieu et al. (2018). Such a smaller
432 value of TC intensity variability that is induced by random processes indicates that the existence

433 of the deterministic PI chaotic attractor is indeed needed to fully account for the observed intensity
434 variation.

435 On the other hand, the fact that TC intensity can vary with a standard deviation as large as $4ms^{-1}$
436 at the PI limit due to random forcing reiterates that the absolute intensity errors in a numerical
437 model, especially for models with a stochastic parameterization scheme such as the Hurricane
438 Weather Research and Forecasting model (Zhang et al. 2015), will have an intrinsic barrier of 4
439 $m s^{-1}$ that one cannot reduce further. The combination of the stochastic variations as found in this
440 study and the potential existence of a chaotic PI attractor as found in Kieu and Moon (2016); Kieu
441 et al. (2018) thus imposes a very strong upper bound on the accuracy of TC dynamical models in
442 the future, if the metric for TC intensity is based on the maximum 10-m wind.

443 *b. Stochastic nonlinear versus linear effects*

444 Although the numerical integration of the stochastic TC-scale model could capture an invariant
445 probability distribution of TC intensity that supports the linearized analyses at the PI limit, an
446 important question that has not been examined so far is whether the invariant density μ_X from
447 the nonlinear model (2) accords with μ_Y obtained from the linearized model (7). In addition, it
448 is also necessary to examine if the dependence of the invariant intensity density on the model
449 parameters is consistent between these nonlinear and the linearized models. By varying the two
450 model parameters p and s and comparing the variances of the TC intensity distribution obtained
451 from the linearized and the full nonlinear models, it is possible to assess the nonlinear effects on
452 TC intensity density that we wish to explore in this subsection.

453 In this regard, Figure 5 shows the variances of TC intensity distributions from Eqs. (2) and (7)
454 when one of the model key parameters p or s is varied while all other parameters are fixed. Recall
455 here that these two parameters encode significant amount of TC dynamics; s represents the degree

456 of slantwise moist neutrality, and p is the squared ratio of the boundary layer depth over the tro-
457 pospheric depth that is scaled by the drag coefficient. Unlike the linearized model whose invariant
458 density can be derived explicitly, note that numerical integrations of the full nonlinear stochastic
459 systems require a large number of experiments to capture as many realizations of random forcings
460 as possible.

461 One notices in Figure 5 that the nonlinear and linear models display an overall a consistent
462 functional dependence on the model parameters. Specifically, both models capture an invariant
463 density that increases with a larger parameter s shown in Figure 5a). Likewise, both models show
464 an inverse relationship between the variance of intensity distribution and the model parameter p
465 (Fig. 5b). Physically, these results indicates that a more stable troposphere would produce a higher
466 intensity variability, given the same magnitude of random forcings. This is because a more stable
467 atmosphere would allow a weaker PI limit, thus resulting a stronger fluctuation of TC intensity
468 similar to a stochastic fluctuation inside a lower potential well. On the other hand, a higher value
469 of p means weaker boundary layer frictional forcing, which tends to attain a higher PI limit that
470 confines more the intensity fluctuation inside. Thus, a smaller intensity variance for a larger value
471 of p is expected.

472 Within the statistical significance level of the numerical simulations, one notices however that
473 the nonlinear and linear models do not completely comparable in terms of the value of intensity
474 variance. In fact, full nonlinear model captures a higher intensity variance for a range of param-
475 eters p and s . The two models are only comparable when the effective static stability parameter
476 s is sufficiently high (> 0.6), or the aspect ratio p is sufficiently small (< 300). Beyond these
477 ranges, the nonlinear model tends to capture a higher intensity variance than that obtained from
478 the linearized model at the PI limit. In this regard, the above result could highlight the regime in

479 the parameter space where the invariant density distribution derived from the linearized model is
480 acceptable for analytical purposes.

481 6. Conclusion

482 In this study, a low-order stochastic model based on TC scales was presented to study the asymptotic
483 probability density of TC intensity at the PI equilibrium. By introducing stochastic forcings
484 to the TC-scale model in the form of Wiener processes, a number of important findings related to
485 the asymptotic properties of TC intensity variability have been obtained. First, it was shown that
486 there exists an invariant intensity distribution at the PI equilibrium whose variance is linearly pro-
487 portional to the variance of stochastic forcings. That is, the larger the stochastic forcing variance,
488 the more TC intensity fluctuation one would expect at the PI limit. Second, our analytical and
489 numerical analyses showed that the standard deviation of this probability intensity distribution is
490 roughly half of the standard derivation of the stochastic forcings in the nondimensionalized space.

491 In the full dimensional form, this result indicates that a stochastic forcing with a wind speed vari-
492 ation of $1-2 \text{ ms}^{-1}$ per hour or temperature variation of $1-2 \text{ K}$ per hour could lead to an intensity
493 variation of $\sim 3 - 4 \text{ ms}^{-1}$.

494 Third, among different stochastic forcing components, the stochastic forcings related to tan-
495 gential wind and the temperature anomaly at TC central region have the largest impact on TC
496 intensity variation, whereas stochastic forcing in the radial direction has a much smaller effect.
497 The dominant role of tangential wind and warm core anomaly forcings advocate that future TC
498 model development should focus more on improving an initial representation of tangential wind
499 and TC thermodynamic structure to optimize TC intensity forecast accuracy.

500 From the practical standpoint, these results are non-trivial because they suggest an inherent limit
501 in the absolute TC intensity errors that one cannot reduce further in operational TC models where

502 random factors can never be eliminated. As long as the maximum 10-m wind is used as a metric
503 to measure TC intensity, the absolute TC intensity forecast errors will have a barrier at which
504 one cannot reduce further. We note that this limit in our capability to reduce TC intensity errors
505 below a certain threshold associated with stochastic forcings fundamentally differs from that due
506 to chaotic dynamics; the invariant density has an unbounded density distribution that could accept
507 a probability of having an arbitrarily high intensity, whereas the chaotic dynamics has a strictly
508 bounded attractor. For all practical purposes, the chaotic and stochastic intensity fluctuations are
509 however not separable. They both contribute to TC intensity variability that prevents one from
510 reducing TC intensity errors below a certain threshold.

511 While the stochastic TC-scale model presented in this study could demonstrate the fluctuation
512 of TC intensity associated with random forcing, a number of caveats must be acknowledged.
513 First, the randomness introduced in this TC-scale framework is somewhat different from the true
514 randomness in real atmosphere. This is because real atmosphere possesses some coherent structure
515 whose random variables may not be completely uncorrelated as assumed in this study (i.e., the
516 stochastic forcing matrix \mathbf{B} may not be diagonal). For analytical analyses, this correlated stochastic
517 forcings results in such a complicated form of density matrix that there may exist no explicit
518 form for the invariant density, even at the PI asymptotic limit. Second, the TC-scale dynamics
519 used in this study is drastically simplified as compared to the dynamics of real TCs for which
520 various subtle physical and thermodynamic processes are essential. Thus, the intensity variation
521 obtained in this simplified TC-scale model cannot capture nonlinear interactions among different
522 physical components of real TCs, thus resulting in some uncertainties in quantifying the intensity
523 fluctuation related to stochastic forcings. In this regard, TC intensity variation due to stochastic
524 forcings examined in this study can serve only as a lower bound for the actual intensity fluctuations
525 in real TCs.

526 *Acknowledgments.* This research was supported by the ONR Young Investigator Program
527 (Award NA16NWS4680026). CK wishes to thank the NCAR/ASP visiting program for their
528 summer support and hospitality during the preparation of this work.

APPENDIX

Appendix 1

531 For the case of a symmetric Jacobian matrix A , we can re-write the linearized equation in terms of
 532 the gradient form as follows:

$$d\mathbf{Y}_t = \nabla \Phi(\mathbf{Y}_t) dt + \Sigma d\mathbf{W}_t, \quad (\text{A1})$$

533 where $\Phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} = \frac{1}{2} \sum_{i,j=1}^3 a_{ij} x_i x_j$. Define the matrix

$$\tilde{A} = 2(\Sigma^{-1})^2 A = \left(\frac{2a_{ij}}{\sigma_i^2} \right)_{i,j}.$$

534 Suppose $\sigma_i \neq 0$ for all $i \in \{1, 2, 3\}$ and A is symmetric. Then the (strong) solution Y to (7) is a
 535 symmetric diffusion with symmetrization measure $e^{\tilde{\Phi}(\mathbf{x})} d\mathbf{x}$, where

$$\tilde{\Phi}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \tilde{A} \mathbf{x} = \frac{1}{2} \sum_{i,j=1}^3 \frac{2a_{ij}}{\sigma_i^2} x_i x_j.$$

536 Furthermore, if $Z := \int_{\mathbb{R}^3} \exp \tilde{\Phi}(\mathbf{x}) d\mathbf{x} < \infty$, then Y has a unique invariant measure

$$\mu_Y(d\mathbf{x}) = \frac{e^{\tilde{\Phi}(\mathbf{x})}}{Z} d\mathbf{x}.$$

537 In particular, if \tilde{A} is symmetric, then μ_Y is the multivariate normal distribution (the Gaussian
 538 distribution) with mean $\mathbf{0} \in R^3$ and co-variance matrix

$$-\begin{pmatrix} 2a_{11}/\sigma_1^2 & 2a_{12}/\sigma_1^2 & 2a_{13}/\sigma_1^2 \\ 2a_{21}/\sigma_2^2 & 2a_{22}/\sigma_2^2 & 2a_{23}/\sigma_2^2 \\ 2a_{31}/\sigma_3^2 & 2a_{32}/\sigma_3^2 & 2a_{33}/\sigma_3^2 \end{pmatrix}^{-1} = -\frac{1}{2} A^{-1} \Sigma^2.$$

539 The condition $Z := \int_{\mathbb{R}^3} \exp \tilde{\Phi}(\mathbf{x}) d\mathbf{x} < \infty$ is satisfied if A is negative definite in the sense that $\mathbf{x}^T A \mathbf{x} < 0$ for all nonzero \mathbf{x} .

541 (Sketch) The generator of the solution Y is

$$\begin{aligned}
\mathcal{L}f(\mathbf{x}) &= \frac{1}{2} \sum_{i=1}^3 \sigma_i^2 \frac{\partial^2 f}{\partial x_i^2}(\mathbf{x}) + \nabla \Phi \cdot \nabla f(\mathbf{x}) \\
&= \frac{1}{2} \sum_{i=1}^3 \sigma_i^2 \frac{\partial^2 f}{\partial x_i^2}(\mathbf{x}) + \sum_{i=1}^3 \left(\sum_{j=1}^3 a_{ij} x_j \right) \frac{\partial f}{\partial x_i}(\mathbf{x}) \\
&= \frac{1}{2} \sum_{i=1}^3 \sigma_i^2 \left\{ \frac{\partial^2 f}{\partial x_i^2}(\mathbf{x}) + \left(\sum_{j=1}^3 \frac{2a_{ij}}{\sigma_i^2} x_j \right) \frac{\partial f}{\partial x_i}(\mathbf{x}) \right\} \\
&= \frac{1}{2\rho(\mathbf{x})} \sum_{i=1}^3 \frac{\partial \left(\rho(\mathbf{x}) \sigma_i^2 \frac{\partial f}{\partial x_i}(\mathbf{x}) \right)}{\partial x_i}
\end{aligned}$$

542 where $\rho(\mathbf{x}) = e^{\tilde{\Phi}(\mathbf{x})}$.

543 The condition $Z := \int_{\mathbb{R}^3} \exp \tilde{\Phi}(\mathbf{x}) d\mathbf{x} < \infty$ is satisfied if A is negative definite, because \tilde{A} is negative
544 definite if and only if A is negative definite. To see the last statement, observe that $\tilde{A} = DA$
545 where $D = 2(\Sigma^{-1})^2$ is a diagonal matrix with positive entries. Hence for each $k \in \{1, 2, 3\}$, the
546 determinant of the upper left k by k sub-matrix of \tilde{A} has the same sign as that for A .

547 Appendix 2

548 The eigenvalues of the Jacobian matrix (38) in Kieu and Wang (2017) have negative real parts,
549 so the critical point is stable in the ODE system (30)-(32) in that paper. In this Appendix, we investi-
550 giate how the absolute values of the real parts of the eigenvalues control the rate of convergence
551 of the SDE (7) towards its invariant distribution μ_Y .

552 (L^2 -Exponential convergence) Let X be a Markov process with stationary measure μ . Let
553 $\{P_t\}_{t \geq 0}$ be the semigroup of X . We say that L^2 exponential ergodicity holds for X if there ex-
554 ists $c \in (0, \infty)$ such that

$$\left\| P_t f - \int f d\mu \right\|_{L^2(\mu)} \leq e^{-ct} \left\| f - \int f d\mu \right\|_{L^2(\mu)} \tag{A2}$$

555 for all $f \in \mathcal{C}_b(\mathcal{S})$ and $t \geq 0$. This means the probability distribution of X_t converges to the
556 stationary distribution exponentially fast. It is well known (van Handel 2014, Chapter 2) that for

557 reversible ergodic Markov processes with a positive spectral gap, L^2 exponential ergodicity (A2)
 558 holds. This implies that (A2) holds for our multi-dimensional Ornstein–Uhlenbeck process Y ,
 559 since all eigenvalues of A have negative real parts.

560 **Appendix 3. Formal solution for the covariance matrix ρ_Y**

561 To solve the Sylvester equation formally, let

$$\mathbf{Q} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \delta_1 & \delta_2 & \delta_3 \end{pmatrix}$$

562 and

$$\bar{\rho} = \begin{pmatrix} \bar{\rho}_{11} & \bar{\rho}_{12} & \bar{\rho}_{13} \\ \bar{\rho}_{21} & \bar{\rho}_{22} & \bar{\rho}_{23} \\ \bar{\rho}_{31} & \bar{\rho}_{32} & \bar{\rho}_{33} \end{pmatrix}$$

563 and

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & a_1 & a_2 \\ 0 & \lambda_2 & a_3 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

564 We compute

$$\bar{L} = Q^* \sigma \sigma^* Q = \begin{pmatrix} \bar{L}_{11} & \bar{L}_{12} & \bar{L}_{13} \\ \bar{L}_{21} & \bar{L}_{22} & \bar{L}_{23} \\ \bar{L}_{31} & \bar{L}_{32} & \bar{L}_{33} \end{pmatrix}$$

565 where

- 566 • $\bar{L}_{11} = -(\alpha_1^2 \sigma_1^2 + \beta_1^2 \sigma_2^2 + \delta_1^2 \sigma_3^2)$
- 567 • $\bar{L}_{12} = -(\alpha_1 \alpha_2 \sigma_1^2 + \beta_1 \beta_2 \sigma_2^2 + \delta_1 \delta_2 \sigma_3^2)$
- 568 • $\bar{L}_{13} = -(\alpha_1 \alpha_3 \sigma_1^2 + \beta_1 \beta_3 \sigma_2^2 + \delta_1 \delta_3 \sigma_3^2)$

569 • $\bar{L}_{21} = \alpha_1 \alpha_2 \sigma_1^2 + \beta_1 \beta_2 \sigma_2^2 + \delta_1 \delta_2 \sigma_3^2$

570 • $\bar{L}_{22} = -(\alpha_2^2 \sigma_1^2 + \beta_2^2 \sigma_2^2 + \delta_2^2 \sigma_3^2)$

571 • $\bar{L}_{23} = -(\alpha_2 \alpha_3 \sigma_1^2 + \beta_2 \beta_3 \sigma_2^2 + \delta_2 \delta_3 \sigma_3^2)$

572 • $\bar{L}_{31} = -(\alpha_1 \alpha_3 \sigma_1^2 + \beta_1 \beta_3 \sigma_2^2 + \delta_1 \delta_3 \sigma_3^2)$

573 • $\bar{L}_{32} = -(\alpha_2 \alpha_3 \sigma_1^2 + \beta_2 \beta_3 \sigma_2^2 + \delta_2 \delta_3 \sigma_3^2)$

574 • $\bar{L}_{33} = -(\alpha_3^2 \sigma_1^2 + \beta_3^2 \sigma_2^2 + \delta_3^2 \sigma_3^2)$

575 By using the back substitution, we are able to derive the solution for the system (??) as follows

$$\begin{aligned}
 \bar{\rho}_{33} &= \frac{\bar{L}_{33}}{2Re(\lambda_3)}, & \bar{\rho}_{32} &= \frac{\bar{L}_{32} - \bar{a}_3 \bar{\rho}_{33}}{\lambda_3 + \bar{\lambda}_2}, \\
 \bar{\rho}_{31} &= \frac{\bar{L}_{31} - \bar{a}_1 \bar{\rho}_{32} - \bar{a}_2 \bar{\rho}_{33}}{\lambda_3 + \bar{\lambda}_1}, & \bar{\rho}_{23} &= \frac{\bar{L}_{23} - \bar{a}_3 \bar{\rho}_{33} - \bar{\lambda}_2 \bar{\rho}_{23}}{\lambda_2} \\
 \bar{\rho}_{22} &= \frac{\bar{L}_{22} - \bar{a}_3 \bar{\rho}_{32} - \bar{a}_3 \bar{\rho}_{23}}{2Re(\lambda_2)}, & \bar{\rho}_{21} &= \frac{\bar{L}_{21} - a_3 \bar{\rho}_{31} - \bar{a}_2 \bar{\rho}_{23} - \bar{a}_1 \bar{\rho}_{22}}{\bar{\lambda}_1 + \lambda_2} \\
 \bar{\rho}_{13} &= \frac{\bar{L}_{13} - a_1 \bar{\rho}_{23} - a_2 \bar{\rho}_{33}}{\lambda_1 + \bar{\lambda}_3}, & \bar{\rho}_{12} &= \frac{\bar{L}_{12} - a_1 \bar{\rho}_{22} - a_2 \bar{\rho}_{32} - a_3 \bar{\rho}_{13}}{\lambda_1 + \bar{\lambda}_2} \\
 \bar{\rho}_{11} &= \frac{\bar{L}_{11} - a_1 \bar{\rho}_{21} - a_2 \bar{\rho}_{31} - \bar{a}_1 \bar{\rho}_{12} - \bar{a}_2 \bar{\rho}_{13}}{2Re(\lambda_1)} \quad (A3)
 \end{aligned}$$

576 By utilizing the relation $\bar{\rho} = \mathbf{Q}^* \rho_Y \mathbf{Q}$, all entries of the co-variance matrix ρ_Y are found explicitly.

577 **References**

578 Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and
579 climate models. *Bull. Amer. Meteor. Soc.*, **98**, 565–588.

580 Bhatia, K. T., and D. S. Nolan, 2015: Prediction of Intensity Model Error (PRIME) for Atlantic
581 Basin Tropical Cyclones. *Wea. Forecasting*, **30** (6), 1845–1865, doi:10.1175/WAF-D-15-0064.
582 1, URL <http://journals.ametsoc.org/doi/abs/10.1175/WAF-D-15-0064.1>.

583 Budhiraja, A., and W. Fan, 2017: Uniform in time interating particle approximations for nonlinear
584 equations of keller-segel type. *Electronic Journal of Probability*, **22**.

585 Christensen, H., I. Moroz, and T. Palmer, 2015: Stochastic and perturbed parameter representa-
586 tions of model uncertainty in convection parameterization. *J. Atmos. Sci.*, **72**, 2525–2544.

587 Dorrestijn, J., D. Crommelin, H. J. A.P. Siebesma, and C. Jakob, 2015: Stochastic parameterization
588 of convective area fractions with a multicloud model inferred from observational data. *J. Atmos.*
589 *Sci.*, **72**, 854–869.

590 Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The tropical cyclone
591 intensity experiment. *Bulletin of the American Meteorological Society*, **98** (10), 2113–2134,
592 doi:10.1175/BAMS-D-16-0055.1.

593 Durrett, R., 2010: *Probability: theory and examples*, Cambridge Series in Statistical and Probabilistic
594 Mathematics, Vol. 31. 4th ed., Cambridge University Press, Cambridge, x+428 pp., URL
595 <https://doi.org/10.1017/CBO9780511779398>.

596 Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. part i: Steady-state
597 maintenance. *J. Atmos. Sci.*, **43**, 585–605.

598 Emanuel, K. A., and F. Zhang, 2016: On the Predictability and Error Sources of Tropical Cyclone
599 Intensity Forecasts. *J. Atmos. Sci.*, **73** (9), 3739–3747, doi:10.1175/JAS-D-16-0100.1, URL
600 <http://journals.ametsoc.org/doi/full/10.1175/JAS-D-16-0100.1>.

601 French, J., W. Drennan, J. Zhang, and P. Black, 2007: Turbulent fluxes in the hurricane boundary
602 layer. part i: Momentum flux. *J. Atmos. Sci.*, **64**, 1089–1102.

603 Halperin, D. J., and R. D. Torn, 2018: Diagnosing conditions associated with large intensity fore-
604 cast errors in the hurricane weather research and forecasting (hwrf) model. *Weather and Fore-
605 casting*, **33** (1), 239–266, doi:10.1175/WAF-D-17-0077.1.

606 Hasselmann, K., 1976: Stochastic climate models. part i: Theory. *Tellus*, **28**, 473–485.

607 Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone
608 prediction. *Monthly Weather Review*, **142** (2), 606–625, doi:10.1175/MWR-D-13-00058.1.

609 Kieu, C., K. Keshavamurthy, V. Tallapragada, S. Gopalakrishnan, and S. Trahan, 2018: On the
610 growth of intensity forecast errors in the operational hurricane weather research and forecasting
611 (hwrf) model. *Q. J. R. Meteorol. Soc.*, **144**, 1803–1819.

612 Kieu, C. Q., 2015: Hurricane maximum potential intensity equilibrium. *Q.J.R. Meteorol. Soc.*,
613 **141** (692), 2471–2480, doi:10.1002/qj.2556.

614 Kieu, C. Q., and Z. Moon, 2016: Hurricane Intensity Predictability. *Bull. Amer. Meteor. Soc.*,
615 doi:10.1175/BAMS-D-15-00168.1.

616 Kieu, C. Q., and Q. Wang, 2017: Stability of tropical cyclone equilibrium. *J. Atmos. Sci.*, **74**,
617 3591–3608.

618 Kieu, C. Q., and Q. Wang, 2018: On the scale dynamics of the tropical cyclone intensity. *Discrete
619 and Continuous Dynamical Systems - B*, **23**, 3047.

620 Øksendal, B., 2003: *Stochastic differential equations*. Sixth ed., Universitext, Springer-Verlag,
621 Berlin, xxiv+360 pp., URL <https://doi.org/10.1007/978-3-642-14394-6>, an introduction with
622 applications.

623 Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local
624 stochastic–dynamic parametrization in weather and climate prediction models. *Quart. J. Roy.*
625 *Meteor. Soc.*, **127**, 279–304.

626 Penland, C., 2003: Noise out of chaos and why it won’t go away. *Bull. Amer. Meteor. Soc.*, **84**,
627 921–925.

628 Penny, A. B., P. A. Harr, and J. D. Doyle, 2016: Sensitivity to the representation of microphysical
629 processes in numerical simulations during tropical storm formation. *Monthly Weather Review*,
630 **144** (10), 3611–3630, doi:10.1175/MWR-D-15-0259.1.

631 Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I.-H. Kwon, 2014: Evalu-
632 ation of Storm Structure from the Operational HWRF during 2012 Implementation. *Mon. Wea.*
633 *Rev.*, **142**, 4308–4325, doi:10.1175/MWR-D-13-00010.1.

634 Tallapragada, V., and Coauthors, 2013: Hurricane Weather Research and Forecasting (HWRF)
635 model: 2013 scientific documentation. *Developmental Testbed Center*, **99**.

636 Tallapragada, V., and Coauthors, 2015: Forecasting Tropical Cyclones in the Western North Pacific
637 Basin using the NCEP Operational HWRF Model. Model Upgrades and Evaluation of Real-
638 Time Performance in 2013. *Wea. Forecasting*, doi:10.1175/WAF-D-14-00139.1.

639 Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model
640 uncertainty due to unresolved humidity variability. *J. Geophys. Res.*, **113**, D18 101.

641 van Handel, R., 2014: Probability in high dimension. Tech. rep., PRINCETON UNIV NJ.

642 Weisheimer, A., S. Corti, T. N. Palmer, and . F. Vitart, 2014: Addressing model error through
643 atmospheric stochastic physical parametrizations: Impact on the coupled ecmwf seasonal fore-
644 casting system. *Philos. Trans. Roy. Soc. London*, 2013029.

645 Williams, P., N. Howe, J. Gregory, R. Smith, and M. Joshi, 2016: Improved climate simulations
646 through a stochastic parameterization of ocean eddies. *J. Climate*, **29**, 8763–8781.

647 Wing, A. A., J. Ruppert, X. Tang, and E. L. Duran, 2020: The importance of radiative feedbacks
648 in tropical cyclogenesis. *Tropical Meteorology and Tropical Cyclones Symposium*, **3.4**, URL
649 <https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/364527>.

650 Zhang, J., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in
651 the hurricane boundary layer. *J. Atmos. Sci.*, **67**, 1853–1862.

652 Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. Wang, 2015: Hwrf based ensemble predic-
653 tion system using perturbations from gefs and stochastic convective trigger function. *Tropical
654 Cyclone Research and Review*, **3**, 145–161.

655 LIST OF TABLES

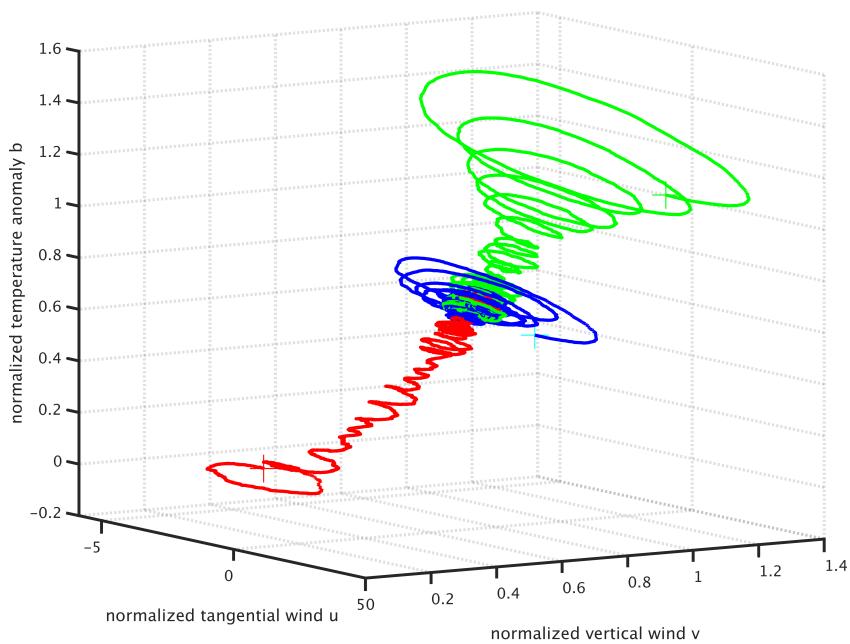
Table 1. Default values of all parameters in the stochastic TC-scale model that are used for the numerical integration of Eq. (2) 38

658 TABLE 1. Default values of all parameters in the stochastic TC-scale model that are used for the numerical
 659 integration of Eq. (2)

Parameter	Value	Remark
V_c	$\sim 65 \text{ ms}^{-1}$	Scale of the maximum surface wind at the PI equilibrium for sea surface temperature of 30°C.
U_c	$\sim 10 \text{ ms}^{-1}$	Scale of the radial wind at the PI equilibrium.
B_c	$\sim 0.4 \text{ ms}^{-2}$	Scale of the maximum buoyancy that corresponds to the warm core in the TC eye region
T	$\sim 10^4 \text{ s}$	A characteristic time scale
p	200	nondimensional square ratio of the PBL depth over the radius of the maximum wind
r	0.1	a nondimensional parameter representing the radiative cooling
s	0.1	a nondimensional parameter representing the tropospheric stratification
σ_1	0.01	nondimensional variance of the u -wind stochastic forcing component
σ_2	0.01	nondimensional variance of the v -wind stochastic forcing component
σ_3	0.01	nondimensional variance of the buoyancy stochastic forcing component

660 **LIST OF FIGURES**

661 Fig. 1.	Orbits of the flow in the stochastic TC-scale model for three different initial conditions that are obtained from the numerical integration of Eq. (2), assuming the parameter given in Table 1.	40
664 Fig. 2.	Time series of the v component for the three orbits shown in Figure 1.	41
665 Fig. 3.	Dependence of the standard deviation of the TC intensity (i.e., the v component) of the invariant intensity distribution ρ_Y as given by Eq. (11) of the stochastic TC-scale model on the standard deviation $\sigma_1 = \sigma_2 = \sigma_3$ of the stochastic forcing at the PI limit.	42
668 Fig. 4.	Similar to Figure 3 but for the dependence of the standard deviation of TC intensity of the invariant intensity distribution ρ_Y as given by Eq. (11) of the stochastic TC-scale model on the individual standard deviation a) σ_1 assuming $\sigma_2 = \sigma_3 = 0$, b) σ_2 assuming $\sigma_1 = \sigma_3 = 0$, and c) σ_3 assuming $\sigma_1 = \sigma_2 = 0$	43
672 Fig. 5.	Dependence of the standard deviation of TC intensity as obtained from the full nonlinear integration of Eq. (2) (black solid) and the approximated solution to the linearized system (red solid) on a) the model parameter p , and b) the model parameter s assuming $\sigma_1 = \sigma_2 = \sigma_3 = 0.1$	44



676 FIG. 1. Orbits of the flow in the stochastic TC-scale model for three different initial conditions that are
 677 obtained from the numerical integration of Eq. (2), assuming the parameter given in Table 1.

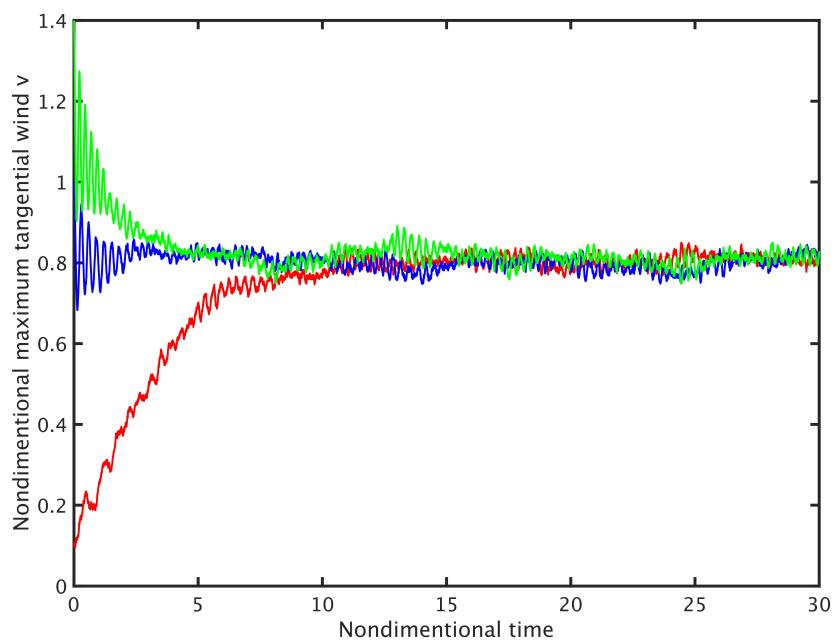
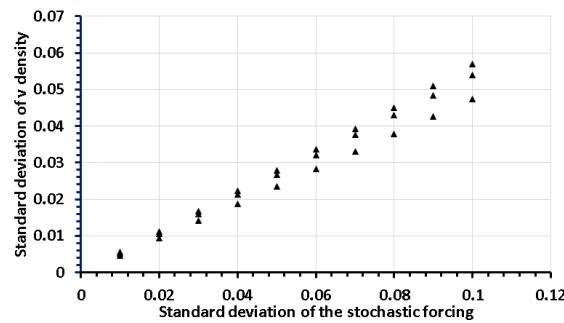
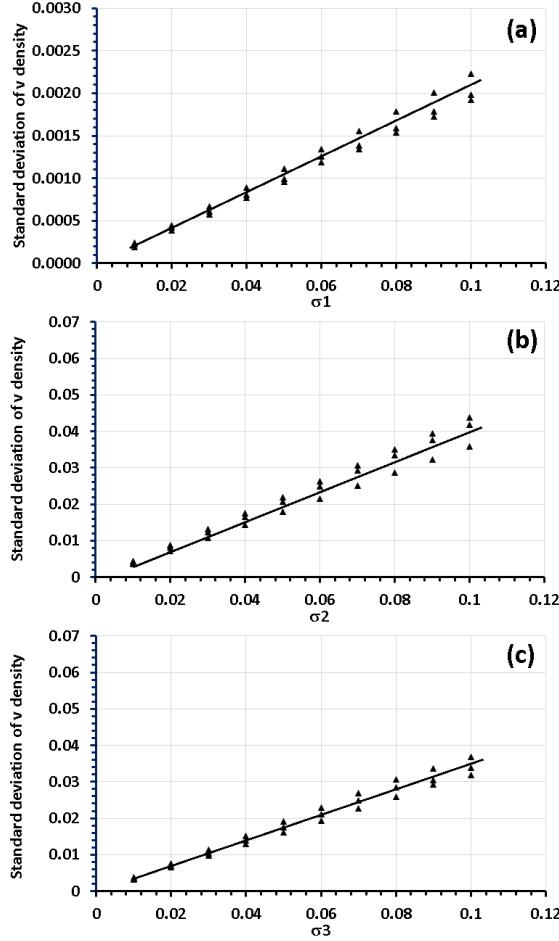


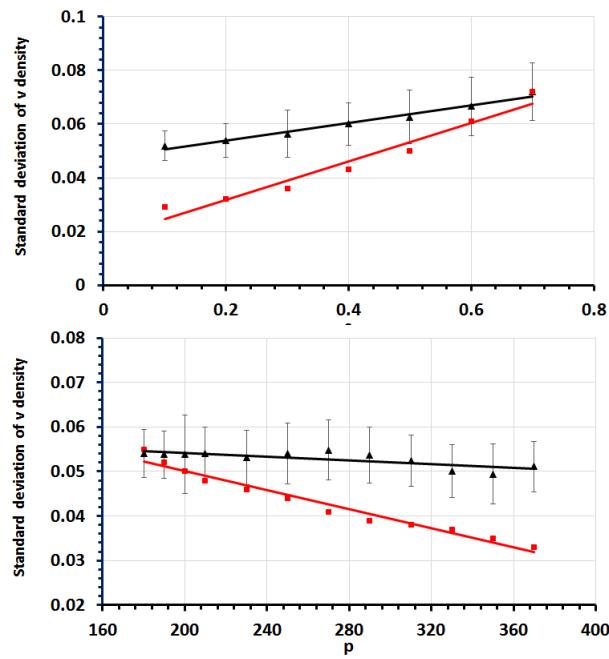
FIG. 2. Time series of the v component for the three orbits shown in Figure 1.



678 FIG. 3. Dependence of the standard deviation of the TC intensity (i.e., the v component) of the invariant
 679 intensity distribution ρ_Y as given by Eq. (11) of the stochastic TC-scale model on the standard deviation $\sigma_1 =$
 680 $\sigma_2 = \sigma_3$ of the stochastic forcing at the PI limit.



681 FIG. 4. Similar to Figure 3 but for the dependence of the standard deviation of TC intensity of the invariant
 682 intensity distribution ρ_Y as given by Eq. (11) of the stochastic TC-scale model on the individual standard
 683 deviation a) σ_1 assuming $\sigma_2 = \sigma_3 = 0$, b) σ_2 assuming $\sigma_1 = \sigma_3 = 0$, and c) σ_3 assuming $\sigma_1 = \sigma_2 = 0$.



684 FIG. 5. Dependence of the standard deviation of TC intensity as obtained from the full nonlinear integration
 685 of Eq. (2) (black solid) and the approximated solution to the linearized system (red solid) on a) the model
 686 parameter p , and b) the model parameter s assuming $\sigma_1 = \sigma_2 = \sigma_3 = 0.1$.