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Abstract 

A mathematical analysis of the evolution of a large population under the weak-mutation limit shows that 

such a population would spend most of the time in stasis in the vicinity of saddle points on the fitness 

landscape. The periods of stasis are punctuated by fast transitions, in lnNe/s time (Ne, effective 

population size; s, selection coefficient of a mutation), when a new beneficial mutation is fixed in the 

evolving population, which accordingly moves to a different saddle, or on much rarer occasions, from a 

saddle to a local peak. Phenomenologically, this mode of evolution of a large population resembles  

punctuated equilibrium (PE) whereby phenotypic changes occur in rapid bursts that are separated by 

much longer intervals of stasis during which mutations accumulate but the phenotype does not change 

substantially. Theoretically, PE has been linked to self-organized criticality (SOC), a model in which the 

size of ‘avalanches’ in an evolving system is power-law distributed, resulting in increasing rarity of 

major events. Here we show, however, that a PE-like evolutionary regime is the default for a very simple 

model of an evolving population that does not rely on SOC or any other special conditions. 

 

Significance 

The gradual character of evolution is a key feature of the Darwinian worldview. However, 

macroevolutionary events are often thought to occur in a non-gradualist manner, in a regime known as 

punctuated equilibrium, whereby extended periods of evolutionary stasis are punctuated by rapid 

transitions between states. Here we analyze a simple mathematical model of population evolution on 

fitness landscapes and show that, for a large population in the weak-mutation limit, the process of 

adaptive evolution consists of extended periods of stasis, which the population spends around saddle 

points on the landscape, interrupted by rapid transitions to new saddle points when a beneficial mutation 

is fixed. Thus, phenomenologically, the default regime of biological evolution seems to closely resemble 

punctuated equilibrium. 
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Introduction 

Phyletic gradualism, that is,  evolution occurring via a succession of mutations with infinitesimally small 

fitness effects, is a central tenet of Darwin’s theory (1). However, the validity of gradualism has been 

questioned already by Darwin’s early, fervent adept, T.H. Huxley (2), and subsequently, many non-

gradualist ideas and models have been proposed, to account, primarily, for macroevolution. Thus, 

Goldschmidt (in)famously championed the hypothesis of “hopeful monsters”, macromutations that 

would be deleterious in a stable environment but might give their carriers a chance for survival after a 

major environmental change (3). Arguably, the strongest motivation behind non-gradualist evolution 

concepts was the notorious paucity of intermediate forms in the fossil record. It is typical in 

paleontology that a species persists without any major change for millions of years, but then, is abruptly 

replaced by a new one. The massive body of such observations prompted Simpson, one of the founding 

fathers of the Modern Synthesis of evolutionary biology,  to develop the concept of quantum evolution 

(4), according to which species, and especially, higher taxa emerged abruptly, in ’quantum leaps’, when 

an evolving population rapidly moves to a new ’adaptive zone’, or using the language of mathematical 

population genetics, a new peak on the fitness landscape. Simpson proposed that the quantum evolution 

mechanism involved fixation of unusual allele combinations in a small population by genetic drift, 

followed by selection driving the population to the new peak. 

 

The idea of quantum evolution received a more systematic development in the concept of punctuated 

equilibrium (PE) proposed by Eldredge and Gould (5-8). The abrupt appearance of species in the fossil 

record prompted Eldredge and Gould to postulate that evolving populations of any species spend most of 

the time in the state of stasis, in which no major phenotypic changes occur (9, 10). The long intervals of 

stasis are punctuated by short periods of rapid evolution during which speciation occurs, and the 

previous dominant species is replaced by a new one. Gould and Eldredge emphasized that PE was not 

equivalent to the “hopeful monsters” idea, in that no macromutation or saltation was proposed to occur, 

but rather, a major acceleration of evolution via rapid succession of ‘regular’ mutations that resulted in 

the appearance of instantaneous speciation, on geological scale. The occurrence of PE is traditionally 

explained via the combined effect of genetic drift during population bottlenecks and changes in the 

fitness landscape that can be triggered by environmental factors (11).  

 

Punctuated equilibrium has been explicitly linked to the physical theory of self-organized criticality 

(SOC). Self-organized criticality, a concept developed by Bak and colleagues (12), is an intrinsic 

property of dynamical systems with multiple degrees of freedom and strong nonlinearity. Such systems 
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experience serial ‘avalanches’ separated in time by intervals of stability (the avalanche metaphor comes 

from Bak’s depiction of SOC on the toy example of a sand pile, on which additional sand is poured, but 

generally denotes major changes in a system). A distinctive feature of the critical dynamics under the 

SOC concept is self-similar (power law) scaling of avalanche sizes (12-18). The close analogy between 

SOC and PE was noticed and explored by Bak and colleagues, the originators of the SOC concept, who 

developed models directly inspired by evolving biological systems and intended to describe their 

behavior (12, 15, 16, 18). In particular, the popular Bak-Sneppen model (15) explores how ecological 

connections between organisms (physical proximity in the model space) drive co-evolution of the entire 

community. Extinction of the organisms with the lowest fitness disrupts the local environments and 

results in concomitant extinction of their closest neighbors. It has been shown that, after a short burn-in, 

such systems self-organize in a critical quasi-equilibrium interrupted by avalanches of extinction, with 

the power law distribution of avalanche sizes. 

 

A distinct but related view of macroevolution is encapsulated in the concept of major transitions in 

evolution developed by Szathmary and Maynard Smith (19-21). Under this concept, major evolutionary 

transitions, such as, for instance, emergence of multicellular organisms, involve emergence of new levels 

of selection (new Darwinian individuals), in this case, selection affecting ensembles of multiple cells 

rather than individual cells. These evolutionary transitions resemble phase transitions in physics (22) and 

appear to occur rapidly, compared to the intervals of evolution within the same level of selection. The 

concept of evolutionary transitions can be generalized to apply to the emergence of any complex feature 

including those that do not amount to a major change in the level of biological  organization (23).  

 

We sought to assess the validity of evolutionary gradualism by mathematically investigating the simplest 

conceivable model of population evolution on a rugged fitness landscape (24). We show that, under the 

basic assumptions of a large population size and low mutation rate (weak-mutation limit), an evolving 

population spends most of the time in stasis, i.e. percolating through near-neutral mutational networks 

around saddle points on the landscape. The intervals of stasis are punctuated by rapid transitions to new 

saddle points after fixation of beneficial mutations. Thus, contrary to the general perception of the weak-

mutation limit as a paragon of gradualism (25), we find that the default evolutionary mode in this regime 

resembles PE while not requiring SOC or any other special conditions.  
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Results 

Agent-based model of competitive exclusion 

We consider a well-mixed population of a large constant size N consisting of individuals, each with a 

specific genotype. To avoid dealing with the overwhelming complexity of the space of all genotypes, we 

work with a coarse-grained model that groups similar genotypes into ‘types’.  The genotypes within the 

same type are considered to be homogeneous and densely connected by the mutation network. The only 

homogeneity assumption we need to make is that, within each type, the variations in fitness and 

available transitions to other classes due to mutations are negligible. We also assume that sizes of 

different types are comparable. The set of all types is denoted by 𝕋. 

The evolution of a population within the model involves reproduction and mutation. Reproduction of 

individuals occurs under the Moran model widely used in population genetics, that is, with rates 

proportional to their fitness. and is accompanied by removal of random individuals to keep N constant 

(26). Mutations are modeled by transitions in a mutational network E that might involve one or more 

elementary genetic mutations. The individual mutation rate  is assumed to be low compared to the 

reproduction rates. The evolutionary regime depends on: i) the geometry of the graph (𝕋,E), ii) the 

fitness function f, iii) the values of parameters N and , iv) the initial configuration. 

Let us now describe our basic model in more detail. We assume that the population size is a large 

number 𝑁, constant in time. The set 𝕋 of all possible types is finite or countable. It can be viewed as a 

graph with adjacency matrix (𝐸𝑖𝑗)𝑖,𝑗∈𝕋. Two distinct types 𝑖, 𝑗 are connected by an edge if they differ by 

a mutation (at the scale of the model, a mutation is assumed to occur instantaneously and without 

intermediate steps). In that case, we set 𝐸𝑖𝑗 = 1. Otherwise, 𝐸𝑖𝑗 = 0. 

Each type 𝑖 ∈ 𝕋 is assigned a fitness value 𝑓𝑖 > 0 which is identified with the reproduction rate. The 

numbers 𝑓𝑖 are assumed to be distinct and of the order of 1 (more precisely, bounded), so essentially, 

time is measured in reproductions. It is convenient to work with relative sizes 𝑦𝑖of type populations 

(fractions) with respect to the total population size 𝑁. We denote by 𝛥 the space of sequences (𝑦𝑖)𝑖∈𝕋 

such that 𝑦𝑖 ≥ 0 for all 𝑖 and ∑ 𝑦𝑖𝑖∈𝕋 = 1 . Denoting the fraction of individuals of type 𝑖 ∈ 𝕋 present in 

the population at time 𝑡 ∈ ℝ by 𝑥𝑖(𝑡) (taking values 0,𝑁−1, 2𝑁−1, …), we define random evolution of 

the vector (𝑥𝑖(𝑡))𝑖∈𝕋 ∈ 𝛥 as a continuous time pure jump 𝛥-valued Markov process, by specifying the 

transition rates. A single individual of type 𝑖 ∈ 𝕋 produces new individuals of the same type 𝑖 at the rate 

𝑓𝑖. Each reproduction is accompanied by removal of one individual that is randomly and uniformly 
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chosen from the entire population. Thus, the total rate of reproduction of individuals of type 𝑖 is 𝑁𝑥𝑖𝑓𝑖. 

Given that an individual of type 𝑖 is reproducing, the probability that the child individual will replace an 

individual of type 𝑗 is 𝑥𝑗. Thus, the total rate of simultaneous change 𝑥𝑖 → 𝑥𝑖 + 𝑁
−1 and 𝑥𝑗 → 𝑥𝑗 − 𝑁

−1 

is 𝑁𝑓𝑖𝑥𝑖𝑥𝑗. Let us now introduce mutations. We will assume that mutation rates are much lower than the 

reproduction rates. To model this, we introduce a small parameter 𝜆 > 0. The rate of replacement of an 

individual of type 𝑖 ∈ 𝐼(𝑥), where 

𝐼(𝑥) = {𝑖 ∈ 𝕋:  𝑥𝑖 > 0}, 𝑥 ∈ 𝛥, 

by an individual of type 𝑗 is given by 𝜆𝐸𝑖𝑗 ∈ {0, 𝜆}. The total rate of such transitions occurring in a 

population is 𝑁𝜆𝐸𝑖𝑗𝑥𝑖. 

In what follows, we derive the PE-like evolutionary regime from several reasonable 

assumptions on the geometry of the graph, the fitness function, population size, mutation rates 

and the initial state. Our results can be viewed as similar to those in previous work (27-29), where 

more mathematically sophisticated models were considered. However, our simple model allows 

for a more transparent analysis that is conducive to biological implications and we use it here to 

tie the  PE concept to noisy dynamics near heteroclinic networks (30, 31) and emphasize the 

importance of saddle points on the landscape for the evolutionary process. 

Evolution without mutations in the infinite population size limit 

In this section, we examine the case where, in an infinite population, 𝜆 = 0, i.e., there are no mutations, 

and approximate the dynamics of our stochastic model by that of a deterministic ODE 

𝑥̇𝑖 = 𝑏𝑖(𝑥), 𝑖 ∈ 𝕋,                                                                                               (1) 

with the right-hand side given by 

𝑏𝑖(𝑥) = 𝑥𝑖(𝑓𝑖 − 𝑓‾(𝑥)),                     

where 𝑓‾(𝑥) = ∑ 𝑓𝑗𝑥𝑗𝑖∈𝕋  is the average fitness for the population state 𝑥. The system (1) is a well-known 

competitive exclusion system (see, e.g., (2.15)–(2.16) of (32)) restricted to nonzero components of 𝑥. 

Equation (1) emerges due to the averaging effect and can be viewed as a law of large numbers for our 

model. 

To state the results, we need to introduce some notations and definitions. We denote 𝐼 = 𝐼(𝑥(0)) for 

brevity and note that, given the absence of mutations, our stochastic model and ODE (1) are defined on 



7 
 

7 
 

the simplex 𝛥𝐼 = {𝑥 ∈ ℝ+𝐼 : ∑ 𝑥𝑖𝑖∈𝐼 = 1}. This simplex is the convex hull of its vertices 𝑒(𝑖), 𝑖 ∈ 𝐼, 

corresponding to pure states where only one type is present: 

𝑒𝑘
(𝑖)
= {

1, 𝑖 = 𝑘,
0, 𝑖 ≠ 𝑘.

  

One of these vertices plays a special role. Let 𝑖∗ be the type with maximum fitness 𝑓∗  (within I), that is, 

𝑓∗ = 𝑓𝑖∗ = max𝑖∈𝐼𝑓𝑖. We will see that 𝑒(𝑖∗) is an attractor for both deterministic dynamical system 

defined by (1) and for our stochastic model.  

Solutions of the system (1) admit a concise analytic form (33): 
 

𝑥𝑖(𝑡) =
𝑥𝑖(0)𝑒

𝑓𝑖𝑡

∑ 𝑥𝑗(0)𝑒
𝑓𝑗𝑡

𝑗∈𝐼

,      𝑖 ∈ 𝐼. 

Since we assumed that the fitness values for each type are distinct, this formula implies 

straightforwardly that 𝑥(𝑡) converges to 𝑒(𝑖∗) exponentially fast, with exponential rate given by the 

selection coefficient  

s=𝑓∗ − 𝑓∗∗,                                                                         (2) 

 

where 𝑓∗∗ is the second largest fitness value in 𝐼. On the one hand, our main approximation result given 

below implies that this attraction to the maximum fitness state 𝑒(𝑖∗), under typical conditions holds also 

for the stochastic agent-based system; on the other hand, it quantifies possible deviations from this 

behavior.  

For the approximation result, we need to define the discrepancy 

𝐷(𝑡) = 𝑥(𝑡) − 𝛷𝑡𝑥(0),                                                                  (3) 

where 𝑥(𝑡) is the Markov process without mutations and for any 𝑦, 𝛷𝑡𝑦 is the solution of ODE (1) with 

the initial condition 𝑦, at time 𝑡. We are going to estimate the maximum discrepancy up to time 𝑡, i.e., 

𝐷∗(𝑡) = sup
𝑢∈[0,𝑡]

∥ 𝐷(𝑢) ∥, where ∥⋅∥ is the 𝐿1 norm in ℝ𝐼 defined by 

∥ 𝑥 ∥= ∑ |𝑖∈𝐼 𝑥𝑖|.                                                                           (4) 

We assume that the number of types |𝐼| is small compared to the population size, more precisely, there is 

𝜇 < 1/2 such that 

|𝐼| ≤ 𝑁𝜇 .                                                                                      (5) 
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Because this model does not include mutations, if a type 𝑖 becomes extinct at time 𝑡0, i.e., 𝑥𝑖(𝑡0) = 0, 

then, 𝑥𝑖(𝑡) = 0 for all 𝑡 ≥ 𝑡0. We denote the event on which no type 𝑖 ∈ 𝐼 becomes extinct before time 𝑡 

by 𝐵𝑡 = {𝐼(𝑥(𝑢)) = 𝐼 for all 𝑢 ∈ [0, 𝑡]}. Events from a sequence (𝐴𝑁)𝑁∈ℕ are stretch-exponentially 

unlikely (SE-unlikely) if for some 𝐶, 𝛾 > 0, 

𝖯(𝐴𝑁) ≤ 𝐶𝑒
−𝑁𝛾 , 𝑁 ∈ ℕ. 

This is fast decay in 𝑁, just short of being truly exponentially fast. We are now ready to state our main 

result for the system without mutations and to examine the meaning of each of its parts. 

 

Theorem 1.  Assume (5). Then: 
 

1. There are constants 𝑐, 𝛽 > 0 such that events  𝐵𝑐ln𝑁 ∩ {𝐷
∗(𝑐ln𝑁) > 𝑁−𝛽} are SE-unlikely. 

2. Let 𝛽 be defined in Part 1 of the Theorem. Then, for any 𝛿 < 𝛽, there is a constant 𝐶 > 0 such that, 

conditioned on the non-extinction of type 𝑖∗, and up to a SE-unlikely event, |𝑥(𝐶ln𝑁) − 𝑒(𝑖∗)| ≤

𝑁−𝛿. 

3. There are constants 𝐶′, 𝛼 > 0 such that, if |𝑥(0) − 𝑒(𝑖∗)| ≤ 𝑁−𝛿, then 

𝖯{𝑥(𝐶′ln𝑁) = 𝑒(𝑖∗)} > 1 − 𝑁−𝛼 .   

 

4. There is a number 𝑝 > 0 that does not depend on 𝑁, such that the probability of non-extinction of 

type 𝑖∗ is bounded below by 𝑝 for all initial conditions 𝑥(0) satisfying 𝑥𝑖∗(0) > 0. 

5. For any 𝛿 ∈ (0,1), if 𝑥𝑖∗(0) > 𝑁−𝛿, then, extinction of type 𝑖∗ is SE-unlikely. 

Part 1 of the theorem shows that, up to time 𝑐ln𝑁, if no type gets extinct, the stochastic process 𝑥(𝑡) 

follows the deterministic trajectory 𝛷𝑡𝑥(0) very closely, deviating from it at most by 𝑁−𝛽. This happens 

with a probability very close to 1, exceptions being stretch-exponentially unlikely. 

Part 2 shows that, if type 𝑖∗ does not die out, then, with a high probability, by time 𝐶ln𝑁, it will 

dominate the population whereas all other types will be almost extinct. The proof of the Theorem shows 

that 𝐶 = 1/𝑠, where s is the exponential rate of attraction to 𝑒(𝑖∗) given by the 

the selection coefficient and defined by (2). 
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Part 3 means that, after realization of the scenario described in Part 2 and an additional logarithmic time, 

𝑖∗ will be the only surviving type. 

Part 1 is conditioned on the non-extinction of any type, whereas Part 2 is conditioned on the non-

extinction of type 𝑖∗. If any type 𝑖 dies out, Part 1 still applies to the continuation of the process on the 

simplex 𝛥𝐼\{𝑖} of a lower dimension. By contrast, for Part 2 to be meaningful, we need to provide a 

bound on the non-extinction of 𝑖∗. This is done in Parts 4 and 5. 

Part 4 states that there is a positive probability (independent of the population size) that the progeny of 

even a single individual of type 𝑖∗ will drive out all other types.  

Part 5 states that, once the fraction of the individuals of type 𝑖∗ reaches a (small) threshold 𝑁−𝛿, 

then, it is almost certain that 𝑖∗ will dominate the population.  

To summarize these results, the chance of extinction for the fittest  type is non-negligible 

only when there are very few individuals of this type, that is, when the initial state 

involves a recent mutation that produced a single individual of this type. Once the 

number of individuals reaches a certain modest threshold, the typical, effectively 

deterministic, behavior will follow the trajectory of (1) closely, eventually reaching the 

pure state of fixation where only individuals of type i∗ are present. The proof of Theorem 1 

is given in the end of this Section. Now, we turn to the analysis of the dynamics generated 

by ODE (1). 

 

Heteroclinic network 

The points 𝑒(𝑘) are hyperbolic critical points (saddles) of various indices (the index of a saddle is the 

number of negative eigenvalues of the linearization of the vector field at that saddle). We can find these 

eigenvalues and associated eigenvectors explicitly. The linearization (𝜕𝑗𝑏𝑖(𝑒(𝑘))) of 𝑏 at 𝑒(𝑘) is: 

𝜕𝑘𝑏𝑘(𝑒
(𝑘)) = −𝑓𝑘 ,

𝜕𝑖𝑏𝑘(𝑒
(𝑘)) = −𝑓𝑖 ,  𝑖 ≠ 𝑘,

𝜕𝑖𝑏𝑖(𝑒
(𝑘)) = 𝑓𝑖 − 𝑓𝑘 ,  𝑖 ≠ 𝑘,

𝜕𝑗𝑏𝑖(𝑒
(𝑘)) = 0,  𝑗 ≠ 𝑖, 𝑖 ≠ 𝑘.

  

Therefore, for each 𝑖 ∈ 𝐼 such that 𝑖 ≠ 𝑘, there is an eigenvalue 𝑓𝑖 − 𝑓𝑘 of (𝜕𝑗𝑏𝑖(𝑒(𝑘))) with an 

eigenvector 𝑒(𝑖) − 𝑒(𝑘) pointing along the simplex edge connecting 𝑒(𝑘) and 𝑒(𝑖). These eigenvectors 

span the simplex 𝛥𝐼 , so the additional eigenvalue −𝑓𝑘 with eigenvector 𝑒(𝑘) that is transversal to 𝛥𝐼  can 

be ignored. To demonstrate explicitly that the vertex 𝑒(𝑘) is a saddle, we note that the eigendirections 



10 
 

10 
 

given by 𝑒(𝑖) − 𝑒(𝑘) are stable or unstable, depending on the sign of the associated eigenvalue, i.e., on 

whether 𝑓𝑖 < 𝑓𝑘 or 𝑓𝑖 > 𝑓𝑘. Moreover, there is a heteroclinic connection (a trajectory connecting two 

distinct saddle points) between 𝑒(𝑖) and 𝑒(𝑘). This trajectory coincides with the simplex edge between 

𝑒(𝑖) and 𝑒(𝑘) and corresponds to the presence of exactly two types 𝑖, 𝑘. The dynamics along this 

trajectory is described by the logistic equation 

𝑥̇𝑖 = (𝑓𝑖 − 𝑓𝑘)𝑥𝑖(1 − 𝑥𝑖).                                

(see Figure 1 for the phase portrait).  

The key feature of this dynamics is a heteroclinic network formed by trajectories connecting saddle 

points to one another. The vertex 𝑒(𝑖∗) is a sink (the saddle with the maximal index) if considered in 𝛥𝐼 , 

but it can also be viewed as a saddle in simplices of higher dimensions based on coordinates (types) that 

include those with higher fitness than 𝑓∗. The types with higher fitness will appear if we include 

mutations into the model. 

Evolutionary process with mutations 

We now consider the full process with positive but small mutation rate 𝜆 and recall that, for each type 

𝑖 ∈ 𝐼(𝑥), the rate of mutation to type 𝑗 is given by 𝜆𝐸𝑖𝑗 . We consider here only relatively late stages 

of evolution that are preceded by extensive evolutionary optimization so that the overwhelming 

majority of the mutations are either deleterious or at best neutral. More precisely, we assume 

that there is a constant M such that for each 𝑖 ∈ 𝐼(𝑥), the total number of available fitness-increasing 

(beneficial) mutations, that is, vertices 𝑗 ∈ 𝕋 such that 𝐸𝑖𝑗 = 1 and 𝑓𝑗 > 𝑓∗, is bounded by 𝑀. Our first 

assumption on the magnitude of 𝜆 is that  

𝑟(𝑁) = 𝜆𝑁ln𝑁/𝑠 ≪ 1, 

where 𝑠 is the selection coefficient defined in (2).       

 

According to Theorem 1 and the accompanying discussion, if the evolutionary process is conditioned 

on the survival of type 𝑖∗, then, typically, it takes 𝐶ln𝑁 time for the process 𝑥𝑖∗(t) to reach 1 

(fixation), where 𝐶 = 1/𝑠. The probability of a beneficial mutation during this time interval is bounded 

by                              

 1 − 𝑒−𝑀𝑁𝜆𝐶ln𝑁 = 1 − 𝑒−𝑀𝑟(𝑁) ≤ 𝑀𝑟(𝑁).                                                    (6) 

Thus, the population is unlikely to produce a new beneficial mutation before it reaches the state 
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of fixation where type 𝑖∗ is the only surviving one. Once a new beneficial mutat ion occurs 

and, accordingly, a new best -f i t type emerges, it either gets extinct quickly or gets fixed in 

the population, in time of the order ln𝑁/𝑠. The trajectory, driven by differential reproduction of 

random mutations, closely follows the heteroclinic connection, i.e., the line connecting two vertices 

of the simplex 𝛥. The entire process can be described as follows: there is a moment when 𝑖∗  is the 

only type present, after which it takes time of the order (kλN)-1  to produce a new beneficial 

mutation, where k is the number of beneficial mutations that are available from 𝑖∗ . Then, it takes 

time of the order ln𝑁/𝑠 for this fittest type to take over the entire population, after which the 

process repeats. At least for mutations with a relatively large 𝑠, on the order of 0.01-0.1, this 

time is much shorter than the time the population spends in the vicinity of a saddle point, 

“waiting” for the beneficial mutation to occur.  

Now consider deleterious mutations. There are N individuals, and each produces a 

suboptimal (lower fitness) type with the rate λL, where L is the number of available 

deleterious mutations. Using the Poisson  distribution, we obtain that, by the time 𝑡, it is 

highly unlikely to produce more than 𝑡NλL new suboptimal individuals. If 𝑡 = ln𝑁/𝑠, 

then, this number is λLN lnN/𝑠 , so requiring 

𝜆𝐿ln𝑁/𝑠 ≪ 1,                                                                                   (7) 

we obtain 𝜆𝐿𝑁ln𝑁/𝑠 ≪ 𝑁, that is, over the travel time between saddles, the emerging individuals with 

deleterious mutations constitute an asymptotically negligible fraction of the entire population. Thus, the 

trajectory 𝑥(𝑡) will be altered only by a term converging to 0 as 𝑁 → ∞. 

The resulting picture is as follows: the evolving population spends most of the time in a 

‘dynamic stasis’ near saddle points. During this stage, a dynamic equilibrium exists under 

purifying selection: deleterious mutations constantly produce individuals with fitness lower 

than the current maximum, and these individuals or their progeny die out. On time scale 

of (kλN)−1, a new beneficial mutation will occur, and then, either the new type will go 

extinct fast (in which case, the population has to wait for another beneficial mutation) or 

will get fixed such that, in time lnN/𝑠, the new type (followed by a small, dynamic cloud of 

suboptimal types) will constitute the bulk of the population. The transition from one most 

common type to the next occurs along the heteroclinic trajectory coinciding with the edge 

of the infinite-dimensional simplex connecting the two vertices corresponding to monotypic 

populations. This iterative process of fast transitions between long stasis periods spent 

near saddle points is typical of noisy heteroclinic networks, as demonstrated in early, semi-
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heuristic work (34) (35, 36), and later, rigorously(30, 31). However, the two types of noisy 

contributions, from reproduction and mutation, play distinct roles here, so although the 

general punctuated character of the process that we describe here is the same as in the 

previous studies, their results do not apply to our case straightforwardly. 

 

Because the process is random, deviations from this general description eventually will 

occur. Stretch-exponentially unlikely, extremely rare events can be ignored. However, 

the right-hand side of Eq. (6), albeit small, does not decay stretch-exponentially, and so, 

with a non-negligible frequency, a new beneficial mutation would appear before the current 

fittest type takes over the entire population. The result will be clonal interference such 

that the current fittest type starts being replaced with the new one before reaching 

fixation. 

Taking the structure of the landscape into account 

In general, the structure of the landscape can be complicated. The available information on 

the structure of complex landscapes is limited, and there are few mathematical results.   

Several rigorous results based on random matrix theory have been obtained for centered 

Gaussian fields on Euclidean spheres of growing dimension with rotationally invariant 

covariances of polynomial type (37, 38). For those models, the average numbers of saddles 

of different indices at various levels of the landscape have been shown to grow 

exponentially with respect to the dimension of the model, and a variational characterization 

of the exponential rates has been obtained. Although formally limited to concrete models, 

these results indicate that there are many local maxima and many more saddle points in 

such complex landscapes.  In the context of the evolutionary process, this indicates that the 

evolutionary path through a sequence of temporarily most fit types is likely to end up not in 

a global but in a local maximum. Consider now what transpires near a local fitness peak. 

Suppose the current most fit genotype differs in k0 sites from the locally optimal genotype, 

and sequential beneficial mutations in these sites in an arbitrary order produce a succession 

of increasing fitness values. Ignoring shorter times of order ln N of transitioning between 

saddles and only taking into account the leading contributions (that is, the sum of the 

waiting times for the beneficial mutations), the time it takes to reach the peak is then of 

the order of  (𝑘0𝜆𝑁)−1 + ((𝑘0 − 1)𝜆𝑁)−1 +⋯+ (2𝜆𝑁)−1 + (𝜆𝑁)−1 ≈ (𝜆𝑁)−1ln 𝑘0  

(recall that our time units are comparable with reproduction rates). Once the peak is reached, it 
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is extremely unlikely that the population moves anywhere else on the landscape. More specifically, 

the waiting time for the appearance of a new most fit genotype is exponentially large in N as 

follows from the metastability theory at the level of large deviations estimates. 

 

Proof of Theorem 1 

To prove Part 1, our first goal is to represent the discrepancy 𝐷(𝑡) defined in (3) in a convenient way. 
We can write the solution 𝛷𝑡𝑥(0) of ODE (1) with initial value 𝑥(0) as 

(𝛷𝑡𝑥(0))𝑖 − 𝑥𝑖(0) = ∫ 𝑏𝑖
𝑡

0
(𝛷𝑠𝑥(0))𝑑𝑠, 𝑖 ∈ 𝐼.                                          (8) 

It is useful to represent 𝑥(𝑡) in a similar form. To that end, we recall that every Markov process solves 
the martingale problem associated with its own generator. Therefore, introducing the projection 
function 𝜋𝑖(𝑥) = 𝑥𝑖, we obtain that there is a martingale 𝑀𝑖 such that 

𝑥𝑖(𝑡) − 𝑥𝑖(0) = 𝜋𝑖(𝑥(𝑡)) − 𝜋𝑖(𝑥(0)) = ∫ 𝒩
𝑡

0
𝜋𝑖(𝑥(𝑠))𝑑𝑠 +𝑀𝑖(𝑡), 𝑖 ∈ 𝐼,                     (9) 

where the generator 𝒩ℎ is defined by 

𝒩ℎ(𝑥) = lim
𝑡↓0

𝖤[ℎ(𝑥(𝑡))|𝑥(0) = 𝑥] − ℎ(𝑥)

𝑡
. 

For our pure jump process the generator is determined by transition rates: 

𝒩ℎ(𝑥) = 𝑁 ∑ 𝑓𝑖
𝑖,𝑗∈𝕋
𝑖≠𝑗

𝑥𝑖𝑥𝑗(ℎ(𝜎
𝑖𝑗𝑥) − ℎ(𝑥)), 

where 𝜎𝑖𝑗𝑥 denotes the state obtained from state 𝑥 by adding an individual of type 𝑖 displacing an 
individual of type 𝑗: 

(𝜎𝑖𝑗𝑥)𝑘 =

{
 
 

 
 
𝑥𝑘 , 𝑘 ≠ 𝑖, 𝑗,

𝑥𝑖 +
1

𝑁
, 𝑘 = 𝑖,

𝑥𝑗 −
1

𝑁
, 𝑘 = 𝑗.

 

We can compute directly: 

𝒩𝜋𝑖(𝑥) = 𝑁 ∑ 𝑓𝑖
𝑗:𝑗≠𝑖

𝑥𝑖𝑥𝑗
1

𝑁
+𝑁 ∑ 𝑓𝑗

𝑗:𝑗≠𝑖

𝑥𝑗𝑥𝑖 (−
1

𝑁
) =∑(

𝑗

𝑓𝑖 − 𝑓𝑗)𝑥𝑖𝑥𝑗 = 𝑏𝑖(𝑥). 

Plugging this into (9), we obtain 

𝑥𝑖(𝑡) − 𝑥𝑖(0) = ∫ 𝑏𝑖
𝑡

0
(𝑥(𝑠))𝑑𝑠 + 𝑀𝑖(𝑡), 𝑖 ∈ 𝐼.                           (10) 

Subtracting (8) from (10), we obtain 

𝐷𝑖(𝑡) = 𝑥𝑖(𝑡) − (𝛷
𝑡𝑥(𝑡))𝑖 = ∫ (

𝑡

0
𝑏𝑖(𝑥(𝑠)) − 𝑏𝑖(𝛷

𝑡𝑥(𝑠)))𝑑𝑠 +𝑀𝑖(𝑡), 𝑖 ∈ 𝐼.        (11) 
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We will view 𝑀(𝑡) = (𝑀𝑖(𝑡))𝑖∈𝐼  as a vector-valued martingale. To estimate the integral term, we recall 
the definition (4) and prove the following statement: 

  

Lemma 1. Let 𝐹 = max𝑖∈𝕋𝑓𝑖 . Then, for all 𝐼 ⊂ 𝕋,    ∥ 𝑏(𝑥) − 𝑏(𝑦) ∥≤ 3𝐹 ∥ 𝑥 − 𝑦 ∥, 𝑥, 𝑦 ∈ 𝛥𝐼 .  

 

Proof. We have 

∥ 𝑏(𝑥) − 𝑏(𝑦) ∥=∑|

𝑖

𝑏𝑖(𝑥) − 𝑏𝑖(𝑦)|

=∑ |(𝑓𝑖𝑥𝑖 − 𝑥𝑖∑𝑥𝑗
𝑗

𝑓𝑗) − (𝑓𝑖𝑦𝑖 + 𝑦𝑖∑𝑦𝑗
𝑗

𝑓𝑗)|

𝑖

 

≤ 𝐽1(𝑥, 𝑦) + 𝐽2(𝑥, 𝑦), 

where 

𝐽1(𝑥, 𝑦) = |∑𝑓𝑖
𝑖

(𝑥𝑖 − 𝑦𝑖)| ≤ 𝐹 ∥ 𝑥 − 𝑦 ∥ 

and 

𝐽2(𝑥, 𝑦) ≤∑ |𝑥𝑖∑𝑥𝑗
𝑗

𝑓𝑗 − 𝑦𝑖∑𝑦𝑗
𝑗

𝑓𝑗|

𝑖

≤∑ |𝑥𝑖(∑𝑥𝑗
𝑗

𝑓𝑗 −∑𝑦𝑗
𝑗

𝑓𝑗) + (𝑥𝑖 − 𝑦𝑖)∑𝑦𝑗
𝑗

𝑓𝑗|

𝑖

≤∑𝑥𝑖
𝑖

𝐽1(𝑥, 𝑦) +∑|

𝑖

𝑥𝑖 − 𝑦𝑖|𝐹 ≤ 𝐽1(𝑥, 𝑦) + 𝐹 ∥ 𝑥 − 𝑦 ∥1≤ 2𝐹 ∥ 𝑥 − 𝑦 ∥.

 

Combining three displays above, we complete the proof. □ 

Taking the absolute value in (11), then taking the sum over 𝑖 ∈ 𝐼 and applying Lemma 1, we obtain 

∥ 𝐷(𝑡) ∥≤ 3𝐹∫ ∥
𝑡

0

𝐷(𝑠) ∥ 𝑑𝑠 +𝑀∗(𝑡), 

where 𝑀∗(𝑡) = sup
𝑠∈[0,𝑡]

∥ 𝑀(𝑠) ∥. 

Using the Gronwall inequality, we obtain 
 

∥ 𝐷(𝑡) ∥≤ 𝑀∗(𝑡)𝑒3𝐹𝑡 .                                                   (12) 

To estimate 𝑀∗(𝑡), we first use (5) to write for any 𝛽 > 0: 

𝖯{𝑀∗(𝑡) ≥ 𝑁−𝛽} ≤ ∑ 𝖯𝑖 {𝑀𝑖
∗(𝑡) ≥ 𝑁−𝛽−𝜇} ≤ 𝑁𝜇max

𝑖∈𝐼
𝖯{𝑀𝑖

∗(𝑡) ≥ 𝑁−𝛽−𝜇},     (13) 
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where 𝑀𝑖
∗(𝑡) = sup

𝑠∈[0,𝑡]
|𝑀𝑖(𝑠)|. Next, we will apply an exponential martingale inequality from 

(55)(Appendix B6) in the form given by van de Geer (56)(Lemma 2.1):  
 

Lemma 2. If jumps of a locally square integrable cadlag martingale (𝑀(𝑡))𝑡≥0 are uniformly bounded 
by a constant 𝐾 > 0, then 

𝖯{∃𝑡: |𝑀(𝑡)| ≥ 𝐴, ⟨𝑀⟩𝑡 ≤ 𝐵2} ≤ 2exp [−
𝐴2

2(𝐴𝐾 + 𝐵2)
]. 

Each 𝑀𝑖 is a piece-wise linear martingale with jumps of size 1/𝑁 (its jumps coincide with those 
of 𝑥𝑖(𝑡)). Since, in addition, the total jump rate is bounded by 𝑁𝐹, we obtain that the predictable 
quadratic variation of 𝑀𝑖 satisfies ⟨𝑀𝑖⟩𝑡 ≤ 𝑡𝑁𝐹/𝑁

2 = 𝑡𝐹/𝑁. Thus, we can apply Lemma 2 with 𝐵2 =
𝑡𝐹/𝑁, 𝐾 = 1/𝑁, and 𝐴 = 𝑁−𝛽−𝜇: 

𝖯{𝑀𝑖
∗(𝑡) ≥ 𝑁−𝛽−𝜇} ≤ 2exp[−

𝑁−2(𝛽+𝜇)

2(𝑁−(𝛽+𝜇)−1 + 𝑡𝐹𝑁−1)
], 𝑖 ∈ 𝐼. 

Combining this with (13), choosing 𝛽 so that 𝛽 + 𝜇 < 1/2 and using 𝑡 = 𝑐ln𝑁, we can find 
constants 𝐶, 𝛾 > 0 such that 

𝖯{𝑀∗(𝑡) ≥ 𝑁−𝛽} ≤ 2𝑁𝜇exp[−
𝑁−2(𝛽+𝜇)

2(𝑁−(𝛽+𝜇)−1 + 𝑡𝐹𝑁−1)
] ≤ 𝐶𝑒−𝑁

𝛾 

Using this in (12), we complete the proof of Part 1 of the theorem. To prove Part 2, we notice that 
according to Part 1, up to a SE-unlikely event, the stochastic process follows the deterministic 
trajectory 𝑁−𝛽-closely up to time 𝜏𝑒 ∧ 𝑐ln𝑁, where 𝜏𝑒 is the first moment when one of the types goes 
extinct. We can restart the process at 𝜏𝑒 ∧ 𝑐ln𝑁 treating 𝑥(𝜏𝑒 ∧ 𝑐ln𝑁) as a new starting point and apply 
the same estimate to the restarted process (in case 𝜏𝑒 < 𝑐ln𝑁, with fewer nonzero coordinates involved). 
Patching several ODE trajectories together in this way and noting that, conditioned on nonextinction of 
type 𝑖∗, the total time it takes to travel from any point 𝑥 ∈ 𝛥𝐼 with 𝑥𝑖∗ ≥ 𝑁−1 to the neighborhood 
of 𝑒(𝑖∗) of size 𝑁−𝛿 is bounded by 𝐶ln𝑁 for some 𝐶, we obtain Part 2. 

The remaining parts follow from an auxiliary statement. To state it, we define a jump Markov 
process 𝑦(𝑡) with values in {0,𝑁−1, 2𝑁−1… ,1} such that 𝑦(0) = 𝑥(0) and 𝑦(𝑡) makes a jump from 𝑥 
to 𝑥 + 𝑁−1 with rate 𝑁𝑓∗𝑥(1 − 𝑥) and to 𝑥 − 𝑁−1 with rate 𝑁𝑓∗∗𝑥(1 − 𝑥) , where 𝑓∗∗ < 𝑓∗ is the 
second largest value among 𝑓𝑖, 𝑖 ∈ 𝐼. 
Lemma 3. 1. The process 𝑦(𝑡) is stochastically dominated by 𝑥𝑖∗(𝑡). 2. The process 𝑦(𝑡) considered 
only at times of jumps is an asymmetric random walk on {0,𝑁−1, 2𝑁−1… ,1} with absorption at 0 and 𝑁 
and probabilities of a step to the right and left being 𝑝 and 1 − 𝑝 where 𝑝 ∈ (1/2,1) solves 

𝑝

1−𝑝
=

𝑓∗

𝑓∗∗
 .  

Proof. The coordinate 𝑥𝑖∗ jumps to the right with rate 𝑁𝑓𝑖𝑥𝑖∗(1 − 𝑥𝑖∗) and to the left with rate 

𝑁𝑥𝑖∗ ∑ 𝑓𝑗𝑗≠𝑖∗ 𝑥𝑗 ≤ 𝑁𝑥𝑖∗𝑓
∗∗∑ 𝑥𝑗𝑗≠𝑖∗ = 𝑁𝑓∗∗𝑥𝑖∗(1 − 𝑥𝑖∗).  

So, the jump rates to the left for both processes coincide and the jump rates to the right for process 𝑦(𝑡) 
do not exceed those for process 𝑥𝑖∗(𝑡), and Part 1 of the lemma follows. To prove Part 2, it suffices to 
note that the ratio of the jump right rate to the jump left rate for process 𝑦(𝑡) is equal to 𝑓∗/𝑓∗∗ 
everywhere (except the absorbing points 0 and 1).  
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To prove Part 3, we can use this lemma and the fact that if 𝑚 ≥ 𝑁/2, then 

𝑁
𝑚

𝑁

𝑚 −𝑁

𝑁
≥
1

2
(𝑚 − 𝑁), 

which implies that (except for an exponentially improbable event that 𝑥𝑖∗ hits level 𝑁/2 before 1), the 
time it takes for all non-𝑖∗ types to die out is stochastically dominated by the extinction time for the 
linear birth-and-death process with birth rate 𝜆𝑘 = 𝐴𝑘 and death rate  𝜇𝑘 = 𝐵𝑘 where  𝐴 = 𝑓∗∗/2 <
𝐵 = 𝑓∗/2. The probabilty 𝑝𝑘(𝑡) of extinction by time 𝑡 starting with 𝑘 individuals was probably first 
computed in (57). There is a misprint in formula (78) in (57) but one can use formula (68) of that paper 
(for generating functions) to obtain 

𝑝𝑘(𝑡) = (
𝐵𝑒(𝐵−𝐴)𝑡 − 𝐵

𝐵𝑒(𝐵−𝐴)𝑡 − 𝐴
)𝑘 = (1 −

𝐵 − 𝐴

𝐵𝑒(𝐵−𝐴)𝑡 − 𝐴
)𝑘 . 

Plugging 𝑡 = 𝐶′ln𝑁 and 𝑘 = 𝑁1−𝛿 into this formula we obtain 

1 − 𝑝𝑁1−𝛿(𝐶′ln𝑁) = 1 − (1 −
𝐵 − 𝐴

𝐵𝑁𝐶′(𝐵−𝐴) − 𝐴
)𝑁

1−𝛿

∼
(𝐵 − 𝐴)𝑁1−𝛿

𝐵𝑁𝐶′(𝐵−𝐴) − 𝐴
∼
𝐵 − 𝐴

𝐵
𝑁1−𝛿−𝐶′(𝐵−𝐴),

 

and since 𝛼 = 𝐶′(𝐵 − 𝐴) − 1 + 𝛿 > 0 if we choose 𝐶′ large enough, the desired result follows. 

The last two parts of Theorem 1 follow from Lemma 3, and similar well-known statements for 
asymmetric random walks. □ 

 

Discussion 

Despite some disagreements regarding its extent, fossil record analysis suggests that PE is important in 

organismal evolution (7, 8, 10) which is, therefore, in general, not gradualist. Here we examine 

mathematically a simple population-genetic model and show that the default regime of population 

evolution under basic, realistic assumptions, namely, large effective population size, low mutation rate 

and rarity of beneficial mutations phenomenologically resembles PE. It has to be stressed that this model 

is entirely within the classical framework of population genetics which includes also estimates of 

mutation fixation times and the waiting times between fixation events (39, 40). We reformulate it here, 

in order to take advantage of the mathematical toolkit of heteroclinic network analysis that provides for a 

rigorous treatment.  

We show that, in the weak-mutation limit, large populations spend most of their time in ‘dynamic stasis’, 

i.e. exercising short-range random walks within their local neutral networks in the vicinity of saddle 

points on the fitness landscape, without shifting to a new distinct state. The stasis periods are punctuated 

by rapid transitions between saddle points upon emergence of new beneficial mutations; these transitions 
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appear effectively instantaneous compared to the duration of stasis, even when they evolve through more 

than one elementary mutation event (Figure 2). Eventually, the population might reach a local fitness 

peak where no beneficial mutations are available. This would lead to indefinite stasis as long as the 

fitness landscape does not change and the population size stays large (drift to a different peak is 

exponentially rare in N, that is, impractical for large N).  

Two conditions determine the behavior described by this model: i) low overall mutation rate (dominated 

by deleterious mutations), eq (7), 𝜆𝐿 ≪ 𝑠/ln N and ii) an even lower rate of beneficial mutations, which 

results in the difference in scale between the waiting time (𝜆𝑘𝑁)−1 and the saddle-to-saddle transition 

time ln𝑁/𝑠, i.e. 𝜆𝑘𝑁 ≪ 𝑠/ln𝑁. Comparison of the expressions for these conditions suggests that, for the 

PE-like regime to be pronounced, in the vicinity of all saddle points where the population is at 

equilibrium, deleterious mutations should outnumber the beneficial mutations by at least a factor of 𝑁. 

This is a large but not unrealistic difference in the case of ‘highly adapted‘ organisms, that is, in 

situations that are most common in the extant biosphere, where the pool of straightforward optimizations 

that presumably were available at the earliest stages of the evolution of life, had been exhausted long 

ago. For example, with population and genomic parameters characteristic of animals, namely, N ~105 

and ~107 amino acid-encoding sites in the genome, the local mutational neighborhood in the sequence 

space consists of 19x107 mutations. Assuming that about half of these mutations are deleterious and 

noting that the number of beneficial mutations should be less by a factor of 105, there must be 1<k<1000 

beneficial mutations available, apparently, a realistic value. It should be emphasized that, once a 

beneficial mutation occurs, it can open the door for additional ones due to pervasive epistasis, so that a 

transition might involve multiple adaptive mutational events.  

The condition on the overall mutation rate (𝜆𝐿 ≪ 𝑠/ln𝑁) is more difficult to assert because both 𝜆 and 𝐿 

depend on the clustering of the whole sequence space into a coarse-grained network of distinct types. 

Note, however, that, as the first approximation, 𝜆 is bounded by the sequence-level mutation rate 𝜇 (only 

some of the sequence-level mutations lead to transitions between distinct types) and 𝐿 is bounded by the 

genome size 𝐺 (the number of available sequence-level single-position mutations is on the order of the 

genome size although only some of these mutations have detectable deleterious effect). Thus, 𝜆𝐿 < 𝜇𝐺, 

where 𝜇𝐺 is the expected number of sequence-level mutations per genome per generation. It has been 

shown that the values of 𝜇𝐺 tend to stay of the order of 1/𝑁 under ‘normal’ conditions (41, 42), 

therefore 

𝜆𝐿 < 𝜇𝐺~1/𝑁 ≪ 𝑠/ln𝑁 
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The condition for a mutation to be subject to selection in an asexual population  is Ns >>1 (40). 

According to the above inequality, the weak-mutation regime applies when Ns >>lnN. For realistic 

population sizes, N < 109, lnN < 20,  so this regime holds for a broad range of conditions. 

Thus, our model suggests that the PE-like regime is common and is likely to be the default in the 

evolution of natural populations. The probable exceptions include stress-induced mutagenesis (43), 

whereby the mutation rate can rise by orders of magnitude, locally blooming microbial populations that 

might violate the 𝑘𝑁 ≪ 𝐿 condition, and abrupt changes in the fitness landscape that might temporarily 

increase the number of immediately beneficial mutations 𝑘. All of these situations, however, are likely to 

be transient. 

Theoretically, PE has been linked to SOC as the underlying mechanism (12, 15). However, we show 

here that a PE-like regime is readily observed in extremely simple models of population evolution that 

do not involve any criticality. The major conclusion from this analysis is that PE-like evolution rather 

than gradualism is the fundamental character of sufficiently large populations in the weak-mutation limit 

which is, arguably, the most common evolutionary regime across the entire diversity of life. The 

parameter values that lead to this regime appear to hold for evolving populations of all organisms, 

including viruses, under ‘normal’ conditions. Situations can emerge in the course of evolution when the 

PE regime breaks through disruption of the stasis phase. This could be the case in very small populations 

that rapidly evolve via drift or in cases of a dramatically increased mutation rate, such as stress-induced 

mutagenesis, and especially, when these two conditions combine (43-45). In many cases, disruption of 

stasis will lead to extinction but, on occasion, a population could move to a different part of the 

landscape, potentially, the basin of attraction of a higher peak. The evolution of cancers, at least, at 

advanced stages, does not appear to include stasis either, due to the high rate of nearly neutral and 

deleterious mutations, and low effective population size (43). Furthermore, the PE-like regime is 

characteristic of ‘normal’ evolution of well-adapted populations in which the fraction of beneficial 

mutations is small. If many, perhaps, the majority of the mutations are beneficial, there will be no stasis 

but rather a succession of rapid transitions in a fast adaptive evolution regime. Conceivably, this was the 

mode of evolution of primordial replicators at pre-cellular stages of evolution.  

 

One of the most fundamental – and most difficult – problems in biology is the origin of major biological 

innovations (more or less, synonymous to macroevolution). In modern evolutionary biology, Darwin’s 

central idea of survival of the fittest transformed into the concept of fitness landscape with numerous 

peaks, where each stable form occupies one of the peaks (24, 46). Then, the fundamental problem arises: 
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if a population has reached a local peak, further adaptive evolution is possible only via a stage of 

temporary decrease of fitness – how can this happen? A common answer is based on Wright’s concept 

of random genetic drift:  the smaller the effective population size Ne (or simply N, for a well-mixed 

population) the greater the probability of random drift through (not excessively deep) valleys in the 

fitness landscape (46-48). This notion implies that evolutionary transitions occur through narrow 

population bottlenecks. As formalized in our previous work, the evolutionary ‘innovation potential’ is 

inversely proportional to Ne (22). There are, however, multiple indications that drift is unlikely to be the 

only mode of evolutionary innovation and that novelty often arises in large populations thanks to their 

high mutational diversity (49-52). Nevertheless, it remains unclear, within the tenets of classical 

population genetics, how a large population can cross a valley on the landscape. One obvious way to 

overcome this conundrum is to assume that the landscape changes in time due to environmental changes, 

so that peaks could become saddle points, and vice versa, and a population might find itself in the basin 

of attraction of a new fitness peak (53, 54). The analysis presented here suggests a greater innovation 

potential of large populations than usually assumed, stemming from the fact that a typical landscape in a 

multidimensional space contains many more saddle points than peaks. On the one hand, this intuitively 

obvious claim follows from the observation that, for any two peaks, the path connecting the peaks and 

maximizing the minimum height must pass through a saddle point.  On the other hand, it is justified by 

precise computations of exponential (with respect to the model dimension) growth rates of the expected 

numbers of saddle points of various indices (including peaks) for random Gaussian landscapes under 

certain restrictions on covariance (37, 38). Thus, typical fitness landscapes are likely to allow numerous 

transitions and extensive, innovative evolution without the need for valley crossing as also argued 

previously from the analysis of “holey” fitness landscapes (24).  In biological terms, it seems to be 

impossible to maximize fitness in all numerous directions (the number of these being at least on the 

order of the genome size), and therefore, the probability of beneficial mutations is (almost) never zero, 

however small it might be (in general, this pertains not only to single point mutations, but also to 

beneficial epistatic combinations of mutations as well as large scale genomic changes, such as gene gain, 

loss and duplication).  In other words, the landscape is dominated by saddle points that are far more 

common than peaks, so that there is almost always an upward path which an evolving population will 

follow provided it is large enough to afford a long wait in saddles without risking extinction due to 

fluctuations.    

 

Results similar to ours have been reported in the mathematical biology literature (27-29). Specifically, it 

has been proven that a trait substitution sequence process (sequential transition from one dominant trait 
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to another) occurs in the limit of large population size and small beneficial mutation rate.  Here we 

employ a very simple model to demonstrate the fundamental character of the concept of PE, to tie it to 

the noisy dynamics near heteroclinic networks (30, 31) and to stress the key role of saddle points, in 

contrast to the wide-spread perception of peaks as the central structural elements of fitness landscapes.  

To conclude, the results presented here show that PE-like evolution  is not only characteristic of 

speciation or evolutionary transitions but rather is the default mode of evolution under weak-mutation 

limit which is the most common evolutionary regime (25). In our previous work, we have identified 

conditions under which saltational evolution becomes feasible, under the strong-mutation limit (45). 

Here we show that, even for evolution in the weak-mutation limit that is generally perceived as gradual 

(25), PE is the default regime. Even during periods of stasis in phenotypic evolution, the underlying 

microevolutionary process appears to be punctuated.  
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Figure legends 
 
 
Figure 1. The phase portrait of the dynamical system (1). 
 
Four types 1, 2, 3, 4 are shown such that  𝑓1< 𝑓2<𝑓3 <𝑓4.  The dynamics is defined on the simplex 
𝛥{1,2,3,4} with vertices 𝑒(1), 𝑒(2), 𝑒(3), 𝑒(4), corresponding to pure states where the population consists 
entirely of individuals of one type. These vertices are critical points of the vector field b. The edges of 
the simplex are heteroclinic orbits connecting these critical points to each other.  Several other orbits are 
also plotted as arrows. The vertex 𝑒(4) attracts every initial condition with nonzero fraction of 
individuals of the fittest type 𝑖∗ = 4.  
 
 

Figure 2. Evolution under punctuated equilibrium on a fitness landscape dominated by saddles: 
stasis around saddle points punctuated by fast adaptive transitions. 
 
Planar shapes depict distinct classes of genotypes. The color scale shows a range of fitness values. Gray 
“ramp” strips show available transitions between the genotype classes (k transitions leading to classes 
with higher fitness and L transitions leading to classes with lower fitness, 𝑘 ≪ 𝐿). The two blue circles 
indicate the original and the current states of the population; blue arrows show succession of genotypes 
within the same class, occurring within the effectively neutral network during the “dynamic stasis” 
phase; red arrows indicate fast adaptive transitions from a lower-fitness genotype to one with a higher 
fitness. 
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