WEAKLY MIXING SMOOTH PLANAR VECTOR FIELD
WITHOUT ASYMPTOTIC DIRECTIONS

YURI BAKHTIN AND LIYING LI

ABSTRACT. We construct a planar smooth weakly mixing stationary random
vector field with nonnegative components such that, with probability 1, the
flow generated by this vector field does not have an asymptotic direction.
Moreover, for all individual trajectories, the set of partial limiting directions
coincides with those spanning the positive quadrant. A modified example
shows that a particle in space-time weakly mixing positive velocity field does
not necessarily have an asymptotic average velocity.

1. INTRODUCTION AND THE MAIN RESULTS

Homogenization problems for stochastic Hamilton—Jacobi (HJ) type equations
(see [Sou99],[RT00],[NN11},[CS13],[JESVT18]) and limit shape problems in First
Passage Percolation (FPP) type models (see a recent book [ADH17]) are tightly
related to asymptotic properties of optimal paths in random environments. In
several interesting situations where the setup involves stationarity and fast decor-
relation of the environment, one can prove that optimal paths solving the control
problem in the variational characterization of solutions in the HJ case and the
random geodesics in the FPP case have some kind of straightness property (see
[LN96],[HNO1],[Wit02],[CP11],[CS13],[BCK14],[Bak16]). In particular, for a one-
sided semi-infinite minimizer or geodesic -y, existence of a well-defined asymptotic
direction lim;_, oo (7y(t)/t) has been established for several models. The FPP limit
shape and the effective Lagrangian (aka shape function) in stationary control prob-
lems are always convex. In the literature cited above, it is shown that stronger
assumptions on curvature imply quantitative estimates on deviations from straight-
ness, and it is believed that the asymptotic behavior of these deviations are often
governed by KPZ scalings (see, e.g., [BK18]).

It is tempting to conjecture that in a closely related and simpler passive tracer
setting where the control is eliminated and the particles simply flow along an er-
godic stationary random vector field, each of the resulting trajectories will have an
asymptotic direction. However, the generality of this picture is limited, and the
main goal of this note is to construct a weakly mixing stationary random field v
on R? such that none of its integral curves possesses a limiting direction. We refer
to Section 4 for reminders on weak mixing and related notions and recall here only
that weak mixing is stronger than ergodicity.

The construction in our main result is based on lifting the discrete Z2-ergodic
example recently introduced in [CK19] onto R? with the help of appropriate tilings,
smoothing, and additional randomizations. Although the method seems natural
and general to us, we are not able to locate analogs in the existing literature. In
fact, the Poissonization that we use can also be used to construct a Z?-weak mixing
example out of the ergodic example of [CK19].

Our vector field (along with the discrete arrow field of [CK19]) traps the integral
curves in long corridors each stretched along one of the two prescribed extreme
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directions, and the random length of these corridors has heavy tails. The result
is that the integral curves oscillate between these two directions never settling
on any specific one. This idea is similar to that of [HM95], where it is shown
how to construct an FPP model with any given convex symmetric limit shape, by
employing long random properly directed corridors that are easy to percolate along.
As noted in [CK19], the absence of a well-defined average velocity is a manifestation
of the fact that there is no averaging of the environment as seen from the particle
moving along the random realization of the vector field.

Let us be more precise now. For every bounded smooth vector field v on R? and
every initial condition z € R?, we can define the integral curve v, : Ry — R? (here
R4 =[0,00)) as a unique solution of the autonomous ODE

(1.1) 2(t) = v(1:(1)),
satisfying

(1.2) 7:(0) = 2.

We denote the two components of v € R? by v! and v2.

Theorem 1.1. There is a weakly mizing stationary random vector field v € C°°(R?)
such that for all z € R, v'(2),v%(z) > 0, v1(2) + v23(2) > 0, and with probability 1
the following holds for all z € R2:

(1.3) Jim [ ()] = oo,
2(t 2t
(1.4) timinf 28 — 0, limsup 20 =
t—oo 7y (t) t—oo Yz (t)

In other words, the random vector field that we construct in this theorem gen-
erates integral curves 7y, that do not have a well-defined asymptotic average slope
because their finite time horizon slopes oscillate between 0 and co.

One can interpret our result in variational terms. The integral curves generated
by the vector field v are minimizers of the action associated with the Lagrangian
given by L(v,%) = |% — v(y)|®>. They are also the characteristics for the corre-
sponding HJ equation. Our result means that the infinite one-side minimizers of
the action associated with this Lagrangian have no asymptotic slope.

Using Theorem 1.1, we can also construct a time-dependent space-time station-
ary, weakly mixing, and smooth one-dimensional positive velocity field u(t, z) € R,
(t,z) € R x R that does not give rise to a well-defined asymptotic speed.

Given a velocity field u and a starting point (to, o), we define (2, 2,)(t))i>t,
via

(15) x.(to,:ro)(t) = u(t7x(to,zo)(t))’ t > to,
(1.6) I(to,xo)(t0> = xy.

Theorem 1.2. If 0 < ug < u; < oo, then there is a weakly mizing space-time
stationary random velocity field w € C®°(R x R) and such that u(t,x) € [ug, u1] for
all (t,z) € R x R and, with probability 1, for every (to,xo) the trajectory x(, .,
solving (1.5) —(1.6) satisfies

(to,ﬂﬂo)(t) m(to,xo)(t)

x
(1.7) lim inf ———— = wy, limsup ————= = u;.
t—+o00 t t—+oo t
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We can construct a velocity field u with properties claimed in Theorem 1.2 using
the vector field v constructed in Theorem 1.1 and pushing it forward by the linear
map defined by the invertible matrix

A:(1 1)
ug U1

mapping the horizontal and vertical axes into lines defined by x = ugt and = wuyt.
More precisely, we first define

B(t, ) = Av (A—l (;)) . (t,z) €ER xR.

The flow lines generated by ¢ on the (¢, z)-plane are the images of the flow lines
generated by v, so they oscillate between the images of the horizontal and vertical
axes. To interpret the first coordinate as time, we must reparametrize the flow lines
so that the motion along the t-axis happens with speed 1. Thus, for Theorem 1.2
we define u as the second component of ¥ normalized by o

u(t, ) = 0%(t,x) /o (t, x).

This normalization does not affect the weak mixing property.

The rest of this note is organized as follows. We extend the construction in [CK19]
in two stages. First, in Section 2, we introduce two vector fields on the unit
square associated with vertical and horizontal arrows, respectively, and then ob-
tain a smooth vector field on R? tesselating it by square tiles in agreement with
the random arrow fields introduced in [CK19]. The trajectories generated by the
resulting vector field do not have asymptotic directions but the vector field itself
lacks stationarity with respect to shifts in R2, so one cannot even speak about weak
mixing. To fix this and finish the proof, a random Poissonian deformation of this
vector field is introduced in Section 3.

Acknowledgments. We learned about the question that we study in this paper
from Alexei Novikov. We are grateful to him, Leonid Koralov, and Arjun Krishnan
for the discussions that followed. We thank the referee for useful comments. In
addition, we gratefully acknowledge partial support from NSF via Award DMS-
1811444.

2. CONSTRUCTING A SMOOTH VECTOR FIELD FROM AN ARROW FIELD ON Z2

Let » = (1,0) and u = (0,1) be the standard coordinate vectors on the plane
pointing right and up, respectively. On Z?2, an (up-right) arrow field is a function
a: Z% — {r,u}, and the random walk X, : N — Z? that starts at z and follows the
arrow field « is defined by

X.(0)=2 X.(n)=X.(n—-1)+a(X.(n-1)).

In [CK19], the authors constructed an ergodic up-right random walk on Z? such
that no trajectories have asymptotic directions, and hence by the result therein all
random walks must coalesce. More precisely, they proved the following:

Theorem 2.1. There is a Z*-ergodic dynamical system ((T.).czz,Q, F,v) and a
measurable function & : Q — {r,u} that defines a stationary Z>*-arrow field by

a“(2) = a(Tw), weQ, =zcZ?

such that none of the corresponding family of random walks (X¥),czz have an

asymptotic direction and all the random walks (X%),cz2 coalesce. More precisely,
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forv-a.e. w € Q,

Xz (n) -

o XP(n)u : uo_ 2
and
(2.2) V21,29 € Z2, 3k1, ko such that X2 (k1) = X2 (k2).

In fact, the authors in [CK19] constructed the Z2-system as the product of two
appropriately chosen Z-systems (S1, X, B, A) and (S2,Y, B, \), with X =Y =[0,1),
B being the Borel o-algebra, and \ the Lebesgue measure. The product Z2-action is
defined by T(4 ) (z,y) = (S{z, Sby). This Z2-system is weakly mixing since both Z-
systems are. (See Section 4 for a collection of definitions and statements in ergodic
theory that will be used in this paper.)

In this section, we will demonstrate how to create a smooth vector field ¥,
from any given up-right Z2-arrow field a, such that the integral curves of ¥, have
similar behavior as the random walks following the arrow field a. When « is given
by Theorem 2.1, ¥, will satisfy (1.4) (Theorem 2.2).

Suppose V,, and V,. are two smooth fixed vector fields on [0, 1]? roughly behaving
like “up arrow” and “right arrow” that will be specified later. The vector field ¥,
as a functional of «, is defined by piecing together copies of V. and V,:

(2.3) Uo(z+i,y+7) = Vauj(@,y), (4,5) € Z% (z,y) €[0,1)%
Naturally, we assume that V,, and V. are diagonally symmetric to each other, i.e.,
(2.4) (Vu 07') (z) = (7' o W)(z), z€1[0,1)%,

where 7((z,y)) = (y, ) is the reflection w.r.t. the diagonal {z = y}. To simplify
the construction, we also require that that V. (and hence V,,) is itself diagonally
symmetric near the boundary, that is, there exists § > 0 such that
(2.5) (VeoT)(2) = (toV,)(2), =z€Ts,
where for h > 0, I', is the region
Fh:{(x,y)G[O,l]Q: min{x,l—x,y,l—y}gh}, h>0.

The construction of V. and V, is as follows. Let us take any 6 < 1/10. Let F. be

a potential function in [0, 1]? as defined in Fig 1. The potential F, is a piece-wise

linear function so that VF,. is constant in each polygon region. At the four (dotted)
pentagon regions at the corners F,. is given by the following:

3(z+vy), (z,y) at the SW corner,
F.(x,y) = 3(x+y)—1, (x,y) at the SE and NW corners ,
3(x+y)—2, (x,y) at the NE corner.

And at the middle (shaded) non-convex pentagon F,(z, ) = 21114265 (x—26)+(1469).
The values of F, at all the vertices are then determined, given in boldface, and E,
in the remaining triangle and rectangle regions are given by the linear interpolation

of its values at~the vertex.
We extend F, to R? by

(2.6) Fz+iy+j)=F(x,y) +20i+5), (i,4) € Z° (x,y) €[0,1)%

and then by smoothing it we define F,. = n F,, where n € C* is a radially
symmetric kernel supported on By(8) = {(x,y) : 2% + y?> < 6%}. Finally, we
define V. as the restriction of the gradient field VF,. to [0, 1]:

Vi(z,y) = (VE)(z,y), (z,y) € 0,1
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FIGURE 1. Definition of F, in the unit square [0,1]2. This poten-
tial is continuous on [0, 1] and linear in every polygonal cell. The
values of F) at the tesselation vertices are given in boldface. The
arrows indicate the direction of Vf:'r.

We define V, through diagonal symmetry (2.4).

Lemma 2.1. Let V.. and V,, be defined as above. For any arrow field o, the vector
field O, as defined in (2.3) is smooth and bounded. Moreover,

(2.7) vl>0 v2>0 Wl+92>c>0,
for some constant c.
Proor: By (2.6), VF, is Z2-periodic, i.e.,

VE(z+iy+7) = VE(x,y), (i,j) €Z?,

Hence VF, = n % VFT is also Z2-periodic. This implies VF, = V., where o,
is the Z2-arrow field with right arrows only. From the Z2-periodicity of VF, and
Fig. 1, it is also easy to see that

7(VE(2)) = VE,(7(2)), z € Tas,

where

= |J {@+iy+i):(xy) €T}, h=>0.
(i,5)€22
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Since the smoothing kernel 7 is supported on By(8) and satisfies n(z) = n(7(2))
due to the radial symmetry, VF,. = n VE, will satisfy

VF,.(7(z)) = 7(VF.(2)), z€Ts.

Therefore, V. satisfies (2.5).

Let o be any arrow field. Due to (2.5), we have ¥, = ¥, in ['s, which implies
that ¥, is smooth in a neighborhood of T'y. Since, in addition, V, and V,, are
smooth in (0,1)2, ¥, is smooth everywhere.

Finally, the condition (2.7) holds for ¥ since it holds for VE,. a

It is also easy to see that we have the following corollary:
Corollary 2.1. For any arrow field «, there is a potential F,, such that ¥V, = VF,.

Theorem 2.2. Let « be the stationary arrow field introduced in Theorem 2.1
and U, be the corresponding vector field defined by (2.3). Then, with probability
one, all integral curves vy, of U, will satisfy (1.4).

PrROOF: By Lemma 2.1, ¥, is smooth, bounded and nondegenerate, so the integral
curves of ¥, are well-defined.
We can partition R? into the union of unit squares:

R = |J Sap, Sugp=li+1)x[j,j+1)
(4,5)€7?
We say that z € S(; ;) is regular, if the curve v, visit these squares in the order
given by the random walks X(; ;). It suffices to show that with probability one,
every curve of W, passes through a regular point. The conclusion of the theorem
follows from (2.1).
We notice that e? - V,.(x,y) = 0 in the strip

{(z,y): 0<ax<1, 2/3—-20<y<2/3—4d}.
This follows from the fact that €2 - VF, = 0 in the strip
{(z,y):z €R,2/3-35 <y <2/3}
and that 7 is a kernel supported on By(0). Therefore, all the integral curves of V.
entering the unit square through the set
s1={(0,9):0<y<2/3-6}U{(2,0):0<x <1}

have to exit through

53 = {(Ly): 0<y<2/3-05).
Let us define Q; ;) C S(; ) to be

@y rife<it+l,j<y<j+2/3-0}, a(i,j)=r,
T Uy ice<it2/3-5j<y<j+1} alij)=u.

We now claim that any point in 2 = U(m)ezg ;,5) 1s regular.

Suppose (g, jo) € Z* and z € Q;, jo)- If a(io,jo) = r, then our construction
implies that after exiting S(io, jo), 7> enters Qo 1+1.0) C S(io+1,50)- If a@(io,jo) = u,
then after exiting S(io, jo), 7= enters Q;, jo+1) C Sig,jo+1), see Fig. 2. Applying
these steps inductively, we see that 7, indeed “follows the arrows”, so z is regular.
This proves the claim.

Furthermore, since all walks coalesce due to Theorem 2.1, any up-right curve
(i.e., v(t) such that ~'(t) - r > 0,7'(t) - u > 0,7'(¢) - (r +u) > 0) must intersect (2.
This implies that any integral curve of ¥, passes through some regular point. The
proof is complete. a
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(A) Case 1: a(i,j+1)=r (B) Case 2: a(i,j+1)=u

FIGURE 2. Tlustration of the flow when a(i,j) = r.

3. WEAKLY MIXING VECTOR FIELD

The vector field ¥,, constructed in the previous section has all the properties that
are required in Theorem 1.1 except R2-stationarity and weak mixing, although its
distribution is invariant under Z2-shifts. The goal of this section is to modify the
vector field and gain those properties.

To obtain an R2-stationary and ergodic random vector field without requiring
the weak mixing property, we could introduce a simple randomization by adding an
independent [0, 1]2-uniformly distributed random shift to ¥,,. To obtain a weakly
mixing vector field we need to apply an additional random deformation that we
proceed to describe.

Let p=3,0,, and v = Zj dp, be two Poissonian point processes on R. They
can be regarded as elements of M, the space of locally finite configurations of
points on R (which can be identified with integer-valued measures such that masses
of all atoms equal 1) equipped with appropriate topology. We also fix a family of
positive C*°-functions (¢a)aso with the following properties:

1. ¢a(x) =1 near x =0 and x = A,

2. fOA oa(z)dr =1,
3. (A,x) — ¢a(x) is continuous (and hence measurable).

We define
z—a y—b
oroles) = (n(O) + [ oaaan v + [ e yar),
where
a = a(z) = inf{a; : a; > x}, a = a(x) =sup{a; : a; <z},
b =b(y) = inf{b; : b; >z}, b= b(y) = sup{b; : b; <z},

and p((0, z]) (resp. v((0,y])) is the number of Poissonian points in the interval (0, z]
(resp. (0,y]), with a “—”" sign if < 0 (resp. y < 0). Let us order the Poisson points
in the following way:

a:---<a_1<a<0<ar <+, b -<b1<b<0<b <+
Lemma 3.1. The map ¢, is a C>-automorphism of R* and satisfies
(3.1) ouv{ai} xR) ={i} xR, ¢, (Rx{b;}) =R x{j}, 1,7 € 2.

In particular, ¢, maps the rectangle R jy = |a;,aiy1) X [bj,bj41) to the unit
square S; ;). Moreover, the map (p,v,z,y) = pu.(,y) is measurable from M2 x
R? to R2.
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ProOF: We will show that the first coordinate cp}t_’y is a strictly increasing smooth
function on R and ¢}, ,(a;) = i, and that the map (u,v,z,y) — @, (2,y) is
measurable. Similar statements hold for wiﬁy. These will prove the lemma.

From definition we have @L,u(@i) = 17, and that <p/1“, is continuous and strictly
increasing on [a;, a;+1). The left-continuity of <p/1“j at a; is guaranteed by the second
condition of ¢a, so <p/1hy is indeed continuous on R.

In each interval (a;, aiy1), ¢, is C™ since ¢a(-) are smooth. In the neighbor-
hood of each a;, gallu, is a linear function with slope 1 due to the first condition
of . This proves the smoothness of ¢/, ,(-).

Lastly, we notice that the map

(1 v,2,y) = (u((0,2)), a(e), a(a))

is measurable. The measurability statement follows from this and the third condi-
tion on ¢a. O

Let us consider the pushforward of ¥, under the map ¢!, i.e., the vector field

0(x) = Do) (909) - W (90(0) = (Dpun() Walppw(x). x € B

where D f denotes the Jacobian matrix of f and W, is introduced in section 2. Due
to (3.1), in each rectangle R(; ;), the vector field ® is a “deformation” of either V,.
or V,, depending on whether a(7,j) = u or r.

We will show that if a, pu and v are independent, then ® is stationary and
weakly mixing. We start by a formal construction of an appropriate R?-system.
Let ((Ly)ver, M, P ) be a Rl-system where M is introduced as above, P o is the
Poisson measure on M with intensity 1, and the Rl-action L, acting on = " 6,,
by Lop = Y. 8a,—». We also recall the Z!'-systems (S1, X, \) and (Sz,Y, ) from
Section 2. Let us consider the following skew-products

(3.2) (Lo)oers M X X,Prc®A),  Ly(pa) = (Lop, 51 Va),
and
(3.3) (L)oer, M X Y, Pr@X),  Ly(v,y) = (Lyv, 55 @y,

Let us take the product of (3.2) and (3.3):
34)  ((Loyw)wwyerzs 2 P) = ((Ly X L) wwyerzs M? x X x Y, PR, @ A\?).

For 150 = (4, v, z,y), one can check that the vector field ® satisfies

. —1
(3.5) ¥ (v, w) = (Dgow,(v,w)) Vo (a,y) (gpﬂ’,,(v,w)) = &Ly ©),
where

R —1

Oé(,tL,I/,JC,y) = (D(p,u,u(ovo)) V&(Ly) ((pu7y(0,0))-

The definition (3.5) implies that ® is stationary. The following theorem states that
it is weakly mixing.

Theorem 3.1. The R%-system (5.4) is weakly mizing. Moreover, with probability
one, all integral curves of the vector field ® satisfy (1.4).

The fact that (3.4) is weakly mixing is implied by the following and Theorem 4.2.
Lemma 3.2. The R'-systems (3.2) and (3.3) are weakly mizing.
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Proor: We will only show that (3.2) is weakly mixing. By Definition 4.2, this is
equivalent to the ergodicity of its direct product with itself, i.e., the R'-system

(3.6) ((L2)yer, M? x X2 P3, @ A\?).

For (u, p/,x,2") € M? x X2, let us write L2(u, p/, x,2") = (o, ply, 24, 2)). We
notice that under the measure P4, x A2, (z,,2))ver is a Markov jump process
on X? starting from A%, jumping from (z,2’) to (z,S;2’) with rate 1 at times
recorded by p' and from (z,2’) to (S12,2’) with rate 1 at times recorded by p. The
Rl-action L2 acting on M? x X2 is the time shift of this Markov process.

Therefore, the ergodicity of (3.6) is equivalent to the ergodicity of the stationary
Markov process (x,, ) )yer. The ergodicity of a stationary Markov process can
be described in terms of the associated semigroup and invariant measure. We
recall that for a Markov semigroup P = (P;);>0 and a P-invariant measure v (i.e.,
satisfying vP* = v for all t > 0), a set A is called (almost) P-invariant if for all ¢,
P14 = 14 v-a.s. The pair (P,v) is ergodic if and only if v(A) = 0 or 1 for all
invariant sets A.

Suppose that A C X? is an invariant set for the Markov semigroup P associated
with the process (z,,z,)yer. Then, for any ¢t > 0,

[ee]
Pi1y(z,2') = Z pea,b)14(S8x, Sba'),
a,b=0

where p;(a,b) is the probability that the two independent rate 1 Poisson processes
make a and b jumps respectively between times 0 and ¢. This implies that A is an
invariant set for the Z2-system

((Si1 X ‘51[1))(0.,b)€Z2 ) X2a )‘2>

By Theorem 4.1, since (S1, X) is ergodic, this product system is also ergodic. This
implies that A2(A4) = 0 or 1 and completes the proof. o

Proor oF THEOREM 3.1: The weak mixing follows from Definition 4.2 and
Lemma 3.2. Since all integral curves of ® are images of those of ¥, under the
map go;},, (1.4) follows from Theorem 2.2 and SLLN for i.i.d. exponential random
variables. a

4. APPENDIX

Here we give some standard definitions and facts from the ergodic theory.

Let G be a group. We call ((Tg)geq, X, B, 1) a G-system if (Ty)gecc is a mea-
sure preserving action of the group G on a probability space space (X,B,pu).
When G = Z, we will write (S, X, B, 1) where S = T;. We may omit the o-algebra B
along with the measure p if the context is clear.

The product of two systems, ((Ty)gec, X, B, 1) and (T} )nen, Y, B',v), is a (G x
H)-system ((Ty x T},)(g.myeaxm: X X Y,B&B',u®@v). The group action is defined
by
(4.1) (T, x Ty )(z,y) = (Tyx, Tjy), g€ G, he H.

The direct product of two G-systems ((Ty)gec, X, B, ) and ((T,)gec,Y,B',v)
is again a G-system ((T, x Tj)gec, X X YV, B®@ B', p @ v), where T, x T, is defined
according to (4.1) with h = g € G, so this is the diagonal group action of G
on X xY.

In the rest of the section and in the paper, the group we are dealing with will
always be R? or Z¢, d € N. For g = (g1,...,94) € G, |g| = max, lg:| its L°°-norm.
_z_
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We use dg to denote the Haar measure, i.e., the Lebesgue measure if G = R? and
counting measure if G = Z.

The following are standard definitions on ergodicity and weak mixing for group
actions (see [BG04]).

Definition 4.1. We say that a G-system ((Ty)g4ec, X, B, 1) is ergodic if and only

if one of the following equivalent conditions holds true:

1) If a set A is almost G-invariant, i.e., p(AAT,A) =0 for allg € G, then u(A) =0
or u(A) = 1.

2) For any bounded measurable function f,

(4.2) l'%li_{mDQ @ /ngR f(Tyx)dg = /f(x)u(dx), 1-a.s. T.

Definition 4.2. We say that a G-system ((Ty)gec, X, B, 1t) is weakly mizing if and
only if one of the following equivalent conditions holds true:

1) For any two sets A and B,

. 1
Jim /gSR (T, A0 B) = u(A)yu(B)|dg = 0.

2) The direct product ((Ty x Ty)gec, X x X) is ergodic.
Theorem 4.1. The product of two ergodic systems is ergodic.

ProoF: Let ((Ty)gec, X, B, 1) and (T} )hen,Y,B',v) be two ergodic systems. It
suffices to show that (4.2) holds true for the product system with f(z,y) = 1axp(z,y)
for any A€ Band B € B'.

We can use the ergodicity of ((Ty)g4eq,X) and ((T})nen to see that

1

lim 7/ 1axp(Tyx, Thy) dg dh
R=oo (2R)2 Jygpy<r TN

. 1 1 / _
:R11—I>n<><> ((ZR)d /ngR 14(Tyz) dg -(2R)d/|h§R 15(Thy) dh) = u(A)v(B)

holds for p-a.e.  and v-a.e. y, i.e., for pu x v-a.e. (z,y). The proof is complete. O

Theorem 4.2. The product of two weakly mizing systems is weakly mizing.

Proor: Let ((Ty)gec, X) and ((T})nen,Y) be two weakly mixing systems. Their
product ((Ty x T} )(g,nyeaxm, X x Y) is weakly mixing if and only if

(4.3) ((Ty x Tp) x (Tyg x Tp)) (g myecxm, (X X Y) x (X xY))

is ergodic. The latter is isomorphic to the product of ((T, x Ty)seq, X x X) and
(T}, x T} )hen,Y x Y), and both of these systems are ergodic. So (4.3) is ergodic
by Theorem 4.1 and this completes the proof. O
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