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ABSTRACT

This study examines the variability of tropical cyclone (TC) intensity asso-
ciated with stochastic forcings at the maximum potential intensity (PI) equi-
librium. By representing TC intensity in terms of the Wiener process in the
framework of TC-scale dynamics, it is shown that there exists an invariant in-
tensity distribution whose variance is proportional to and roughly half of the
variances of stochastic forcings. This result advocates recent findings that TC
dynamics possesses an intrinsic variability, which prevents the TC absolute
intensity errors in numerical models from being reduced below an arbitrarily
small threshold. Analysis of the invariant intensity distribution at the PI limit
reveals further that the stochastic forcing component associated with tangen-
tial wind and warm core anomaly in the TC central region have the largest
effects on TC intensity variability. These results suggest that future develop-
ment of stochastic parameterization in TC model should focus on representa-
tion of both tangential wind and thermodynamic structure to capture proper

TC intensity fluctuations.
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1. Introduction

Stochastic processes are a natural property of all atmospheric systems. These random variabil-
ities exist in various spatial and temporal scales, and are often related to unknown fluctuations in
physical systems, especially at micro and turbulent scales (Hasselmann 1976; Palmer 2001; Pen-
land 2003; Williams et al. 2016; Berner et al. 2017). Accounting for these stochastic processes
in numerical weather prediction models is challenging either at resolved or unresolved model
resolutions, due to our inadequate understanding of different physical components as well as non-
linear interaction at different scales (Palmer 2001; Penland 2003; Tompkins and Berner 2008;
Weisheimer et al. 2014). In practice, the atmospheric randomness is commonly accounted for in
numerical models via an ensemble representation of stochastic physics, in which physical param-
eterization schemes employ a random variation of model parameters or add random variations to
model variables to mimic uncertainties in the atmosphere (Palmer 2001; Christensen et al. 2015;
Dorrestijn et al. 2015).

Given such a stochastic nature of the atmosphere, a fundamental question that has not been fully
examined in the tropical cyclone (TC) research is how much of intensity errors in real-time TC
forecasts are caused by stochastic forcings. This question is of significance to the current effort
in improving the accuracy of TC intensity forecasts in numerical models, because it dictates the
degree of intensity variability associated with random processes that we could never fully control.
With the current 4-5 day intensity errors in operational TC models around 11-18 kt (Tallapragada
et al. 2014, 2015; Bhatia and Nolan 2015; Emanuel and Zhang 2016; Kieu et al. 2018), determin-
ing how much of these TC intensity errors are related to stochastic forcings will provide some
additional information about our maximum ability in reducing TC intensity errors that we can

achieve in the future.
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Similar to any atmospheric system, TC intensity forecast errors in numerical models are gen-
erally due to several factors such as the intrinsic nature of TC intensity variability, model errors,
imperfect initial conditions, or random factors (see, e.g., Tallapragada et al. 2014; Jin et al. 2014;
Tallapragada et al. 2015; Zhang et al. 2015; Penny et al. 2016; Doyle et al. 2017; Halperin and Torn
2018; Kieu et al. 2018). It is difficult, if at all impossible, to isolate the relative contribution of
these error sources in practice due to their nonlinear interaction once models are integrated. Using
the TC-scale dynamics framework, Kieu and Moon (2016); Kieu et al. (2018) recently proposed
that a substantial part of TC intensity errors in numerical models is related to the existence of a
chaotic attractor at the TC maximum potential intensity (PI) limit. Even in an idealized environ-
ment with a perfect dynamical model, the chaotic behavior of TC dynamics can be responsible
for an intrinsic intensity fluctuation with a variance in the range of 6-8 ms~! in the absence of
any random processes. This result has a significant implication for operational TC forecasting,
because it reveals internal characteristics of TC dynamics that prevent us from knowing precisely
TC intensity at any given time, regardless of how accurate the observing systems or how perfect
TC models are.

Despite such insights about chaotic behaviors of TC intensity derived from the TC-scale frame-
work, the deterministic chaos at the PI limit as proposed by Kieu and Moon (2016) is based only
on the axisymmetrical dynamics of Rotunno and Emanuel (1987)’s model. While this full-physics
model could provide detailed processes of TC dynamics and thermodynamics, the use of a nu-
merical model to solve the TC governing equations immediately introduces new difficulties in
quantifying the intrinsic TC intensity variability. Specifically, various numerical truncation errors
and filtering schemes are implemented in the model to eliminate numerical noises and maintain
the model numerical stability. Thus, the same model configuration and initial/boundary condi-

tion could lead to different realization of atmospheric states when running on different machines
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or compilation/libraries. These completely numerical artifacts produce very similar behaviors to
models with stochastic forcings in the sense that the same model and initial condition result in
different model outcomes. In this regard, it is natural to consider any TC model as a stochastic
rather than a deterministic dynamical system. !.

As a result of this stochastic nature of TC models, the estimation of the size of the chaotic
PI attractor presented in Kieu and Moon (2016) contains unknown contribution from stochastic
processes that are in addition to the TC intrinsic dynamics. Hence, a very natural, yet open,
question is how much of TC intensity variability at the PI limit is caused by stochastic forcings
as compared to the chaotic variability. This question is significant because of the fundamental
difference between chaotic and stochastic variability. That is, one could have a dynamical system
whose state fluctuation in the phase space is completely chaotic without any stochastic forcings,
and vice versa.

Among different approaches to tackle the above question, the most compelling way is to use a
numerical model with stochastic physics parameterizations so one can examine how TC intensity
fluctuation changes when varying stochastic forcing amplitudes. Sampling an ensemble of outputs
from these stochastic model simulations would then allow one to quantify TC intensity variability
as a function of forcing variances. Although this stochastic ensemble approach appears to be
promising and is indeed applied in current operational forecasting centers for TC applications
(see, e.g. Zhang et al. 2015), the myriad of degrees of freedom in current numerical models makes
it virtually impossible to isolate what stochastic components are most relevant for TC intensity
variability. For example, there is no specific guidance on how to add random perturbations to

temperature, moisture, model parameters, or wind variables. Likewise, one can arbitrarily add

IStrictly speaking, a stochastic dynamics contains a collection of random variables indexed by time, which could lead to different trajectories

due to different realization of the random forcings when running the same model.
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random noises to upper levels, low levels, at the surface, or any part of the model domain. Such a
large degree of freedom in implementing the stochastic forcing in full-physics TC models results in
an infinite number of possibilities, which may not be helpful to understand TC intensity variability
associated with stochastic processes.

Recent studies by Kieu (2015); Kieu and Wang (2017, 2018) suggest a pathway to probe the
problem of TC intensity fluctuation caused by stochastic forcing. Using TC scales as dynamical
variables, they presented a fidelity-reduced model that could capture several fundamental aspects
of TC development such as the PI equilibrium and stability, the consistency of the wind-induced
surface heat exchange mechanism and the PI equilibrium, or an inherent timescale for TC rapid
intensification. A particular feature of this TC-scale model is its explicit time-dependence with
only 3 degrees of freedom, which correspond to the maximum tangential wind, the maximum
radial wind, and the warm core anomaly at the TC center. The explicit time-dependence of this
TC-scale model allows a transparent way to investigate the effects of stochastic forcings that are
most relevant to TC dynamics in the absence of deterministic chaos. Furthermore, one can also
quantify the relative importance of dynamical stochastic forcing versus thermodynamic stochastic
forcing in TC development, which could not be obtained directly from full-physics simulations.

Given the usefulness of the TC-scale dynamics model, two specific questions related to TC
intensity stochastic fluctuations that we wish to present in this study are 1) how much of TC
intensity variability can be induced by stochastic forcings at the PI limit, and 2) what stochastic
forcing component plays the most important role in TC intensity fluctuations. These questions are
of practical, as they provide more insight into the mechanisms that prevent us from reducing TC
intensity errors below a certain threshold beyond the deterministic chaos. Moreover, knowing the
relative role of different stochastic forcing components will allow us to properly design stochastic

ensemble forecasting for future TC intensity forecast applications.
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The structure of the paper is organized as follows. In the next section, a brief introduction of the
TC-scale model and its extension for a stochastic system will be presented. Section 3 derives some
theoretical estimations of the probability density at the PI limit, and Section 4 presents numeri-
cal analyses of the Monte-Carlo integration of the stochastic TC-scale model. Some concluding

remarks are summarized in the final section.

2. Formulation

a. TC-scale model

Using scale analyses for the TC governing equations, Kieu and Wang (2017, 2018) obtained the
following set of nondimensionalized equations for TC scales under the wind-induced surface heat

exchange (WISHE) feedback parameterization:

(

i=pv’—(p+1)b—uv

V= —uy—v? (1

b=bu+su+v—rb

where (u,v,b) denote the non-dimensional scales of the maximum surface radial wind, the max-
imum surface tangential wind and the temperature anomaly in the eye region respectively; p is
a constant proportional to the squared ratio of the depth of the troposphere to the depth of the
boundary layer, s denotes the effective tropospheric static stability, and r represents the Newtonian
cooling. Details derivations of this TC-scale system can be found in Kieu and Wang (2017).
Despite its simplicity, the TC-scale model (1) contains several important proprieties. First, this
system possesses a unique stable point (1,1, 1) in the phase space of (u,v,b) that corresponds ex-
actly to Emanuel’s PI solution under the strict moist neutrality condition (i.e., s = 0). This is a non-

trivial result, as the derivation of the PI solution from the TC-scale dynamics is very different from
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the previous approaches based on the energy cycle or the gradient wind balance (Emanuel 1986,
1988). Second, this system could demonstrate that the WISHE feedback is dynamically consistent
with the PI equilibrium, a result that has largely been demonstrated by numerical simulations but
not rigorously proven. Third, the PI equilibrium derived from the above TC-scale model indicates
that this equilibrium must be simultaneously constrained by three variables (u,v,b), rather than
just the value of the maximum tangential wind v as in the classical PI theory (Emanuel 1986,
1988). For example, a TC vortex with the maximum tangential wind that is exactly equal to the
PI value (i.e., v = 1), but a too weak or a too strong warm core (i.e., b < 1 or b > 1) would lead
immediately to a strong fluctuation of TC intensity with time before settling in the PI equilib-
rium. Last, the TC-scale model suggests two different time scales for TC development; a shorter
timescale is related to the oscillation of TCs around the gradient wind balance state, and a longer
timescale i1s associated with rapid intensification of the TC vortex toward a balance between the
frictional forcing and the absolute angular momentum convergence. More detailed discussions of

these results can be found in Kieu (2015); Kieu and Wang (2017, 2018).

b. A stochastic extension

While the TC-scale model of Eq. (1) is appealing and is able to capture several key features
of TC dynamics, this deterministic model does not contain any stochastic components that exist
in real physical systems. As such, we examine in this study a stochastic extension of Eq. (1) to
address a specific question related to TC intensity fluctuation caused by stochastic forcings. Our
main aim is to quantify the asymptotic probability distribution of TC intensity variability with
different stochastic variances, and then determine which component of the stochastic forcings has

the largest impact on TC intensity fluctuations at the PI limit.
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For this purpose, we consider a TC-scale stochastic model in which the random forcings are
represented by three independent Wiener processes W, = (W,!, Wtz, W?). Specifically, the extended

TC-scale model is given as follows:
dX, =F(X;)dt+cdW, , 2)

where X; = (u,v,b) denotes a vector of continuous-time Markov processes in the phase space
of (u,v,b), F = (f1, 2, £3) = (pv* — (p+ 1)b — uv, —uv — v, bu + su +v — rb) are deterministic
forcings of the TC-scale model as given in Eq. (1), and ¢ a constant 33 diagonal matrix that
characterizes the magnitude and covariance among three stochastic forcing components.

Our first aim is to analyze the long time behavior of Eq. (2) such that the variance of the TC
intensity distribution can be quantified in terms of the model parameters as well as the stochastic
forcing matrix o. Before deriving several important properties of the intensity distribution, we
recall a well-known theorem that Eq. (2) has a unique solution X, since the function F is lo-
cally Lipschitz. This solution represents a diffusion process with an invariant measure Lix (X) that
satisfies the stationary Fokker-Planck equation 2

3 —
y % Zazmx ZMZO )

X7 i=1 i

where X = (x1,x2,%3) = (u,v,b) and (f1, o, f3) = (pv> — (p + 1)b — uv, —uv —v*,bu+ su+v — rb)
defined in the half space R x R} X R (i.e. cyclonic wind v > 0), along with the Dirichlet boundary
condition.

Introducing a normalizing constant C = foR+XR Ux < oo, the marginal distribution of the v-

component in ty will then have a probability density given by

Hx 2 (x C//,UX x1,X,x3)dx;dx3, x>0. 4

2Mathematically, the invariant distribution can be precisely defined as [.% f(x)u(dx) = 0 for all f in the domain of the infinitesimal generator

& associated with (2).
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Thus, the desired mean and variance of the v-component in ty are

ﬁz/x,uxg(x)dx, GV:/xzuxyz(x)dx—ﬁz. (5)
R R

While it is not known whether and how fast the solution to Eq. (2) converges to px, assessing the
stationary intensity distribution in terms of model parameters could at least help answer a central
question of how much of TC intensity variability inside the PI chaotic attractor proposed in Kieu
and Moon (2016) is related to stochastic forcings as mentioned in the Introduction. In the next
section, we will derive a few key asymptotic properties of Eq. (2) at the PI equilibrium under
some specific approximations. Full numerical integration of Eq. (2) and related analyses will be

followed in Section 5.

3. Stochastic framework

In order to make sense of the stochastic term in (2), we first recall some definitions and some

properties of real-valued Brownian motion or Wiener process and stochastic processes.
Definition 3.1 A o - algebra is a collection % of subsets of Q with these properties

i. 0,wew

ii. IfA€ U then A€ Y.

iii. IfA1,Ay,... € %, then

ﬂ](:,ozlAk € %, UzozlAk c %
Here, A€ := Q — A is the complement of A.

Definition 3.2 Let % be a-algebra of subsets of Q. We call P : % — [0, 1] probability measure

provided:

10
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o [fA,Ay,... are disjoint sets in % , then
P(Up 1 A) = ) P(Ar)
k=1

Definition 3.3 A triple (Q,% ,P) is called a probability space provided Q is any set, % is a

o-algebra, and P is a probability measure on % .
Definition 3.4 Let (Q, % ,P) be a probability space. A mapping
X: Q- R
is called an n-dimensional random variable if for each B € A, we have
X !'(B)={w:X(w)€B}c%

where 2 denotes the collection of Borel subsets of R", which is the smallest o- algebra of subsets

of R" containing all open sets.
Definition 3.5 (Stochastic processes)
i. A collection {X(t)|t > 0} of random variables is called a stochastic process.

ii. For each point ® € , the mapping t — X(t, ®) is the corresponding sample path.

Definition 3.6 We call
E(X) = / XdP
Q

the expected value ( or mean value) of X.

Definition 3.7 We call

V(X) :/ X — EX|*dP
Q
the variance of X.

11
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Let (Q,% ,IP) be a probability space and let X : Q — R”
Definition 3.8 (Distribution functions)
i. The distribution function of X is the function Fx : R" — [0, 1] defined by

Fx(x) :=P(X<x),VxeR"

ii. IfXq,...,X;;:Q — R" are random variables, then joint distribution function is

FX],...,Xm(xlw--;xm) = P(Xl <Xx1y..,Xm Sxm), Vx; e R" i=1,2,...

M.

Definition 3.9 Suppose X : Q — R" is a random variable and F = Fx its distribution. If there

exists a nonnegative, integrable function f : R" — R such that
X Xp,
F(x) =F(x1,...,xp) = / / Tty s Ym)dyy...dy1,
then f is called the density function for X.

Example 3.1 If f : Q — R has density

flx) = e 22 | xeR,

we say X has a Gaussian( or normal) distribution, with mean m and variance o2. In this case, let

us write X is an A (m, %) random variable or Gaussian random variable.

Example 3.2 If f : Q — R" has density

f(x) o 1 e—](x—m)gfl.(x—m) (x c R”)
(27)"detC

for some m € R" and some positive definite, symmetric matrix C, we say X has a Gaussian (

or normal) distribution, with mean m and covariance matrix C. We then write X is an A (m,C)

random variable.

12



v Definition 3.10 A real-valued stochastic process W(-) is called a Brownian motion or Wiener

s process if

~

216 I W(O) =0 a.s.,
ar il W(t)—=W(s)is N (0,t —s) forallt >s>0

2 1ii. Foralltime 0 <t] <t,... <ty, the random variable W (t),W (t;) =W (t1),..., W (tn) =W (t,—1)

210 are independent.
Theorem 3.1 (1t0’s formula) Suppose that X () has a stochastic differential

dX = Fdt + GdW

. . 2 . .
Assume u : R x [0,T] — R is continuous and that %, %, % exist and are continuous. Then the

process Y = u(X(t),t) satisfies the stochastic differential

du du 10%u , du
dYy = (E—{-EF—{-EWG )dl—}—aGdW

2= Theorem 3.2 (It6 product rule) Suppose

dX|, = Fidt + G dW
(0)
dX, = Fydt + GpdW

Then,

d(X1X2) =XodX1 +X1dX> + G1Gadt.

21 4. Invariant intensity distribution

» A traditional approach to the problem of determining the probability density in a stochastic
»s differential equation is to construct a Fokker-Planck equation for the given equation, and then solve

=+ this Fokker-Planck equation to obtain the probability density (see, e.g. Durrett 2010; @ ksendal

13



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

2003). Once the probability density function is known, the asymptotic behaviors can be explicitly
found by taking the limit r — o (i.e., by explicitly solving equation (3)) as discussed in the previous
section. While the full time-dependent Fokker-Plank equation for the stochastic TC-scale model
(2) can be easily constructed, it is virtually impossible to solve this equation due to the nonlinear
terms in Eq (2). Furthermore, the particular deterministic forcing terms f; in Eq. (2) does not
ensure the positive or negative definiteness for all points in the phase space. As such, analytical
approach for this Fokker-Plank equation will not be pursued here.

The existence of a unique asymptotically stable point of the TC-scale model in the absence of
random processes presented in Kieu and Wang (2017) suggests however a different pathway to
this problem. Since we are more concerned with the variability only near the stable point, it is
possible to study the intensity distribution by linearizing the stochastic TC-scale model around
the PI equilibrium, assuming that the stochastic forcings are sufficiently small that do not create
new equilibria in the phase space of (u,v,b). This assumption is strongly supported by numerical
analyses of the TC-scale model in Kieu (2015); Kieu and Wang (2017), which showed that the
PI equilibrium in the TC-scale dynamics is extremely resilient to any perturbation. Regardless of
initial TC intensity and model parameters, the TC-scale dynamics will always converge to a single
point in the phase space due to the strong balance between frictional forcing and absolute angular
momentum convergence. Provided that the elements of the stochastic forcing matrix ¢ are not too
large, we will hereinafter assume that the PI equilibrium in the TC-scale model also exists, even
with the stochastic extension as will be verified by numerical analyses in Section 4,

With the above consideration, we study now a linearized Eq. (2) around a critical stable point
X of the TC-scale model, which is given by x, = (—/1—s,v/1—s,(1 —s)) in the absence of
the radiative cooling (i.e., r = 0). This critical point can be shown to correspond to the PI limit as

discussed in Kieu (2015). Note that the main effect of radiative cooling in the TC-scale model is to

14
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introduce a trapping region near the origin (0,0,0) in the phase space of (u,v,b) with little change
to the PI equilibrium. In full-physics model simulations, many previous studies have also confirm
the minor role of the radiative cooling to the PI limit (see also Rotunno and Emanuel1987, Wing
et al. 2020). Thus, we will simplify our analysis in this study by focusing on the PI equilibrium
such that radiative cooling impacts on the stability as well as the value of the PI limit can be
neglected.

Let A = (q; ])f’ j—1 be the Jacobian matrix of the TC-scale model at the critical point X and shift
the origin of the TC-scale model to x. as X = Y + X, it is readily then to obtain the following

linearized system for the perturbation variable Y
dY; =AY,;dt+ocdW, (7)

where W; is the standard three-dimensional Brownian motion, and A is given by (see Eq. (35)

Kieu and Wang 2017).

_VT=s p+DWVI=s —p—1

A= —/T—5s V1=s 0 ; 8)

1 1 V1—s

Note that a stochastic solution X to the original Eq. (2) will not necessarily stay near x. (corre-
sponding to cyclonic wind v > 0), but in principle can visit any other potential stable critical point
X, once stochastic forcings included. However, given our above assumption of the unique stable
PI attractor, it is expected that the stationary intensity distribution of Y will be close to that of
X around the equilibrium x.. Thus, Y 4 x, is a good approximation to X when X is sufficiently
close to x,.. For the sake of terminology, we will hereinafter define an invariant intensity distribu-
tion (a.k.a. stationary distribution) of Y, as a probability measure uy such that if Yo ~ py, then

Y, ~ uy forallt > 0.

15
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Note that for the special case when A is symmetric and negative definite, the invariant distribu-
tion Wy is a multivariate normal distribution (the Gaussian distribution) with a mean 0 € R3 and
the co-variance matrix is just the inverse of the product —%GA*1 o, as shown in Appendix 1. For
the TC-scale model, we note however that A is not symmetric as shown in Eq. (8). Therefore,
the negative definiteness is not ensured, even when the solution Y; approaches the stable point 0.
This asymptotic convergence is related to the property of the TC-scale dynamics, which possesses
a simple Lyapunov stability instead of uniformly asymptotic stability at 0 3. Because of the un-
known definiteness of A, we will seek an invariant intensity distribution for the strong solution ¥;
to Eq. (7) indirectly. Indeed, apply 1t6’s Lemma to the function F(¢,Y;) = e "AY,, the (strong)

solution Y; to Eq. (7) is then obtained formally as
t
Y, =AYy + / G AW, 1> 0. ©)
0

Note that fé el=5)Ag. dW; is a centered Gaussian random variable with a co-variance matrix

t t
p(l) _ / e(tfs)AG (e(tfs)AG>T ds :/
0

e(’*S)AGGT e(tfs)AT ds — /t FAsoT esAT ds, (10)
0

0

which converges, as t — oo, to a 3 by 3 matrix
py = / eAooT A ds. (11)
0

Under the assumption of the Lyapunov stability of the TC-scale dynamics, the strong solution
Y; to Eq. (7) exists for all time and has a unique invariant distribution fy, which is a centered
Gaussian random variable .4 (0, py ) with a co-variance matrix py. Furthermore, since A possesses
3 distinct eigenvalues {/'L,-}?:1 that all have negative real parts,Y; converges in distribution to Uy

exponentially fast as t — oo.

Tdx _ 1d(x'x)
dt = 2 dt

3The subtlety between two types of the stability can be directly seen using the linearized equation x =xT Ax. Apparently, it is

T
possible that % > 0 for some time fy, even when lim, .. X(f) = ¢A” — 0. So, the negative definite property of A is not conclusive.

16
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To find the covariance matrix py explicitly without the complication of integrating the matrix
exponent in Eq. (11), one can look for a more direct approach that determines the time dependence
of the covariance matrix p(¢f) = E[Y,Y;] at each time 7. Indeed, applying the It product formula

to the function @(z, ) = Y(¢)Y*(¢), we obtain
dY()Y* (1)) =YdY* +Y*dY +oo"dt

We then apply the expected value to each side and note that A is a non-random matrix and

E(YdW,) = E(Y*dW,) =0

Ed(Y(1)Y*(t)) = d(E(Y(£)Y*(t)) =dp =E ([(dY)Y*] +[YdY*H)] + [(GG*)dt]) (12)

=K (Y*AYdt + oY 'dW; + YAY dt + c*YdW; + GO'*dt> (13)
— E[AYY*dr] + E[YY*A*dt] + 6% dr (14)
— AE[YY"|dr + E[YY*]A"dt + 60*dt (15)
_ {(Ap—k pA*)MG*} dt (16)

Thus, the matrix differential equation for the covariance density p(z) is given as follows
p=Ap+pA*+o0c” (17)
The covariance matrix py of the invariant density in Eq. (11) can be then obtained by setting p =0
in Eq. (17) to yield:
Apy +pyA*+00" =0 (18)
As can be seen from either Eq. (11) or Eq. (18), the calculation of the invariant distribution uy
requires an explicit expression for the stochastic forcing matrix o. Although it is difficult to solve

Eq. (18) for a general case in which stochastic forcings are strongly correlated (i.e.,0;; # 0,i #

J), the calculation will be much simplified when o is a diagonal matrix 6 = diag(oy, 02, 03).

17
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That is, the stochastic forcing components are uncorrelated to each other such that 6o’ = o2.

Physically, this assumption of a diagonal stochastic forcing matrix 6 means than stochastic forcing
components in the TC-scale model are independent for different variables, which is reasonable in
the real atmosphere due to the isotropic property of randomness.

Under this assumption of uncorrelated stochastic forcings, one can derive a formal expression
for the covariance matrix py in terms of eigenvalues and eigenvectors of A. Indeed, applying the
Schur decomposition A = QDQ*, where D is an upper triangular matrix with eigenvalues on its

diagonal and Q is Hermitian matrix satisfying QQ* = I, we have

QDQ"py +pyQD*Q* = —00” (19)

Multiplying Eq. (19) by Q* from the left and Q from the right and defining p = Q*pyQ, and

L= —Q*00*Q, the co-variance matrix py then satisfies the following general Sylvester equation

Dp+pD* =L (20)

Therefore, the procedure to find the invariant distribution matrix py essentially consists of three
basic steps: 1) applying the Schur decomposition to matrix A to obtain D and Q, 2) solving the
Sylvester equation (20) for p, and 3) inverting the relationship p = Q*pyQ to obtain py. Note that
D and D* are the upper and lower triangle matrices, respectively. As such, one can solve Eq. (20)
for each entry p;; at a time, using the back substitution once the diagonal entries of the left and the
right hand side of (20) are solved first (see Appendix 3 for the formal solution to Eq. (20)).
Without all the details of solving the Sylvester equation, we list here several important remarks
from the derivations of the invariant intensity distribution. First, the above computation of the
invariant distribution based on (20) requires explicit knowledge of the unknown matrices Q and
D as well as all eigenvalues. Assuming general values of the Jacobian matrix Q,D, Appendix

3 shows a detailed derivation of all elements of p. Even under this most general form of the
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matrices Q,D, one can see clearly the linear dependence of rho on the variances of the stochastic
forcing matrix o, and inverse dependence on the eigenvalues of A. Of course, the closed form for
pij requires explicit expressions of A and its eigenvalues, which are computationally difficult to
derive. However, the formal integral invariant distribution given by Eq. (11) or the solution to Eq.
(20) is still important, because it shows that an invariant Gaussian distribution exists and how to
obtain it. Second, due to our asymptotic approach, the exponential decay of the tail distribution is
not known from either the close integral form or the stationary limit of p = 0. This question must
be therefore verified by using a numerical approach that we will present in the next section. Last,
the above analysis should, in principle, work for any dimension, and so it can be also extended to

other types of stochastic forcings such as non-diagonal or degenerate matrix o if necessary.

5. Numerical analyses

a. Invariant density of TC intensity variability

In this section, we will use a numerical approach to verify and provide additional details into the
analyses presented in Section 3. Specifically, we wish to extract the variance of the v-wind com-
ponent o, defined in (5), which is also contained in the general covariance intensity matrix (11),
given the variances 612, 622, 632. This v-variance is practically meaningful, because it represents
the variability of TC intensity that forecasters most concern from the operational perspective. In
addition to extract G,, it is necessary to confirm also the exponential decay of the tail distribution
of TC intensity towards an invariant distribution at the PI limit as assumed in Section 3. Unlike
the analytical derivations that are linearized around the maximum potential intensity critical point,
direct numerical integration of Eq. (2) allows for addressing the above questions explicitly in the

full nonlinear form.
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To have a broad picture of full nonlinear behaviors of the stochastic TC-scale model (2), we
consider a set of parameters shown in Table 1, which are typical for TCs under a real atmospheric
environment (see Kieu 2015; Kieu and Wang 2017). By default, Eqs. (2) are numerically in-
tegrated for 10000 time steps, using the standard Runge-Kutta fourth-order scheme with a time
step dt = 0.001 (in nondimensional unit) similar to that in Kieu and Wang (2017). Due to the
random nature of the stochastic forcings, the Monte-Carlo ensemble method is employed in all
experiments, with 1000 different realizations of the model integration for each set of parameters
and initial condition.

Among several model parameters, we note specifically in our numerical experiments that the
standard deviations 07, 07,03 of the stochastic forcings in Eq. (2) are set to be the same with
values of (0.01,0.01,0.01) to ease our comparison with the analytical solution presented in Section
3. These nondimensional amplitudes correspond to a random forcing variation of ~ 0.2 ms™! per
hour for the (u,v) components, and ~ 0.003 m?s~2 per hour for the buoyancy variable in the
physical space (i.e., a random variation of ~ 0.5 K per hour in terms of potential temperature).
Such variations are well within the typical random fluctuations of atmospheric wind speed, which
are the same in both the radial and tangential directions, and the temperature in the central region
of real TCs (see, e.g., French et al. 2007; Zhang 2010).

As an illustration, Figure 1 shows one specific realization of the numerical integration, starting
from four arbitrary initial conditions in the phase space of (u,v,b) One notices in Figure 1 that
consistent with our assumption of the existence of a unique attractor in the phase space of (u,v,b),
all trajectories of Eq. (2) converges quickly towards the PI attractor, even with the stochastic
forcing included. Provided that the variances of stochastic forcings are smaller than 0.3 (in non-
dimensional unit), this attractor behavior is very robust, regardless of initial conditions. For any

value of 67, 6, or 03 larger than 0.3, the system (2) however becomes unstable and develops a wind
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field with random negative values (i.e., an anticyclonic flow). As a result, the TC-scale model (1)
will immediately blow up due to the emergence of an unstable critical point in the anticyclonic
domain with v < 0 (see Kieu 2015; Kieu and Wang 2017). The existence of such a unique stable
attractor in the stochastic TC-scale model is important, because it verifies our assumption of the
convergence of the model flows towards an intensity invariant distribution py, as examined in
Section 3.

Along with the existence of a stable region in the phase space with an invariant intensity distri-
bution py, one can see apparently from Figure 1 that the orbits are now no longer smooth curves as
in the original deterministic system. Instead, the flows are strongly fluctuated as they approach the
attractor in the phase space, rather than a single unique stable point. In this regard, the invariant
intensity distribution py as given by (11) can be seen as the bounded region in the phase space in
which TC intensity variation is most likely located as expected.

We should particularly emphasize at this point that while an invariant density distribution of a
stochastic system differs from a chaotic attractor of a deterministic system, it is practically impos-
sible to distinguish the variability of TC intensity within the invariant density distribution from that
inside the chaotic attractor. One could in principle wait for a sufficient long time such that a large
fluctuation of TC intensity associated with the invariant probability distribution could be realized,
which helps indicate if the attractor is chaotic or stochastic. However, for all real TC development,
TCs may not have much time to stay at the PI limit before weakening due to landfalling or mov-
ing to higher latitudes. Therefore, the fluctuation of TC intensity in real TC development could
be a manifestation of both TC chaotic dynamics and the stochastic nature of atmosphere that one
cannot fully separate.

To help quantify the characteristics of the invariant intensity distribution at the PI equilibrium,

Figure 2 shows the projection of the flow orbits onto the v direction for the three orbits shown
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in Figure 1. The random effects are clearly manifested in this time series, with a rapid fluctu-
ation of TC intensity during the entire TC development very similar to the actual TC intensity
observed from high temporal resolution aircraft observation (French et al. 2007; Zhang 2010). Of
more interest is the fluctuation of TC intensity at the asymptotic limit # — oo, which represents
the invariant intensity distribution fy examined in Section 3. For the control experiments with
01 = 02 = 03 = 0.01, the corresponding standard derivation of the TC intensity variation in the
v direction o), is ~ 0.0056, which is less than 1% of the typical PI value. For example, if one
assumes a PI value of 65 m s~! and a time scale of 3 hours as given in Table 3, the fluctuation of
TC intensity at the PI limit due to the stochastic forcing is only ~ 0.4 m s~!, which is relatively
small compared to the typical TC intensity errors in real-time forecasts (see, e.g. Tallapragada
et al. 2014; Kieu and Moon 2016; Kieu et al. 2018).

Because of the dependence of uy on the amplitudes of stochastic forcings, Figure 3 shows the
standard derivation o, for TC intensity at the asymptotic limit # — oo for a range of 0] = 0, =
03 € [0.01 —0.1]. Despite the nonlinear behavior of the stochastic TC-scale model (2), one notices
in Figure 3 that o), varies almost linearly with o; and is roughly half of the standard derivation o;.
Such a linear dependence of o, on the variance of the stochastic forcing o; is consistent with the
analytical derivation in Section 3 (see also Appendix 3). Indeed, if one applies 61 = 0, = 03 = Oy
to the Sylvester equation (20), the explicit solution (see Appendix 3) to this equation will give
o, that is linearly proportional to the variance of the stochastic forcing, i.e., 62 ~ 0']% as expected.
The numerical simulations in this regard confirm the asymptotic analyses presented in the previous
section.

As a way to further examine the derivation of the asymptotic invariant intensity distribution py
as given by Eq (11), we note that the linear dependence of o, on the stochastic forcing variance

o; is realized not only for the special case 07 = 0, = 03 but also for each individual variance
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of stochastic forcing (i.e., 0; # 0, but 0, = 0,i # j # k) as can be directly seen in the explicit
expression of ¢, shown in Appendix 3.

To verify this property, Figure 4 shows the standard derivation o, for a range of the stochastic
forcing variance. That is, only one o; is varied, while setting the other two variances o, j # i equal
to zero. As shown in Figure 4, the TC intensity variance ¢, indeed increases linearly with each o;
as expected from the linearized analyses. Among the three variances of the stochastic forcings, it
is of interest to note however that ¢, is most sensitive to the tangential wind forcing (i.e., 02) and
the temperature forcing (i.e., 63), while it is much less sensitive to the radial wind forcing (i.e.,
o) as seen from the scale of the y-axis in Figure 4). This result has some significant implication,
because it indicates that the fluctuation in tangential wind v or the temperature anomaly b will have
far more reaching impacts on TC intensity variability. Therefore, future effort of optimizing a TC
vortex initialization should focus more on the tangential wind and temperature structure than on
the secondary circulation for operational purposes.

From the physical perspective, an important question for the above numerical results is whether
or not the assumptions for the stochastic matrix ¢ are reasonable. While the numerical results
obtained in this section and the analytical derivations in Section 3 confirm the importance of
stochastic forcings in TC intensity fluctuation during TC development as well as at the PI limit,
one notices that stochastic intensity fluctuation shown in Figure 3 is significantly less than the
variability due to the deterministic chaos or real-time intensity errors found in Kieu and Moon
(2016); Kieu et al. (2018). Only for a stochastic forcing standard derivation as larger as 2 ms~!
per hour does the standard derivation of TC intensity variation reach roughly 4 ms~!, which is
still smaller than 8 m s~ ! as obtained from the axisymmetric simulations in Kieu and Moon (2016)
or real-time intensity errors Tallapragada et al. (2013, 2014); Kieu et al. (2018). Such a smaller

value of TC intensity variability that is induced by random processes indicates that the existence
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of the deterministic PI chaotic attractor is indeed needed to fully account for the observed intensity
variation.

On the other hand, the fact that TC intensity can vary with a standard deviation as large as 4ms~!
at the PI limit due to random forcing reiterates that the absolute intensity errors in a numerical
model, especially for models with a stochastic parameterization scheme such as the Hurricane
Weather Research and Forecasting model (Zhang et al. 2015), will have an intrinsic barrier of 4
m s~ ! that one cannot reduce further. The combination of the stochastic variations as found in this
study and the potential existence of a chaotic PI attractor as found in Kieu and Moon (2016); Kieu
et al. (2018) thus imposes a very strong upper bound on the accuracy of TC dynamical models in

the future, if the metric for TC intensity is based on the maximum 10-m wind.

b. Stochastic nonlinear versus linear effects

Although the numerical integration of the stochastic TC-scale model could capture an invariant
probability distribution of TC intensity that supports the linearized analyses at the PI limit, an
important question that has not been examined so far is whether the invariant density ty from
the nonlinear model (2) accords with uy obtained from the linearized model (7). In addition, it
is also necessary to examine if the dependence of the invariant intensity density on the model
parameters is consistent between these nonlinear and the linearized models. By varying the two
model parameters p and s and comparing the variances of the TC intensity distribution obtained
from the linearized and the full nonlinear models, it is possible to assess the nonlinear effects on
TC intensity density that we wish to explore in this subsection.

In this regard, Figure 5 shows the variances of TC intensity distributions from Eqs. (2) and (7)
when one of the model key parameters p or s is varied while all other parameters are fixed. Recall

here that these two parameters encode significant amount of TC dynamics; s represents the degree
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of slantwise moist neutrality, and p is the squared ratio of the boundary layer depth over the tro-
pospheric depth that is scaled by the drag coefficient. Unlike the linearized model whose invariant
density can be derived explicitly, note that numerical integrations of the full nonlinear stochastic
systems require a large number of experiments to capture as many realizations of random forcings
as possible.

One notices in Figure 5 that the nonlinear and linear models display an overall a consistent
functional dependence on the model parameters. Specifically, both models capture an invariant
density that increases with a larger parameter s shown in Figure 5a). Likewise, both models show
an inverse relationship between the variance of intensity distribution and the model parameter p
(Fig. 5b). Physically, these results indicates that a more stable troposphere would produce a higher
intensity variability, given the same magnitude of random forcings. This is because a more stable
atmosphere would allow a weaker PI limit, thus resulting a stronger fluctuation of TC intensity
similar to a stochastic fluctuation inside a lower potential well. On the other hand, a higher value
of p means weaker boundary layer frictional forcing, which tends to attain a higher PI limit that
confines more the intensity fluctuation inside. Thus, a smaller intensity variance for a larger value
of p is expected.

Within the statistical significance level of the numerical simulations, one notices however that
the nonlinear and linear models do not completely comparable in terms of the value of intensity
variance. In fact, full nonlinear model captures a higher intensity variance for a range of param-
eters p and s. The two models are only comparable when the effective static stability parameter
s is sufficiently high (> 0.6), or the aspect ratio p is sufficiently small (< 300). Beyond these
ranges, the nonlinear model tends to capture a higher intensity variance than that obtained from

the linearized model at the PI limit. In this regard, the above result could highlight the regime in
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the parameter space where the invariant density distribution derived from the linearized model is

acceptable for analytical purposes.

6. Conclusion

In this study, a low-order stochastic model based on TC scales was presented to study the asymp-
totic probability density of TC intensity at the PI equilibrium. By introducing stochastic forcings
to the TC-scale model in the form of Wiener processes, a number of important findings related to
the asymptotic properties of TC intensity variability have been obtained. First, it was shown that
there exists an invariant intensity distribution at the PI equilibrium whose variance is linearly pro-
portional to the variance of stochastic forcings. That is, the larger the stochastic forcing variance,
the more TC intensity fluctuation one would expect at the PI limit. Second, our analytical and
numerical analyses showed that the standard deviation of this probability intensity distribution is
roughly half of the standard derivation of the stochastic forcings in the nondimensionalized space.
In the full dimensional form, this result indicates that a stochastic forcing with a wind speed vari-
ation of 1-2 ms~! per hour or temperature variation of 1-2 K per hour could lead to an intensity
variation of ~ 3 —4ms 1.

Third, among different stochastic forcing components, the stochastic forcings related to tan-
gential wind and the temperature anomaly at TC central region have the largest impact on TC
intensity variation, whereas stochastic forcing in the radial direction has a much smaller effect.
The dominant role of tangential wind and warm core anomaly forcings advocate that future TC
model development should focus more on improving an initial representation of tangential wind
and TC thermodynamic structure to optimize TC intensity forecast accuracy.

From the practical standpoint, these results are non-trivial because they suggest an inherent limit

in the absolute TC intensity errors that one cannot reduce further in operational TC models where
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random factors can never be eliminated. As long as the maximum 10-m wind is used as a metric
to measure TC intensity, the absolute TC intensity forecast errors will have a barrier at which
one cannot reduce further. We note that this limit in our capability to reduce TC intensity errors
below a certain threshold associated with stochastic forcings fundamentally differs from that due
to chaotic dynamics; the invariant density has an unbounded density distribution that could accept
a probability of having an arbitrarily high intensity, whereas the chaotic dynamics has a strictly
bounded attractor. For all practical purposes, the chaotic and stochastic intensity fluctuations are
however not separable. They both contribute to TC intensity variability that prevents one from
reducing TC intensity errors below a certain threshold.

While the stochastic TC-scale model presented in this study could demonstrate the fluctuation
of TC intensity associated with random forcing, a number of caveats must be acknowledged.
First, the randomness introduced in this TC-scale framework is somewhat different from the true
randomness in real atmosphere. This is because real atmosphere possesses some coherent structure
whose random variables may not be completely uncorrelated as assumed in this study (i.e., the
stochastic forcing matrix m may not be diagonal). For analytical analyses, this correlated stochastic
forcings results in such a complicated form of density matrix that there may exist no explicit
form for the invariant density, even at the PI asymptotic limit. Second, the TC-scale dynamics
used in this study is drastically simplified as compared to the dynamics of real TCs for which
various subtle physical and thermodynamic processes are essential. Thus, the intensity variation
obtained in this simplified TC-scale model cannot capture nonlinear interactions among different
physical components of real TCs, thus resulting in some uncertainties in quantifying the intensity
fluctuation related to stochastic forcings. In this regard, TC intensity variation due to stochastic
forcings examined in this study can serve only as a lower bound for the actual intensity fluctuations

in real TCs.
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APPENDIX

Appendix 1

For the case of a symmetric Jacobian matrix A, we can re-write the linearized equation in terms of

the gradient form as follows:

dY, = VO(Y,)dt +ZdW,, (A1)

where ®(x) = %XTAX = %23 a;;jx;x ;. Define the matrix

ij=1
~ 2
A=2(z A= (—a;) .
O /i

Suppose o; # 0 for all i € {1,2,3} and A is symmetric. Then the (strong) solution Y to (7) is a

symmetric diffusion with symmetrization measure ¢®® gx, where

~ 1~ 1 & 2a;
O(x) = —x'Ax = - Z =
2 2i,jzl i

Furthermore, if Z := [p: exp®(X)dx < oo, then Y has a unique invariant measure

py (dx) =

In particular, if A s symmetric, then Uy is the multivariate normal distribution (the Gaussian

distribution) with mean 0 € R? and co-variance matrix

26111/612 26112/612 2(113/612
_ —1y2
2a71 /622 2a22/622 26123/622 =—-A L

2a31 /632 2a32/632 2a33/632

s The condition Z := [3 exp®(x) dx < oo is satisfied if A is negative definite in the sense that x” Ax <

540

0 for all nonzero x.
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(Sketch) The generator of the solution Y is

1S ,d%f
Zf(x) —EI;GZ- a—xiz(X)JrVCP Vi(x)

1 3 aZf 3 3 af
1S L orf 3 2a;; \ df
_EI;GZ {Tﬁ(x)+ (}; o2 xj) c9_x,-< )

122 (po? )

where p(x) = ¢®®),

The condition Z := [p3 exp EIVD(X) dx < oo is satisfied if A is negative definite, because Ais negative
definite if and only if A is negative definite. To see the last statement, observe that A = DA
where D = 2(X71)? is a diagonal matrix with positive entries. Hence for each k € {1,2,3}, the
determinant of the upper left k by k sub-matrix of A has the same sign as that for A.

Appendix 2

The eigenvalues of the Jacobian matrix (38) in Kieu and Wang (2017) have negative real parts,
so the critical point is stable in the ODE system (30)-(32) in that paper. In this Appendix, we inves-
tigate how the absolute values of the real parts of the eigenvalues control the rate of convergence
of the SDE (7) towards its invariant distribution Ly .

(L?-Exponential convergence) Let X be a Markov process with stationary measure (. Let

{P};>0 be the semigroup of X. We say that L?> exponential ergodicity holds for X if there ex-

for all f € €,() and t > 0. This means the probability distribution of X; converges to the

ists ¢ € (0,00) such that

S e—Cl
L2(p)

(A2)

Rf- [ fau

£ | rau

L2 ()

stationary distribution exponentially fast. It is well known (van Handel 2014, Chapter 2) that for
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= reversible ergodic Markov processes with a positive spectral gap, L exponential ergodicity (A2)
ss  holds. This implies that (A2) holds for our multi-dimensional Ornstein—Uhlenbeck process Y,
s since all eigenvalues of A have negative real parts.

560 Appendix 3. Formal solution for the covariance matrix py

s« 10 solve the Sylvester equation formally, let

a o o3
Q=8 B B
0 & &

s and
pit P12 P13
P=|pn pn P
P31 P2 P33

s and
M oar a

s« W€ compute
Ly Ly Lis
L=Q'cc"Q= Ly Ly Lo
Ly Lz L33
ss  Where
« o L =—(ofol+Bios+6707)

567 o Lip= —(061062612 +ﬁ1ﬁ2622 + 61826?%)

568 o Li3= —(061(13612+ﬁ1[33(722+6153632)

31



550 Ly = 1067 4 1,05 + 616,03

w o Ly=—(0z0f+B50;5+8703)

o @ Ly = —(00302 + 2302 + 8,8:62)
w: o L3y =—(0no307 + PiB303 + 61630%)
o e Lyp=— (000307 + Baf3305 + 6,8507)

o o Lyz=—(020o? +pios+8707)

s By using the back substitution, we are able to derive the solution for the system (??) as follows

Bys = L33 By = Ly — a3ps3
2Re(l3) ’ 2,3 + A,z ’
_ Ly —aipn—apn _ Loy —asp3z — Aaps
p31 = = 5 23 =
M+ A
Py — Ly — a3p3; — dzpas 51 = L1 —a3p31 — @GPz — a1pa
2Re(12) ’ A+
_ Liz—aip—ap3; _ Lip—aipn—axp3 —aszpis
P13 = = 5 P12 = =
M+A3 M+
_ Ly —aipa1 —aap31 — a1p12 — @pis
= A3
1 2Re(Ay) (A3)

ss By utilizing the relation p = Q*pyQ, all entries of the co-variance matrix py are found explicitly.
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TABLE 1. Default values of all parameters in the stochastic TC-scale model that are used for the numerical

integration of Eq. (2)

Parameter Value Remark

Ve ~ 65ms™! Scale of the maximum surface wind at the PI equilibrium for sea surface temperature of 30°C.
U, ~ 10ms~! Scale of the radial wind at the PI equilibrium.

B. ~0.4ms™2 Scale of the maximum buoyancy that corresponds to the warm core in the TC eye region
T ~ 10%s A characteristic time scale

P 200 nondimensional square ratio of the PBL depth over the radius of the maximum wind

r 0.1 a nondimensional parameter representing the radiative cooling

s 0.1 a nondimensional parameter representing the tropospheric stratification

o] 0.01 nondimensional variance of the u-wind stochastic forcing component

(o) 0.01 nondimensional variance of the v-wind stochastic forcing component

o3 0.01 nondimensional variance of the buoyancy stochastic forcing component
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