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ABSTRACT. The first main goal of this article is to give a new metrization of the Mukherjee—
Varadhan topology, recently introduced as a translation-invariant compactification of the space of
probability measures on Euclidean spaces. This new metrization allows us to achieve our second
goal which is to extend the recent program of Bates and Chatterjee on localization for the endpoint
distribution of discrete directed polymers to polymers based on general random walks in Euclidean
spaces. Following their strategy, we study the asymptotic behavior of the endpoint distribution
update map and study the set of its distributional fixed points satisfying a variational principle.
We show that the distributdion concentrated on the zero measure is a unique element in this set
if and only if the system is in the high temperature regime. This enables us to prove that the
asymptotic clustering (a natural continuous analogue of the asymptotic pure atomicity property)
holds in the low temperature regime and that the endpoint distribution is geometrically localized

with positive density if and only if the system is in the low temperature regime.

1. Introduction

The directed polymer model was introduced in the physics literature [HH85|, [HHF85], [Kar85],
[KN85], [KZ87] and mathematically formulated by Imbrie and Spencer [IS88]. Since then, many
models of directed polymers in random environment were studied in the literature over last several
decades, see, e.g. books [Szn98|, [Gia07], [dH09], [Com17| and multiple references therein. The
common feature of these models is that they are based on Gibbs distributions on paths with the
reference measure usually describing a process with independent increments (random walks, if the
time is discrete) and the energy of the interaction between the path and the environment is given
by a space-time random potential (with some decorrelation properties) accumulated along the path.

One of the intriguing phenomena that these models exhibit is the transition of dynamics of
directed polymers between high /low temperature regimes. In the high temperature regime, directed
polymers have diffusive behavior which is similar to that of the classical random walks and the
endpoint distributions of polymer paths of length n are typically spread over domains of size of
the order of n'/? (see [Bol89], [SZ96], [AZ96]). On the other hand, in the low temperature regime,
they are super-diffusive, i.e. the typical transverse displacement of polymer paths is of the order
of n¢ with & > 1/2. In particular, it has been conjectured that ¢ = 2/3 for d = 1, based on
two following observations: (i) when 8 = +oo, the directed polymer models coincide with the last
passage percolation (LPP) models; (ii) Integrable LPP models have shown the spatial fluctuation of

2/3 1/3

order n*/® and the fluctuation of passage times of order n'/° placing LPP in the KPZ universality

class [Corl12]. This has been proved in some integrable models, see [Sep12], [BCF14]. Besides

the super-diffusive behavior, it is known that polymer measures are mostly concentrated within a
1
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relatively small region in the low temperature regime, see [CV06]|, [Var07], [Lac10], [BK10]. Such
localization phenomenon of directed polymers is closely related to the intermittency of the solution
of stochastic heat equation, see [CM94], [BC95], [Khol4|. It is believed that the size of the small
region is O(1) but this has been proved only for integrable models, see [CN16]. It is also conjectured
that a similar picture holds for generalized directed polymers, see [BK18].

While many integrable models for (1+1)-dimensional directed polymers have been extensively
studied (see [MOO07], [ACQ11], [MFQR13], [AKQ14]), the results on higher dimensions are rather
restricted. In [BC20] and its improved version [Bat18], a novel machinery was suggested to study
localization of directed polymers that are discrete in space and time. This approach is based on
another recent achievement, a compactification of the space of probability measures on R% with
respect to the weak convergence [MV16]| (we will refer to this compactification as the MV topology
in this paper). In [BC20], the authors introduce a simple metrization of the MV topology induced
on the space of measures concentrated on Z? and they were able to obtain localization results for
discrete directed polymers by using the metric.

The first goal of this paper is to develop a new metrization of the MV topology that will be
useful for space-continuous polymer models. Our new metrization is inspired by the one used in the
discrete setting in [BC20] and is based on coupling in optimal transport. Its relation to the metric
given in [MV16] resembles the equivalence between the definitions of the Kantorovich—Wasserstein
distance via optimal coupling (2.10) and via Lipschitz test functions (2.12) known as the Kantorovich
duality.

The second goal of this paper is to introduce a broad family of time-discrete and space-continuous
polymer models where polymers are understood as discrete sequences of points in R, and to gen-
eralize the entire program of [BC20| to these models with the help of our new metrization of the
MYV topology.

As this paper was being prepared we learned that similar results were obtained in [BM19] for a
specific model where the reference measure is Brownian and the random potential is the space-time
white noise mollified with respect to the space variable. We stress that the only assumption we
need on the reference measure for polymers is that it defines a random walk, with no restriction on
the distribution of i.i.d. steps in contrast to a concrete model of [BM19].

Due to the absence of assumptions on the random walk steps, we can say that our results generalize
those of [BC20| and [Bat18] that are restricted to lattice random walks (except that a moment
assumption on the potential is slightly weaker in [Bat18]) since one can embed any i.i.d. random
potential indexed by Z? into a stationary potential on R? with a small dependence range.

In addition, we give a new result that goes beyond the asymptotic pure atomicity results of [BC20)|
and [BM19]. Under the assumption that the reference measure is absolutely continuous with respect
to the Lebesgue measure, several forms of asymptotic clustering property hold for the random density
of the polymer endpoint distribution in low temperature regime. An important feature of our work
is that our results are based on the new metrization of the MV topology which is of independent

interest. However, a similar program was executed in [BM19] using the original metrization.
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The article is organized as follows: In the remaining part of Section 1, we introduce our general
model of directed polymers, review the results in discrete setting, and state our results for localiza-
tion/delocalization of directed polymers. In Section 2, we review the MV topology and introduce
a new metric which is equivalent to the original MV metric and useful for our analysis of polymer
measures. In Sections 3, 4, and 5, we develop a program parallel to [BC20], proving the continuity of
the update map that maps the law of the endpoint distribution to the one of the next step endpoint
distribution and proving that the empirical measure of the endpoint distribution of directed poly-
mers converges to the set of free energy minimizers which is a subset of the set of fixed points of the
update map. We will also see how the set of free energy minimizers can characterize the high/low
temperature regimes. In Section 6, we introduce an asymptotic clustering property that is an ana-
logue of the asymptotic pure atomicity studied in [Var07], [BC20]| for discrete directed polymers,
and prove that it holds for the endpoint distribution in the low temperature regime. In Section 7,
we show that the endpoint distribution of directed polymer is asymptotically geometrically localized
with positive density.

Acknowledgements. We are grateful to Erik Bates, Chiranjeeb Mukherjee, and Raghu Varad-
han for stimulating discussions. YB thanks NSF for partial support via grant DMS-1811444.

1.1. The model of directed polymers in stationary environment. We begin with a Markov
chain ((wn)nen, {P"}4era) on RY, defined on a measurable space (€2, %), where
e = (RYN = = (@n)nz0 : wn € RY),
e .7 is the cylindrical o-algebra on €2,
e For each x € R?, P® is the unique probability measure such that (w41 — Wn)n>0 are 4.4.d.
and
PP(wy=1x)=1, P*wpt1 —wy € dy) = \(dy) (1.1)
for any nondegenerate Borel probability measure A on R
We stress that unlike the existing papers on directed polymers, we do not require A to be a lattice
distribution. In fact, for most of the paper, we do not impose any restrictions on A at all. Thus A
may be an arbitrary mixture of Lebesgue absolutely continuous, singular, and atomic distributions,
and, if atomic, it does not have to be concentrated on any lattice (we only exclude the trivial case
where A is a Dirac mass). We denote expectation with respect to P* by E*. We also write P and
E for P° and E°.
The random environment that we will consider is a real-valued, non-constant random field
(X(n, :E))nGN,xERd’ defined on a probability space (2.,%,P) such that

. (X (n,- ))n cy are independent and identically distributed,

° (X (1, a;))x cpa 18 stationary and M-dependent for some finite number M, i.e., for any subset
A,B C R? with dist(A,B) := inf{|lz —y| : * € A, y € B} > M, (X(1,2))zea and
(X(1,z))zep are independent of each other.

e X(1,-) has continuous trajectories, i.e., the mapping x — X (1,z) is P-a.s. continuous.

The continuity condition can actually be weakened, see Remark A.2. We will write E for expectation

with respect to P. X(1,z) will be sometimes shortened to X (x) for convenience. We denote by
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B > 0 the inverse temperature parameter and will assume
c(k) = logE[eXp (/{X(O)):| < oo for k €[-25,20]. (1.2)

For given n € N,z € R? | we define the point-to-point quenched polymer measure, starting from x,

at time n as

exp (6 z": X(k, wk)> P*(dw),

k=1

1
M) =

where

Ty = 7 [exp (an:X(k,wk)>]
k=1

is called the point-to-line partition function. Let .4, and Z, denote the polymer measure and
the partition function corresponding to P, of length n. Notice that (.#,)n>0, (Zn)n>0 are random
processes adapted to the filtration (¥,),>0 given by

4, =0(X(k,x):1<k<n,zeR%.

1.2. An outline of existing results in discrete setting. Directed polymer models have been
largely studied on the lattice Z%. In this section, we recall the well-known results in the discrete
setting, which will be extended to the continuous model in this paper. To stress the similarity with
our model, we will use the same notation here as for our continuous setting. That is, in this section,

we let .4, be the quenched polymer measure on paths of length n defined on (Z%)N by
M) = 5 exp (B > X (kywr) ) P(dw),

where
e P is the distribution of the d-dimensional simple random walk starting at 0,

e the random environment (X (k,a;)) za 18 given by a collection of non-constant, i.i.d.

keN,xze
random variables defined on some probability space (£2¢,%,P) and

n
o 7, = E[exp (ﬁ > X (k, wk))} is the partition function.
k=1
Most of the mathematical results on directed polymers were obtained mainly by analyzing the

asymptotic behavior of the partition function Z,,. One of the interesting quantities, called the

quenched free energy, is given by
1
F,=—logZ,.
n

It turned out that the phase transition in directed polymer model is characterized by the discrepancy

between the quenched free energy and the annealed free energy, which is
" log B{Z,] = c(9).
Applying a superadditivity argument developed in [CH02|, we see that the limit
lim EF,, = supEF, := p(f) (1.3)

n—oo n>1
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is well-defined. The following exponential concentration inequality enables us to make (1.3) stronger:

Theorem A (Theorem 1.4 in [LW09], for Q@ = 1). Let 3 > 0 be fized such EePIX101 < oo Then,
there is a constant a > 0, depending only on B and the law of X, such that

P<1 > 2emaz?  f 0<gp<I1,
n 29T 4f 3> 1.

In particular,

lim F,(8) =p(B) a.s.and L, for all p € [1,00) (1.4)

n—o0

We remark that Theorem A was proved for discrete setting but the proof can be easily adapted
to our space-continuous setting. Therefore, we will use (1.4) later without further proof.

The Lyapunov exponent of the system is defined as

A(B) = c(B) —p(B) = 0, (1.5)

where the inequality follows from Jensen’s inequality. Before describing the phase transition of

directed polymers, we give a statement for the existence of critical temperature.

Theorem B (Theorem 3.2 in [CY06], Proposition 2.4 in [Bat18]). A(B) is non-decreasing in 3. In

particular, there is a critical inverse temperature 3. = f.(d) € [0, 00] such that
B>p. = AB)>0.

Theorem B was first proved in [CY06] when the reference measure is the simple random walk
and c(k) exists for all K € R. [Batl8| enhanced this by extending to reference measures given
by arbitrary random walks on Z? and weakening the moment condition of random environment.
Extending this result to general random walks on R? is straightforward.

We now collect three statements which describe how the Lyapunov exponent identifies the phase

transition of directed polymers. We denote by
pi(+) = Mi(wi € -)
the endpoint distribution of directed polymer of length i.

Theorem C (Corollary 2.2 and Theorem 2.3 (a) in [CSYO03]).

n—1

A(B) >0 < Jec>0 st. hmlnf—Zmapo ({z}) > ¢ P-as.

n—oo n reZd

Theorem C tells that the endpoint distribution can localize partial mass in the low temperature
regime. Vargas proposed in [Var07] the notion of “asymptotic pure atomicity”, which describes the

localization of the entire mass of the endpoint distribution. For any ¢ > 0,¢ > 0, let

AS={zez: pi({z}) > €}.
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Then, (p;)i>o is called asymptotically purely atomic if for every sequence (¢;);>0 tending to 0, we

have
n—1

1 .
lim — Zpi(.Af’) =1 P-as.
1=0

n—oo N, 4

Convergence in probability was used in [Var07] and the author proved that if ¢(8) = oo, then (p;)i>o0
is asymptotically purely atomic. Bates and Chatterjee replaced it with almost sure convergence and

proved the following;:

Theorem D (Theorem 6.3 in [BC20], Theorem 5.3 in [Bat18] ).

A(B) >0 < (pi)i>o is asymptotically purely atomic.

Theorem E illustrates how the favorable sites, which localize mass in the endpoint distribution of
directed polymers, cluster together. For 6 > 0 and K > 0, let Gs i be the collection of probability
measures on Z% that assign mass greater than 1—¢ to some subset of Z¢ having diameter at most K.
(We use the [y distance here.) We say that (p;)i>o is geometrically localized with positive density if
for every § > 0, there exist K > 0 and € > 0 such that

n—1

1
lim inf — Z Lipegs iy =0 P-as.

n—oo n 4
=0

Theorem E (Theorem 7.3 (a), (¢) in [BC20|, Theorem 5.4 in [Bat18§]).

AB) >0 < (pi)i>o is geometrically localized with positive density.

1.3. Main results of this paper. The first main result of this paper is the development of a new
metrization of the translation-invariant compactification of the space of probability measures. The
structure of the metric and relevant background are provided in Section 2. As an application of the
theory developed in Section 2, we prove analogues of Theorems D and E for our model of directed
polymers in the continuous space. Before stating our results, we denote the quenched endpoint

distribution for the polymer of length n by
pn(dx) = My (wy, € dx).

We extend the notion of asymptotic pure atomicity applicable in discrete case to the continu-
ous case in three ways. We introduce three related notions of clustering: we define asymptotic
clustering at level » > 0 in Definition 6.1 (this notion is also considered in [BM19]), the notion of
asymptotic local clustering in Definition 6.2, and the notion of asymptotic clustering of densities in
Definition 6.3. For a sequence of absolutely continuous measures, the asymptotic local clustering is
equivalent to the asymptotic clustering of densities, see Remark 6.4.

The following results concerning the notions of asymptotic clustering at positive levels and as-
ymptotic local clustering (analogues of Theorem D on asymptotic pure atomicity) are proved in

Section 6, see Theorems 6.7 and 6.8:
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Theorem 1.1. Forr >0, € >0, and i > 0, let us define

% Br
AS(r) :={z e RY: pi(Bp(x)) > eVgrd},  AS = {x eRe: lir?&]nf % > e},
where Vy is the volume of the unit ball in RY.

(a) If B> Be, then for every r > 0 and every sequence (€;);>o tending to 0,

n—1
nh_)rrgo% 2 pi(Afi(r)) =1 P-as., (1.6)
and
ol=
nh_)ngo - ;pi(flil) =1 P-as. (1.7)
(b) If B < Be, then for every r > 0, there is a sequence (€;);>o tending to 0, such that
n—1
lim iz_;p,-(flf-i(r)) =0  P-as. (1.8)

The following localization result (an analogue of Theorem E) is proved in Section 7, see Theo-
rem 7.3:

Theorem 1.2. For § > 0 and K > 0, let us define a set

Gsx ={ae My : szxR)ga(BK(x)) >1-—0},
e
where M is the collection of probability measures on R?.
(a) If B > B, then for all § > 0, there exist K < oo and 6 > 0 such that

n—1

Z Lipegs iy =0 P-as,
i=0

(b) If B < Be, then for all § € (0,1) and K > 0,

1

lim inf —
n—oo N

n—oo N

1 n—1
lim = 1yeq,3 =0 P-a.s.
1=0

2. Compactification of a space of probability measures

In [BC20], the authors pointed out that the usual topologies of weak/vague convergence of prob-
ability measures are inadequate to capture the localization phenomenon of directe polymers. To
tackle the issue, they used an analogue of the compact metric space (f , D) constructed in the work
of Mukherjee and Varadhan [MV16].

The idea behind the MV topology is that two measures are considered close to each other if
one can find several well-separated regions of high concentration for each of them such that the
restrictions of the measures to these regions are close to being spatial translations of each other.
To encode this, it is natural to work with an extension of the space of measures on R to the space

of measures on N x R? where multiple layers (copies of R%) correspond to multiple domains of
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concentration. In this approach, it is natural not to distinguish between two measures in one layer
if they are obtained by a translation of each other, and the order of the layers is not important
either. Now all measures on R? that can be approximated as a sum of translations of the measures
in the layers without much overlap can be viewed as being close to each other.

We will discuss two formalizations of these ideas in this section. While the Mukherjee—Varadhan
(MV) topology was originally defined through test functions, Bates and Chatterjee introduced a
different form of metric on the space of sub-probablity distributions on N x Z? in [BC20] and
showed that their metric space is equivalent to the discrete version of the MV topology. We recall
the original MV definition first and then construct a metrization of the MV topology that is similar
to the metric introduced in [BC20].

Before we begin, we give a brief guide to the notations that we use throughout the paper.

e z,y are used for elements of R? and u, v for elements of N x R9.

e a,7, )\ are used for subprobabiltiy measures on R

e 1, v,n, T denote elements of X and X , the spaces defined in Section 2.1.

e £, ( denote elements of P(f ), the space of probability measures on X introduced in Section 3.
e Functionals on X are usually denoted by capital letters, such as T, R and I,., while those on

P(X) are denoted in calligraphic fonts, e.g., 7 and R.

2.1. Mukherjee—Varadhan topology. For any a > 0, we denote by M, = M,(R%) (M<,) the
space of measures on R? with mass a (less than or equal to a) and by M, = M,/ ~ the quotient
space of M, under spatial shifts on R%. For any o € M, its orbit is defined by

~:{Oé*5m:$€Rd}€Mva,

where oy * g denotes the convolution of o and g in M<,, i.e., for any measurable set A in R?,

ay * ag(A) = /(Rd)2 La(z + y)oq(dx)as(dy).

In particular, if as(dz) = f(z)dz, then oy * as(dz) = [ f(x — y)ou(dy)dz. We denote the zero
measure on R? or N x R? by 0

Let us recall the notions of the weak topology and the vague topology on M, and M«, which
will be used in this paper. We say that a sequence (o, )nen in Mg(or M<,) converges to « in the

weak topology and write o, = « if

lim f x) oy, (dr) /f (2.1)

n—oo
for all bounded continuous functions f on R%. We say a sequence (v, )pen in M, converges to o
in the vague topology and write «,, — « if (2.1) holds for all continuous functions with compact
support. Note that the weak convergence preserves the total mass of measures, while the vague
convergence may fail to do so.
Another distinction between two topologies is that M«, is compact in the vague topology, but

not in the weak topology.
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Throughout the paper, we will work with multisets (sets with multiplicities) [&;];c; consisting of
elements of M<;. We define

X = {# = [@lier - 1CN, a; € M\ {0}, Y ai(RY) < 1}

el
to be the space of all empty, finite or countable collections of orbits of subprobability measures on R%.
For convenience, we slightly depart from the original definition in [MV16] and do not allow «; to
be a zero measure.

Let us introduce an interpretation of X asa quotient space of X = M<; (N x R%). For u € X, we
can write p(dk,dr) = Y, ai(dz)d;(dk) and identify 4 with the (ordered) sequence p = (ay)ien,
of subprobability measures on R, with 3~ ||a;|| < 1. Some of a; may be equal to 0. We define the
N-support of 4 € X by

S, ={ieN:|a > 0}. (2.2)

The following definition explains when two measures from X are representatives of the same

clement of X:

Definition 2.1. Let p = (a;),v = (3) € X. We write p ~ v if |S,| = |Sy| and there is a bijection
oS, — Sy, such that a; =, for all i € S,.

Thus pu = [@)ier € X can be represented or viewed as an element of X (a measure on N x R9),
a sequence (q;)ien of measures in R? by taking oy = 0 for all i ¢ I. We will often not make a
distinction between p € X and its representative. We will write 0 (instead of ()) for the empty

multiset of X since its sole representative is 0.

In order to define the metric and convergence in X , we need to specify test functions. For an
integer k > 2, let F, be the space of continuous functions f : (R%)* — R which are translation
invariant and vanishing at infinity, i.e.

f(x1+y7"'7$k+y):f(x17"'7$k) lea"'7gjk7yeRd7 (23)

im  flon,eax) = 0.

max |z;—a ;|00
i#]

Note that Fj, equipped with the uniform norm, is separable. Therefore, if we denote F = |J Fy,
k>2
we can choose a countable dense subset {fy(x1, - ,zk, )} ren of F. We also check that for any

f € Fpand p = [a;] € X, the functional

k
M) =Y / fan, o ) [ aatday) (2.4)
j=1

el

is well-defined due to (2.3). For any pu,v € X, we now define

s 1
D(u,v) = ; m!A(ﬁ»,u) — A(fr,v)]. (2.5)

Here || f|| denotes the uniform norm. We state a theorem proved in [MV16].
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Theorem 2.2 (Theorem 3.1 and Theorem 3.2 in [MV16]). The metric space (X, D) is a compact-
ification of Mj.

2.2. Reinterpretation of the MV topology. Due to the analogy with [BC20], the compact
metric space (2? ,D) is expected to be suitable for studying localization for directed polymers on
N x R%. However, one might have difficulties in extracting some information on two elements
1 = [a;],v = [7i] € X close to each other. More precisely, one would expect that if D(u,v) is
very small, one can match large parts of measures a; and 7, by applying appropriate translations
to subsets of R%. Motivated by the approach taken in [BC20], in the present paper, we attempt at
expressing this idea more explicitly in the definition of an appropriate metric. Similarly to having
two definitions of the Wasserstein distance in terms of Lipschitz test functions and in terms of
couplings, it would be natural and helpful to introduce an equivalent metric on X that is based on
coupling. Adopting the ideas from [BC20], we construct such an equivalent metric which allows us
to obtain explicit estimates needed to show continuity of some functionals defined on X.

Before constructing the metric rigorously, we need to introduce some notations. We define a

distance between two elements v = (i,z) and v = (j,y) of N x R? by
|u — v = Lg—jy - |2 =yl + Lgizgy - 00 (2.6)

This definition is natural in the sense that we would like to record two concentrated regions getting
away from each other on different copies of R%. For r > 0, we denote by B, (u) the open ball centered
at u with radius 7 in N x R? and similarly by B,(x) in R%. Notice that B,(u) = {i} x B.(x) by
(2.6).

The right-hand side in (2.4) can be expressed in terms of functions defined on N xR? instead of R?,
More precisely, for an integer k > 2, let G;, be the space of continuous functions g : (N x RH)* = R

that are translation-invariant and vanishing at infinity, i.e.
g(ul +v,-- ,Uk+'U) :g(ula"' ,Uk) vula"' s Uk, U1 U, U+ U eN XRd7

lim g(uy,- - ,ux) =0. (2.7)

max |u; —uj|—o00
i#]

For any g € Gy, g # 0 only if all uy, us, - - - ,ug belong to the same copy of R? due to (2.7). Therefore,
there is a unique f € Fj such that

flx1, - ,xp) ifuj = (i,2;) for some i € N,
glu, -+ ug) = .
0 otherwise.
In other words, there is a natural bijection
Ok : th — Qk (2.8)
Then, considering p as an element of X', we have

k
A(fopn) = / (o) sz -+ ux) [ ).

J=1
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Another remark is that any continuous function f : (R%)¥~! — R vanishing at infinity can be

identified with an element of F; by mapping it to

Flar,ma, ) = fwa — 21, 2 — 21). (2.9)

For any v € M<j(or X) and non-negative function f which is integrable with respect to «, we

write @ = fo if @ is defined as a(A) = [, fa(dx) for each measurable set A. Moreover, we say &

is a submeasure of o (denoted by & < «) if 0 < f < 1. For any signed measure p on R? or N x R?,
denote by ||u|| the total variation of p.

2.3. The Wasserstein distance. In this section, we recall the basics on the Wasserstein distance.
Similar notions were first introduced to solve the Monge—Kantorovich transportation probem and
it turned out that such distances can be used extensively in the variety of fields (see, e.g., [Vil09]).

To any metric dpye on R? generating the Euclidean topology, we can associate a transport distance
on measures as follows. For o,y € M, (a > 0), let II(a,7y) be the collection of Borel probability
measures on (R%)? such that the marginal distribution of the first argument is «/a and of the second

argument is 7/a. Then, the Wasserstein distance between « and -y is defined by

W(a,y) =a inf /dEuc(m,y)w(dm,dy). (2.10)
mell(e,y) JR2

It is known that the infimum on II is achieved. In this paper, we choose to work with a bounded
metric

dpuc(z,y) = |z —y| A 1,
so that W metrizes the topology of weak convergence of M,,.

For o, 7 € Ma, we define
W(&,7) = inf W(a,v*6,).
zeR?

Since the choice of representatives does not affect the value of /VI7, it is well-defined. One can check
that T is a metric on Mva and metrizes the weak topology of Mva. The latter is defined in the

following sense:
0n, = a in Mva < J(xp)nen in R? such that a, * 0z, = a in M.

A result of [PR14] allows us to apply the Wasserstein distance to «,y € M<, with different

masses. More precisely, the generalized Wasserstein distance W can be defined by

A

Wiay) = _inf_ (W(@7)+la—al+r—7l) (2.11)
llall=7ll
and it is proved in [PR14] that the infimum on the right hand side is achieved.

The result known as the Kantorovich duality states that for any o,y € M<; with the same mass,

Wiay) =sw ([ st~ [ ). (212)
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where the supremum is taken over all 1-Lipschitz continuous functions f : (R? dgu.) — (R%, |- 1),

ie.,

[f(2) = fy)l < |z —yl, wyeR,  supf—inff<1.
It follows from (2.12) that for for any measures p = pj + po and v = vy + ve with ||u|| = ||v||,
] = Nl and [|paf] = [[v2[l, one has

W, v) < W(pi,v1) + W(ua, v2). (2.13)

2.4. Construction of a metric on X. We are now ready to define a metric on X. From now
on, for any u = [q;lier € X , we will abuse the notation p and use it for both the element of
X and representatives chosen from X. When p is used in integration, we mean that an explicit
representative, such as (o;);en, is chosen where a; = 0 for all i ¢ I.

Let = [d;],v = [%] € X be given. We first introduce a family of functionals estimating the

mass of the heaviest region for a measure in X'. For r > 0, we define a function I, on X by

I.(p) = sup fr(x —y)ai(dy) = sup / gr(u —v)p(dv), (2.14)
ieN,z€Rd JRY ueNxR? JNxR4
where
1, x| <r
j}(x):: 0, |$|>>T—%1,

r+1—lz|, |z|€(rr+1],
and §, = o fr (See (2.8) and (2.9)). Note that f,. is 1-Lipschitz continuous with respect to dgyc.
We collect some useful properties of I,.:
e [,.(u) is comparable with the mass of the heaviest ball of radius r under p, i.e.,

sup p(Br(uw)) < I(p) < sup  p(Brgi(u)). (2.15)
uENXR? uENXR?

e [, is sub-additive, i.e., I.(u 4+ v) < I.(n) + I.(v).

e [, is monotone, i.e., if u < v, then I.(u) < I.(v).

e Since M« is naturally embedded in X', we can define I,.(«) for & € M<; in the same way.
For any «,y € M<; with the same mass, (2.12) implies

I(a) — L(7)| < sup /fr r.y)daly /fr £,y)dy(y)| < W(a,7). (2.16)

z€R4

One can check that the choice of the representative of an element in X does not change the value

of I (u) so I, is also well-defined on X.

Definition 2.3. For any p = (o), v = (75) € &, let P, be the collection of sets {(ux,vi)}}_, of
pairs of submeasures of u,v such that
(1) For each k, ||px|l = llvk| > 0.
(2) For each k, |S,,| = |Sy,| =1, i.e. each wy, and vy has exactly one layer of R? with positive
mass. (See (2.2) for the definition of S,,).
(3) Collections {supp(uk)}zzl and {supp(uk)}zzl are each composed of mutually disjoint sets.
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Then, an element in P, is called a (1, v)-matching (or simply a matching when there is no confu-

sion). We have the empty matching O included in any P, ,,.
For ¢ = {(pk, vk)}p—y € Puy, we define

sep(¢) = 1§k111<1£2§n {dist (supp(,ukl), supp(,qu))} A 1§k1h<1£2§n {dist (supp(ukl), supp(qu)) },

where dist(A, B) = inf{|u —v|:u € A, v € B} for A,B C Nx R?%. We set sep(l)) = oc.

Remark 2.4. From condition (2) in Definition 2.3, we can identify pj and v as subprobability
measures on R? if needed. The quantitity sep(¢) is the degree of separation among the supports
of submeasures in the matching. We see that dist (supp(ukl), supp(,qu)) < oo only if pg, and pu,
belong to the same layer of u. If the supports of distinct py belong to different layers of u (i.e.,
pi, < oy and pg, < oy, imply ji # jo for any ki # k) and the same holds for v, then we have
sep(¢) = oo due to (2.6).

Definition 2.5. Let p,v € X. A triple (r, ¢, ) is called a (p,v)-triple if r >0, ¢ = {(ux, Vi) } 1oy €
Py, sep(¢) > 2r, and & = (x1,-- ,xp) € (RH™. For any (u,v)-triple (r,¢,Z), we define

o) = 3 Wl 61, )+ I (1 Zuk>+[ (V—Z f) 427 (217)

k=1 k=1

Remark 2.6. We see that, for the empty matching, d, g (i, v) = I(p) +1(v) +27" does not depend
on Z. For any non-empty matching, ux and vy, are interpreted in two different ways in the right-hand
side of (2.17).

While they are treated as elements of M<; in the Wasserstein metric term, they are viewed as
submeasures of p and v, respectively, in X = M<;(N x R%) in the I, terms.

Let us see how this works in a specific example. For simplicity, we assume d = 1. Let u =

(041,042,043,0,0,‘ : ) and v = (717727737/7470707 o ) such that

1 1 1 1 1
o) = géo + gU(g,g), g = 151 + EN(lA)v a3 = ZN(O,l)’
1 1 1 1
v = 1(5_1 + E510, Y2 = EN@’I)’ V3 = EU(?),G)’ 4= gN(373)’

where U, is the uniform probability measure on the interval (a,b) and N4 is the Gaussian
measure with mean a and variance b. We can choose a (u,v)-matching ¢ as follows:

1 1 1 1
p1 = 1—050 in ay, pz = SU(s,g) in ay, pz = 151 in ag, pg = EN(O,I) in ag,

1 1 . 1 , 1 :
v = 1—0510 in~vy, vy = —U(376) in v3, v3 = 15_1 in~y, vg= EN(Q,I) in ~s.
Since dist(supp(p1),supp(u2)) = 8, dist(supp(r1),supp(r3)) = 11 and the distances of any other
pairs are infinity, we obtain sep(¢) = 8. So we can let r to be any number less than 4, let say r = 3,

so that they meet the condition of a triple. With the choice of z1 = =10, 29 = 4,23 = 2,24 = —2,
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one can check W (g, vy * 05,) = 0 for k = 1,3,4 and hence

!

4
1
> Wk, vk % 62,) = W(gU(s,g), S

k=1

U(7,10)> :

When it comes to the I, terms, we view measures u; and v as elements of X':

1 1 1

1
H1 = (1_06070707"')7 H2 = (gU(8,9)70707”' )7 U3 = (07 161707”')7 M4 = (0707 6N(0,1)707"')7
1 1 1 1
v1 = (15910,0,0,--+), 12 = (0,0, 2U(z), 0, ), v5 = (30-1,0,0,--+), vs = (0, N2, 0,0,
Therefore, we have
1 1.1 1 1 1 1
H— k;uk = (E(S(N EN(1,4)7 ﬂN(O,l)uouoa e )7 v — ;Vk = (0707 ﬂU(3,6)7 §N3,370707 )
We can now define
d(p,v) = igf_‘dr7¢7f(/},,l/), (2.18)

where the infimum is taken over all (i, v)-triples. One can check that the choice of representatives

of u,v € X does not affect the value of d(u,v) so it is well-defined in X. One can readily check that
d(p,v) <2, pveX, (2.19)

by choosing the empty matching and letting 7 — oo in a (u, v)-triple.
Let ¢~ := {(vg, ) }7_; € P, . Then, we see that sep(¢) = sep(¢~') and hence

dr gz, V) = dy 1 _z(v, 1),

which implies that d is symmetric. With two propositions below, we prove that d is a metric on X.
Proposition 2.7. d(u,v) =0 if and only if p=v.

Proof. Since the “if” part is obvious, it suffices to prove the “only if” part. Let d(u,v) = 0 and
(i)ien, (74)ien be representatives of p, v, respectively. We may assume ||a;|| > |lait+1]| and ||y >
|vit+1|| for all ¢ by rearranging the order if needed. For each m € N, there is a (u, v)-triple (rm, Om =
{ (B kes Vo) } 21 T = (@1, , Tmynyy, ) Such that

1
am = drmv(bmyfm (,U/, V) < E

Note that r,, — oo.
Suppose a3 = 0 (i.e. p=0). If ||y1] > d > 0, since the empty matching is the only option, we
have
am > 1., (v)>1. (1) >0
for all sufficiently large m, which is a contradiction. Hence, ||y1]| =0 and p =v = 0.

Now suppose ||a1]| > 0. By the same argument as above, we have ||y1]| > 0. We may assume

leall = [Imll (2.20)
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and let p € N be an integer such that [[vi|| = = |7l > [Vp+1l-
Since ay, converges to 0, there is at least one integer | = I(m) such that p,; < o for all

sufficiently large m. In fact, if this does not hold, then

am > Loy (1= D" ) = L) = flaa | > 0,
k

a contradiction. By rearranging the order of pairs in ¢,,, we may assume that p,, 1 < a1 and it has
the biggest mass among (fim i : fimk < @1)-

For any € € (0, ||a1]| /4), let us choose R = R(e) such that a;(Br(0)°) < e. Then, for all m
satisfying 7, > R, there is at most one sub-measure f,, ji,) < a1 whose support has an overlap
with Bg(0) since sep(¢m) > 21y > 2R. If fip, j(m)(Br(0)) < a1(Br(0)) — € for infinitely many m,

then, for these m we have
am = Ir,, (l‘ - Z”mﬁ) > I, (L0001 = Lp(0)im,jom)) = €
k

which implies that a,, does not converge to 0. Therefore,

[ty | > 1 (Br(0)) — € > [Jan ] — 2¢ (2.21)

for all sufficiently large m, and for such m, j(m) = 1 by the definition of fi 1.

We claim that there is ¢ € N such that v, 1 < 74 for infinitely many m. To see this, let g,
be an integer such that v, 1 < 7,,,. If there is no such an integer ¢ as claimed above, we have
gm — 00 as m — oo. It follows that ||y, || = 0. On the other hand, for all sufficiently large m,
Vam | = N[vmall = lltmall > llaal| — 2e by (2.21), which is a contradiction. Hence, the claim is
proved and, moreover, we obtain

17qll > llaa | — 2e.

Here, ¢ = q(¢) may depend on e. However, since ||yl > [|a1]|—2¢ > [Jai||/2 for all € € (0, [|a1]|/4)
and, given v, there are at most [m] (Here, [-] denotes the integer part) indices ¢ such that
vl > [la1]| /2, there is ¢ € N, independent of €, such that ¢ = q(%) for infinitely many n. For
such ¢, we have |74 > |la1]|. Combining this with (2.20) we obtain ||aq| = ||74ll, so ¢ < p. By
interchanging v; and 74, we may assume ¢ = 1.

Let small € > 0 be given. We choose R as above and R’ = R/(e) such that v (B(0,R')¢) < e.
We can obtain ||, 1] > ||71]| — 2€ for all sufficiently large m by applying the same argument used

for ai;. Then, for all sufficiently large m,

W (a1, %) < W (km,15 Vm,1 % 0z,0) + W (a1 = pim,1, (V1 — Viny1) % 0,00 ) < am + 2€.

We used (2.13) in the first inequality. Letting m — oo first and then € | 0, we have W(&l, M) =0,
i.e. a3 =71. Peeling off a; and 1 from p and v and repeating the same process to obtain a; = 7;

for all 4, we complete the proof. O

Proposition 2.8. d(u,v) < d(p,n) +d(n,v).
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Proof. Throughout the proof, we will identify u,n and v as elements of X by choosing their repre-

sentatives. Let € > 0 be given. We can choose triples

(7‘1,¢1 = { (ks k) oty F1 = (xuf)zlzl), <7‘27¢2 = {2 vi) } o) T2 = (@k)Zil)
such that
dry gy (1) < d(pm) + € dpy g, (0, v) < d(n,v) + e

We say that 1 and 1y, overlap, if the measure 7;; := min(f, g)n has non-zero mass, where f
and g are the Radon-Nikodym derivatives of 7 3, and 79 ; with respect to n. We collect such overlap
measures between {n; ;} and {72} and relabel them as {7;}}_;.

For each | € {1,2,...,n}, there are j1 = ji(l) and jo = ja(l) such that 7 = fjm  and
i = fjoM2,5, for some measurable f; and f;, with 0 < f;,, f;, < 1. In other words, 7; is an overlap
measure of 7y ;) and 724,y We remark that j, can be understood as a function which maps
{1,2,--- ,n} to {1,2,--- ,ng} for a =1,2.

Let us fix I € {1,2,...,n} so that we can shorten j;(I) as j; for the moment. Let us denote

by 7j, the optimal coupling between pj, and 1,5, * 0z,

W (o * 6r, ) = i | / & — 4 A1 7y, (de, dy).

Then, there is a submeasure fi; of u;, such that fi; is coupled to 7 * (51,141 (which is a submeasure
of mj, * 5%],1) by mj,. More precisely, we can define 7;(dx,dy) = f;, (y)7j, (dz,dy), notice that
M * 0y ;. (-) = gy || [ 7i(d,-), and define fiy(dy) = ||, || [ Ti(-, dy). The identity

W (bgys Mgy * Oy 5, ) = W gy — iy (1gy — ) % Oy 5, ) -+ W (i, 70 % Ozy ) (2.22)

is a specific case of the following lemma:

Lemma 2.9. Let o and vy be measures on RY with equal total masses and let © be the optimal

coupling between them. That 1s,

o) = o / w(-rdy), 1() = llal / w(dz, ), W(a7) = o / & — y| A1 n(de, dy).

Let 4 = f~ for some measurable f satisfying 0 < f(y) < 1 for all y. We define then w(dzx,dy) =
f(y)m(dz, dy), notice that () = ||| [ 7(dz,-), and define a(-) = ||| [ 7(-,dy). Then, we have

W(av 7) = W(a —a,y — /7) + W(dv ’7)

Proof of lemma. Choosing couplings

for (o — &,y — 7) and (&, ), respectively, gives
W(a,v) = W(a —a,y —7) + W(a,7).

The reverse inequality follows from (2.13). O
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For each 1 < k < ny, applying (2.22) inductively to all I € j; ' (k) = {m : ji(m) = k}, we obtain

W (ks e %02y, = W, M0z, ,) +W<,Uk - > (?71,k - > 771) *5:(;1,,@) (2.23)
1ejy (k) 1€y (k) 1€y k)

so that the optimal coupling between py and ny x * 0, , can be split into overlapping parts of 7 x

and the remaining part. Repeating the same process for v in place of u, we can define Ug.

Now let us define r = min(r1,72), ¢ = {(fir, V) }jey, and & = (21 j, () + T2 j,)) € R™. Since
sep(¢) > min(sep(¢1), sep(¢2)) > min(2ry, 2ry) = 2r,

(r, ¢, %) is a (u, v)-triple.
From the subadditivity property of I, and the following inequality

W(ﬂk? I;k * 51‘k) = W(ﬂk * 6—I1,j1(k)7ljk * 5x2,j2(k))
S W (fik * 0z, ;o TIk) + W(ﬁk, U * 5m2’j2(k)>

= W (s 8y )+ W (7 P % 8y )

we have that

n n n

A1, v) < drg (pt,0) = SOW (i 7 8) + Lo (=Y ) + L (v =S o) +277
k=1 k=1 k=1
n ni ni n
< SO ik i 00,y ) I (= D)+ L (D = Y )
k=1 k=1 k=1 k=1
n ng no n
Y W (M U # Oy ) + I (u > Vk) + fr(Z ve— ) ,;k) +27". (2.24)
k=1 k=1 k=1 k=1

We claim that

IA

ni n na
Z Mk — Z ke - an,k- (2.25)
k=1 k=1 k=1

To see this, let fi,gr be the Radon-Nikodym derivatives of 7 4,72 with respect to 7. Since

{supp(nLk)}, {supp(nzk)} are disjoint, respectively, we have > fr < 1 and >  gr < 1 pointwise.
Therefore,

Zﬁlk+z772k—z77k— (;fk\/zgk>77<777

which proves the claim. Note that (2.2 ) can be rewritten as > Mok — > Mk <N — Y M k-
We next observe that

(Zuk - Zuk Ir( y [k — ﬂz)) (2.26)
—1

lejy (k)
ni
= swp 3 [olu) (m— 3 m)d) = sw L 3 @),
ueENxR? 7 1<k<ny

tejy t(k) == tejy H(k)
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In the last identity, we used the fact that since sep(¢1) > 2r1 > 2r, the support of g.(u,-) cannot
intersect with supp(ug) and supp(u,,) at the same time for any & # m. Similarly, we have

(e =Y m) —sw L (= Y ) 227
k=1 k=1 k

teir k)

We now see that

n

LS =Y m) <8 (- m) L (e - 3om) + 1 (13 )
k=1 k=1 k=1 k=1 k=1 k=1

k=1
ng
= sup I, (Nk -y ﬂz) — sup I, (m,k -y ﬁz) + 1 (n — an,k>
1<k<n; —1 1<k<ny —1 k=1
1€ k) 15 (k)
n2
< sup |:Ir <uk - ﬂz) ~1, (nl,k - > ﬁz)] +1, (77 - an,k>
1§k‘§n1 lejfl(k) lejfl(k) k=1
ng
< sup W<uk— > [m(m,k— > )*%M) <77_Z772,k)
1sksm 15 (k) IS 0)) k=1
= sup [W(uk,m,k*éxlk Z W (fig, i * Oz, }+I< Z?m)
1<k<ni
lejy L(k)
ni
< Z W (s M1 e * Oz, ) Z W (ks Tk * 0,y ) + Irz( Zﬁz k> (2.28)
k=1 k=1

where, along with monotonicity of I, we used (2.25) in the first line, (2.26) and (2.27) in the second
line, shift-invariance of I, and (2.16) in line 4, (2.23) in line 5, and in the last line we replaced the

maximal term by the sum of all terms. For the same reason, we obtain

n ng n
S W (ks 2 % 0y ) + (D= Do) < Zank,uk*ém + 1 (1 Zm) (2.29)

k=1 k=1 k=1 k=1
Collecting (2.24), (2.28) and (2.29), we have

n1
d(p <ZW [, 1 * Oaey ) +Ir1< Zuk>+fr1< Zm,k)
k=1 k=1
ng n2
+ Z W (N2, Vk * Oy ) + Iy (V - Z Vk) + I, (77 - Z 772,k) +2
k=1 k=1 k=1

< dyy gy (11) + dpy o 2 (0, v) < d(p,m) + d(n,v) + 2e.

Letting € | 0 completes the proof. O

Having proved that d is a metric on X , we can now study properties of the metric space (2? ,d).

2.5. Compactness and equivalence to the MV topology. In this section, we prove that
(j(v ,d) is compact and equivalent to the original MV space (j(v ,D). We recall that M; is naturally
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embedded in X since we can identify any o € Ml with the element [a] € X having representative
(,0,0,--).

Theorem 2.10. The space (/lj,d) is a compactification of le, i.e.,
(a) the collection of orbits My is dense in (X, d);
(b) for any sequence (pn)nen in My, there is a subsequence convergent in (X, d).

Proof. This proof is similar to that of Theorem 3.2 in [MV16].
(a) Let p € X be given and (;)ien € X be a representative of . We may assume ||| > ||ctisa |
for all ¢ > 1. For each m € N, there are n = n(m) and R = R(m) such that

1 - 1
a1l < p— Zaj (Br(0)°) < -
j=1

We may assume 2~% < 1/m. We denote by Ay the product measure on R? with centered Gaussian
marginals of variance N. We can choose N = N(m) and Z = #(m) = (z1,--- ,2,) € (R)" such
that Ir(Any) < 1/m and mfx |z; — x;] > 4R. Let

i#]

P, = n, N = Zaj * O, + (1 — Z lla | >)\N € M;.

j=1 j=1

Let us write B and B; for Bg(0) and Bg(x;). One can consider a (fty,, ft)-matching given by

¢ = {(/Ll,jnulj)}?:l’ H1,5 = (]]‘Bj (aj * 5903')’0’0’ e )7 H2.5 = (O, -, 0, ]lBaja 0,0, -- )7
j—1
We observe that

dist(supp(u17k),supp(/ﬂ,l)) > 2R, dist (supp(,ug,k),supp(uzl)) =oo forall k #1,

which implies sep(¢) > 2R. Therefore, (R, ¢, Z) is a (ftm, p)-triple and hence

d(ﬂm) :u) < dR,d),f(:uma /L)
= Z W<]].Bj(aj * 0z, ), (]lBaj) * 5mj) + IR<um — ZMl,k) + I}g(ﬂ — ZMz,k) +27F,
j=1 j=1 j=1
Since ]lBj(ozj * 5%.) = (]lBaj) * 5%., all Wasserstein terms above vanish. We estimate Ig terms.
n n n 2
I (pim Z;m,k) < IR<Z; Lp: (% 0s,) ) + In( (1 - 2 losl)Aw) < =
j= j= j=

We can decompose p — Z?:l H2.k Into two parts:

n
N_Zﬂlk = /’Li+/’t§7 Mi:(]]-Bcalf” 7]]-Bcan70707”')7,u'§:(07"' 707an+17an+27"')'
= ——

n
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It is easy to check that
n
2
I ( - ) < Tr(ul) + Tr(ul) < —.
R( 1 ;MM < Ir(pi) + Tr(p3) m
Collecting all estimates gives d(pm, 1) < 5/m, which implies that p,,, — p as m — oc.

(b) We now show that for any (fin)nen in M 1, there is a subsequence that converges to p € X.
Since I, is bounded by 1, by passing to a subsequence, we may assume that for every r» > 0, there
is go(r) > 0 such that

Tim 7, (1n) = ao(r).

Let pino = pn. For each m € N, we can choose inductively a subsequence (fpnm)n>1 of

(Hn,m—1)n>1 such that the limit
nh—>H<;lo I (ptn,m) = qo(m)
exists. Since I (ftnm) < Im+1(tn,m), go(m) is non-decreasing in m. Therefore, gy := ml,l—I>noo qo(m)

is well-defined and one has

nh—>Hc?>lo Im(,un,n) = q0(m)7 T,llglo nh—g)lo Ir(,un,n) = qo-
For simplicity of notation, we write p,, for p, , from now on.
If go =0 (i.e. go(r) =0 for all » > 0), then for any r > 0, by choosing the empty matching @), we
have

lim sup d(pir,, 0) < limsup d,.g o(tin,0) = limsup I, (py) + I,.(0) + 27" =27".
n—oo

n—o0 n—o0

Letting r — oo, we obtain that 1, converges to 0 in (f ,d).
If go > 0, by choosing a suitable sequence (ap,1)nen in R?, we have for some r > 1,

fin 8 (B(0)) > Lrma(an) =

for all sufficiently large n. Due to the compactness of Mj in the vague topology, by taking a

subsequence if needed, we may assume
An 1= pp * Oq, ; < Q1.

Note that ||a;|| > ¢o/2. By Lemma 2.2 in [MV16], there is a decomposition p, = oy 1 + Bn,1 such
that
Qp1 % 5%’1 = a1, fPp1* (5%71 — 0.

In particular, it is proved in Theorem 3.2 of [MV16] that if go = 1, then 3, can be taken to be 0,
so we have fi, = & in (X, d).

If 0 < gy < 1, we can repeat this iteratively. More precisely, for each & € N, we can define
qr = Tlg]élo nh_)ngo I (Bn k) in the same way as go. Then, there is a a sequence (@ g+1)nen in R? such
that

ﬁn,k = Op k+1 + 5n,k+l
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and
qk
lagi] = 5 Omktl* Oanpsr = 1, Bnk+1*0a, ., 0.

If there is £ € N such that ¢ = 0, then we have the following decomposition for p,:

k
Hn = Z Qnpj + Bn,ka

i=1
where

lim lim I,(B8,%) =0,

r—00 N—00

Qnj * 0q, ; = O, Ppj*0a,; =0, 1<5<Fk, (2.30)
lim |a,; —an j| =00, i#j. (2.31)
n—oo

To see (2.31), let us assume that it is not true. By taking a subsequence, we may assume the limit

b:= lim (an; — an ;) exists for some i > j. We observe that
n— oo

/ani * 5[171,1' 2 anyj * 5[171,1' = (Oén,j * 5an,j) * 5an,i_an,j' (232)
Since By, * da,,; = 0,
i % b, () = 0 (2.33)
n—o00 ’

for any compact set K in R?. On the other hand, it follows from «, 04, ; = aj and |log|| > g;-1/2

that there is a compact set K such that a,, j * d,, . (K;) > g;—1/3 for all sufficiently large n. Let

n,j

KJ’,:{xeRd::E—bGBl(y) for some y € Kj}.

Then, one can readily check that a, ; * dq,, , (K j’) > qj—1/3 for all sufficiently large n. Combining
this with (2.33) gives contradiction to (2.32).

We claim that p, — p = [aq, -+ ,a] in (2?, d). The argument is the same as in the proof of
(2.34) below, and we omit it here.

If g, > 0 for every k € N, then there are (ay;), (B,) in M<1 and (a,,;) in R? such that for all
n,k € N, (2.30), (2.31) hold and

k
Hn = Z Qnj + /Bn,k'

j=1
Since ||| > g;—1/2 and ) [laj|| < 1, we have g; — 0. We claim that
JEN
fin — 1= [@;]jen  in (X, d). (2.34)

Let € > 0 be given. We first choose k = k(¢) € N such that ¢, < e. There is 7 = r(€) such that

k k
D ai(Be(0)) <€, Y an(Br(0)) <e
j=1 Jj=1
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for all sufficiently large n > N;. We may assume 27" < e. We can also find Ny such that
H;if |an,i — anj| > 2r for all n > N>. Recalling the definition of f, in (2.14), we choose a (u, pin)-
i#]
ij<k

k
matching ¢ = {(frozj, fr(-+ an,j)an,j)} - and &, = (an,1, - ,any). For all n > max(Ny, Na),
J

M-

d(,u, Nn) < dr,d),fn(,ua Nn) = W(fraja fr(an,j * 5an,j)>

1

j
k k
(=3 5rog) 4 (X0 (1= £ b an )y +Bi) +27. (239)
j=1 j=1
By (2.30), we have for each 1 < j <k,

lim W(fraj,fr(anj « 5%])) 0. (2.36)

It follows from the subadditivity of I, that

(=3 ) < 3 (0= om) 1 )

Mw Il

<D i (Br(0)°) + gr, < 26 (2.37)
7j=1
Similarly, we can also obtain
k k
L(D (1= fol + ang))ang + Bug) < DL ((1= fol + @ng))ans ) + Lr(Bup) < 26 (238)
7j=1 7j=1

Plugging (2.36), (2.37) and (2.38) into (2.35), one has limsup d(u, p,) < 5e, completing the proof.

n—o0
U

In our proof of the equivalence between the MV topology and the topology defined by our metric d,

we will use the following theorem:

Theorem 2.11 (Theorem 26.6 in [Mun00]). Let X, Y be two topological spaces and let f: X —Y

be a bijective continuous function. If X is compact and Y is Hausdorff, then f is homeomorphism.

Before proving the equivalence statement, we recall the original MV metrization D defined
by (2.5) and the functional A defined by (2.4).

Proposition 2.12. (X,d) is equivalent to (X, D).

Proof. We fix k > 2. Since (f, d) is compact by Proposition 2.10 and (zlj,D) is Hausdorff being
a metric space, it suffices, due to Theorem 2.11, to show the continuity of the identity map e :
(X,d) — (X,D).

By the Portmanteau Theorem, A(f, (™) — A(f, u) for all f € Fy, is equivalent to A(f, (™) —
A(f, ) for all bounded, Lipschitz continuous f € Fi. Therefore, it suffices to show that for given
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e > 0 and bounded Lipschitz continuous f € Fy, there is § = d(e, f) > 0 such that
d(#7y)<5 = |A(fnu)_A(f7V)|<€

We may assume 0 < f < 1 and f is 1-Lipschitz continuous. Let us choose M = M (e, f) > 0 such

that f(x1, -+ ,z) < €/4 whenever mﬁx\mi —xj| > M and let
i#j
0 = min (i 2_M)
B 4k’ ‘

Let us assume that d(p,v) < d. Then there is a (p, v)-triple

(70 = {0t v Y17 = (1o 23)) (2.39)

such that d, 4 7(p,v) < 8. Let
n n
p=@) ==y, V=0 =r-) v
j=1 j=1

Notice that since r > M, we have sup p*(Ba(u)) < I (p°) < 6.
u€NxR?
Let of = aj —aj = Zl:mgaj py for each j. We divide each term of A(f, u) into a core part and

a sparse part:

=1

k
> /f(a;l,--- Jx) [ ] o (day). (2.40)
=1

te{c, s}k\{c}*

k k
[ s oo Tt = [ e o [T + a5
=1

k
:/f(azl,--- ,xk)Haﬁ(dazi)—F
i=1

Let A= {z € R¢: mﬁx |z; —x;| > M} and |t| be the number of occurrences of s in . For any
#J

t € {c, s}¥\ {c}*, there is a number I such that #; = s, so

/f(l‘l,”’ sxp) [ [ of (i) Z/Af(x)Ha;"(dxi)—l— " f@) [ ej (da:)

€ _ .
< Sl a1+ [T )

| —2; 1 | <M

€ k— k— —
< 7 lla5ll Tag )+ sup af (Bar(x)) e[|~ oz
r€R4
€ _ _ —
< ZHOZ?II’“ sl + sflag ) * a1t (2.41)

From the binomial theorem, we have
S laslF e < > gl lag < Jlag|* < oy (2.42)

fe{e, stk\{c}* te{c, s}F
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and, by the mean value theorem,

k k
_ o (sl et = Tlest _
Z ||Oé§||k ‘ﬂ”a;HM 1_ J HCJMSH J _ k,pk 1 < k,HaJH (243)
J

tef{c, s}P\{c}*
for some p € [HagH, |aj||]. Combining (2.42) and (2.43) with (2.41) gives

k

Z / xy,- Hat’ da;) < ( +/<;5)HajH. (2.44)
ie{c, s}k\{c}*

For the core part,

/ x1,- Ha (dz;) = /f Ty, 0 X ﬁ( Z >da;,)

i=1 Ly <aj

€ C
< Z/ xy,- H,ul dx;) + ZHaij, (2.45)

L <aj

where we used in the inequality the fact that sep(¢) > 2r > M, so |f| < €¢/4 on the support of the
off-diagonal products of y;’s. Substituting (2.44) and (2.45) into (2.40) and summing over all j, we

obtain

- €
j=1
On the other hand, it follows from the non-negativity of f that

ACf ) = ALY ) =D Af ). (2.47)
j=1

j=1
Estimates similar to (2.46) and (2.47) also hold true for A(f,v).
We now give an upper bound for W (a®*, y®*) in terms of W (e, 7). Let 7 be the optimal coupling
of (a,7). Then, 7®* is a coupling of (a®*, v®¥) and

k
W (a®F,4®%) < / (1% — g1 A )7 ®*(dZ, dgi) < / > Iz — yjl A 1)7*(dZ, df)
j=1

k
= Z /(\x] —yi| A D)7r(dzj, dy;) = kW (a, 7). (2.48)
j=1
Combining (2.46), (2.47) and (2.48), we conclude that

IA(f, 1) — A(f,v)] < Z IACF, i) — A, v5)| + % 1 kS

< Zw@J , *5%)@’“) + % + kO
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n
€ €
< kzgw(ﬂj,yj #8y,) + 5 RO S 2k + 5 <,
]:
where the inequality in the second line follows from the translational invariance of A and (2.12) (we

recall that ¥ = (y1,--- ,yn) was introduced in (2.39) as an element of the (p, v)-triple). O

3. The update map

In this section, following [BC20], we define an “update map” 7 which maps the law of the polymer
endpoint distribution of length n to that of length n + 1, and prove that 7 is continuous. As in
Section 1.3, the endpoint distribution for the polymer of length n is denoted by

pn(dx) = My (wy, € dx).

Notice that p, is a random measure on the probability space (2.,%,P) of random environment.
We denote by P(X) the space of Borel probability measures on X and endow the space P(X) with

the Wasserstein metric W:

W(&1, &) ::imf/~ _d(p,v)m(dp, dv), (3.1)

XXX

where the infimum is taken over all couplings 7 of ({1, &2).

3.1. The conditional update map. In this section, we define a “conditional” update map T :
X — P(X) that maps p, to the law of p,i1 given ¥,,. We recall that P, P* and A were defined
in (1.1) and below it. For each n > 1, let us define

P7 (or P,) = the law of (w1, ,wy) under P (or P). (3.2)

We observe that
n+1

E{exp (ﬁ > X, wz’)) ]]'{Wn+16dx}]

i=1

1
pn-f‘l(d‘r) = Z 11

1

= ex X, yi)+ X(n+1,2)) Posi1(dy, -+, dyn, dx
Zn+1/(Rd)n p(ﬂ; (y) B ( )> +1( Y1 Y )

1

= 7 /(Rd)n exp (5;)((2}%’) + BX(n+ 1,x)>Pn(dy1, e ,dyn)/\(d(x _ yn))

Z,
—_n BX(n+1,2) o (du YN (d(x —
(& Pn n € n
Zn+1 /Rd ( 4 ) ( ( 4 ))

= ieﬁX(nH,x)pn s« A(dx).
Zn+1
Integrating over x on the both sides gives

Znt1 _ / HAXMFL2) ) N(dx).
Zn Rd
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Since X (n + 1,-) is independent of 4, the law of p,41 given ¥, is equal to the law of

(d) =~ Pn x Nd)
A = ) g A d)

(3.3)

where Y'(+) 4x () and Y is independent of ¥,.

In general, for = (o) € X, we can consider a X-valued random variable ji = (&;) given by
PV (7)o 5 \(dx)

3 fra €Y Gy 5 A(d2) + (1 — ||| )ec®
j=1

) (3.4)

where (Y(u))ueNde 4 (X(u))ueNde and c(-) is defined in (1.2).

Notice that (3.4) is a generalization of (3.3) because ||p,|| = 1 for all n € N. The additional term
in the denominator allows us to define i when p = 0 and we will see later that this term makes the
(conditional) update map continuous.

For any p = (a;)ieny € X and v € M<q, we will write

oy i= (a * 7)ien. (3.5)

One can check that the convolution is also well-defined for p € X. The measure [t can be now

expressed in terms of (3.5) and integration on N x R? as follows:

PV (W) 15 \(du)

a(du) == .
i) = B e Mdw) + (L= [l e ®

(3.6)

We now would like to have (3.6) to be well-defined on X. For a fixed environment though, /i does
depend on the choice of the representative of p. However, the next proposition claims that the
law of [ is independent of the choice of representative. We recall the equivalence relation ~ on X

introduced in Definition 2.1.

Proposition 3.1. For pqy,pue € X with py ~ pa, define fiy, iz as in (3.6). Then, fiq 4 fl2 as
X -valued random variables.

Proof. Tt suffices to find a coupling of (Y7, Y2) such that

e Y7, Y5 are random fields with the same law as X,

e Y; is used to define fi; in (3.6),

® (i1 = [i9 in X.
Let p1 = (oy) and pg = (7;). From Definition 2.1, there are a sequence {z;} in R? and a bijection
oSy, — Sy, such that v; = ag,(;) * 0y, for all ¢ € Sy,. Let Y1, W be independent random fields

with the same law as X and set
Yl(a(i),x—a;i) ifiESuz,
W (i, x) otherwise.
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Then, we have for any i € S,,,,

ePV2(07) 4y \(dix)

Yi(dz) =
Z i ePV200:2)y; % N(dz) 4 (1 — ||zl )ec®
eﬁyl(d(i)7l‘—$i) () ES 5w * )\(d )

- | fRd eBY1(o(d),2—25) o, o(j) * Oz; * AM(dz) + (1 — | ) ect®
JE€Sugy

_ B (U(i)’w)ao(i) * \(dr)
Z Jra €710 % M(d2) + (1 — [|pa])ect?)
‘]:

which implies that &, ;) and 4; belong to the same orbit. .

Proposition 3.1 allows us to define the update map T : X — P(f ) b
T:p — law of fi.

Since le is naturally embedded in X , we can identify the endpoint distribution p,, with a random

element of X'. As we discussed before, we have

Tp(dv) =P(pn+1 € dv | pn = p),

or equivalently,

Tpn(dv) “E P(pnr € dv | pn) E Plpnsr € dv|9,). (3.7)

Therefore, T'p(dv) := I'(u, dv) can be understood as a transition kernel for the Markov chain (py,)n>0
on X.

3.2. Construction of d revisited. Before proceeding to prove the continuity of the conditional
update map, we explore an alternative construction of the new metric d on X , which was defined
n (2.18). For any pu,v € X, we call ¢ := {(ug, v)}1_; & (1, v)-g-matching (standing for generalized
matching) if it is a (pu,v)-matching for which the first condition of the matching is relaxed (see
Definition 2.3). That is, paired submeasures uy and v don’t need to have the same mass in a
g-matching. We can define sep(p) and a g-triple (r,, &) in the same way as for matchings (see
Definition 2.5). We denote the set of all (11, 7)-g-matchings by G, ,,. Given a (u,v)-g-triple (r, ¢, Z),

we define
dy .2 (1, ZW [tges Vi % O, ) +I( Z,Uk)-i-f (V—Z k>+2—’“,
k=1 k=1

where T is the generalized Wasserstein distance, defined in (2.11). We claim that

dg(p,v) == inf dy,z(p,v) = inf d.gz(pv)=dp,v).
T@,T T7¢)7:E
QOGG,,L,V ¢€P/,L,V
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The inequality d(p,v) > dg(p,v) is obvious because every (u,v)-matching is a (1, v)-g-matching.
To see the reverse inequality, let us take any € > 0 and choose a g-triple (7‘, v = {(px, I/k)}zzl,f)
such that d, , (1, v) < dg(p,v) + €. For each pair (g, vy), there exist submeasures fiy, < pu, and

U, < v, such that they have the same mass and
W (ptrs vie) = W (Ji, 7) + Il — Tkl + e — 2| -

Now we consider a triple (7‘, o = {(ax, vx)}, 33’) Then we have

3

dy.s (1 ZW fie, 7)) + I ( Z“k) s ( —k) 4o (3.8)

k=1 k=1
and by the subadditivity of I,

n n n n n
L«(u— Zﬂk) < Ir<u - Z,Uk) +Ir<z:uk —ﬂk> < Ir<u— ZMk) + ) Nk — Akl (3.9)
k=1 k=1 k=1 k=1 k=1
Plugging (3.9) into (3.8), we obtain that

d?“,(f),f(,uuy) Sd f(,u'u ) <dg(N7V)+€a
which completes the proof.
3.3. Continuity of the conditional update map. In this section, we prove that 7" : (f, d) —
(P(?F ), W) is continuous. In our proof of continuity, we follow the general strategy used in [BC20].

Some elements of our proof in the general continuous setting have appeared in [BM19] for a Gaussian

setting. We begin with a useful lemma.

Lemma 3.2. Let
A= / @) 1w A(du) + (1 — [Jul] )@, (3.10)
NxR4
where Y < X Then, for any p > 0,
EA™P < 2Pec(-ph),
Proof. We consider two cases. If ||u]] < 1/2, then by Jensen inequality,
EAP < ((1 — lulhes® > < 9P (BeY (10) 7P < 9PRe=PBY (10) — gpe(—ph),

If ||| > 1/2, then again by Jensen’s inequality,

EA™P < E(/ Y W)y« )\(du)) o
Nx R4

_ _pBY (u) ¥ A
<l E / L )
NxRd M”

_ HluH—peC(—pﬁ)/ K )\(du) 9P o(=pB)
NxRe |4l
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Proposition 3.3. T : (X,d) — (P(X),W) is continuous. That is, for any e > 0, there is § =
§(€) > 0 such that for p,v € X,
dlp,v) <d = WTu,Tv) <e.
Proof. Given representatives p = (o), v = (y5) € X, let o = (&;),0 = (¥) be X-valued random
variables with laws Tu, T'v, respectively. Since
W(Tp, Tv) = min Ed(p, ), (3.11)

where the minimum is taken over all couplings of (f,7), our goal is to construct a coupling which
makes Ed(fi, V) as small as possible.
Let € € (0,1) be given. We will determine § = d(e) > 0 later. If d(pu,v) < ¢, there is a triple

(r,qﬁ = {(prs i) Yooy @ = (w1, -+ ,mn)) such that

dr,(b,f(:uv V) < 0. (312)
Recalling that M is the radius of dependence of the random field X (1,-), we may assume § < 2~
so that r > M.

(Part 1) We first assume that for each k, there is at most one j = j(k) such that S, = {k} and
the same condition holds for v. By rearranging the order of (a;), (7;) and translating each ~; if
needed, we may assume S, =S5, ={k} for1 <k <nand Z=0.

Let us use the same environment Y to define &;, 4; as in (3.4). In addition to A defined in (3.10),

we introduce
B- / Y@y s \(du) + (1— v )e ), (3.13)
NxR4
o (da) = PV 0Py« A(d),
vi(dx) = Y B0y s N(dir).
Then, we can write &; = o (dx)/A, 45 = v} (dx)/B due to (3.4). Similarly, let us define
pide) = e ED o Ndx),  fue = pi/A, (3.14)
vi(dz) = Y *2) s Nda), 1 = v} /B.
Choosing a (i, )-g-triple (7‘, © = {fur, Uk 1, 0), we have

3

Ed(p,0) <E[ZW e, 1) +I< Zﬂk> s (a k) +2—7”], (3.15)
k=1

>_A

(Part 1.1) Upper bound for E S W (jux, 0,

We first observe the generalized Wasserstein distance terms.
EW (fi, 0x) = EW <&7 V—k> <EW <&, V—k> +EW (VZ’“, %)

< B (i) + B | L gl (3.16)
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Summing over k gives

n . R 1 n . . A_B n L
EZW(,uk,Vk) < EZ W(ui,vi) +E | T ’ Z Hé{;H
h=1 k=1 k=1
1 ar * % A—-B
<8 Y Wi +BAE
k=1
—2)1/2 - Frook o xn\211/2 211/2
< (BAT) <Z[EW(%V/€)] + [E(A - B)?] > (3.17)

k=1

We need to estimate all the terms on the right-hand side of (3.17). We start with EW(MZ7 V).

(Part 1.1.1) Upper bound for E[W(uz, vi)? 12
We observe that the stationary process (625Y(x))w€Rd is uniformly integrable and by the path

continuity, a |lilm0 PV (@) = BY(0) almost surely. It follows that (eﬁy(w))xeRd is Lo-continuous, i.e.,
T|—

lim E(eﬁy(x) — eBY(O))2 =0.

|z|—0

Therefore, there is 6; = d1(¢) € (0,1) such that
lz] <6 = B(EV® V02 o2

Let pf, = pu * A\, vj, = vp * . Let 7, be the optimal coupling of (ug, ;) and 7} be the optimal
coupling of (u},v;). One can check that

W(M;m Vl/c) < W(:ukv Vk)

by considering the following coupling of (y},v}.):

7 (dz, dy) = / Mdw)mi (d(z — w), d(y — w)).

weR4

Since | ux (7Y@ A €Y ®))7) is a unnormalized sub-coupling of (1%, v}), i.e.,

IIukH/eBY(') NP Wi (- dy) < wip(-), Hukll/eﬁy(x) AP Omi(dz, ) < vi(),

we can use it to estimate

W (k) < el [ el ) (&) 7 e O ()
il [ (770 = B NSO ) dy) + ] [ (D VN ) )
= [l / dine (2, ) (€® @ A e W)rl (da, dy) + ||k / PV — Y W7l (da, dy)

< sl / druo(@, y)e™ @l (de, dy) + g / @) YW |1t (4, dy).
Therefore,

EW (15, v}))?
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M 2 2
B ([ denclon)e i dn)) 4B ([0 - 0 riar, ) ]

<(28) /dEuc($7y)2 F;Q(dl‘,dy) + /E|65Y(x) - eﬁY(y)|2(]l|:c—y|251 + ]l\x—y|<61)7r;c(d$a dy):|

[ c28) W (b vk)

+ 460(26) M + 62:|
[l 12 | || 12|01

Taking the square root and summing over k, we conclude that there is a constant Cy = Cp(8) > 0

such that

f:[EW(% vi)?IV? < Co(\/;;l + e>. (3.18)

k=1

(Part 1.1.2) Upper bound for E(A — B)?
To estimate (A — B)?, let us define

One can write

and therefore

By the independence of {V(i,-)

V(u) =YW — B

n n
po=(05) ==Y g v = () ==Y (3.19)
j=1 j=1

) = / wp x Mdu), B—eP) = / V(w)v  A(du),
NxRd NxRd

(Nde W)+ A(du) — /N XRdV(u)y*)\(du)>2

2
[ kx)/ﬁk*)\(dx)—/RdV(kxyk*)\dx ]
2 2
</N><Rd V(u)p® *)\(du)) +3(/N><Rd V(u)v® *)\(du . (3.20)
: }iGN’ we see that
- 2
E kZ:l </]Rd V(k,z)p * Mdx) — /]Rd V(k,x)vg * )\(d;p))]
& 2
= 2 E </]Rd V(k,x)py * Mdx) — /Rd V(k, )y * A(dm))
= Bl - i) < >0 BW (g, v 3.21)
k=1 k=1
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Denote cg(x) = E[(eﬁX(m) — ) (X O) ec(ﬁ))] Notice that cg(x) < e“?%) for all z € R%. Let

us now give an upper bound for the second term in (3.20):
2
E / V(u)p® * A(du) E / (J, x) * A(dx)
( NXRd > Z ( >

_ ZE/ V(. 2)V (G, B) (0 * N (dr, d)

Jj=1 (R)?
= Z/ (. — ) (aj * N®2(dx, dF). (3.22)
Rd

One can see that for any o € M<; and r > 0,

I.(a* \) = sup / fr(x — x0)a(dy)A(d(z — y)) = sup / fr(z +y — zo)a(dy)A(dz)

zo€RY zo€RY

< / (s, [ sty = sodatan ) Ndo) = 1,0 (3.23)

zoER4

We recall that M is the radius of dependence of the potential and r > M. Therefore,
/(Rd)2 cp(z — ) (aj * N®2(dx, dE) = /|m sen cp(z — T)(a * N ®2(dx, d)
< eo20) /x e (o * N ®2(dx, di) = 2P /]Rd aj x M(Br(7))a; * A(dx)
< e“®8) gup o * A(Bp(z)) /Rd(aj x A)(dx) < 60(25)1}(%"7 * A) ||las]] < 0 [|as]]- (3.24)

zeR?
Combining (3.22) with (3.24) gives

2 o
5 c(28) s c(28)
E</N><]Rd Viws® « Mdw) < ;e 0[] < e, (3.25)

The same upper bound holds for the third term in (3.20). Plugging (3.18), (3.21), and (3.25)
into (3.20), we obtain

B4 - B2 < VB( S B (i) + 20275)
k=1
<3 (Z (EW(/LZ,VZ)Z)UQ N ec(zﬁ)/zx/%) < Cl(\/éer e>, (3.26)
k=1 1

where C; = C1(8) > 0 is some constant depending only on 5.

(Part 1.1 Conclusion) Now Lemma 3.2 and relations (3.17), (3.18), (3.26) imply there is a
constant Cy = C(f) > 0 such that

E[kZ:l W (i, pk)] < Cg(\/g v e), (3.27)
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which is an estimate of the first term in (3.15).

(Part 1.2) Upper bound for EI, (ﬂ -3 ,&k>

Let us estimate the second term on the right-hand side of (3.15). Since r > M, we have

< Z ,uk> = [— sup/NXRd gr(t — ug)ePY W s « )\(du)]

uo

971/2
< (BA™2)1/2 [E(sup/N y gr(t — ug)e®Y W f « A(du)) ]
X

uo
1/2
B)/2 [E sup < gr(u — ug)?p® * )\(du)/ 2BV (W) s A(du))}
NxRd R4
1/2 1/2
< 2¢°(20)/2 [E 2PV (W) 5 4 )\(du)] <sup/ gr(u — ug)p® * A(du))
NxRd up JNxR4
< 26(0( 28)+c(28) /2] (M *)\)1/2
< 2(c(=20)+eB)/2 [ (15)1/2 < 9e(c(=20)+c(28))/2/§ (3.28)

where we used (3.23) in line 6. The same upper bound holds for EI, (0 — Y 0y).

(Part 1 Conclusion) Finally, based on (3.11), (3.15), (3.27) and (3.28), we conclude that there is
a constant C3 = C3(/5) > 0 such that

W(Tu, Tv) < Ed(ji, 0) < 03<\/g + e).

2 2=M) and replacing e with €/(2C3), we complete the proof.

Choosing § = min(d;€”,
(Part 2) We now relax the assumption that o,y are minorized by at most one i, v; for each k,
respectively.

Our goal is to reduce the problem to that studied in (Part 1). To that end, we will find y" and v/
in X such that

e Ty and TV are close to T and Tv, respectively,
e 1/ and v/ satisfy the conditions of (Part 1), i.e., (1) and () are submeasures (as elements

in M<1) of mutually exclusive orbits in u' and v/, respectively.

First, we choose R > 0 such that A(Bg(0)¢) < € and decompose A into central and exterior parts:

Recalling that n and (p;)?_; were defined just before (3.12), let us consider p/ = («}) € X defined
as follows:
i, 1< n,

Qj—pn — Z i, 1> n,

JimjSog_n
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where we view p; as a subprobability measure on R? instead of N x R%. In other words, we set
the first n layers (a})_; in p’ to coincide with (y;)?_;, while the remaining layers (a});>n11 are
obtained from p — > p_; py via a shift by n layers. Regarding the interpretation of py, we refer
readers to Remark 2.6. We also define a function J : {1,--- ,n} — N by

ur <o & Jk) =1

We denote by i’ an X-valued random variable whose law is Tu/. To estimate W(T'u, Ty'), we
need to introduce a coupling of (i, ii'). To this end, let Y,V be independent random fields with the
same law as X and let us use Y to define ji. We fix j in the range of J. For k € J~1(j),

Up = {z € R: z € Br(y) for some y € supp(iz)}.

If we impose § < 2~ m&x(MB)=R(j e ¢ > max(M, R) + R), then by the definition of a (u, v)-triple,
for all k # 1,

dist (supp (1), supp (1)) > sep(¢) > 2(max(M, R) + R),
which implies that 12171&111 dist(Ux, U;) > 2max(M, R) > M. Due to the M-dependence of Y, there is

a coupling between Y (7,-) and 4.i.d. copies (Y(k))klel(j) such that for each k € J71(3),
Y(j,z) =Y®(z) Ve U, (3.29)

(we refer to Lemma A.1 in the Appendix for a precise statement.)

We now set
y® 1 <k<n,

Y/(kv ) =
V(k,") k>n,
and use it to define fi’.
Combining this with (3.29), we have
Y(J(k),z) =Y'(k,x) Yz € Uy. (3.30)

Similarly to (3.14) and (3.10), let us define i}, fif., p* and A’ with the environment ¥” and introduce
for j € {1,2},

by = V'R 1y w N (di), ﬂ;” M ]/A/
Choosing a (fi, i )-g-triple
ro = g, ¢ = (fir,1: U1 )j=1, T =0, (3.31)
gives
n

W(Tp, Ti') < Bd(fi i) < B| S0 W (i1, i)+ (7 Zukl I, (o
k=1 k:l

3

i) +2 ’“0] (3.32)

7
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We estimate the first term on the right-hand side in (3.32). Similarly to (3.16) and (3.17),

EY Wi, fih,) < (BA)Y? (Z [EW (51, 1)) % + [B(A - 42 2) . (333)
k=1 k=1

It follows from supp(ug * A1) € Uy, and (3.30) that

Mz,l = Mij;fl P—a.s., = W(MZJ?MZ/J) = 07

and
2
E

2
< / BV CR).2) _ BV )|, A(dx)) _® < / BV R).2) _ BV )|, AQ(dx)>
, 2
< |l * Aol E/ <eﬁy(‘](k)’x) — Y (k’m)) fe * Ao (dz) < 2e°CP) || |2 €2 (3.34)

Similarly to (3.20), we have

" 2
(A A)? <3 [Z / (P (IL) — B ey A(dx)]
k1R

+3< /N L Ve A(du))z + 3( /N Vs A(du))z, (3.35)

where V/(u) = V' (W — ) and ¥ = i/ — 3 py as in (3.19). Plugging (3.34) and (3.25) into
(3.35), we have

E(A — A)? < 6?9 (2 4 9). (3.36)
Plugging (3.34) and (3.36) into (3.33) and using Lemma 3.2, we obtain
EY W (i1, ity < 26202 f(e +V5). (3.37)
k=1

As for the I, terms on the right-hand side of (3.32), we repeat the computation of (3.28) to obtain

EIro <[L - Z ﬂk,l) <EI (,[L - Z Iak) +EI, ( Z Iak,2)
k=1 k=1 k=1
< 26(0(—25)—}-0(25))/2 |:Ir(,us % )\)1/2 + Ir(z,uk ” )\2)1/2]
< 2e(=20)+e2BN/2 (/5 4 \fe). (3.38)

Combining (3.32), (3.37), (3.38) and recalling that 2-7 = 277/2 < v/ due to (3.31) and (3.12),
we conclude that there is a constant C' > 0 such that if § < min(Jpe?, 2~ max(M.M)=M) "thep

W(T, Tp') < 22T (\/6(e + V5) + 2(V3 + Ve)) + V6 < Ce.

The same result holds for v so that there is v/ such that W(Tv,TV') < Ce. One can check that

/
77

dr o z(1, V) = dppz(p,v) < 6, where ¢ = {(a,7))}i=;. Thus, (Part 1) can be now applied to

estimate W(T'u/, Tv'). Finally, the triangle inequality
W(Tp, Tv) <W(Tp, Ty') + W', Tv') + W(TV', Tv),



LOCALIZATION OF DIRECTED POLYMERS IN CONTINUOUS SPACE 36

completes the proof in the general case. O

3.4. Lifting the update map. We discussed in (3.7) that Tv(du) = I'(v,dp) can be understood
as a transition kernel for the Markov chain (p;);>0 of the endpoint distributions of random polymers.

Integrating I'(v, du) over the initial conditions v, we can extend 7' to an operator 7 on 73(2?):
Te( = [ Toldng(a). (3.39)
Therefore, T maps the law of p; to the law of p;11.
Proposition 3.4. T : P(X) — P(X) is (uniformly) continuous
Proof. Let € > 0 and £1,& € P(f) be given. We would like to show that there is 6 > 0 such that
W(E,&) <6 = W(T&,TE) <e
By Proposition 3.3, there is d; > 0 such that
dp,v) <o = W({Tu,Tv)<e/2.

Let us assume W(E), &) < 6 := d1¢/4 and let I(dp, dv) € P(X?2) be the optimal coupling of (£1,&2).
Moreover, for p,v € )?, let I1,,, be the optimal coupling of (T'w,Tv). Then, one can check that

IT' (dn, dr) :/~ 11, (dn, dr)II(dp, dv)
XxX
is a coupling of (T&1, T&2). Therefore,
WTE, Té) < [ dn. I (dndr) = [ [ dlo. )00, (i )
- / W, Tv)TI(dp, dv) = / W1, TV) Ly, + Lagun) < )WL (dpt, )
2 5 2

In the first inequality above, we used the fact W(T'u, Tv) < 2 which follows from (2.19) and (3.1).
This completes the proof. O

2
<+ [ A i) + 5 = SWEE) + 5 <
1

Remark 3.5. Based on the definition of 7, one can readily check that Tv = T0,. Therefore, (3.39)

can be rewritten as

Té(dp) = / 76, (dp)é(dv),

and by iteration, one has that for 7/ =7 o...0 7T, i > 1,

7

Tie(dp) = /X T, (dp)€ (dv). (3.40)

4. Convergence of empirical measure

This section is an adaptation of Section 4 of [BC20] to our general setting.
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4.1. The convergence to fixed points of the update map. Let us denote the empirical prob-

ability measure of the endpoint distributions on X by

n—1
1 ~
Un =~ g 8, € P(X).

The goal of this section is to study the asymptotic behavior of 1,,. We will prove that 1, converges
to a set IC of fixed point of 7 and introduce an “energy functional” R which maps 1, to a value
close to the quenched free energy F),. The functional R allows us to improve the former result by

replacing I with a subset Ky of X with the minimal energy state.
Proposition 4.1. Asn — oo, W(t,, Tt,) — 0 P-a.s.

Proof. We use martingale analysis similar to that in the proof of Proposition 4.1 in [BC20]. Let
L={h:X = R:|h(p) —h()| <duv) for all u,v e X, h(0) =0}

and

Wy = %En:é -
i=1

n—1

Using L (80,0 pn) + 2 O(pips)) @s & coupling of (¢n,1,) and applying (2.19) we conclude that
i=1

W(n,l) < 2/n. Therefore, it suffices to prove that

W, Tibn) — 0.

It follows from (2.12) that

Wy, Ttn) = sup M,
heL T
where -
Mo (h) = 37 (h(pis1) — Elh(pis1)4))
=0

is a martingale with respect to the filtration (¥,),>1. Since |h| < 2, we can apply the Burkholder—
Davis—Gundy inequality to see that there is a constant C' > 0 such that

n—1

2
EM,(h)* < CE (Z <h(Pz‘+1) - E[h(Pi+1)|%]>2> < 16Cn?,
i=0

4
which implies E(Mn(h) / n> < 16Cn~2 and hence, by the Borel-Cantelli lemma,

lim Mo ()] =0 P-as. (4.1)

n—00 n

On the other hand, we observe

/
-t <e = |Mal) MF)) o
n n
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which tells us that (M, (-)/n)n>1 is an equicontinuous sequence of functions on £. By the compact-
ness of £ and Arzela—Ascoli theorem, the limit in (4.1) is uniform in h € £, which completes the

proof. O

Proposition 4.1 suggests that (1, ),>1 will be close to the set of fixed points of 7 as n becomes
large. We denote the set of fixed points of 7 by

K={eP(X): T¢=¢}

Notice that K is nonempty since Tdg = dg. By applying the same argument as in Corollary 4.3 and
Proposition 4.4 in [BC20], we can prove the following:

Proposition 4.2. As n — oo, W(¢,,,K) := inf{(W(¢,,,§) : £ € K} — 0 P-as.

Proof. Suppose that W(¢,,,K) - 0. Then, there is € > 0 and a subsequence (¢, )r>1 such that

W(tpp,,K) > € for all £ > 1. Since 73(2?) is compact, we may assume klim Y, = v for some
—00

(NS P(j(v ), if needed, by choosing a further subsequence. On the other hand,
W@, T) < Wb, ¥, ) + W(Wny, Tton, ) + WI(Tn,,, TV),

and as k — oo, each term in the right-hand side converges to 0 due to the convergence of 1, ,
Proposition 4.1, and continuity of T, respectively. It follows T = 1, i.e., ¥ € K, which contradicts

the assumption that 1, is e-away from K. O
Proposition 4.3. If £ € K, then é{p e X : 0 < ||u|| < 1}) = 0.

Proof. Let £ € K and let u be a X-valued random variable whose law is &. Let us suppose, to
derive a contradiction, that £({u € X : 0 < |u|| < 1}) > 0. Recalling that Ty is the law of the
X-valued random variable i defined as in (3.6), we have, by Jensen’s inequality applied to the
concave function z — z/(z + (1 — ||p|)ec®),

Juxra Y (W) 1w A(du)
Jsera €Y @ Mdw) + (1 — [l )ec?)
< E [yupe € px A(du) < B || | = |lull,
E [y e € @ Xdw) + (1 — ul)ec® = <@

Elal =E

where identity holds if and only if foRd ePY W) 1y s A(du) is a constant P-a.s. However, since Y is
non-degenerate, we have a strict inequality. Combining this fact and the assumption that we made,

we see that

/ 1Al TEdR) = / |l Th(da)e(du) < // il Tyu(dEdps) = / ull €(d).

which is a contradiction since T¢ = &. O

2. Variational formula for the free energy. We observe that

n—1

Fa(B) = -log Zy(8) = = > log L = Zlog( / XD 5 \(dr) ).

1=0
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Conditioning the i-th term on ¥, we have

where

n—1
1
EF, = - E i), 4.2
- 2_% R(p;) (4.2)
R(p;) = E[log </ PXEHLD) A(dm)) %}.
Rd

It is useful to extend this to a functional on X as follows:

R0 i=Blog ([ M) + (1 [ul)e?), e . (4.3)

NxRd4

where Y has the same law as X.

Proposition 4.4. Let R : (X,d) — (R,|-|) be defined by (4.3). Then R is well-defined and

uniformly continuous.

Proof. Tt is easy to check that the right-hand side of (4.3) does not depend on the choice of the
representative of p. We need to prove that R(u) is finite. For any positive random variable K, one

has

|Elog K| < max{logEK,log EK ™'} = log (max{EK,EK'}) (4.4)

by Jensen’s inequality. On the other hand, we see that
E[/ 0 A(ds) + (1~ [ )e?] = (4.5)

NxRd
and by Lemma 3.2,
-1
E</ Y s X(du) + (1 — HuH)ec(ﬁ)) < 28, (4.6)
NxRd

Combining (4.4), (4.5), and (4.6) gives |R(u)| < oo.
We now prove the uniform continuity of R: given any € > 0, there is § = d(€) > 0 such that

d(p,v) <6 = [R(u) — R(v)| < Ne,

where N > 0 is a constant depending only on § and the law of X(1,0).
Let € > 0 be given. Let us define A, B by (3.10) and (3.13) and choose ¢ used in the proof of
Proposition 3.3 (see the last line of Part 1). Notice that for any x > 0,

[logx| < |z —1|+ ‘1 — 1‘.
x
Combining this with Lemma 3.2 and (3.26), we have
A A B
_ — Tl <Rl - _
IR(1) — R(v)| (Elog B( < E‘B 1( +E‘A 1(
< (BB™)? + (BA™)')(B(A - B)")* < e,

which completes the proof. O
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Remark 4.5. We can apply Jensen’s inequality to (4.3) to obtain

R() < log B[ [ e s Adu)+ (1~ )] =log | B ) + (1~ et = c(5).

Since Y is non-degenerate, the identity holds only if |u]| = 0, i.e., u = 0. Hence, the functional R

attains its unique maximum at 0.

Proposition 4.6. The map R : (P(X),W) — (R, |-|) defined by

R(E) == / R()E(n), € € P(A),

1s uniformly continuous.

Proof. Let € > 0 be given and let N := max |R(u)|. It is sufficient to show that there is § > 0 such
HEX
that

W(,&)<d = [R(&) - R(&)| < (2N +1)e.
By Proposition 4.4, there is d; > 0 such that
dlpu,v) <9 = |R(u)—Rv)| <e

Set & = &1e and let II be the optimal coupling of (£1,&). Then, for any &,& € P(X) with
W(&1,&2) < 0, we have

R(E) - R(E)) < / [R(ye) = RO/ dp, )
/ |R (]]-d(u v)>01 + ]]-d(u V)<61) (d:uy d]/)
2N
— 5 d( ) (d:u’7 dV) = 5—W(§17§2) +e< (2N + 1)67
1 1
completing the proof. O

We can rewrite (4.2) as

EZERpZ— [R(n)]-
In fact, not only the expectations but the random variables themselves are close:
Proposition 4.7. Asn — oo, F, — R(¢¥,) -0 P-a.s.

Proof. Let
Vi = / AXEHLD) b Ndx),  U; = log V.
Rd

We have E[U;|%] = R(p;) and therefore

|
—

M, = nlFy — R) = 3 (U~ EU4])

7

Il
=)

is a martingale.
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We claim that E(U; — E[Ui|€%~])4 is bounded. It suffices to show that EU} is bounded. To this
end, we observe that
EV? < E/ 28X (HLE) 5y A (dir) = ¢229)
R4

Similarly, we obtain E[V, 2] < ¢(=28) Using the inequality (logz)* < 22 4+ 1/22, we have
EU} < EV? + EV, 2 < f?9) 4 c(=20)

Using the Burkholder—Davis—Gundy inequality, we obtain

n—1
BM; < CB( Y (U; - BU4)?) < On?
=0

which implies E(M,,/n)* < Cn~? and hence, by the Borel-Cantelli lemma,

M,
li_>m |Fp, — R(¢n)| = lim [, =0 P-as,

n—oo N

completing the proof. O

4.3. A representation of convergence of F,, via R and 7. In this section, we explore how
energy functional R and 7T are related to the quenched free energy F;,. First, we show that the
limit of free energy can be understood as the minimal energy state among the set K of fixed points
of 7, see Theorem 4.8. This result allows us to describe more precisely the asymptotic behavior of

empirical measures v, previously stated in Proposition 4.2.

Theorem 4.8.
p(p) = nh_)rrgo F, = §1glfc72(£) P-a.s.
We already discussed in (1.4) that |F,, — EF,| — 0 almost surely and in L,, for all p > 1. Hence,
it is sufficient to show

lim EF,, = inf R(§).

n—o00 Eek
To that end, we need two following propositions.

Proposition 4.9.

n—o0

liminf EF,, > inf R(§) P-a.s.
ek

Proof. By Proposition 4.2 and 4.6,

liminf R(¢),) > inf R(§) P-as.
ek

n—o0

The conclusion follows from Proposition 4.7 and Fatou’s Lemma. O

Proposition 4.10.
limsupEF, < inf R(§) P-a.s.
gek

n—o0
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Proof. We claim that for any p(©) e X and n € N )
n—1
> R(T6,) = Elog Zn. (4.7)
i=0

First, let us use this claim to derive the proposition. For any & € P(X), it follows from (3.40) that

Moreover, if £ € KC, then (4.7) implies
1 i 14 i Elog Z,
D LUCE 15 S RT 0 > [ By

Taking infimum over £ € K and lim sup, we complete the proof.
n—oo

Let us prove the claim (4.7). For i > 1, let 4(?) be defined inductively by

D (w)  (i—
1D (du) = S €Y 5 N(du)

St € OW 3 X (dv) + (L [l )ec®’

(4.8)

where (Y ) are i.i.d. random fields whose law is the same as X. By induction, we see that the law
of u® is Ti&u(o)‘ Hence,

R(T'5,m) = Blog ( /N O s xdu) (1= O ) ) = Blog D,
X

where
Di= [ O X (du) + (1~ [V e
NxRd4
= / AV P () =D (dv) + (1 — [[uD))es®, i > 0. (4.9)
(NxRd)2

Here, we can consider P as a probability measure on (N x R4)* by extending P} defined in (3.2)
as follows: for any uy = (mg,zo) € N x RY,

Pro(duy, - dug) = Limgmmy—em} PP (Ao, -+ dag),  wj = (my,2;) ENxRYj=1,2,-- k.

Notice that

n—1 n
Z R(Tiéu(o)) =E log H Di.
i=0 i=1
Iterating (4.8) for i =n —1,--- 1, we have
eBY(n) (u”)Plun71 (dun),u("_l) (dun—l)
(NxR4)2
1

_ / eﬂ(Y(’!L)(un)+Y(7L71)(un71))P21Ln—2 (dun—h dun),u(”_2) (dun_z)
Dp-1 Jnxra)
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1 n .
= — O (du / exp BY O (y; PY¥(du), 4.10
T G A (; (1)) Py (da) (4.10)
where @ = (uq,- - ,u,). Integrating over u in (4.8), we have
N el
1 0y = LR
Iterating this relation for i =n —1,--- , 1, we obtain
1 — 111401 ere(B) 1—
I1 D H D;
i=1
Combining (4.9) for i = n, (4.10), and (4.11), we obtain
III) [ 1) [ exp (3 8Y O w)) Py + (1~ 1)) B2
i=1
and by Jensen’s inequality,
logHD > / (dug) log </exp (Zﬁy(l >Pue(du)> +(1- HN(O)”) logEZ,
z/p@mebg</én(§:ﬁy<<>)R?wm>+wi—ummmEmga
= /u(o)(duO) 108 Zn,ug + (1= [V Elog Z,. (4.12)

Since (Y()(j, )) i>1 is stationary in z, log Z, 4 log Z,, for all u € N x R? In particular,

Elog Z, ., = Elog Z,,. Taking expectation on the both sides of (4.12), we obtain

ZR 7'Z<5u(o) [logHD] / ) (dug)E log Z, + (1- [ © H)Elog Zn = Elog Z,,,

completing the proof of (4.7) and the entire proposition. O

Let us denote

Ko = {6 € K: R(&) = jnf R(6)).

Since R is continuous on the compact space P(?? ), the infimum is attained and Ky is also compact.
Proposition 4.2, Proposition 4.7, and Theorem 4.8 suggest that one can strengthen Proposition 4.2
by taking a subset Ky of K.

Theorem 4.11. Asn — oo, W(¢,,Kp) = 0 P-a.s.

We omit the proof. It is identical to that of Theorem 4.11 in [BC20] and is based on compactness
of IC, continuity of R, Proposition 4.7, and Theorem 4.8.
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5. Characterization of high/low temperature regimes

5.1. Existence of phase transitions. We recall that the critical inverse temperature (5. was

introduced in Theorem B.

Theorem 5.1.

(a) 0 < B < B, then K=Ky = {do}.
(b) If B > B, then K has an element other than dg. In this case, £(U) := £({p € Xl =
1}) =1 for all £ € Ky.

The proof below follows the proof of Theorem 5.2 in [BC20] closely.

Proof. Tt is sufficient to prove the inverses of (a) and (b) because their hypotheses are complementary.
We recall from Theorem B that 0 < 8 < f3. is equivalent to A(8) = ¢(8) —p(8) = 0, where A, ¢ and
p were defined in (1.5), (1.3) and (1.2), respectively.

If K has no elements other than dg, i.e., K = Ky = {0g}, then Theorem 4.8 tells us that

p(®) = Jim EF, = inf R(¢) = R(%0) = R(0) = c(5),

n—oo
which implies 0 < 8 < S..
Let us assume that there is an element ¢ € K which is different from dg. From Remark 4.5, we
have R(u) < R(0) for all p1 # 0. Combining this with the fact (({0}) < 1, we see that
p(8) = lim BF, < R(Q) = [ RG0¢(dw) < R(O) = c(B),

n—oo
which implies 8 > f..
To see that £(U) = 1 for all £ € Ky in (b), fix ( € £\ {0} and let us consider a conditional
probability measure on X given by
C(AND)
¢(U)

We claim that ¢y € K. To prove this, first, we notice that due to the presence of (1 — ||u|)e¢?)

(w(A) = for all Borel A C X.

term in the denominator of (3.6),
pwel = TuwU)=1, p¢U = TuU)=0.

Therefore, for any Borel A C X ,

1 1
Ta(A) = = [ TrA) ) = 5 [ Tutan ) can)
— ﬁ /;z Tw(ANU){(dp) = 74(?(2)@ = (u(4),

which proves the claim.
If ((U) < 1, then
1

1 _ 1)
R(Gw) = 77 [ Rt = [ R + 552 [ Ruican)
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< / R(u)C(dp) + (1 - C(U)R(0) = R(Q),
U

which implies that ¢ € Koy only if ((U) = 1. O
Lemma 5.2. For any r > 0, the map I, : X — [0,1], defined in (2.14), is continuous.

Proof. Let € >0, r >0 and pu € X be given. We need to show that there is §(e,r) > 0 such that
dlp,v)<d = |I.(p)— L) <e

We set 6 = min(e/2,27") and take any v € X such that d(p,v) < 6. There is a (u,v)-triple
(7"0, o = {(ux, l/k)}zzl,f) such that d,, 4 z(p, ) < d. By the choice of §, we have ry > r. From the
subadditivity of I, we have

() 1 < 1 (Y m) + 1 (n =S m)
k=1 k=1 k=1

Ir(ZVk) < I (v) SIT(Zuk) +IT<V—ZVk>.

k=1 k=1 k=1
It follows from sep(¢) > 2r¢ > 2r that

Ir(é#k) —L«(Zn:l%)‘ = |Slliplr(#k) _Slliplr(yk”-

k=

Combining all these estimates, we conclude that

() ()] 1o S - 30}

< |Sl,1p I (pr) — Slliplr(’/k)‘ +0 < sup L (k) — Ln(vg) | +0

’Ir(:u) - [T’(V)‘ S

< sup W(pg, vg % 0z,) +6 < 20 < ¢,
k

which completes the proof. O

Theorem 5.3.

(a) If 0 < B < B, then
n—1

lim 1 Z sup pi(Bi(z)) =0 P-a.s.

n—,oo N =0 SCERd

(b) If B > B, then there is ¢ > 0 such that
n—1

lim infl Z sup pi(Bi(z)) > ¢ P-a.s.

n—oo N =0 ZBERd



LOCALIZATION OF DIRECTED POLYMERS IN CONTINUOUS SPACE 46

Proof. By the (uniform) continuity of the map & — [ I(u)&(dp) on the compact space P(X), for

any € > 0, we can choose some § > 0 such that

WK <5 = nt [ LGgn - e < [ 100 < sup [ 1060 +e

§€Ko £eko
Theorem 4.11 implies that
inf [ I, dp) <liminf [ I, n(d
Anf / (n)€(dp) < lim in / (1) (dp)
<timsup [ ()0 (d) < sup [ 1(6(dn). (1)
n—o0o £eKy
If 0 < 8 < B (or equivalently Ko = {do}), we have sup [ I;(u)¢(dp) = 0 and together with (2.15),
§€Ko
we obtain .
1<
lim sup — Z sup p;(By(x)) < lim Sup/h(,u)¢n(d,u) =0.
n—oo TN i—o T€RY n—o00

If 8 > B, by Theorem 5.1, every £ € Ky is supported on {sz € X : ||u|| = 1}. Therefore, we have

/Io(,u)g(d,u) >0 forall &€ Kp.

This and compactness of Ky imply that there is ¢ > 0 such that

inf / To(p)é(dp) = c.

£eko
Combining this with (5.1) and (2.15) completes the proof of (b). O

6. Asymptotic clustering

6.1. Definitions and sufficient conditions.

Definition 6.1. The sequence (p;)i>0 of the endpoint distributions is said to be “asymptotically

clustered at level r > 07 if for every sequence (€;)i>0 tending to 0, we have

n—1
lim 1 Zpi (A5 (r)) =1 P-as.,
=0

n—oo N, 4
where AS(r) = {x € RY: p;(B,.(x)) > eVyr?} and Vy is the volume of the unit ball in RY.

Definition 6.2. We say that (p;)i>o0 is “asymptotically locally clustered” if for every sequence (€;)i>o0

tending to 0, we have
n—1

1 .
lim — Zpi(.A?) =1 P-as,
=0

n—00 N 4

where AS = {x € R?: li%%nf % > €}

Definition 6.3. We say that asymptotic clustering of densities holds for (pi)i>o if every p; is

absolutely continuous with respect to the Lebesgue measure and for every sequence (€;)i>0 tending
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to 0, we have
n—1

1 .
lim — Zpi(l’j’fl) =1 P-as.,
1=0

n—oo N, 4

where B = {:17 cRY: Zi(x) > e}.

X
Remark 6.4. If every p; is absolutely continuous with respect to the Lebesgue measure, then, due
to the Lebesgue differentiation theorem, clustering of densities is equivalent to asymptotically local

clustering.

The above definitions are Euclidean space extensions of the notion of of asymptotic pure atomic-
ity that was introduced first by Vargas in [Var07] and modified by Bates and Chatterjee in [BC20]
in their studies of endpoint distributions for discrete polymers. Moreover, asymptotic clustering at
positive levels was studied in [BM19] still under the name of asymptotic pure atomicity. We intro-
duce the new term asymptotic clustering instead of asymptotic pure atomicity to avoid a misleading
image of convergence of the measures in question to a purely atomic measure. Roughly speaking,
(pi)i>o0 is asymptotically clustered at level r if the mass of p; concentrates on few balls of radius r
for large 1.

We state a sufficient condition for asymptotic clustering that is simpler to verify because it is

stated in terms of fixed € > 0 instead of sequences (€;)i>0.
Lemma 6.5 (Lemma 6.2 in [BC20]). Let r > 0 be given. If for every ¢ > 0, there is € = €(r,c) >0
such that

o 1 n—1 .

lhnilonof - Z;pi(.Ai(r)) >1—-c P-as., (6.1)
1=

then (pi)i>o is asymptotically clustered at level 7.

The proof of this lemma repeats the proof of Lemma 6.2 of [BC20| word for word. The discreteness

of Z% plays no role in this argument.
6.2. Auxiliary functionals. For any € > 0, let us define f. : Ry — [0, 1] by
0 for 0<t<e,
fe(t) = %(t—e) for €<t < 2
1 otherwise.

One can see that f, is 1/e-Lipschitz continuous and can be interpreted as an approximation of a
step function ge(t) = 1(2¢ 400)(t) for small e.
For any = (;)ieny € X and r > 0, let us define a functional D, on X x (N x R?) as

1 u—v[\* 1 [z —yl\*
D?‘ 9 = 1 - — 1 — i s
('u ’LL) VdT‘d /NX[Rd ( r ) M(dv) VdT‘d /Rd < r > @ (dy)

where u = (i,x) and a™ = max(a,0). Comparing this with the definition of I,., one has that

1
sup Dp(p,u) < —=1I.(1).
S (1, ) Vord (1)
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We also observe that

U1| |v — us +‘
_ < _ _
Dy (s ur) = Dy u2)| < 3 / \ ) (1 _ )| ntav)
lug — Uzl lu1 — us
<
= Vdrd/ dv) < TYrdtt

so D, is 1/Vyr@+1_Lipschitz continuous in u. Using the embedding of My into X, we can naturally
define D, on M<; x R?. Combining (2.12) with the fact that y + (1 — |z — y|/r)* is 1/r-Lipschitz
for every x € R%, we obtain

1
|Dr(a, z) = Dr(y,2)| < WW(OWY), a,y € My, z € RY (6.2)

Let us define a functional J, . : X — [0, 1] by

Jne(l) = /N JeDwnld) =3 [ foDy o w)ay(da),

d
j>1 7R

where we denoted D,.(u,-) by Dy ,(-). Jye is well-defined on X due to the following observation

/ F0 Dy s, () (e % 6,)(dr) = / fooDra(@)a(dz), e Mcr, yeR™

Proposition 6.6. For any r,e >0, J, . : X — [0,1] is continuous.

Proof. Let p € X and 85 > 0 be given. We claim that

€09 Vdrd(r A 1)
6

Fix v € X satisfying d(u,v) < 6. Then, we can find a triple (r/, ¢ = {(prsvi)}2_1, @) such that
"> 2r and d, ¢ (11, ) < 61. Let us denote

n n

S S /

n :,u—g Wi, U :V—E Vi, V= UVp*0g.
J=1 Jj=1

d(:uv V) < 51 = min ( 72_2T> = |J7“,e(:u) - Jr,e(y)| < 52-

Then, we have

‘JT’,G(:U) - Jr,e(”)‘ < Z ‘ /fEODﬁM(u):uk(du) - /fEODr,V(u)Vk(du)
k=1

n / f0 Dy () (dut) + / Fo0 Dy () (du). (6.3)

In order to derive the upper bound for the first term in the right-hand side of (6.3), we observe

‘ / fe0 D (1) i (ds) — / £20 Dy ()15 ()

= '/fe (Dwk (w) + Dy, (“))/‘k(du) - /fe (Dw;c (“))“k(du)
< [ Dyt = 2 [ Dy pewpetan
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1 1 01
< =
< g [ D) < e f ()l < gl

In the second equality, we used the fact that dist (supp(,uk),supp(ul)) > 2" > 4r for all | # k,

which implies D,.,,_,, = D, ;s on supp(uy). Combining this with the triangle inequality, we have

é‘/fgoDW(u),uk(du) —/fEODr,,/(u)Vk(du)‘
201

<3| [ teoDrtemntan) - [ foDanomian)| + i (6.4
On the other hand, we can use (6.2), (2.12), and the 1/e-Lipschitz continuity of fe to write

‘/feoDT’uk Nk dw /fEODTI/k )Vk dw ‘/feoDT’uk Nk dw /fEOD’r‘l/ )Vk(dx)

‘/feoDruk ) g (dw) /fEODTI/ ) px(dx)

‘ [ oD @) [ feoDuy wpitin)

1 / 2 /
<z / | Dy, () = Dy ()| pur(de) + WW(Mka) < WW(M,%)-

Summing over k£ on both sides gives

2 261
Z ‘ /feoDT,uk Mk da: /fEODTVk Vk(dx)‘ WZW Mk,l/k) W (65)

Let us estimate the second and the third terms in the right-hand side of (6.3).

/feoDr,u du) / fEODr,u(u)/LS(dU)
{u:Dy,pu(u)>€}
<p({ue NxR?: D, (u) >e}) < pf({u e NxRY: (B (u) > eVrt}). (6.6)

Let C = {u € Nx R?: u(B,(u)) > ¢Vgr?}. Then, we can choose a finite number of disjoint balls

C={B,(u;):u; € C;1<i< N}

N
such that every ball B,(u), u € C has non-empty intersection with |J B,(u;). The disjointness of
1=1
C gives N < ﬁ and
N N
CC U BQT(’LLZ') C U BT»/(’LLZ').
1=1 1=1

Using this and p* (B, (u)) < L/(1®) < 61 for all u € N x R4, (6.6) can be continued as

N
0
/feoDTu du) < :u ) < MS <L:J Brl(ui)> < Né& < elerd' (67)

Combining (6.3), (6.4), (6.5), and (6.7) completes the proof. O

6.3. Asymptotic clustering of polymer endpoint distributions. In this section, we prove

the following theorem which is a reformulation of relations (1.6) and (1.8) in Theorem 1.1.
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Theorem 6.7.
(a) If B> Be, then for all > 0, (p;)i>0 is asymptotically clustered at level r.
(b) If B < B, then for allT > 0, (p;)i>0 is not asymptotically clustered at level r. Moreover, for
any r > 0, there is a sequence (€;);>0 tending to 0 as i — oo, such that

n—1

nh_)I{)lo;ZplA’ ) =0  P-as. (6.8)

Proof. (a) Suppose 8 > .. Our goal is to show (6.1). To this end, for any r,e > 0, let us define a

functional J,.. on P(X) as
Jr,e(f) 3:/Jr,e(:u)£(d:u)'

Notice that the continuity of J,. . passes on to the continuity of 7, .. We also observe that
Tl = [ feoDrp(@pide) < [ feoDr()pild) < (A 0).
{z:Dr,p; (x)>€} §(r)
Hence,

hl sz (AS) > 711 Z re(pi) = Tr.e(Un). (6.9)

On the other hand, for any € X with ||u|| = 1, we have hi% Jre(p) = 1 because p({u: Dy (u) >

0}) =1 and J, () > p({u : Dyyu(u) > 2¢}). Using this along with Theorem 5.1 (2), we obtain
that for every £ € Ky,
lli% jr,e(g) =1

Since each J, ¢ is continuous on the compact set Ky and (Jr.e)e>0 is monotone increasing as € | 0,
the convergence above is uniform in £ by the Dini’s theorem.

Let now ¢ > 0 be given. By the uniform convergence of (J;.¢)e>0, we can choose € = €(r,¢) > 0
such that

Tre(€) >1—c forall £ € Ky

and, for such €, we can also find § > 0 such that
W, Ko) <8 = TrnlC)>1-c (6.10)

Combining Theorem 4.11, (6.9), and (6.10), we complete the proof of (a).
(b) Suppose 5 < . and let r > 0, € > 0 be given. We claim that

n—1

nll_}ngogz,ol (AS(r)) = 0. (6.11)
To sce this, we observe that for any p € X and any u € Al (r)={veNx R : (B, (v)) > eVygrdl,

1 u—v 1 1B, () (v By (u /
Doy (u) = Vi)’ / <1 | o ‘)+M(dv) > Vd(2r)d/ B (2)( ),u(dv) _ gngX(/d:; > 2¢,
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where ¢ = ¢/2%+2. Therefore, we have
Jorer (1) 2 / fero Doy yu(u)p(du) = p({Daru(u) > 2€'}) > (AL (r)),
{D2ru(u)>2€¢"}
which implies that
1 n—1 1 n—1
=D PilA() € =3 e (pi) = Tare (n)-
i=0 =0

By Theorem 5.1 (a) and the continuity of Ja, ¢, we conclude

n—1

.1 ¢ _
Jim ;pi(Ai(T)) < Jarer(00) = 0.

Fix r > 0 and let us now construct a sequence (¢;);>0 tending to 0 and satisfying (6.8). By (6.11),
we see that for each k£ € N, there is N}, such that

n—1
: Zpi(Aj/k(r)) < % for all n > Nj.
n

i=0

We may assume N1 > Ny for all k. Set ¢; = 1 for i < Ny and ¢; = 1/k for Ny, <i < Ngy1. Then,
we see that for each n € N| there is k = k(n) such that Ny <n < Niy; and hence

1 n—1 1 n—1 Lk 1
PICCHDEFPICCIES

Since lim k(n) = oo, letting n — oo on the both side above completes the proof of (b). O

n—oo

6.4. Asymptotic local clustering of the endpoint distribution. In this section, we prove the

following reformulation of relation (1.7) in Theorem 1.1:

Theorem 6.8. If 5 > S, then (p;)i>o0 is asymptotically locally clustered. In particular, for these
values of B, clustering of densities (see Remark 6./) holds if the reference random walk step distri-

bution A(dx) is absolutely continuous.

Before we prove this, we recall the Besicovitch covering theorem and its related lemma which will

be used later.

Theorem 6.9. (Besicovitch covering theorem) There is a constant Ny, depending only on the
dimension d, with the following property:

Let F = {B,, (zy) : 0 € I} be any collection of open balls in R with sup{r, : 0 € T} < co. Let us
denote A ={x,:0 € Z}. Then, there is a countable subcollection G of F such that G is a cover of

A and every x € |J B belongs to at most Ny different balls from the subcover G.
Beg

We remark that in [FL94], the lower bound and the upper bound for Ny(Besicovitch constant)
were provided:
(2.065 4 0(1))? < Ny < (2.691 + o(1))%.

We now state a lemma which is based on the Besicovitch covering theorem.
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Lemma 6.10 (Lemma 1.2. in [EG15]). Let a, v be Radon measures on R and define

h%lonf EBTE:C;)) if Y(Br(x)) > 0 for all > 0,

+00 otherwise.

Let € > 0 be given. Then, for any Borel A C {x € R?: D, a(x) < e}, we have a(A) < ey(A).

Similarly to A$(r) and AS, let us denote

a(B,(z))

Vyrd > ¢}

AS(r) = {x e RY: a(B.(x)) > eVyrd}, A ={zeR¢: hm&]nf

for any a € My, € > 0 and r > 0. By substituting v = m (Leb esgue measure on R?) in the lemma

above, we obtain

a(A) <em(A), V Borel A C (AF)°. (6.12)

Proposition 6.11. Let e,¢,r > 0 be given and let us assume that o € M satisfies
alAg(r) >1—c (6.13)
Then, there is €1 = €1(€,c,r,d) > 0, independent of «, such that

a(AD) > 1 - 2.

Proof. Let € > 0 be given. For any t € (0,1), let us set s = (1 — t)/(Vyr?) and
1-t¢

—— €. 6.14
Vyrd ¢ (6.14)

€1 = Se=
We will determine the value of ¢ later.
Let z € AS (r) and suppose a(AS N B.(z)) < ta(By(z)). Then, we see that
a(Br(z)) = a(Ag N By () + a((AY)° N By (x))
< ta(B,(x)) + eim((A2) N By(z)) < ta(By(z)) + seVyrd.
In the first inequality above, we used (6.12). By (6.14), we have

seVyrd
1—t

a(B(z)) <

= 67
which contradicts « € Ag,(r). Therefore, we obtain
a(AS N By (z)) > ta(By(z))

or, equivalently,
a((AQ)°N By (x)) < (1 = t)a(By(z)). (6.15)
Let us now apply Theorem 6.9 with F = {B,(z) : z € A5 (r)} and A = AS(r). Then, we can
find a countable subset A C A¢(r) such that G = {B,(x) : x € A} is a cover of AS(r) and every
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x € |J By(y) is covered by at most Ny balls from G. Therefore, due to (6.15), we have
yeA

a((Ag) NAL(r) <« ((AZ})CO U B« ) Y al(A) N B(@) < (1-1) Y a(B,(x))

€A z€A z€A

< Ny(1-t)a (UB >§Nd(1—t). (6.16)

xcA
Therefore, due to (6.16) and (6.13),

a ((A3)°9) = a (AL NALT)) + a ((AZ) N (AL(r)9)
< Ny(1 = t) + a((AS(r))°) < Ng(1—t) +c.

c
Ny VyNgrd

Choosing t =1 — <+ <s = ) completes the proof. O

Proof of Theorem 6.8. Suppose 8 > .. Let (¢;)i>0 tending to 0 be given. For any ¢ > 0, let us
denote s = m and

={i>0:pi (A (1) >1—¢/2}, F.={i>0:p (A7) >1—c}.
By Theorem 6.7 (a), (p;)i>o is asymptotically clustered at level 1. This can be rewritten as

lim |F N[0,n—1]| =1.

n—oo N

Since Proposition 6.11 implies F, C F!, the same relation holds for F. and hence

1 n—1
im inf — (A > 1 — -a.s.
lhnigfnzgpz(fll)_l ¢ P-as
1=
Letting ¢ | 0 completes the proof. O

7. Geometric localization

Adapting the terminology from [BC20], we say that the sequence (py,)n>0 is geometrically localized
with positive density if for any & > 0, there exist K < co and € > 0 such that

n—1

o1
1ﬂ£fﬁz(:)]l{pi€%,z<} >0 P-a.s., (7.1)

where

Gsx = {a € My : max a(Bg(z)) > 1 —6}.
xER4

If 6 can be taken equal to 1, then the sequence would be geometrically localized with full density. A
full density localization is an open question. In this section, we prove that (p;);>0 is geometrically

localized with positive density if and only if 5 > S..
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7.1. Useful functionals. Given u € X , we choose its representative p = (o );eny € X. To describe

Gs k in the language of (2? ,d), let us consider
Ws(p) = inf{r > 0: L(n) > 1= 6}, Vsx ={p€ X : Ws(u) < K}.
Using (2.15) and the natural embedding of M, into X, we obtain
Gs.ic C Vs N{n € X 1S, =1, [|ul = 1} C Gy rer, (7.2)

where S, was defined in (2.2). We also define functionals

Gln) = maxllosll, Q) = >0 o

One can check that Ws, G and Q) are well-defined on X.

Proposition 7.1.
(a) Ws is upper semi-continuous.
(b) G is lower semi-continuous.

(¢) Q is lower semi-continuous.

Proof. (a) Let u € X and € > 0 be given. Then, Iy (uy+e(p) > 1—34. By Lemma 5.2, there is §; > 0
such that

dlp,v) <01 = Twygoe(B) — T+ (V)] <€,
where ¢ = %(Iwg(u)+e(ﬂ) -1+ 5). For such v, we obtain Iy, (,)1c(v) > 1 — 4§, which implies

Wis(v) < Ws(p) +e.
(b) Fix p € X and 0 < €3 < G(u). We must show that there is ¢ > 0 such that
dlp,v) <er = Gv)>Gp) —e.
Without loss of generality, we may assume [[a1| = G(u). There is R = R(ez) > 0 such that
w(Br(1,0)) = ai1(Bgr(0)) > G(u) — €2/2 > €2/2. Choose ¢; = min(ez/2,27 ). Then, assuming

d(p,v) < €1, there is a triple (r,¢ = {(px, V) }j—1, &) such that d, 4 z(p, ) < €. Since sep(¢) >
2r > 2R, there is at most one u; whose support intersects with Br((1,0)). If there is no uj whose
n
support intersects with Bg((1,0)), then 1, gp < p— Y p. It follows
k=1

dr,fb,f(:uvy) > Iy <:u - ZMk) > o (BR(O)) > €9/2 > €,
k=1

which is a contradiction. Therefore, we may assume g is a unique submeasure of «; whose support
n

overlaps with Br(0). Since Lp,,0)(# — p1) < pp— > pig, we have
k=1

(b= p1)(Br(1,0)) < IR(N - iﬂk) <I (M - Zn:uk>
k=1 k=1
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Therefore,

G() = [l = llpll = w1 (Br(1,0))

#(Br(1,0)) — I (1 Zuk) (loal = 5) = 5 = Glu) — €2, (7.3)

(¢) Fix p € X . If Q(p) = oo (i.e. G(u) = 1), then for any L > 0, by part (b), we can find ¢; > 0
such that
dlp,v)y<e = G)>1—-—— = Q)>1L

Now consider the case Q(u) < oo and fix €3 > 0. First, we can find N such that

<
> llsll < 52—

>N
Since for any nonnegative x1,xo, ... satisfying >, x; < 1, we see that
IS - =
1—3:,_ 1—2 zj 1= x;
which implies ) ﬂa" - < €2/2.
L 1=lou]|
i>N

We may assume ||a;|| > ||ajt1]| for i < N —1. Let
N; = sup {z e{l,...,N}: [l > 672} V0.
2
We can choose R = R(e2) > 0 such that

€2
(Br(0)%) < —2
e «a(Br0)) < gm0

Applying the argument that we used in (7.3), we can find €; > 0 such that d(u,v) < €1 guarantees
the existence of (u,v)-matching {(ux,vx)}}_; such that n > Ny and

€2

> S
ol ol - 52—
for all 1 < k < Nj. It follows that

[l loll e flowll e
L—|well = 1 =flowll 2N +ea = 1—[logl] 2N

On the other hand, by the definition of Ny, we have

for 1 <k < Nj.

ok | €2
L il 1 B g I for Ny < k < N.
1— x| =28 S E=S

Therefore, we conclude

n N1 N
[ o ol e
> —_— > _—
Q)= = vell = kzzl 1— [l 2N ZN T—[lag]] 2N

k=1

o]l e
> - > — €2.
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Lemma 7.2. Assume 8 > B.. Then, for any £ € Ko,

/Q(u)&(du) = oo.

Proof. Let £ € Ky be given. Suppose, towards a contradiction, that

/Q(u)&(du) < 0.

This implies &({p € X : |Su| =1}) = 0. Let n = [a;] be a X-valued random variable whose law is
¢ and Y be a random field with the same law as X and independent of 7. Recalling 5({,u €X:
|p|| = 1}) =1 in Theorem 5.1 (b), we have ||| = 1 almost surely. Since 71 = 7, the law of

i(du) = PV (W) s X(du)
R = s B W) A (dw)

is also £&. We observe that

o [ePY ) oy 5 A(da)
Bl =3 B [zj# T P70 % \(d2) (”]

— %E[/eﬁY(i,z) o * )\(daz)‘n} E[Z#i ™ eﬁybvx)aj D) (n]

E| [PV ) o 5 N(dz)|n
> | . i = Q(),
i€N E[Ej# fRd GBY(J’”E)Oéj * A(d:p)‘n] ieN Zj;éi e

where we used the independence between Y (4,-) and (Y'(j,-));-i in the second line, Jensen’s in-

[levi

equality in the third line. Integrating with respect to 1 of the both sides leads to a contradiction,
which completes the proof. O

The following result is a reformulation of Theorem 1.2:

Theorem 7.3.
(a) If B> Be, then (p;i)i>o s geometrically localized with positive density.
(b) If B < Be, then for any ¢ € (0,1) and any K > 0,

. 1 n—1
7}1_)H;o - Z; Lipiegsy =0 P-as. (7.4)
1=

Proof. (a) Let § > 0 be given. The left-hand side of (7.1) can be expressed in terms of the empirical

measure y,:

n—1 n—1
1 1
o Y Lpetsn) = - > 0p(G5.6) = ¥n(Gs )
=0 =0
Therefore, it suffices to show that there are K > 0 and 6 > 0 such that

lim inf g, (Gs 1) > 6. (7.5)
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To see this, let us define

Us i={p € X:Gu)>1-6} = | Vs (7.6)
K=1

By Lemma 7.2, for all £ € Ky,
& (Ug) > 0.
The lower semi-continuity of G implies that Uy is an open set, so the map { — £(Us) is also lower

semi-continuous. Together with the compactness of g, we have
0 := inf &Us) > 0.
Aot §(Us)
For each ¢ € Ko, we can use (7.6) and monotonicity of Vs i in K to choose K = K¢ < oo such that

§WVsx) > (1—€)f.

The upper semi-continuity of W; implies that the map & — £(V5 k) is lower semi-continuous. Hence,
there is 7¢ > 0 such that

inf V > (1 —e)f.
CeB(ng( s.0ce) > (1 —¢€)

Since Ko is compact and {B(&,re/2)}eck, is a open covering of Ko, we can choose a finite sub-

covering {B(&;,7¢,/2)}i=;. Now let K = [nax {K¢}, r = mln {Tg /2}. Using the finite open

covering of ICp above and (7.2), we have

WE Ko) <r = W) >0 —€f = &(Gsr+1)>(1—¢€)f.
Notice that lim W(v,,Ky) — 0 from Theorem 4.11. Therefore, letting € | 0, we obtain (7.5).

n—oo

(b) Suppose 8 < . and let § € (0,1), K > 0, and € > 0 be given. We write
G, = {z €{0,....,n—1}: ﬁ?@pi(BK(m)) >1-— (5}.

Then, (7.4) is equivalent to

G,
lim Gl =0 P-as. (7.7)
n—soo n
Recalling Theorem 5.3, we can write
n—1
lim — i(B =0 P-as.
ti S ) <0 P
Therefore, there is N € N such that
1 n—1
— Zmaxp, Bk(z)) < (1—0)e foralln > N,
xER
and for such n, we have |G, |/n < €. Letting n — oo and then € | 0, we obtain (7.7). O

Appendix A. An auxiliary coupling lemma

Here we formally state and prove a coupling lemma used in Section 3.3, we used a statement
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Let us recall that the LU topology (topology of locally uniform convergence) on the space C[R?, R]
of all continuous real-valued functions on R? is defined by the following metric:
= 1
plwr,wa) =Y —< sup |wi (z) — wa(z)| A 1)-

= 2" \aj<n

Let # = %(C[R%, R]) be the Borel sigma-algebra on C[R%, R] equipped with LU topology. Let P be
the distribution of X (-) on (€2,.#). Under P, the canonical process Y, (w) = w(z) is a distributional
copy of X(x).

Lemma A.1l. Suppose closed sets Uy,Us,--- ,U, C R satisfy n;m dist(U;,U;) > M. Then, there
i#]

is an extended probability space (U, F' ') and stationary processes Yy y@ ...y defined on
this space such that

(1) YOO .. Y™ are mutually independent and have the same distribution as X (-);

(2) P’{ch(i) =Y, forallz e U;} =1 foralli=1,...,n.

Remark A.2. Our proof of this lemma uses regular conditional probabilities. Their existence is
guaranteed by our choice of C[R?,R] as the space of realizations but in principle we could impose

weaker requirements on the potential than continuity in Section 1.1.

Proof of Lemma A.1. It suffices to give a construction for n = 2 since then one can iterate it to
prove the lemma for general n. Let us define Uy = Uy U Uy and %, = B(C[Uk,R]) (the Borel
sigma algebra on C[Uy,R] equipped with uniform topology), k = 0,1,2. For k = 0,1,2, there is a
regular conditional probability @y defined on € x J# such that Qg(w, A) = P(A |5 )(w). For any
A e B(Q), since Q(-, A) is JG,-measurable, Q, depends only on uy, := w|y, € C[Uk, R]. Therefore,
Q. can be viewed as a function defined on C[Uy, R] x 5. Let T be the projection of 2 on C[Uy, R]
and define py(duy) = P(Tlgl(duk)).

Note that by the M-dependence of Y, jug = p1 @ po. Let us now take @ = Q012 7/ — 2(Q))
and define P’ as

P(Ax BxC) = /Qo(ul,U2,A)Ql(uhB)Q2(u27C)Ml(dul)m(duﬂa

For i = 0,1,2, we denote the i-th marginal distribution of P’ by P} and set Yx(i) (w) = wi(x) for
w = (wo,w1,ws) € . It is easy to check that Py =P} = P, = P. In addition, if we let P}; be the
marginal distribution of P’ with respect to the i-th and j-th arguments for 0 < i < j < 2, then
P, =P @P), ie., Y and Y are independent and the proof of part (1) is completed.

Let us define fi1 (dudv) = Pg, ((Ty x T1)~!(dudv)) on C[U1,R]?. For A, B € #(C[U1,R]), we have

fi1(A x B) = /Qo(m,U2=Tfl(A))Ql(UhTfl(B))Ml(dul)Mz(dW)

— [ Qa7 ()@ 0 T (B)padn) = [ La(un) Lt ys(dun) = (A0 B),
which implies that all the mass of i1 lie on the diagonal of C[Uy,R]?, i.e.
i1 ({(u,v) € ClUL,R]? :u = v}) =1
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Therefore, Ym(o) = Yx(l) P’-a.s. for all x € U;. Similarly, we also obtain Yx(o) = Yx(z) P-a.s. for all

x € Us. Identifying V() with Y completes the proof. 0
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