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Abstract. We construct a planar smooth weakly mixing stationary random
vector field with nonnegative components such that, with probability 1, the

flow generated by this vector field does not have an asymptotic direction.

Moreover, for all individual trajectories, the set of partial limiting directions
coincides with those spanning the positive quadrant. A modified example

shows that a particle in space-time weakly mixing positive velocity field does

not necessarily have an asymptotic average velocity.

1. Introduction and the main results

Homogenization problems for stochastic Hamilton–Jacobi (HJ) type equations
(see [Sou99],[RT00],[NN11],[CS13],[JESVT18]) and limit shape problems in First
Passage Percolation (FPP) type models (see a recent book [ADH17]) are tightly
related to asymptotic properties of optimal paths in random environments. In
several interesting situations where the setup involves stationarity and fast decor-
relation of the environment, one can prove that optimal paths solving the control
problem in the variational characterization of solutions in the HJ case and the
random geodesics in the FPP case have some kind of straightness property (see
[LN96],[HN01],[Wüt02],[CP11],[CS13],[BCK14],[Bak16]). In particular, for a one-
sided semi-infinite minimizer or geodesic γ, existence of a well-defined asymptotic
direction limt→∞(γ(t)/t) has been established for several models. The FPP limit
shape and the effective Lagrangian (aka shape function) in stationary control prob-
lems are always convex. In the literature cited above, it is shown that stronger
assumptions on curvature imply quantitative estimates on deviations from straight-
ness, and it is believed that the asymptotic behavior of these deviations are often
governed by KPZ scalings (see, e.g., [BK18]).

It is tempting to conjecture that in a closely related and simpler passive tracer
setting where the control is eliminated and the particles simply flow along an er-
godic stationary random vector field, each of the resulting trajectories will have an
asymptotic direction. However, the generality of this picture is limited, and the
main goal of this note is to construct a weakly mixing stationary random field v
on R2 such that none of its integral curves possesses a limiting direction. We refer
to Section 4 for reminders on weak mixing and related notions and recall here only
that weak mixing is stronger than ergodicity.

The construction in our main result is based on lifting the discrete Z2-ergodic
example recently introduced in [CK19] onto R2 with the help of appropriate tilings,
smoothing, and additional randomizations. Although the method seems natural
and general to us, we are not able to locate analogs in the existing literature. In
fact, the Poissonization that we use can also be used to construct a Z2-weak mixing
example out of the ergodic example of [CK19].

Our vector field (along with the discrete arrow field of [CK19]) traps the integral
curves in long corridors each stretched along one of the two prescribed extreme

1



2 YURI BAKHTIN AND LIYING LI

directions, and the random length of these corridors has heavy tails. The result
is that the integral curves oscillate between these two directions never settling
on any specific one. This idea is similar to that of [HM95], where it is shown
how to construct an FPP model with any given convex symmetric limit shape, by
employing long random properly directed corridors that are easy to percolate along.
As noted in [CK19], the absence of a well-defined average velocity is a manifestation
of the fact that there is no averaging of the environment as seen from the particle
moving along the random realization of the vector field.

Let us be more precise now. For every bounded smooth vector field v on R2 and
every initial condition z ∈ R2, we can define the integral curve γz : R+ → R2 (here
R+ = [0,∞)) as a unique solution of the autonomous ODE

(1.1) γ̇z(t) = v
(
γz(t)

)
,

satisfying

(1.2) γz(0) = z.

We denote the two components of v ∈ R2 by v1 and v2.

Theorem 1.1. There is a weakly mixing stationary random vector field v ∈ C∞(R2)
such that for all z ∈ R, v1(z), v2(z) ≥ 0, v1(z) + v2(z) > 0, and with probability 1
the following holds for all z ∈ R2:

(1.3) lim
t→∞

|γz(t)| =∞,

(1.4) lim inf
t→∞

γ2
z (t)

γ1
z (t)

= 0, lim sup
t→∞

γ2
z (t)

γ1
z (t)

=∞.

In other words, the random vector field that we construct in this theorem gen-
erates integral curves γz that do not have a well-defined asymptotic average slope
because their finite time horizon slopes oscillate between 0 and ∞.

One can interpret our result in variational terms. The integral curves generated
by the vector field v are minimizers of the action associated with the Lagrangian
given by L(γ, γ̇) = |γ̇ − v(γ)|2. They are also the characteristics for the corre-
sponding HJ equation. Our result means that the infinite one-side minimizers of
the action associated with this Lagrangian have no asymptotic slope.

Using Theorem 1.1, we can also construct a time-dependent space-time station-
ary, weakly mixing, and smooth one-dimensional positive velocity field u(t, x) ∈ R,
(t, x) ∈ R× R that does not give rise to a well-defined asymptotic speed.

Given a velocity field u and a starting point (t0, x0), we define (x(t0,x0)(t))t≥t0
via

ẋ(t0,x0)(t) = u(t, x(t0,x0)(t)), t ≥ t0,(1.5)

x(t0,x0)(t0) = x0.(1.6)

Theorem 1.2. If 0 ≤ u0 < u1 < ∞, then there is a weakly mixing space-time
stationary random velocity field u ∈ C∞(R×R) and such that u(t, x) ∈ [u0, u1] for
all (t, x) ∈ R × R and, with probability 1, for every (t0, x0) the trajectory x(t0,x0)

solving (1.5) –(1.6) satisfies

(1.7) lim inf
t→+∞

x(t0,x0)(t)

t
= u0, lim sup

t→+∞

x(t0,x0)(t)

t
= u1.
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We can construct a velocity field u with properties claimed in Theorem 1.2 using
the vector field v constructed in Theorem 1.1 and pushing it forward by the linear
map defined by the invertible matrix

A =

(
1 1
u0 u1

)
mapping the horizontal and vertical axes into lines defined by x = u0t and x = u1t.
More precisely, we first define

v̂(t, x) = Av

(
A−1

(
t
x

))
, (t, x) ∈ R× R.

The flow lines generated by v̂ on the (t, x)-plane are the images of the flow lines
generated by v, so they oscillate between the images of the horizontal and vertical
axes. To interpret the first coordinate as time, we must reparametrize the flow lines
so that the motion along the t-axis happens with speed 1. Thus, for Theorem 1.2
we define u as the second component of v̂ normalized by v̂1:

u(t, x) = v̂2(t, x)/v̂1(t, x).

This normalization does not affect the weak mixing property.
The rest of this note is organized as follows. We extend the construction in [CK19]

in two stages. First, in Section 2, we introduce two vector fields on the unit
square associated with vertical and horizontal arrows, respectively, and then ob-
tain a smooth vector field on R2 tesselating it by square tiles in agreement with
the random arrow fields introduced in [CK19]. The trajectories generated by the
resulting vector field do not have asymptotic directions but the vector field itself
lacks stationarity with respect to shifts in R2, so one cannot even speak about weak
mixing. To fix this and finish the proof, a random Poissonian deformation of this
vector field is introduced in Section 3.

Acknowledgments. We learned about the question that we study in this paper
from Alexei Novikov. We are grateful to him, Leonid Koralov, and Arjun Krishnan
for the discussions that followed. We thank the referee for useful comments. In
addition, we gratefully acknowledge partial support from NSF via Award DMS-
1811444.

2. Constructing a smooth vector field from an arrow field on Z2

Let r = (1, 0) and u = (0, 1) be the standard coordinate vectors on the plane
pointing right and up, respectively. On Z2, an (up-right) arrow field is a function
α : Z2 → {r, u}, and the random walk Xz : N→ Z2 that starts at z and follows the
arrow field α is defined by

Xz(0) = z, Xz(n) = Xz(n− 1) + α
(
Xz(n− 1)

)
.

In [CK19], the authors constructed an ergodic up-right random walk on Z2 such
that no trajectories have asymptotic directions, and hence by the result therein all
random walks must coalesce. More precisely, they proved the following:

Theorem 2.1. There is a Z2-ergodic dynamical system ((Tz)z∈Z2 ,Ω,F , ν) and a
measurable function ᾱ : Ω→ {r, u} that defines a stationary Z2-arrow field by

αω(z) = ᾱ(Tzω), ω ∈ Ω, z ∈ Z2,

such that none of the corresponding family of random walks (Xω
z )z∈Z2 have an

asymptotic direction and all the random walks (Xω
z )z∈Z2 coalesce. More precisely,
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for ν-a.e. ω ∈ Ω,

(2.1) lim inf
n→∞

Xω
z (n) · u

Xω
z (n) · r

= 0, lim sup
n→∞

Xω
z (n) · u

Xω
z (n) · r

=∞, z ∈ Z2,

and

(2.2) ∀z1, z2 ∈ Z2, ∃k1, k2 such that Xω
z1(k1) = Xω

z2(k2).

In fact, the authors in [CK19] constructed the Z2-system as the product of two
appropriately chosen Z-systems (S1, X,B, λ) and (S2, Y,B, λ), with X = Y = [0, 1),
B being the Borel σ-algebra, and λ the Lebesgue measure. The product Z2-action is
defined by T(a,b)(x, y) = (Sa1x, S

b
2y). This Z2-system is weakly mixing since both Z-

systems are. (See Section 4 for a collection of definitions and statements in ergodic
theory that will be used in this paper.)

In this section, we will demonstrate how to create a smooth vector field Ψα

from any given up-right Z2-arrow field α, such that the integral curves of Ψα have
similar behavior as the random walks following the arrow field α. When α is given
by Theorem 2.1, Ψα will satisfy (1.4) (Theorem 2.2).

Suppose Vu and Vr are two smooth fixed vector fields on [0, 1]2 roughly behaving
like “up arrow” and “right arrow” that will be specified later. The vector field Ψα,
as a functional of α, is defined by piecing together copies of Vr and Vu:

(2.3) Ψα(x+ i, y + j) = Vα(i,j)(x, y), (i, j) ∈ Z2, (x, y) ∈ [0, 1)2.

Naturally, we assume that Vu and Vr are diagonally symmetric to each other, i.e.,

(2.4)
(
Vu ◦ τ

)
(z) =

(
τ ◦ Vr

)
(z), z ∈ [0, 1]2,

where τ
(
(x, y)

)
= (y, x) is the reflection w.r.t. the diagonal {x = y}. To simplify

the construction, we also require that that Vr (and hence Vu) is itself diagonally
symmetric near the boundary, that is, there exists δ > 0 such that

(2.5)
(
Vr ◦ τ

)
(z) =

(
τ ◦ Vr

)
(z), z ∈ Γδ,

where for h ≥ 0, Γh is the region

Γh =
{

(x, y) ∈ [0, 1]2 : min{x, 1− x, y, 1− y} ≤ h
}
, h ≥ 0.

The construction of Vr and Vu is as follows. Let us take any δ < 1/10. Let F̃r be

a potential function in [0, 1]2 as defined in Fig 1. The potential F̃r is a piece-wise

linear function so that ∇F̃r is constant in each polygon region. At the four (dotted)

pentagon regions at the corners F̃r is given by the following:

F̃r(x, y) =


3(x+ y), (x, y) at the SW corner,

3(x+ y)− 1, (x, y) at the SE and NW corners ,

3(x+ y)− 2, (x, y) at the NE corner.

And at the middle (shaded) non-convex pentagon F̃r(x, y) = 2−12δ
1−4δ (x−2δ)+(1+6δ).

The values of F̃r at all the vertices are then determined, given in boldface, and F̃r
in the remaining triangle and rectangle regions are given by the linear interpolation
of its values at the vertex.

We extend F̃r to R2 by

(2.6) F̃r(x+ i, y + j) = F̃r(x, y) + 2(i+ j), (i, j) ∈ Z2, (x, y) ∈ [0, 1)2,

and then by smoothing it we define Fr = η ∗ F̃r, where η ∈ C∞ is a radially
symmetric kernel supported on B0(δ) = {(x, y) : x2 + y2 ≤ δ2}. Finally, we
define Vr as the restriction of the gradient field ∇Fr to [0, 1]2:

Vr(x, y) = (∇Fr)(x, y), (x, y) ∈ [0, 1]2.
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Figure 1. Definition of F̃r in the unit square [0, 1]2. This poten-
tial is continuous on [0, 1]2 and linear in every polygonal cell. The

values of F̃r at the tesselation vertices are given in boldface. The
arrows indicate the direction of ∇F̃r.

We define Vu through diagonal symmetry (2.4).

Lemma 2.1. Let Vr and Vu be defined as above. For any arrow field α, the vector
field Ψα as defined in (2.3) is smooth and bounded. Moreover,

(2.7) Ψ1
α ≥ 0, Ψ2

α ≥ 0, Ψ1
α + Ψ2

α ≥ c > 0,

for some constant c.

Proof: By (2.6), ∇F̃r is Z2-periodic, i.e.,

∇F̃r(x+ i, y + j) = ∇F̃r(x, y), (i, j) ∈ Z2,

Hence ∇Fr = η ∗ ∇F̃r is also Z2-periodic. This implies ∇Fr = Ψαr
, where αr

is the Z2-arrow field with right arrows only. From the Z2-periodicity of ∇F̃r and
Fig. 1, it is also easy to see that

τ
(
∇F̃r(z)

)
= ∇F̃r

(
τ(z)

)
, z ∈ Γ̄2δ,

where

Γ̄h =
⋃

(i,j)∈Z2

{(x+ i, y + j) : (x, y) ∈ Γh}, h ≥ 0.
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Since the smoothing kernel η is supported on B0(δ) and satisfies η(z) = η
(
τ(z))

due to the radial symmetry, ∇Fr = η ∗ ∇F̃r will satisfy

∇Fr
(
τ(z)

)
= τ

(
∇Fr(z)

)
, z ∈ Γ̄δ.

Therefore, Vr satisfies (2.5).
Let α be any arrow field. Due to (2.5), we have Ψα = Ψαr in Γ̄δ, which implies

that Ψα is smooth in a neighborhood of Γ̄0. Since, in addition, Vr and Vu are
smooth in (0, 1)2, Ψα is smooth everywhere.

Finally, the condition (2.7) holds for Ψ since it holds for ∇F̃r. 2

It is also easy to see that we have the following corollary:

Corollary 2.1. For any arrow field α, there is a potential Fα such that Ψα = ∇Fα.

Theorem 2.2. Let α be the stationary arrow field introduced in Theorem 2.1
and Ψα be the corresponding vector field defined by (2.3). Then, with probability
one, all integral curves γz of Ψα will satisfy (1.4).

Proof: By Lemma 2.1, Ψα is smooth, bounded and nondegenerate, so the integral
curves of Ψα are well-defined.

We can partition R2 into the union of unit squares:

R2 =
⋃

(i,j)∈Z2

S(i,j), S(i,j) = [i, i+ 1)× [j, j + 1).

We say that z ∈ S(i,j) is regular, if the curve γz visit these squares in the order
given by the random walks X(i,j). It suffices to show that with probability one,
every curve of Ψα passes through a regular point. The conclusion of the theorem
follows from (2.1).

We notice that e2 · Vr(x, y) ≡ 0 in the strip

{(x, y) : 0 ≤ x ≤ 1, 2/3− 2δ ≤ y ≤ 2/3− δ}.
This follows from the fact that e2 · ∇F̃r ≡ 0 in the strip

{(x, y) : x ∈ R, 2/3− 3δ ≤ y ≤ 2/3}
and that η is a kernel supported on B0(δ). Therefore, all the integral curves of Vr
entering the unit square through the set

s1 = {(0, y) : 0 ≤ y ≤ 2/3− δ} ∪ {(x, 0) : 0 ≤ x ≤ 1}
have to exit through

s2 = {(1, y) : 0 ≤ y ≤ 2/3− δ}.
Let us define Ω(i,j) ⊂ S(i,j) to be

Ω(i,j) =

{
{(x, y) : i ≤ x < i+ 1, j ≤ y ≤ j + 2/3− δ}, α(i, j) = r,

{(x, y) : i ≤ x ≤ i+ 2/3− δ, j ≤ y < j + 1}, α(i, j) = u.

We now claim that any point in Ω =
⋃

(i,j)∈Z2 Ω(i,j) is regular.

Suppose (i0, j0) ∈ Z2 and z ∈ Ω(i0,j0). If α(i0, j0) = r, then our construction
implies that after exiting S(i0, j0), γz enters Ω(i0+1,j0) ⊂ S(i0+1,j0). If α(i0, j0) = u,
then after exiting S(i0, j0), γz enters Ω(i0,j0+1) ⊂ S(i0,j0+1), see Fig. 2. Applying
these steps inductively, we see that γz indeed “follows the arrows”, so z is regular.
This proves the claim.

Furthermore, since all walks coalesce due to Theorem 2.1, any up-right curve
(i.e., γ(t) such that γ′(t) · r ≥ 0, γ′(t) · u ≥ 0, γ′(t) · (r + u) > 0) must intersect Ω.
This implies that any integral curve of Ψα passes through some regular point. The
proof is complete. 2
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Ω(i,j) Ω(i,j+1)

(a) Case 1: α(i, j + 1) = r

Ω(i,j)

Ω(i,j+1)

(b) Case 2: α(i, j + 1) = u

Figure 2. Illustration of the flow when α(i, j) = r.

3. Weakly mixing vector field

The vector field Ψα constructed in the previous section has all the properties that
are required in Theorem 1.1 except R2-stationarity and weak mixing, although its
distribution is invariant under Z2-shifts. The goal of this section is to modify the
vector field and gain those properties.

To obtain an R2-stationary and ergodic random vector field without requiring
the weak mixing property, we could introduce a simple randomization by adding an
independent [0, 1]2-uniformly distributed random shift to Ψα. To obtain a weakly
mixing vector field we need to apply an additional random deformation that we
proceed to describe.

Let µ =
∑
i δai and ν =

∑
j δbj be two Poissonian point processes on R. They

can be regarded as elements of M, the space of locally finite configurations of
points on R (which can be identified with integer-valued measures such that masses
of all atoms equal 1) equipped with appropriate topology. We also fix a family of
positive C∞-functions (φ∆)∆>0 with the following properties:

1. φ∆(x) ≡ 1 near x = 0 and x = ∆,

2.
∫∆

0
φ∆(x) dx = 1,

3. (∆, x) 7→ φ∆(x) is continuous (and hence measurable).

We define

ϕµ,ν(x, y) =
(
µ((0, x]) +

∫ x−a

0

φā−a(t) dt, ν((0, y]) +

∫ y−b

0

φb̄−b(t) dt
)
,

where

ā = ā(x) = inf{ai : ai > x}, a = a(x) = sup{ai : ai ≤ x},
b̄ = b̄(y) = inf{bj : bj > x}, b = b(y) = sup{bj : bj ≤ x},

and µ((0, x]) (resp. ν((0, y])) is the number of Poissonian points in the interval (0, x]
(resp. (0, y]), with a “−” sign if x < 0 (resp. y < 0). Let us order the Poisson points
in the following way:

a : · · · < a−1 < a0 ≤ 0 < a1 < · · · , b : · · · < b−1 < b0 ≤ 0 < b1 < · · · .

Lemma 3.1. The map ϕµ,ν is a C∞-automorphism of R2 and satisfies

(3.1) ϕµ,ν({ai} × R) = {i} × R, ϕµ,ν(R× {bj}) = R× {j}, i, j ∈ Z.

In particular, ϕµ,ν maps the rectangle R(i,j) = [ai, ai+1) × [bj , bj+1) to the unit

square S(i,j). Moreover, the map (µ, ν, x, y) 7→ ϕµ,ν(x, y) is measurable from M2×
R2 to R2.
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Proof: We will show that the first coordinate ϕ1
µ,ν is a strictly increasing smooth

function on R and ϕ1
µ,ν(ai) = i, and that the map (µ, ν, x, y) 7→ ϕ1

µ,ν(x, y) is

measurable. Similar statements hold for ϕ2
µ,ν . These will prove the lemma.

From definition we have ϕ1
µ,ν(ai) = i, and that ϕ1

µ,ν is continuous and strictly

increasing on [ai, ai+1). The left-continuity of ϕ1
µ,ν at ai is guaranteed by the second

condition of φ∆, so ϕ1
µ,ν is indeed continuous on R.

In each interval (ai, ai+1), ϕ1
µ,ν is C∞ since φ∆(·) are smooth. In the neighbor-

hood of each ai, ϕ
1
µ,ν is a linear function with slope 1 due to the first condition

of φ∆. This proves the smoothness of ϕ1
µ,ν(·).

Lastly, we notice that the map

(µ, ν, x, y) 7→
(
µ((0, x]), ā(x), a(x)

)
is measurable. The measurability statement follows from this and the third condi-
tion on φ∆. 2

Let us consider the pushforward of Ψα under the map ϕ−1, i.e., the vector field

Φ(x) = Dϕ−1
µ,ν

(
ϕ(x)

)
·Ψα

(
ϕµ,ν(x)

)
=
(
Dϕµ,ν(x)

)−1

Ψα

(
ϕµ,ν(x)

)
, x ∈ R2,

where Df denotes the Jacobian matrix of f and Ψα is introduced in section 2. Due
to (3.1), in each rectangle R(i,j), the vector field Φ is a “deformation” of either Vr
or Vu, depending on whether α(i, j) = u or r.

We will show that if α, µ and ν are independent, then Φ is stationary and
weakly mixing. We start by a formal construction of an appropriate R2-system.
Let ((Lv)v∈R,M,PM) be a R1-system whereM is introduced as above, PM is the
Poisson measure onM with intensity 1, and the R1-action Lv acting on µ =

∑
δai

by Lvµ =
∑
δai−v. We also recall the Z1-systems (S1, X, λ) and (S2, Y, λ) from

Section 2. Let us consider the following skew-products

(3.2) ((Lv)v∈R,M×X,PM ⊗ λ), Lv(µ, x) = (Lvµ, S
µ((0,v])
1 x),

and

(3.3) ((Lv)v∈R,M× Y,PM ⊗ λ), Lv(ν, y) = (Lvν, S
ν((0,y])
2 y).

Let us take the product of (3.2) and (3.3):

(3.4)
(
(L̂v,w)(v,w)∈R2 , Ω̂,P

)
=
(
(Lv × Lw)(v,w)∈R2 ,M2 ×X × Y,P2

M ⊗ λ2).

For Ω̂ 3 ω̂ = (µ, ν, x, y), one can check that the vector field Φ satisfies

(3.5) Φω̂(v, w) =
(
Dϕµ,ν(v, w)

)−1

Ψα(x,y)

(
ϕµ,ν(v, w)

)
= α̂(L̂v,w ω̂),

where

α̂(µ, ν, x, y) =
(
Dϕµ,ν(0, 0)

)−1

Vᾱ(x,y)(ϕµ,ν(0, 0)).

The definition (3.5) implies that Φ is stationary. The following theorem states that
it is weakly mixing.

Theorem 3.1. The R2-system (3.4) is weakly mixing. Moreover, with probability
one, all integral curves of the vector field Φω̂ satisfy (1.4).

The fact that (3.4) is weakly mixing is implied by the following and Theorem 4.2.

Lemma 3.2. The R1-systems (3.2) and (3.3) are weakly mixing.
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Proof: We will only show that (3.2) is weakly mixing. By Definition 4.2, this is
equivalent to the ergodicity of its direct product with itself, i.e., the R1-system

(3.6) ((L2
v)v∈R,M2 ×X2,P2

M ⊗ λ2).

For (µ, µ′, x, x′) ∈ M2 × X2, let us write L2
v(µ, µ

′, x, x′) = (µv, µ
′
v, xv, x

′
v). We

notice that under the measure P2
M × λ2, (xv, x

′
v)v∈R is a Markov jump process

on X2 starting from λ2, jumping from (x, x′) to (x, S1x
′) with rate 1 at times

recorded by µ′ and from (x, x′) to (S1x, x
′) with rate 1 at times recorded by µ. The

R1-action L2
v acting on M2 ×X2 is the time shift of this Markov process.

Therefore, the ergodicity of (3.6) is equivalent to the ergodicity of the stationary
Markov process (xv, x

′
v)v∈R. The ergodicity of a stationary Markov process can

be described in terms of the associated semigroup and invariant measure. We
recall that for a Markov semigroup P = (Pt)t≥0 and a P-invariant measure ν (i.e.,
satisfying νPt = ν for all t ≥ 0), a set A is called (almost) P-invariant if for all t,
Pt1A = 1A ν-a.s. The pair (P, ν) is ergodic if and only if ν(A) = 0 or 1 for all
invariant sets A.

Suppose that A ⊂ X2 is an invariant set for the Markov semigroup P associated
with the process (xv, x

′
v)v∈R. Then, for any t > 0,

Pt1A(x, x′) =
∞∑

a,b=0

pt(a, b)1A(Sa1x, S
b
1x
′),

where pt(a, b) is the probability that the two independent rate 1 Poisson processes
make a and b jumps respectively between times 0 and t. This implies that A is an
invariant set for the Z2-system

((Sa1 × Sb1)(a,b)∈Z2 , X2, λ2).

By Theorem 4.1, since (S1, X) is ergodic, this product system is also ergodic. This
implies that λ2(A) = 0 or 1 and completes the proof. 2

Proof of Theorem 3.1: The weak mixing follows from Definition 4.2 and
Lemma 3.2. Since all integral curves of Φ are images of those of Ψα under the
map ϕ−1

µ,ν , (1.4) follows from Theorem 2.2 and SLLN for i.i.d. exponential random
variables. 2

4. Appendix

Here we give some standard definitions and facts from the ergodic theory.
Let G be a group. We call ((Tg)g∈G, X,B, µ) a G-system if (Tg)g∈G is a mea-

sure preserving action of the group G on a probability space space (X,B, µ).
When G = Z, we will write (S,X,B, µ) where S = T1. We may omit the σ-algebra B
along with the measure µ if the context is clear.

The product of two systems, ((Tg)g∈G, X,B, µ) and ((T ′h)h∈H , Y,B′, ν), is a (G×
H)-system ((Tg × T ′h)(g,h)∈G×H , X × Y,B ⊗B′, µ⊗ ν). The group action is defined
by

(4.1) (Tg × T ′h)(x, y) = (Tgx, T
′
hy), g ∈ G, h ∈ H.

The direct product of two G-systems ((Tg)g∈G, X,B, µ) and ((T ′g′)g′∈G, Y,B′, ν)

is again a G-system ((Tg × T ′g)g∈G, X × Y,B ⊗ B′, µ⊗ ν), where Tg × T ′g is defined
according to (4.1) with h = g ∈ G, so this is the diagonal group action of G
on X × Y .

In the rest of the section and in the paper, the group we are dealing with will
always be Rd or Zd, d ∈ N. For g = (g1, ..., gd) ∈ G, |g| = max

1≤i≤d
|gi| its L∞-norm.
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We use dg to denote the Haar measure, i.e., the Lebesgue measure if G = Rd and
counting measure if G = Zd.

The following are standard definitions on ergodicity and weak mixing for group
actions (see [BG04]).

Definition 4.1. We say that a G-system ((Tg)g∈G, X,B, µ) is ergodic if and only
if one of the following equivalent conditions holds true:

1) If a set A is almost G-invariant, i.e., µ(A∆TgA) = 0 for all g ∈ G, then µ(A) = 0
or µ(A) = 1.

2) For any bounded measurable function f ,

(4.2) lim
R→∞

1

(2R)d

∫
|g|≤R

f(Tgx) dg =

∫
f(x)µ(dx), µ-a.s. x.

Definition 4.2. We say that a G-system ((Tg)g∈G, X,B, µ) is weakly mixing if and
only if one of the following equivalent conditions holds true:

1) For any two sets A and B,

lim
R→∞

1

(2R)d

∫
|g|≤R

|µ(TgA ∩B)− µ(A)µ(B)| dg = 0.

2) The direct product ((Tg × Tg)g∈G, X ×X) is ergodic.

Theorem 4.1. The product of two ergodic systems is ergodic.

Proof: Let ((Tg)g∈G, X,B, µ) and ((T ′h)h∈H , Y,B′, ν) be two ergodic systems. It
suffices to show that (4.2) holds true for the product system with f(x, y) = 1A×B(x, y)
for any A ∈ B and B ∈ B′.

We can use the ergodicity of ((Tg)g∈G, X) and ((T ′h)h∈H to see that

lim
R→∞

1

(2R)2d

∫
|(g,h)|≤R

1A×B(Tgx, T
′
hy) dg dh

= lim
R→∞

(
1

(2R)d

∫
|g|≤R

1A(Tgx) dg · 1

(2R)d

∫
|h|≤R

1B(T ′hy) dh

)
= µ(A)ν(B)

holds for µ-a.e. x and ν-a.e. y, i.e., for µ× ν-a.e. (x, y). The proof is complete. 2

Theorem 4.2. The product of two weakly mixing systems is weakly mixing.

Proof: Let ((Tg)g∈G, X) and ((T ′h)h∈H , Y ) be two weakly mixing systems. Their
product ((Tg × T ′h)(g,h)∈G×H , X × Y ) is weakly mixing if and only if

(4.3) (((Tg × T ′h)× (Tg × T ′h))(g,h)∈G×H , (X × Y )× (X × Y ))

is ergodic. The latter is isomorphic to the product of ((Tg × Tg)g∈G, X ×X) and
((T ′h × T ′h)h∈H , Y × Y ), and both of these systems are ergodic. So (4.3) is ergodic
by Theorem 4.1 and this completes the proof. 2
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