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ABSTRACT ARTICLE HISTORY

The problem of community detection in networks is usually formulated as finding a single partition of Received September 2019
the network into some “correct” number of communities. We argue that it is more interpretable and in Accepted October 2020
some regimes more accurate to construct a hierarchical tree of communities instead. This can be done KEYWORDS

with a simple top-down recursive partitioning algorithm, starting with a single community and separating
the nodes into two communities by spectral clustering repeatedly, until a stopping rule suggests there
are no further communities. This class of algorithms is model-free, computationally efficient, and requires
no tuning other than selecting a stopping rule. We show that there are regimes where this approach
outperforms K-way spectral clustering, and propose a natural framework for analyzing the algorithm’s
theoretical performance, the binary tree stochastic block model. Under this model, we prove that the
algorithm correctly recovers the entire community tree under relatively mild assumptions. We apply the
algorithm to a gene network based on gene co-occurrence in 1580 research papers on anemia, and identify
six clusters of genes in a meaningful hierarchy. We also illustrate the algorithm on a dataset of statistics
papers. Supplementary materials for this article are available online.

Community detection;
Hierarchical clustering;
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1. Introduction designing algorithms, often based on spectral clustering, that
can sometimes be proven to work well under specific models
(Newman and Girvan 2004; Newman 2006; Bickel, Chen, and
Levina 2011; Rohe, Chatterjee, and Yu 2011; Chen, Sanghavi,
and Xu 2012; Zhao, Levina, and Zhu 2012; Chen and Xu 2014;
Lei and Rinaldo 2014; Cai and Li 2015; Gao et al. 2016, 2017;
Joseph and Yu 2016; Le, Levina, and Vershynin 2017; Amini and
Levina 2018).

Most work on community detection to date has focused on
finding a single K-way partition of the network into K groups,
which are sometimes allowed to overlap. This frequently leads to
a mathematical structure that allows for sophisticated analysis,
but for larger K these partitions tend to be unstable and not
easily interpretable. These methods also typically require the
“true” number of clusters K as input. Although various methods
have been proposed to estimate K (e.g., Chatterjee 2015; Le and
Levina 2015; Wang and Bickel 2017; Chen and Lei 2018; Li,
Levina, and Zhu 2020), none of them have been especially tested
or studied for large K, and in our experience, empirically they

Data collected in the form of networks have become increas-
ingly common in many fields, with interesting scientific phe-
nomena discovered through the analysis of biological, social,
ecological, and various other networks; see Newman (2010) for
a review. Among various network analysis tasks, community
detection has been one of the most studied, due to the ubiquity
of communities in different types of networks and the appealing
mathematical formulations that lend themselves to analysis;
see, for example, reviews by Fortunato (2010), Goldenberg et
al. (2010), and Abbe (2018). Community detection is the task
of clustering network nodes into groups with similar connec-
tion patterns, and in many applications, communities provide a
useful and parsimonious representation of the network. There
are many statistical models for networks with communities,
including the stochastic block model (Holland, Laskey, and
Leinhardt 1983) and its many variants and extensions, such
as, for example, Handcock, Raftery, and Tantrum (2007), Hoft
(2008), Airoldi et al. (2008), Karrer and Newman (2011), Xu and

Hero (2013), Zhang, Levina, and Zhu (2014), and Matias and
Miele (2017). One large class of methods focuses on fitting such
models based on their likelihoods or approximations to them
(Bickel and Chen 2009; Mariadassou, Robin, and Vacher 2010;
Celisse, Daudin, and Pierre 2012; Amini et al. 2013; Bickel et al.
2013); another class of methods takes an algorithmic approach,

perform poorly when K is large. Finally, a single “true” number
of communities may not always be scientifically meaningful,
since in practice different community structures can often be
observed at different scales.

Communities in real networks are often hierarchically struc-
tured, and the hierarchy can be scientifically meaningful, for
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example, a phylogenetic tree. A hierarchical tree of communi-
ties, with larger communities subdivided into smaller ones fur-
ther down, offers a natural and very interpretable representation
of communities. It also simplifies the task of estimating K, since,
instead of estimating a large K from the entire network we only
need to check whether a particular subnetwork contains more
than one community. We can also view a hierarchy as regu-
larizing an otherwise unwieldy model with a large number of
communities, which in theory can approximate any exchange-
able graph (Olhede and Wolfe 2014), by imposing structural
constraints on parameters. We would expect that for large net-
works with many communities, such regularization can lead
to improvements in both computational costs and theoretical
guarantees.

Hierarchical community detection methods can be generally
divided into three types: estimating the hierarchy directly and
all at once, typically with either a Bayesian or an optimiza-
tion method; agglomerative algorithms that merge nodes or
communities recursively in a bottom-up fashion; and partition-
ing algorithms which split communities recursively in a top-
down fashion. The earliest work in the first category we are
aware of is Kleinberg (2002), generalized by Clauset, Moore,
and Newman (2008) and Peel and Clauset (2015). These models
directly incorporate a tree by modeling connection probabil-
ities between pairs of nodes based on their relative distance
on the tree. One line of work treats the tree as a parame-
ter and takes a Bayesian approach (e.g., Clauset, Moore, and
Newman 2008; Blundell and Teh 2013). Bayesian inference on
these models is computationally prohibitive, and thus infeasi-
ble for large networks. Even more importantly, treating each
node as a leaf involves a large number of parameters, there-
fore, sacrificing interpretability. Agglomerative clustering algo-
rithms for networks date back to at least Clauset, Newman, and
Moore (2004), which combined well-known Ward’s hierarchical
clustering (Ward 1963) with the Girvan-Newman modularity
(Newman and Girvan 2004) as the objective function. The idea
of modularity-based clustering was further explored by Pons
and Latapy (2005), Reichardt and Bornholdt (2006), Wakita and
Tsurumi (2007), Arenas, Fernandez, and Gomez (2008), and
Blondel et al. (2008). Divisive algorithms were once very popular
in machine learning problems such as graph partitioning and
image segmentation (Spielman and Teng 1996; Shi and Malik
2000; Kannan, Vempala, and Vetta 2004). This class of methods
appears to have first been applied to networks by Girvan and
Newman (2002), who proposed an “elbow-finding” algorithm
deleting the edge with highest betweenness centrality recur-
sively, thereby building a top-down hierarchy. This idea was
further developed by Wilkinson and Huberman (2002), Holme,
Huss, and Jeong (2003), Gleiser and Danon (2003), and Radicchi
et al. (2004).

In spite of many practical benefits and applied work on hier-
archical community detection, it is hard to come by a rigorous
analysis. The first such analysis of a hierarchical algorithm we
are aware of was given by Dasgupta et al. (2006), for a recur-
sive bi-partitioning algorithm based on a modified version of
spectral clustering. Their analysis allows for sparse networks
with average degree growing poly-logarithmically in n, but the
procedure involves multiple tuning parameters with no obvious
default values. Later on, Balakrishnan et al. (2011) considered

a top-down hierarchical clustering algorithm based on unnor-
malized graph Laplacian and the model of Clauset, Moore, and
Newman (2008), for a pairwise similarity matrix instead of a
network. They did not propose a practical stopping rule, but did
provide a rigorous frequentist theoretical guarantee for cluster-
ing accuracy. However, as we will further discuss in Section 3,
their analysis only works for dense networks which are rare in
practice. Lyzinski et al. (2017) proposed another hierarchical
model based on a mixture of random dot product graph (RDPG)
models (Young and Scheinerman 2007). In contrast to Balakr-
ishnan et al. (2011), they used a two-stage procedure which
first detects all communities, and then applies agglomerative
hierarchical clustering to build the hierarchy from the bottom
up. They proved strong consistency of their algorithm, but it
hinges on perfect recovery of all communities in the first step,
which leads to very strong requirements on network density.

In this article, we consider a framework for hierarchical
community detection based on recursive bi-partitioning, an
algorithm similar to Balakrishnan et al. (2011). The algorithm
needs a partitioning method, which divides any given network
into two, and a stopping rule, which decides if a given network
has at least two communities; in principle, any partitioning
method and any stopping rule can be used. The algorithm starts
by splitting the entire network into two and then tests each
resulting leaf with the stopping rule, until the stopping rule indi-
cates there is nothing left to split. We prove that the algorithm
consistently recovers the entire hierarchy, including all low-
level communities, under the binary tree stochastic block model
(BTSBM), a hierarchical network model with communities we
propose, in the spirit of Clauset, Moore, and Newman (2008).
Our analysis applies to networks with average degree as low as
(logn)>T¢ for any € > 0, while existing results either require
the degree to be polynomial in n, or log® n for large a (e.g.,
a = 6 in Dasgupta et al. (2006)) at the cost of numerous tuning
parameters. We also allow the number of communities K to
grow with 7, which is natural for a hierarchy, at a strictly faster
rate than previous work, which for the most part treats K as
fixed. Even more importantly, when K is too big to recover the
entire tree, we can still consistently recover mega-communities
at the higher levels of the hierarchy, whereas K-way clustering
will fail. Since the stopping rule only needs to decide whether
K > 1rather than estimate K, we can use either hypothesis tests
(Bickel and Sarkar 2016; Gao and Lafferty 2017; Jin, Ke, and Luo
2019), or various methods for estimating K. Importantly, the
main weakness of methods for of K, which is underestimating
K when it is large, since empirically they never underestimate
it so severely as to conclude K = 1. Unlike previous studies
of hierarchical community detection, we are able to provide
theoretical guarantees for a data-driven stopping rule rather
than known K. Finally, our procedure has better computational
complexity than K-way partitioning methods.

The rest of the article is organized as follows. In Section 2,
we present our general recursive bi-partitioning framework,
a specific recursive algorithm, and discuss the interpretation
of the resulting hierarchical structure. In Section 3, we intro-
duce a special class of stochastic block models under which a
hierarchy of communities can be naturally defined, and pro-
vide theoretical guarantees on recovering the hierarchy for that
class of models. Section 4 presents extensive simulation studies



demonstrating advantages of recursive bi-partitioning for both
community detection and estimating the hierarchy. Section 5
applies the proposed algorithm to a gene co-occurrence net-
work and obtains a readily interpretable hierarchical commu-
nity structure. Section 6 concludes with discussion. Proofs and
an additional data example on a dataset of statistics papers can
be found in the Appendix (supplementary materials).

2. Community Detection by Recursive Partitioning
2.1. Setup and Notation

We assume an undirected network on nodes 1,2,...,n. The
corresponding n x n symmetric adjacency matrix A is defined
by A;j = 1 if and only if node i and node j are connected, and
0 otherwise. We use [n] to denote the integer set {1,2,...,n}.
We write I,, for the n x n identity matrix and 1, for n x 1
column vector of ones, suppressing the dependence on n when
the context makes it clear. For any matrix M, we use || M| to
denote its spectral norm (the largest singular value of M), and
M|/ the Frobenius matrix norm. Community detection will
output a partition of nodes into K sets, ViUV, U- - -U Vg = [n]
and V;N'V; = ¢ for any i # j, with K typically unknown
beforehand.

2.2. The Recursive Partitioning Algorithm

In many network problems where a hierarchical relationship
between communities is expected, estimating the hierarchy
accurately is just as important as finding the final partition of
the nodes. A natural framework for producing a hierarchy is
recursive partitioning, an old idea in clustering that has not
resurfaced much in the current statistical network analysis
literature (e.g., Kannan, Vempala, and Vetta 2004; Dasgupta
et al. 2006; Balakrishnan et al. 2011). The framework is general
and can be used in combination with any community detection
algorithm and model selection method; we will give a few
options that worked very well in our experiments. In principle,
the output can be any tree, but we focus on binary trees, as is
commonly done in hierarchical clustering; we will sometimes
refer to partitioning into two communities as bi-partitioning.

Recursive bi-partitioning does exactly what its name sug-
gests:

1. Apply a decision / model selection rule to the network to
decide if it contains more than one community. If no, stop;
if yes, split into two communities.

2. Repeat step 1 for each of the resulting communities, and
continue until no further splits are indicated.

This is a top-down clustering procedure which produces
a binary tree, but the leaves are small communities, not
necessarily single nodes. Intuitively, as one goes down the tree,
the communities become closer, so the tree distance between
communities reflects their level of connection.
Computationally, while we do have to partition multiple
times, each community detection problem we have to solve is
only for K = 2, which is faster, easier and more stable than for a
general K, and the size of networks decreases as we go down the
tree and thus it becomes faster. When K is large and connectivity
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levels between different communities are heterogeneous, we
expect recursive partitioning to outperform K-way clustering,
which does best for small K and when everything is balanced.
We call this approach hierarchical community detection
(HCD). As input, it takes a network adjacency matrix A;
an algorithm that takes an adjacency matrix A as input and
partitions it into two communities, outputting their two induced
submatrices, C(A) = {A1,A»}; and a stopping rule S : R"*" —
{0, 1}, where S(A) = 1 indicates there is no evidence A has
communities and we should stop, and S(A) = 0 otherwise. Its
output He,s(A) = (¢, T) is the community label vector ¢ and
the hierarchical tree of communities T. The algorithm clearly
depends on the choice of the partitioning algorithm C and the
stopping rule S; we describe a few specific options next.

2.3. The Choice of Partitioning Method and Stopping Rule

Possibly the simplest partitioning algorithm is a simple eigen-
vector sign check, used in Balakrishnan et al. (2011), Gao et al.
(2017), Le, Levina, and Vershynin (2017), and Abbe et al. (2017):

Algorithm 1. Given the adjacency matrix A:

1. Compute the eigenvector u, corresponding to the second
largest eigenvalue in magnitude of A.

2. Letc(i) = 0if t1p; > 0 and ¢c(i) = 1 otherwise.

3. Return label ¢.

A more general and effective partitioning method is regular-
ized spectral clustering (RSC), especially for sparse networks.
Several regularized versions are available; in this article, we
use the proposal of Amini et al. (2013), shown to improve
performance of spectral clustering for sparse networks (Joseph
and Yu 2016; Le, Levina, and Vershynin 2017).

Algorithm 2. Given the adjacency matrix A and regularization
parameter 7 (by default, we use T = 0.1), do the following:

1. Compute the regularized adjacency matrix as

d T
AT:A+T_11 5
n

where d is the average degree of the network.
2. Let D; = diag(d;1,dr2,...,drn) where d;; = Zj A jj and
calculate the regularized Laplacian

L, = D;Y2A,D; V2,

3. Compute the leading two eigenvectors of L., arrange them in
an x 2 matrix U, and apply K-means algorithm to the rows,
with K = 2.

4. Return the cluster labels from the K-means result.

The simplest stopping rule is to fix the depth of the tree
in advance, though that is not what we will ultimately do. A
number of recent papers focused on estimating the number of
communities in a network, typically assuming that each com-
munity in the network is generated from either the Erdos—-Renyi
model or the configuration model (Van Der Hofstad 2016).
The methods proposed include directly estimating rank by the
USVT method of Chatterjee (2015), hypothesis tests of Bickel
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and Sarkar (2016), Gao and Lafferty (2017), and Jin, Ke, and Luo
(2019), the BIC criteria of Wang and Bickel (2017), the spectral
methods of Le and Levina (2015), and cross-validation methods
of Chen and Lei (2018) and Li, Levina, and Zhu (2020). The
cross-validation method of Li, Levina, and Zhu (2020) works
for both unweighted and weighted networks under a low rank
assumption, while the others use the block model assumption.

Under block models, empirically we found that the most
accurate and computationally feasible stopping criterion is the
non-backtracking method of Le and Levina (2015). Let B, be
the non-backtracking matrix, defined by

Bnp = (_OI DA_ I> . (1)

Let X;,i € [2n] be the real parts of the eigenvalues of By,
(which may be complex). The number of communities is then
estimated as the number of eigenvalues that satisfy |A;| >
| Bup|I*/2. This is because if the network is generated from an
SBM with K communities, the largest K eigenvectors of By, will
be well separated from the radius 1B |I1/2 with high proba-

bility, at least in sparse networks (Krzakala et al. 2013; Le and

2
Levina 2015). We approximate the norm ||Bpp|| by % -1,

as suggested by Le and Levina (2015). For our purposes, we
only need the real parts of the two leading eigenvalues, not the
full spectrum. If we want to avoid the block model assumption,
the edge cross-validation (ECV) method of Li, Levina, and Zhu
(2020) can be used instead to check whether a rank 1 model is a
good approximation to the subnetwork under consideration.
The main benefit of using these estimators as stopping rules
(i.e., checking at every step if the estimated K is greater than
1) is that the tree can be of any form; if we fixed K in advance,
we would have to choose in what order to do the splits to
end up with exactly the chosen K. Moreover, empirically we
found the local stopping criterion is more accurate than directly
estimating K, especially with larger K. For the rest of the article,
we will focus on two versions, “HCD-sign” which uses splitting
by eigenvalue sign (Algorithm 1), and “HCD-spec,” which uses
regularized spectral clustering (Algorithm 2). Any of the stop-
ping rules discussed above can be used with either method.

2.4. Mega-Communities and a Similarity Measure for
Binary Trees

The final communities (leaves of the tree) as well as the inter-
mediate mega-communities can be indexed by their position
on the tree. Formally, each node or (mega-)community of the
binary tree can be represented by a sequence of binary values
x € {0, 1}, where I is the depth of the node (the root node has
depth 0). The string x records the path from the root to the node,
with x4 = 1 if step g of the path is along the right branch of the
split and x; = 0 otherwise. We define the x for the root node
to be an empty string. Intuitively, the tree induces a similarity
measure between communities: two communities that are split
further down the tree should be more similar to each other than
two communities that are split higher up. The similarity between
two mega-communities does not depend on how they are split
further down the tree, which is a desirable feature. Note that we
do not assume an underlying hierarchical community model;
the tree is simply the output of the HCD algorithm.

To quantify this notion of tree similarity, we define a similar-
ity measure between two nodes x, X’ on a binary tree by

s(x, x') = min{q : x4 # x;}.

For instance, for the binary tree in Figure 1, we have s(000,
001) = 3, while s(000,11) = s(000,110) = s(000,111) = 1.
Note that comparing values of s is only meaningful for compar-
ing pairs with a common tree node. So s(000, 111) < s(000, 001)
indicates that community 000 is closer to community 001 than
to 111, but the comparison between s(000,001) and s(10, 11) is
not meaningful.

A natural question is whether this tree structure and the asso-
ciated similarity measure tell us anything about the underlying
population model. Suppose that the network is in fact generated
from the SBM. The probability matrix P = EA under the SBM
is block-constant, and applying either HCD-sign or HCD-spec
to P will recover the correct communities and produce a binary
tree. This binary tree may not be unique; for example, for the
planted partition model where all communities have equal sizes,
all within-block edge probabilities are a and all between-block
edge probabilities are b. However, in many situations P does
correspond to a unique binary tree (up to a permutation of
labels), for example, under the hierarchical model introduced
in Section 3. For the moment, assume this is the case. Let c and
T be the binary string community labels and the binary tree
produced by applying the HCD algorithm to P in exactly the
same way we previously applied it to A. Let ¢ and T be the result
of applying HCD to A. The estimated tree T depends on the
stopping rule and may be very different in size from T; however,
we can always compute the tree-based similarity between nodes
based on their labels. Let St = (s7(c(i), c(j))) be the n x n
matrix where st is the pairwise similarities induced by T, and
S5 = (s%(ﬁ(i), E(j))) the corresponding similarity matrix based
on T. S4 can be viewed as an estimate of St, and we argue that
comparing St to S3 may give a more informative measure of
performance than just comparing ¢ to c. This is because with
a large K and weak signals it may be hard or impossible to
estimate all communities correctly, but if the tree gets most
of the mega-communities right, it is still a useful and largely
correct representation of the network.

Finally, we note that an estimate of St under the SBM can
be obtained for any community detection method: if ¢ are
estimated community labels, we can always estimate the corre-
sponding P under the SBM and apply HCD to P to obtain an esti-
mated tree T. However, our empirical results in Section 4 show
that applying HCD directly to the adjacency matrix A to obtain
S; gives a better estimate of St than the S constructed from
post-processing the estimated probability matrix produced by a
K-way partitioning method.

3. Theoretical Properties of the HCD Algorithm
3.1. The Binary Tree Stochastic Block Model

We now proceed to study the properties of HCD on a class
of SBMs that naturally admit a binary tree community struc-
ture. We call this class the binary tree stochastic block models
(BTSBM), formally defined in Definition 1 and illustrated in
Figure 1.
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Figure 1. An 8-cluster binary tree SBM. Rectangles correspond to mega-
communities.

Definition 1 (BTSBM). Let S; := {0, 1}9 be the set of all length
d binary sequences and let K = [S| = 24, Each binary string
in S; encodes a community label and has a 1-1 mapping to an
integer in [K] via standard binary representation 7 : S5 — [K].
For node i € [n], let c(i) € Sy be its community label, let C, =
{i : c(i) = x} be the set of nodes labeled with string x € S, and
let n, = |Cy|.

1. Let B € RX*K be a matrix of probabilities defined by
BZ(x),Z(x') = Ppir'y>
where po, p1, . . . pg arearbitrary d+ 1 parameters in [0, 1] and
D(x,x') = (d+ 1 — s(x, X)) (x # x),

for s(x,x’) = min{q : x; # x;} defined in Section 2.4.
2. Edges between all pairs of distinct nodes i, j are independent
Bernoulli, with

P(Aij = 1) = Bz(c(i).Z(c()
corresponding to the n x n probability matrix P = EA.

For instance, the BTSBM in Figure 1 corresponds to the
matrix

po p1|p2 p2|P3 p3 pP3 p3
P1 po|P2 P2 |P3 Pp3 P3 P3
P2 p2|po p1|P3s Pp3 p3 P3
p— | P2 P2 [P Po|P3 P3 P3 P3
p3 P3| p3 Pp3|po p1 P2 P2
p3 p3|p3 P3| Pt po P2 P2
p3 p3|p3 p3|p2 P2 Po P1
p3 P3| p3 p3|p2 p2 P1 Ppo

A nice consequence of defining community labels through
binary strings is that they naturally embed the communities
in a binary tree. We can think of each entry of the binary
string as representing one level of the tree, with the first digit
corresponding to the first split at the top of the tree, and so on.
We then define a mega-community labeled by a binary string x €
Sg at any level g of the tree as the set {i : c(i), = x4, 1 < h < g},
defined on a binary tree T. The mega-communities are unique
up to community label permutations, and give a multi-scale
view of the community structure; for example, Figure 1 shows
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four mega-communities in layer 3 and two mega-communities
in layer 2.

The idea of embedding connection probabilities in a tree,
to the best of our knowledge, was first introduced as the hier-
archical random graph (HRG) by Clauset, Moore, and New-
man (2008), and extended by Balakrishnan et al. (2011) to
weighted graphs and by Peel and Clauset (2015) to general
dendrograms. The BTSBM can be viewed as a hybrid of the orig-
inal HRG and the SBM, maintaining parsimony by estimating
only community-level parameters while imposing a natural and
interpretable hierarchical structure. It also provides us with a
model that can be used to analyze recursive bi-partitioning on
sparse graphs.

3.2. TheEigenstructure of the BTSBM

Let Z € R"™XK be the membership matrix with the ith row Z; =
eZ(c(iy) containing ej, the jth canonical basis vector in R, where
7 is the integer given by the binary representation. Then it is
straightforward to show that

P=TFA = ZBZ" — pql.

The second term comes from the fact that A;; = 0. For the rest
of the theoretical analysis, we assume equal block sizes, that is,

n=n=---=ng=n/K=m. 2)

This assumption is stringent but standard in the literature and
can be relaxed to a certain extent, as indicated in our Theo-
rem C.3 in Appendix C in the supplementary materials. For
the BTSBM, this assumption leads to a particularly simple and
elegant eigenstructure for P.

Given a (mega)-community label denoted by a binary string
x, we write x0 and x1 as the binary strings obtained by append-
ing 0 and 1 to x, respectively. We further define {x+} to be the set
of all binary strings starting with x. The following theorem gives
a full characterization of the eigenstructure for the BTSBM.

Theorem 1. Let P be the n x n community connection probabil-
ity matrix of the BTSBM with K = 24 and define P = P+ pol =
ZBZ". Then the following holds:
1. (Eigenvalues) The distinct nonzero eigenvalues of P, denoted
by A1, A2,. .., 441, are given by

d
=mpo+) 27 "py),
r=1
d—q
Ag+1 =m | po+ erilpr — 2%y g |, a=1....d
r=1
3)

2. (Eigenvectors) Forany 1 < g < dand eachx € S;_1, let VZ+1

be an n-dimensional vector, such that for any i € [n],

1 ifc(i) € Sy N {x0+},
Ugjl ={ =1 ifc@i) € S;N{x1+},
0 otherwise.

Then the eigenspace corresponding to eigenvalue Agyp is

spanned by {vfg—H : x € S4-1}. The eigenspace corresponding

to A; is spanned by 1.
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It is easy to see that each vﬁ“ corresponds to a split of the
two mega-communities in layer g, at an internal tree node x.
For instance, consider the colored rectangles in Figure 1, which
correspond to d = 3 and q = 2. The vector v; has entry 1
for all nodes in the (solid blue) mega-community 00, entry —1
for all nodes in the (dashed blue) mega-community 01 and 0
for all the other nodes, thus separating mega-communities 00
and 01. Similarly, v} has entry 1 for the nodes in (solid orange)
mega-community 10, and entry —1 for nodes in the (dashed
orange) mega-community 11. The binary tree structure is thus
tully characterized by the signs of eigenvectors’ entries. Note that
due to multiplicity of eigenvalues, the basis of the eigenspace
is not unique. In Appendix A in the supplementary materials,
we use another basis which, though less interpretable, is used
in the proof of Theorems 2 and 3 to obtain better theoretical
guarantees.

While the previous theorem is stated for general configu-
rations of py,...,p4, the two most natural situations where a
hierarchy is meaningful are either assortative communities, with

Po>p1> - > pg, 4)

or dis-assortative communities, with

Po<p1<---<pg (5)

Recall that the HCD-sign algorithm only depends on the
eigenvector corresponding to the second largest eigenvalue (in
magnitude). Theorem 1 directly implies that under either the
assortative or dis-assortative setting, such eigenvalue is unique
(has multiplicity 1) with an eigenvector that yields the first
split in the tree according to the signs of the corresponding
eigenvector entries.

Corollary 1. Let P be the n x n probability matrix of the BTSBM
with K = 29 and balanced community sizes as in (2). Under
either (4) or (5), the second largest eigenvalue (in absolute value)
of P for a BTSBM is unique and given by

d—1
(m—1)po+m Z 27 1p; — m2d_1pd

i=1

and the gap between it and the other eigenvalues is A, =
nmin{pg, (pg—1 — pa)/2} in the assortative case and A, =
n(pg — pa—1)/2 in the disassortative case. The corresponding
(normalized) eigenvector is

17 T \T
Uy = ﬁ(ln/Z’_ln/Z) :

Inaslightabuse of notation, we still denote the kth eigenvalue
of P (instead of P) by A; whenever it is clear from the context.

3.3. Consistency of HCD-Sign Under the BTSBM

The population binary tree T defined in Section 2.4 is unique
under the BTSBM, and thus we can evaluate methods under this
model on how well they estimate the population tree. Given a
community label ¢ and the corresponding balanced binary tree
T of depth d, define mc(T,¢,q) € [29]" to be the community
partition of all nodes into the mega-communities at level g

corresponding to ¢. In particular, at level d, mc(T, ¢, d) gives
the true community labels ¢, up to a label permutation. This
quantity is well defined only if the binary tree is balanced (i.e., all
leaves are at the same depth d), and we will restrict our analysis
to the balanced case.

The convention in the literature is to scale all probabilities of
connection by a common factor that goes to 0 with #, and have
no other dependency on #; see, for example, the review of Abbe
(2018). We similarly reparameterize the BTSBM as

(PO:P1a~~ )ad)~ (6)

Let i, be the eigenvector of the second largest eigenvalue (in
magnitude) of A. If

)Pd) = pn(lr ais...

sign(iy;) = sign(uy;) for all 4, (7)

with high probability, then the first split will achieve exact
recovery. A sufficient condition for (7) is concentration of i,
around u in the £o, norm. The £, perturbation theory for
random matrices is now fairly well studied (e.g., Abbe et al.
2017; Eldridge, Belkin, and Wang 2017). By recursively applying
an £, concentration bound, we can guarantee recovery of the
entire binary tree with high probability, under regularity condi-
tions.

We start from a condition for the stopping rule. Recall that
we defined the stopping rule as a function W such that W(A) =
1 indicates the adjacency matrix A contains communities and
W(A) = 0 indicates there is no evidence of more than one
community.

Definition 2. A stopping rule for a network of size n generated
from an SBM with K communities is consistent with rate ¢ if
P(W@) =1) > 1—n?whenK > 1 and P(W(4) = 0) >
1—n?whenK = 1.

With a consistent stopping rule, the strong consistency of
binary tree recovery can be guaranteed, as stated in the next two
theorems.

Theorem 2 (Consistency of HCD-sign in the assortative setting).
Let A € R™" be generated from a BTSBM with parameters
(1, pu3 a1, - - . »ag) as defined in (6), with n = Km = 29m. Let
¢ be the community labels and T the corresponding binary tree
computed with the HCD-sign algorithm with stopping rule W.
Suppose the model satisfies the assortative condition (4). Let
ap = 1 and for any ¢ € [d], define

. —r+1
Ney =min{2" % g, :7 € [£]},

nr = min{ay, |a,—1 — ar|/2}. (8)

where

Fixany & > 1,¢ > 1and ¢’ > 0. Then there exists a constant
C(¢), which only depends on ¢, such that, for any £ € [d], if

Kt/d max{logé nn,1
N O < @), 9)
npn N(e)

and the stopping rule W is consistent for all the subgraphs
corresponding to mega-communities up to the £ + 1 layer with
rate ¢’, then for a sufficiently large n,

min  (mc(T, q) = mc(T,¢,q),

forallg < ¢,
MePerm(q)



with probability at least 1 — 2K@+D¢/dp—¢ _ g@'+1t/dy—¢'
The mega-community partition mc(T, ¢, q) is defined at start of
Section 3.3 and Perm(q) is the set of all label permutations on
the binary string set S;. Further, if the conditions hold for £ = d,
then with probability at least 1 — 2K@+tDp=¢ — 2K@"+1) =9
the algorithm exactly recovers the entire binary tree and stops
immediately after it is recovered.

Theorem 2 essentially says that each splitting step of HCD-
sign consistently recovers the corresponding mega-community,
provided that the condition (9) holds for that layer. Note that,
according to (8), in the assortative setting,

[Kt/d 1
npn 77%5) B
1

VPn min(2= T 03 € [}

1
=
Moy

2t
npPn
1

As { increases, the set over which we minimize grows, while
each individual term remains the same. Thus, the whole term
increases with £. We also have

[Ktlogf n  2Y/*1og n 1
NPy 1) npn min{Z_%nd_(r_l), re [Z]}’

which also increases in £. Therefore, (9) gets strictly harder to
satisfy as £ increases, and even if recovering the entire tree is
intrinsically hard or simply impossible (condition (9) fails to
hold for £ = d), HCD-sign can still consistently recover mega-
communities at higher levels of the hierarchy, as long as they
satisfy the condition. This is a major practical advantage of
recursive partitioning compared to both K-way partitioning and
agglomerative hierarchical clustering of Lyzinski et al. (2017). A
similar result holds in the dis-assortative setting.

Theorem 3 (Consistency of HCD-sign in the dis-assortative set-
ting). Suppose the model satisfied the dis-assortative condition
(5). Under the setting of Theorem 2, the conclusion continues
to hold if (9) is replaced by

K&/d v max{logs n, V(zz)ﬂ_gl}
/ O < ce),
npy nee)

_t=rtl
V() = max {2 2

(10)

where

Qgri1iT € [z]]. (11)

It is easy to verify that condition (10) also becomes harder
to satisfy for larger £. Therefore in dis-assortative settings, we
may also be able to recover mega-communities even if we cannot
recover the whole tree.

The theorems apply to any consistent stopping rule satisfying
Definition 2. In particular, the non-backtracking matrix method
we use in the implementation is a consistent stopping rule based
on the recently updated result of Le and Levina (2015), as we
show next.
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Proposition 1. Define

1+ ZJZ;{ 27la; -2 Tap_10)? e [ﬁl}

{() = min .
1+ ijlr 2 laj
(12)
If
d—{+1
K N K10 i—1
logn < min { == logn, 1 + 2 a3, 13
oo logn < o log ]; ; (13)
and
npy max{1, ag} < n*13, (14)

then for a sufficiently large #, the non-backtracking matrix
stopping rule, described in (1), is consistent with rate 1 under
BTSBM for all mega-communities up to the layer £ + 1.

Proposition 1 directly implies that if (13), (14), and (9) or
(10) hold at the same time, the conclusions of Theorem 2 and
Theorem 3 hold when using the non-backtracking matrix as the
stopping rule. In the proposition, condition (14) constrains the
network from being too dense. We believe this to be an artifact
of the proof technique of Le and Levina (2015). Intuitively,
if the method works for a sparser network, it should work
for a denser one as well, so we expect this condition can be
removed, but we do not pursue this direction since the non-
backtracking estimator is not the focus of the present article.
A similar argument shows that another class of stopping rules
based on Bethe-Hessian matrices (Le and Levina 2015) also
gives consistent stopping rules which will also give consistent
recovery.

Next, we illustrate conditions (13) and (9) in a simplified
setting. Consider the assortative setting when the whole tree can
be recovered (£ = d).

Example 1. Assume an arithmetic sequence 4, given by a, =
1 —r/(d + 1). In this case, taking £ = 1.01, it is easy to see that
(9) is

K(d+ 1)? logz'02 n = 0(npy,). (15)

Some simple algebra shows that condition (13) simplifies to
Klogn = O(np,) and Kd*> = O(npy).

Thus the additional requirement for strong consistency with
the non-backtracking matrix stopping rule is redundant and we
only need the condition

K(d+1)* logz'02 n = O(np,).
Example 2. Assume a geometric sequence a,, given by a, = g”

for a constant 8 < 1. Let § = 27V for y > 0. The condition
(13), after some simplifications, becomes

Klogn = O(npy).

On the other hand, for (9), we have
24y, = min{2"*a,,2"*(a,_; — ar,)/2}

B -1
2 }

= Y477) min {1,
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If y < 1/4, then gy > min {1, B_;l }, and (9) with & = 1.01

becomes

Klog*%% n = O(npy).

If y > 1/4, then g = (2474 min {1, ﬂi;_l} =
O (KY4=7), and (9) becomes

K*¥ = 0O(np,) and KX *1/2 log>%% n = O(np,).

In summary, the following conditions are sufficient for exact
recovery:

K = O(np,) and K™2r+1/21} logz'02 n = 0(npy,).
(16)

3.4. Comparison With Existing Theoretical Guarantees

In this section, we compare our result with other strong con-
sistency results for recursive bi-partitioning. We focus on the
assortative setting since this most existing results require it
(Balakrishnan et al. 2011; Lyzinski et al. 2017). To make this
comparison, we have to ignore the stopping rule, since no other
method showed consistency for a data-driven stopping rule.
Strong consistency of recursive bi-partitioning was previ-
ously discussed by Dasgupta et al. (2006). Their algorithm
is far more complicated than ours, with multiple rounds of
resampling and pruning, and its computational cost is much
higher. For comparison, we can rewrite their assumptions
in the BTSBM parameterization. Their Theorem 1 requires
np, > log®n , and the gap between any two columns of P
corresponding to nodes in different communities to satisfy

min ||P., — P.,||? = Q(K®p, log n).
Cbe(v) |P. v”z (K pn g)

(17)

Under the BTSBM, it is straightforward to show that the mini-
mum in (17) is achieved by two communities corresponding to
sibling leaves in the last layer and

min [Py — Py} = 22 02(1 — ap)’.
c(u)#c(v) K™

Assume that K = O(n®) for some @ < 1. Then for sufficiently
large ¢ > 0, K?T1n=¢ = o(1). To compare our result (with
£ = d) to (17), we consider two cases.

1. Arithmetic sequence: Suppose that a, is given by a, = 1 —
r/(d + 1). Then (17) gives

K’(d+1)? logn = O(np,) <— K’ log2 Klogn = O(np,),
whereas our condition (15) is only
K(d+1)? logz'02 n = 0(np,) Klog2 Klogz‘02 n = 0(np,),

which has a much better dependence on K.
2. Geometric sequence: Suppose that a, is given by a, = .
Then the condition (17) becomes

K’ logn = O(npy).

From (16), it is easy to see that HCD-sign has a better rate in K
if y < 7/4, which is equivalent to 8 > 277/4 = 0.2973.

The algorithm proposed in Balakrishnan et al. (2011)
is similar to ours, though their analysis is rather different.
Under BTSBM, each entry in the adjacency matrix is sub-
Gaussian with parameter 1 (which cannot be improved), that
is, Eexp{a(A;; — EA;)} < exp{a?/2} for any a > 0. To recover
all mega-communities up to layer £ (with size at least n/2%,
it is easy to show that a necessary condition in their analysis
(Theorem 1) is

pn = @'1).

Thus, the consistency result in Balakrishnan et al. (2011) only
applies to dense graphs.

Lyzinski et al. (2017) developed their hierarchical commu-
nity detection algorithm under a different model they called
the hierarchical stochastic blockmodel (HSBM). The HSBM
is defined recursively, as a mixture of lower level models. In
particular, when a, = B with § < 1/2, the BTSBM is a
special case of the HSBM where each level of the hierarchy
has exactly two communities. Lyzinski et al. (2017) showed the
exact tree recovery for fixed K and the average expected degree
of at least O(y/nlog” n), implying a very dense network. By
contrast, our result allows for a growing K, and if K is fixed,
the average degree only needs to grow as fast as log'*% # for an
arbitrary £ > 1, which is a much weaker requirement, especially
considering that a degree of order log n is necessary for strong
consistency of community labels under a standard SBM with
fixed K.

3.5. Computational Complexity

We conclude this section by investigating the computational
complexity of HCD, which turns out to be better than that of K-
way partitioning, especially for problems with a large number
of communities. The intuition behind this somewhat surprising
result is that, even though HCD has to perform clustering
multiple times, it performs a much simpler task at each step,
computing no more than two eigenvectors instead of K, and the
number of nodes to cluster decreases after each step.

We start with stating some relevant known facts. Suppose we
use Lloyd’s algorithm (Lloyd 1982) for K-means and the Lanczos
algorithm (Larsen 1998) to compute the spectrum, both with a
fixed number of iterations. If the input matrix is d; x d,, the
K-means algorithm has complexity of O(d;d>K). In calculating
the leading K eigenvectors, we take advantage of matrix sparsity,
resulting in complexity O(||A[|oK) where ||A||o is the number of
nonzero entries of A. Therefore, for K-way spectral clustering,
the computational cost is

O(nK? + [|A|oK). (18)

Turning to HCD, let A;¢ denote the adjacency matrix of the
jth block in £th layer. For comparison purposes, we assume
the BTSBM and the conditions for exact recovery, so that we
construct the entire tree. Then A; ¢ corresponds to 29t nodes.
Note that for both Algorithms 1 and 2, the complexity is linear in
size. As with (18), the splitting step applied to A; ; has complexity
04 tm+ |Aj¢llo) for both HCD-sign and HCD-spec. Adding



the cost over all layers, the total computation cost becomes

d 2t
o> > @™ m+ 1Al

=1 j=1

d 2t
=0 nlogK+ "> l4jelo |,

=1 j=1

(19)

where we use the facts that K = 2¢ and n = mK. Since the
blocks corresponding in £th layer are disjoint,

2[
> 1Ajello < Ao, (20)
j=1
and thus (19) is upper bounded by
O(nlogK+ ||A||ologK). (21)

This is strictly better than the complexity of K-way spectral
clustering (18) for large K.

Moreover, the inequality (20) may be overly conservative.
Under the BTSBM, the expected number of within-block edges
in the £th layer is

2t

2
E Z 1Ajello = 2° <2d7€m> pe,  where

j=1
- po+ Z?:_f 27 1p;
pe= 2d—t ’

As a result,

d 2 d Be
EY Y lAjello = (Z T) EllAlo
=1 j=1 = < Po

dpoy + d_ d—i 2i_1 i
_ ( Pot 2 @= D27 p >E||A||0.
Po+ 2 imi 27 i

The coefficient before E||A||o is O(1) in many situations, includ-
ing Examples 1 and 2 discussed at the end of Section 3.3. In these
cases, the average complexity of HCD algorithms is only

O(nlogK + E|Allo).

Last but not least, the HCD framework, unlike K-way partition-
ing, can be easily parallelized.

4. Numerical Results on Synthetic Networks

In this section, we investigate empirical performance of HCD on
synthetic networks, both on networks with hierarchical struc-
ture and those without. We generate networks with hierarchical
structure from the proposed BTSBM, and consider BTSBMs
with a fully balanced tree and equal block sizes, which are
covered by our theory, as well as BTSBMs with unbalanced trees
and different block sizes, which are not. The nonhierarchical
networks will be generated from the regular SBM, included as
a general sanity check.

We compare methods using the following five measures of
accuracy.
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1. Accuracy of community detection, measured by normalized
mutual information (NMI) between true and estimated labels
(Yao 2003). NMI is commonly used in the network literature
(Lancichinetti and Fortunato 2009; Amini et al. 2013) and
does not require the two sets of labels to have the same
number of clusters, a property we need when comparing
trees.

2. Accuracy of recovering the hierarchical structure, measured
by the error in the tree distance matrix h|S; — Stl|3/[1ST1%
where St is defined in Section 2.4. For baseline methods that
do not output a hierarchy, we apply the HCD procedure to
their estimate of the probability matrix estimated to construct
a tree.

3. Accuracy of mega-community detection at the top two layers,
measured by the proportion of correctly clustered nodes. We
only compute this for balanced BTSBMs.

4. Accuracy of estimating the probability matrix P, measured by
1P =PI/ 1Pl

5. Accuracy of estimating K, measured by comparing the
average K with K. Spectral clustering is excluded since it
requires K as input; instead, we report the error of the non-
backtrackign estimator of K, shown to be one of the most
accurate options available for the SBM (Le and Levina 2015).

We compare the two versions of HCD (sign-based and spec-
tral clustering) with three other baseline methods: regularized
spectral clustering, the Louvain’s modularity method (Blondel
et al. 2008), which is regarded as a most competitive modularity
based community detection algorithms by empirical studies
(Yang, Algesheimer, and Tessone 2016), and the recursive parti-
tioning method of Dasgupta et al. (2006). The first two methods
are not hierarchical. Spectral clustering requires K as an input,
and we use the K estimated by hierarchical spectral clustering
(HCD-spec) for a fair comparison. For mega-communities, we
also include RSC with the true number of clusters (K = 2 for
layer 1 and K = 4 for layer 2), which can be viewed as an
oracle version of RSC. We use the default parameter settings
with regularized spectral clustering and Louvain modularity.
Unfortunately, the algorithm of Dasgupta et al. (2006) involves
several tuning parameters and the article does not provide rec-
ommendations on how to tune them. For the purposes of this
comparison, we tried a number of settings and used a configu-
ration that seemed the best on average.

While we include multiple benchmarks, the main focus of
our comparisons is on hierarchical versus K-way clustering
implemented by the same method (regularized spectral cluster-
ing), since it focuses on the central contribution of this work.
All simulation results are averaged over 100 independent repli-
cations.

4.1. Balanced BTSBM

We start with a balanced BTSBM with n = 3200 = m29,
K = 24, and the values of d = 2,3,4,5,6. The parameter £ is
set so that the average out-in ratio (between-block edge/within-
block edges) for all K is fixed at 0.15 and p, is set so that the
average node degree is 50. These values of g and p,, are not too
challenging, so we can be sure that the main impact on accuracy
comes from changing K.
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Figure 2. Results for the balanced BTSBM with n = 3200 nodes and K varying in {4, 8, 16, 32, 64}. For (a), (c), and (d) higher values indicate better performance; for (b) and

(e), lower values are better. For (f), the truth is shown as the 45° line.

Figure 2 shows the results as a function of K. First, the
difference between the two versions of HCD is negligible, with
the RSC-based splitting slightly better, so we will simply refer to
HCD in comparisons. HCD outperforms all other methods on
both finding all the communities and constructing the hierarchy
(Figures 2(a) and (b)), and as predicted by theory, the gain
increases with K. While all methods’ performance on recovering
all communities gets worse as K increases, Figures 2(c) and (d)

show that HCD recovers the two top layers of the tree essentially
perfectly for all values of K, while other methods do not. This
is also consistent with theory which predicts that hierarchical
clustering can retain full accuracy on the top levels of the tree.
HCD methods also consistently outperform other methods on
estimating the probability matrix (Figure 2(e)), as one would
expect since the probability matrix depends on accurate com-
munity estimation. Finally, while all methods underestimate the
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Figure 3. Results for the balanced BTSBM with n = 3200 nodes and varying average degree. For (a), (c), and (d) higher values indicate better performance; for (b) and (e),

lower values are better. For (f), the truth is shown as the horizontal line.

number of communities when K is large, HCD is more accurate
than other methods, except for K = 64 when Dasgupta’s method
is better. In summary, as K grows and the problem becomes
more challenging, the advantages of HCD become more and
more pronounced.

Next, we use the same configuration, except now we vary
the average degree of the network, fixing K = 16, and holding
the out-in ratio at 0.15. Results are shown in Figure 3. Again,
HCD performs better and the accuracy improves with degree as
suggested by theory. The errors of the modularity method and
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Figure 4. Examples of unbalanced community trees.

Dasgupta et al. (2006), on the other hand, appear to convergeto a
constant as the degree increases and do not suggest consistency
will hold in this setting. With an exception of one value of K
where Dasgupta’s method is closer to the true value of K, the
HCD algorithm gives the best performance for all tasks.

4.2. Unbalanced BTSBM With a Complex Tree Structure

The BTSBM gives us the flexibility to generate complex tree
structures and communities of varying sizes. However, it is
difficult to control these features with a single parameter such as
K or the average degree, so instead we just include two specific
examples as an illustration. The first example corresponds to
the hierarchical community structure shown in Figure 4(a).
It is generated by merging 4 pairs of the original communi-
ties from a balanced BTSBM with 32 communities, resulting
in K = 28 total, with 4 communities of 200 nodes each
and 24 communities of 100 nodes each. This is a challenging
community detection problem because of the large K, and the
varying community sizes make it harder. The second example
is shown in Figure 4(b). It is generated by merging 2 pairs of
leaves one level up, and 8 pairs three levels up in 32 balanced
communities again, thus making it even more unbalanced. This
tree has two communities with 800 nodes, two with 200 each,
and the remaining 12 communities have 100 nodes each. In both
examples, the average degree is 35.

Table 1 shows performance for these two examples. The HCD
methods perform better on all tasks, which matches what we
observed in balanced settings. All of the methods give reason
clustering for level-1 and level-2 mega-communities but HCD
methods are clear advantage as one moves down the tree as
indicated by NMI, probability estimation error, and similarity

Community tree

15
16

b

o < O © N~ oo o O
- -

a o <
- - -

communities

(b) Example 2

Table 1. Clustering and model estimation accuracy for Examples 1 and 2.

Performance
metric HCD-sign HCD-spec  RSC  Modularity Dasgupta
NMI 0.665 0.677  0.552 0.386 0.282
Similarity error 0.015 0.014  0.043 0.103 0.107
Example 1 P error 0.134 0.128 0214  0.343 0.352
level-1 accuracy  0.999 0.999 0992  0.996 0.988
level-2 accuracy  0.998 0.998  0.73 0.892 0.973
NMI 0.753 0.764 0626  0.533 0.335
Similarity error 0.025 0.025 0.033  0.085 0.085
Example 2 p error 0.080 0.075 0129 0.223 0.236
level-1accuracy 0999 0999 0993  0.999 0.997
level-2 accuracy  0.998 0.999 0794 0.872 0.982

Table 2. Average Kin Examples 1and 2.

Performance
metric HCD-sign HCD-spec  NB  Modularity Dasgupta
Example 1 K 16.19 1627 1045 370 24.03
(K = 28)
Example 2 K 10.11 1011 743 353 23.75
(K =16)

recovery. Table 2 shows the average selected K, and the HCD
methods are also more accurate in model selection than the
others and is inferior to Dasgupta’s method for Example 1.
However, this only exception may be due to the over-selection
of Dasgupta’s method we generally observed.

4.3. Networks With No Hierarchical Communities

As a benchmark, we also test HCD methods on networks gen-
erated from the SBM without a hierarchical structure. These



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

0.7

HCD-Spec
A HCD-Sign
o RSC
+ Louvain—-Modulairty
x Dasgupta et al.

0.6

0.5

NMI
04

0.3

Probability estimation error
0.2

0.1

0.0

HCD-Spec & o X

A HCD-Sign ></,'
o RSC 8 o
+ Louvain-Modulairty /!
>_<‘_Dasgupta etal. Q - i
4 ’

3 /! HCD-Spec

& . A HCD-Sign
<~ X o Non-Backtracking

. Louvain—-Modulairty
~x_Dasgupta et al.

10

64 4 8

(a) NMI

(b) Error in P

64

Figure 5. Results for all methods on the SBM with no hierarchy with K varied and the average degree being 50.
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Figure 6. Results for all methods on the SBM with no hierarchy with average degree varied. K is fixed to be 16 in this example.

networks are generated from the planted-partition version of
the SBM, with P;j = pif c(i) = c(j) and P = Bp if c(i) #
c(j). Since all between-community probabilities are the same,
no meaningful hierarchy can be defined. To make results fully
comparable to the previous settings, we still use K estimated by
HCD-spec as input to RSC.

Figures 5 and 6 show performance of all the methods under
consideration on clustering accuracy (measured by NMI), esti-
mating the probability matrix, and estimating K, Figure 5 as a
function of K (with average degree set to be 50) and Figure 6 as
a function of average degree (with K = 16). In this nonhier-
archical standard SBM setting, the non-backtracking method
estimator gives the best estimate of K and regularized spec-
tral clustering and Louvain modularity have the best clustering
accuracy, which is not surprising. Unlike in hierarchical settings
considered so far, HCD-spec works substantially better than
HCD-sign, but is still inferior to RSC. Louvain modularity can
be slightly better than RSC in easy settings (small K or high
degree), but it degrades quickly as the problem becomes harder.
We also observed that the both non-backtracking method and
the HCD estimate a small K when the problem becomes really

difficult, which could be seen as indirect evidence that there is
just not enough signal to find communities in those settings.

Results in this nonhierarchical setting match empirical
observations on clustering in Euclidean space from computer
science (Shiand Malik 2000; Kannan, Vempala, and Vetta 2004).
In practice, we will not know whether the community structure
is hierarchical, although the completely flat structure of the
planted partition model is not likely to occur naturally. However,
as Figure 5 shows, all methods fail completely with K > 16
if there is no hierarchical structure; it might be that for large
K community detection is the only possible when there is a
hierarchy anyway.

5. Hierarchical Communities in Genes Associated
With Anemia

We illustrate the HCD method by fitting hierarchical commu-
nities to a network of genes that have been found to associate
with anemia. Another detailed example of hierarchical commu-
nities of topics in statistical research literature is included in
Appendix F in the supplementary materials.
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Figure 7. Hierarchical communities in a network of 140 genes associated with anemia.

Anemia is a blood disease that is caused by either a decrease
in the number of red blood cells, or a general lower capability
of the blood for oxygen transport. Arguably the most common
blood disorder, it was estimated by the World Health Organi-
zation to affect roughly a quarter of humans globally in 2005
(De Benoist et al. 2008). Causes for anemia include acute blood
loss, an increased breakdown of red blood cell populations or
a decreased production of red blood cells. The causes for an
increased breakdown of red blood cells also include genetic
conditions, for example, sickle-cell anemia. Here, we investigate
associations between genes in the context of anemia using the
DigSee framework (Kim, Kim, and Lee 2017), which identi-
fies disease-related genes from Medline abstracts. We look for
associations of anemia with biological events related to muta-
tion, gene expression, regulation and transcription. A total of
4449 papers were found that link genes to anemia. We only
retain papers that link at least two genes to anemia, resulting
in a set of 1580 papers that relate anemia to the biological
events defined above. In total, 1657 genes are mentioned across
these papers. We represent the gene co-occurrence information
by a network in which two genes are connected if they were
mentioned together in at least two papers. Following Wang
and Rohe (2016), we focus on the 3-core of the largest con-
nected component of the network, ignoring the periphery which
typically carries little information about the structure of the
core. The resulting network, shown in Figure 7(a), has 140
nodes (genes) and the average node degree is 7.03. Genes are
frequently organized into trees, for instance, the gene ontology
tree (Ashburner et al. 2000; Mistry and Pavlidis 2008), where
functionally similar genes are expected to be close to each other
in the tree. While co-occurrence in academic research papers
is not the same as functional similarity, it can be intuitively

viewed as another approximation to the gene tree. The hierar-
chical clustering result on the 140 genes is robust to the core
extraction step, since it is similar to the result on the largest
connected component of the initial network (see Appendix E
in the supplementary materials).

The community labels and hierarchy returned by the HCD-
sign algorithm are given in Figures 7(a) and (b), respectively.
The gene communities turn out to be associated with different
types of anemia or different processes causing the disease. We
use the MSigDB database (Liberzon et al. 2011) to perform
enrichment analysis and define enriched gene ontology terms
by computing overlaps with known functional gene sets using a
hypergeometric distribution, as a way to interpret the commu-
nities. Table 3 provides a summary of high-level interpretations.

The left branch of the dendrogram consists of communities
1 and 2. The major biological processes related to these commu-
nities are both involved in the activation of cells due to exposure
to a factor, leading to the activation of immune cells and hence
contributing to an immune response (Liberzon et al. 2011).
Indeed, many genes in these communities are associated with
“cluster of differentiation molecules,” which are genes coding
for cell surface markers that can be used by the immune system
to activate cells and communicate, amongst others (Zola et al.
2007).

The right branch of the hierarchical splitting tree consists of
four communities resulting from three sequential splits. Com-
munity 3 contains several genes coding for interleukins, the
signaling molecules that are mainly used by the immune sys-
tem, and other signaling related genes such as MAP kinases.
The most significant gene set for this community, response to
cytokine, confirms that these genes are related to molecular
signaling within the immune system. Community 4 is well sepa-



Table 3. Most significantly enriched gene sets for each community.

Community Most significantly enriched gene set
1 Cell activation involved in immune response
2 Cell activation
3 Response to cytokine
4 DNA repair
5 Cytokine mediated signaling pathway
6 Oxygen transport

rated in the network. Nine out of the 16 genes in the community
are related to the FANC protein core complex, a set of proteins
that have been linked to fanconi anemia. The fanconi anemia
pathway is involved in removing DNA interstrand crosslinks
(ICL), a form of DNA repair, during DNA replication and
transcription (Ceccaldi, Sarangi, and D’Andrea 2016). Studies
have related the mutations in these genes (typically FANCA,
FANC, and FANCG) to bone marrow failure (Schneider et al.
2017). Related, the most significantly enriched gene ontology
term of this community is DNA repair. The conjecture that the
genes in community 4 are related to fanconi anemia can be
verified by checking the keywords in the titles. Specifically, for
each community, we define its “signal” papers to be the set of
papers that link at least two genes within the same community.
Within this set, we found 68% of the signal papers for com-
munity 4 have the word “fanconi” in their titles, significantly
more than other communities (see Figure 8(a)). The most sig-
nificantly enriched biological process for genes in community
5 is related to cytokine signaling. It contains one of the core
genes of the FANC protein core complex (the gene “FANCC”
in Figure 7(a)), which interestingly connects many FANC genes
with the other genes in the network, therefore, acting as a
connection between the fanconi anemia community and the
remainder of the network. Finally, the genes in community
6 are related to oxygen transport. Note that impaired oxygen
transport can be a result of insufficient healthy red blood cells
to transport oxygen around the body. Sickle-cell anemia, caused
by a mutation in the hemoglobin-beta (HBB) gene, results in
red blood cells with a sickle-like morphology that impairs their
oxygen transport. We hypothesize that the genes in this com-
munity are thus related to sickle-cell anemia. Indeed, the sickle-
cell anemia causative gene, HBB, is a hub in community 6 (see
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(a) Papers with “fanconi” in the title.
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Figure 7(a)). Correspondingly, the fraction of signal papers for
community 6 that mention the word “sickle” or “thalassemia” is
significantly higher than in other communities (see Figure 8(b)).

For comparison, we also applied regularized spectral clus-
tering to the dataset, with results reported in Appendix E in
the supplementary materials. The clustering labels of the RSC
match 72% of the HCD labels. However, community sizes from
RSC are very unbalanced, and interpretation is more difficult,
and of course, there is no hierarchy. A more formal compar-
ison between the BTSBM and the SBM fit to this dataset can
be carried out by comparing their ability to predict held-out
links. Following the framework of the ECV procedure of Li,
Levina, and Zhu (2020), we randomly hold out 10% of the
adjacency matrix entries as test data and then fit both models
using the remaining 90% as the training data. Then the presence
or absence of alink in the held-out entries can be predicted from
the fitted probabilities of edges for those entries. A standard
way to quantify link prediction performance is the area under
the ROC curve (AUC) (Wu, Levina, and Zhu 2018). Over 100
replications, we obtain the average predictive AUC of 0.829
for the BTSBM; the SBM performs noticeably worse, with an
average predictive AUC of 0.776. This advantage suggests a hier-
archical representation fits this network better, which matches
the intuitive analogy about the gene ontology tree. The details
are included in Appendix E in the supplementary materials.

To further explore the biological relevance of the hierarchical
results, we compared the functional similarity between genes in
communities at different levels of the tree. Functional similarity
between genes can be measured by their semantic similarity
along the gene ontology tree (Ashburner et al. 2000). We used
the TopoICSim algorithm (Ehsani and Drables 2016) to quan-
tify gene-gene similarities between genes based on their “biolog-
ical process” functional annotation (Ashburner et al. 2000; Bar-
rell et al. 2009). We found that, as expected, communities at the
first (top) level of the tree have a lower semantic similarity (and
hence more distant gene functions) than communities that split
up further down the tree, which provides another indirect piece
of evidence of biological relevance of the hierarchy (Appendix
Figure E.2(a) in the supplementary materials). One exception
is community 6, which is at the lowest level of the tree and has
the lowest semantic similarities. However, nodes in community
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(b) Papers with “sickle” or “thalassemia” in the title.

Figure 8. The proportion of papers with certain key words in the title, out of the signal papers for each community (papers that mention at least 2 genes within that

community).
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6 have a lower expected degree than in any other community,
with many nodes having the minimum number of 3 edges
(Appendix Figure E.2(a) in the supplementary materials), so this
community can be expected to have lower average similarities
between nodes.

6. Discussion

We studied recursive partitioning as a framework for hierarchi-
cal community detection and proposed two specific algorithms
for implementing it, using either spectral clustering or sign split-
ting. This framework requires a stopping rule to decide when
to stop splitting communities, but otherwise is tuning-free. We
have shown that in certain regimes recursive partitioning has
significant advantages in computational efficiency, community
detection accuracy, and hierarchal structure recovery, compared
with K-way partitioning. An important feature of hierarchical
splitting is that it can recover high-level mega-communities
correctly even when all K smaller communities cannot be recov-
ered. It also provides a natural interpretable representation of
the community structure, and induces a tree-based similarity
measure that does not depend on community label permuta-
tions and allows us to quantitatively compare entire hierarchies
of communities. The algorithm itself is model-free, but we
showed it works under a new model we introduced, the binary
tree SBM. Under this model, the hierarchical algorithm based
on sign splitting is consistent for estimating both individual
communities and the entire hierarchy. We conjecture that the
advantage of hierarchical clustering carries over to more general
models; more work will be needed to establish this formally.

Supplementary Materials

The online supplementary materials contain our proofs for the theoretical
results, additional details of the Anemia example, and one additional exam-
ple of using HCD to analyze a citation network.
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