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LONG EXIT TIMES NEAR A REPELLING EQUILIBRIUM
YURI BAKHTIN AND HONG-BIN CHEN

ABSTRACT. For a smooth vector field in a neighborhood of a critical point with
all positive eigenvalues of the linearization, we consider the associated dynamics
perturbed by white noise. Using Malliavin calculus tools, we obtain polynomial
asymptotics for probabilities of atypically long exit times in the vanishing noise

limit.
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1. INTRODUCTION

In this paper, we continue the study of exit time distributions for diffusions ob-
tained by small noisy perturbations of deterministic dynamical systems near unstable
critical points. We are motivated by applications to the long-term dynamics in noisy
heteroclinic networks and extensions of the work in [Bak11], [Bak10], [AMB11].

The most celebrated series of results on random perturbations of dynamical systems
known as the Freidlin-Wentzell theory of metastability, see [FW12], is based on large
deviation estimates and computes the asymptotics of probabilities associated with
rare transitions between neighborhoods of stable equilibria. In these systems, the
probability of a transition in a given finite time decays exponentially in e 2, where
¢ > 0 is the noise magnitude, so it takes time of the order of exp(ce~?), to realize
these transitions.

In the noisy heteroclinic network setting, it turns out that rare events of interest
describing atypical transitions and determining the long-term behavior of the diffusion
are tightly related to abnormally long stays in neighborhoods of unstable critical
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points. As a result, the probabilities of those events are related to the tails of the
associated exit times, see a discussion of heteroclinic networks in [BPG18|.

The probabilities we are interested in were shown to decay as a power of ¢ if the
starting point belongs to the stable manifold of the hyperbolic critical point (saddle)
in [Mik95|. In the present paper, we provide much more precise asymptotics than the
large deviation results of [Mik95| and prove a conjecture stated in that paper.

To be more precise, for € > 0, let us consider a diffusion process X solving an SDE

in R¢, d € N:
(1.1) dX; = b(X})dt + eo (X[ )dW,

with noise given by the standard multi-dimensional Wiener process W and a smooth
full-rank diffusion matrix o, started at a distance of the order of € from the origin 0
which is assumed to be an unstable critical point of the smooth vector field b. Let
A1 > 0 be the leading simple eigenvalue of Db(0), i.e., the real parts of all other
eigenvalues are less than A;.

We are interested in the exit time 7. from a domain D containing 0 and having a
smooth boundary. The first results showing that the exit times typically behave like
T. =+ -log 1 plus O(1) corrections, were obtained in |Kif81| and [Day95|. Namely, it

was shown in [Kif81| that % 51, e—0, and in [Day95], the limiting distribution
of 7¢ =T, as ¢ = 0 was found The distributions of exit locations were studied
in [Eiz84], [Bak11]|, and (for the case where Db(0) is a Jordan block) in [BPG19b|.

In [Mik95]|, probabilities of atypical deviations of 7. from T, were studied. It was
proved that in the 1-dimensional situation (d = 1), for any h > 1,

log P{, > hT.
(1.2) li 108 PATe > P}
€—0 log €

=h-—-1

and a combination of results in [Kif81] and [Mik95] gives that for all d > 1 and every
h > 1 there are finite positive numbers p_(h), g1 (h) > 0 such that

logP{7. > hT.} log P{r. > hT.}

. <1
(1.3) pu—(h) < 111;[1_)151f o c < 111?_?0 o c < py(h).
In [Mik95] it is actually conjectured that
(1.4) p—(h) = pi(h) = p(h),
where
d
hRe A,
1.5 h) = T—1)Vo0
(15) u();« =Y 1) vo),
and Ap, ..., A\s in this formula are the eigenvalues of Db(0).

In [BPG19a] and [BPG18], the logarithmic asymptotics of (1.2) for the 1-dimensional
situation was improved and it was shown that for any h > 1, for a range of deter-
ministic initial conditions X§ = x near 0,

(1.6) P{r. > hT.} = (x)" (14 0(1)), €—0,

and the coefficient ¥ (z) > 0 was computed explicitly. The paper [BPG19a] was based
on Malliavin calculus techniques and [BPG18| used more elementary tools.

In the present paper, we consider the situation where d € N is arbitrary and the
eigenvalues of Vb(0) are real and satisfy Ay > Ay > ... > A\; > 0. For this case, we
prove the conjecture of [Mik95| showing that relations (1.3)—(1.5) hold true. In fact,



LONG EXIT TIMES NEAR A REPELLING EQUILIBRIUM 3

instead of the logarithmic equivalence in (1.3), we prove stronger estimates similar
to (1.6) extending the latter to the higher-dimensional setting. For domains D of a
special type (preimages of rectangular domains under a linearizing conjugacy), our
Theorem 2.2 states that there is p > 0 such that, uniformly over deterministic initial
conditions X§ = z at distance of the order of € from 0,

P{r. > hT.} = wh(x)e“(h)(l + o(€)),

with an explicit expression for the coefficient 1y, (z) > 0. In fact, we prove a more
general estimate on the tail of 7.

The idea of the proof is the following. We treat the dynamics described by (1.1) as
a perturbation of the linear dynamics given by the linearization of b at 0. For truly
linear dynamics with additive noise the solution is given by stochastic It6 integrals
of deterministic quantities. Thus it is a Gaussian process allowing for a direct com-
putation which, in fact, was behind the conjecture (1.3)—(1.5) of [Mik95]. The main
difficulty is to lift this computation to the general nonlinear situation. In particu-
lar, similarly to [BPG19a] we choose to work with Malliavin calculus tools in order
to estimate densities of random variables that we want to treat as perturbations of
Gaussian ones. Unlike [BPG19a|, we use results of [BC14] to estimate the discrep-
ancy between the Gaussian densities and the perturbed ones. These estimates are
valid only for evolution times of the order of floge=! with small values of 0, so we
have to apply them sequentially multiple times in order to get to hT,, thus creating
an iteration scheme similar to that of [BPG19a].

The analysis for more general domains can be partially reduced to the special
domains defined above via the rectifying conjugacy. We can obtain, see Corollary 2.3,
that there are constants ¢4 (z) such that

d_(2)e"M (1 + 0(e?)) < P{r. > hT. + 7€)} < ¢ ()" M (1 + o(eP)).

The slight discrepancy between the upper and lower estimates is due to the fact
that the travel time along the drift vector field between the boundaries of domains
immersed into one another depends on the starting point on the boundary. We give a
slightly more precise result (Corollary 2.6) that takes these travel times into account
and note here that further progress in understanding of exit times for general domains
will be achieved as more information on the geometric properties of the exit location
distribution becomes available. The asymptotics of the exit location distribution will
be addressed in our forthcoming work.

The paper is organized as follows. In Section 2, we give a technical description of
the setting and state our main results precisely. The proof is spread over Sections 3
through 5. The main result is derived from the comparison to the linearized problem
in Section 3. An iterative scheme of sequential approximations that this comparison
is based on is given in Section 4. Each step of this scheme is in turn based on a density
discrepancy estimate that we derive using Malliavin calculus tools in Section 5.

Acknowledgment. YB is grateful to NSF for partial support via grant DMS-
1811444.

2. SETTING AND MAIN RESULTS
Let d € N and let simply connected domains Dy, Dy, D C R? satisfy
(2.1) 0eD,cD,cDcDCcD..
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We consider a C® vector field b : RY — R? and the flow (S?) generated by b:
4S5t = b(S'x),

2.2
(22) SOr = 1.

Since we are interested in the dynamics inside D, by adjustments outside D, we
assume b and its derivatives are bounded. We assume that the following conditions
hold:

—  b(z) = ar + q(z) where

- |q(z)] < Cy|z|? with a positive constant C,,

- ais a d x d diagonal matrix with real entries A\ > Xy > ... > Ay > 0;
— for all open sets Dy satisfying 0 € Dy C Dy,

(2.3) sup tp,(x) < o0,
r€dDy
where
(2.4) tp(z) =inf{t >0: S’z ¢ D}, DCR? xcR%

For brevity we will denote the vector filed given by x — az by a. By the Hartman—
Grobman Theorem (c.f. Theorem 6.3.1 from [KH95]), there is an open neighborhood
O of 0 and a homeomorphism f : O — f(O) conjugating the flow S generated by the
vector field b to the linear flow generated by a, namely,

SI(5) = af (Si).

— in addition, we assume that f is a C® diffeomorphism.

(2.5)

Remark 2.1. Due to [Ste57], for this C5 conjugacy condition to hold in our setting,
it suffices to require (i) a smoothness condition: b is C* for some k > 5V (A\;/\,),
and (ii) a no-resonanse condition:

)\kyéml)\1+...+md)\d

for all £ = 1,...,d and all nonnegative integer coefficients my, ..., my satisfying
m1—|—+md22

The vector field a is the pushforward of b under f, and since a is diagonal, f can
be chosen to satisfy

(2.6) f(0)=0, Df(0)=1,

where [ is the identity matrix.

We are interested in the limiting behavior of random perturbations of the ODE (2.2)
given by the SDE (1.1) as € tends to 0. In (1.1),

— €€ (0,1) is the noise amplitude parameter;
— (W, Ft) is a standard n-dimensional Wiener process with n > d;
— o is a map from R? into the space of d x n matrices satisfying
- 0 is C? (and, by adjustments outside D, we may assume that o and its
derivatives are bounded),
- 0(0) : R* — R? is surjective.
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FIGURE 1. The diffeomorphism f : O — f(O) maps R onto f(R)
which is a box containing 0.

To simplify the notation, we often suppress the dependence on €. In particular, we
often write X, instead of Xj.

We need some definitions to state our main result. We start by describing the exit
event:

— for a measurable set A C R?, we define the exit time
(2.7) T4 =1inf{t > 0: X, &€ A};

— for I’ I, €R, j=1,2,....d, we define R = f~([[7_,[L?,L%]) C O with
0 € R to be such a set that its preimage under f is a box and that its interior

contains the origin (see Figure 1);
— for any ¢ > 0, let 7 : [0, 1] — R be any function satisfy

(2.8) Ir(e) — (0)] = O(e?).
The theorem is concerned with events of the form
{m > aloge™ +r(e)}

for some o > 0. As 7 is of order aloge™?!, the term 7(€) is interpreted as a small
perturbation.
Next, we introduce definitions characterizing the decay rate:

— for a >0, let i(a) € {1,2,...,d + 1} satisfy

] 1 < 1
(2 9> Ai(a)—1 <as Ai(a)

where we agree that \y = oo and Az = 0;
— the exponent determining the power decay, as a function of «, is given by

i(a)—1

(2.10) i Ao —1)Vv0) = Z (Aja—1) = p(Ma),

7j=1
where pu(-) was defined in (1.5).

We will consider initial conditions X, = ez satisfying |z| < K(e) for an admissible
function K (-):
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— for a fixed @ > 0, a function K : (0, 1] — [0, +00) is said to be admissible if it
satisfies, with i = i(«),
lim,_,o e ™K (e) = 0, ifi <dand a < %,
lim,_,o el "+ K (€) = 0, if1 <d, and o =

lim, o€ 7K (€) = 0 for some ¢ € (0, 1), ifi=d+1.

1
i’

Lastly, we describe the limiting object:
— let d x d matrix Cy be given by

5 _ 97 (0)9f(0)
(2.11) =) A
0 lzl )\j + A

— forzeR%andi=1,...,d, we define
(2.12) et = (2 2%, 2T e R 27 = (2™ L ) e R,
) 22— (xi’xiJrl’ - xd) c Rdfz‘ﬂ;

— for a > 0, some small perturbation limit 7(0) € R, a set R and z € R?, we
define, with i = i(«),
(2.13)
wa,r(O),iﬁ<x> =
o J _ 13 \,—\r(0)
HJ<Z(L+ Li)e J e,%zTCO’lz <i_ <id22i7 a < %7
V/(2m)ddet Cy Rd—it1 = i
J J\p—=A;r(0
Hj<i<L+ o L*>€ s7(0) e*%ZTcglz dei, q=1

/(27T)d det CO (e=2ir(0) [Lz;’Li]_xi))XRd—i y<i—_p<i A

la:TCO_lJ:

If i = d 4 1, then the integrals in (2.13) are understood to be simply e~ 2
We are now ready to state the main result.

Theorem 2.2. Suppose X; solves (1.1) with Xy = ex, and r satisfies (2.8) for some
q > 0.

There is a constant Ly > 0 such that, for every a > 0, every admissible K, every
R C f~Y[~Lo, Lo]?), the following holds

(2.14) sup ‘e’ﬁ(a)P{Tm > aloge " +7r(e)} — (z)| = o(e”)
|z| <K (e)

fOT ’17/) = ¢a,r(0),9‘i and some P = p(CY, q, )‘7 g, f) € (07 1)

For a general domain D, we choose L’ small enough to guarantee 8 C Dy,
where D; was introduced in (2.1). Due to (2.3), 7_ = inf,comtp,(2) and T =
SUP,com LD, (2) are well-defined. Setting ¢4 () = Yo, 0)-14, %(7), Wwe obtain:

Corollary 2.3. Under the conditions of Theorem 2.2,
(2.15) ¢_(z) +o(e") < e PPy > aloge ™ +7(e)} < dp(x) + o(e")
uniformly over |z| < K(e).

Taking the logarithm on both both sides of (2.15), we obtain:
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Corollary 2.4. Under the conditions of Theorem 2.2, there is a constant C' > 0 such
that

logP{m > aloge™ + r(e)} _ o)l < C

sup

| <K (e) log e |loge|’

Remark 2.5. (1) When d = 1, Proposition 2.2 is a slight improvement of the
result in [BPG19a].
(2) If ¢ = 0, then the above results still hold for p = 0.
(3) If X = e£° where the random variable £° satisfies P{[¢| > K (€)} = (@),
then (2.14) and (2.15) imply, respectively,
lim ‘e’ﬁ(o‘)P{Tm > aloge™ +7(e)} — Ey(£°)

e—0
E¢_(€) +0(1) < e P@P{mp > aloge ™ +r(e)} < Ep.(€°) +o(1).

(4) In comparison with [Mik95]|, we make stronger smoothness assumptions on
the coefficients and an additional assumption on the smoothness of the lin-
earizing conjugacy. These assumptions are required for our Malliavin calculus
approach. Namely, we must ensure that certain higher-order Malliavin deriva-
tives of the diffusion process exist and admit useful bounds. In addition, we
require the eigenvalues of linearization to be simple and positive. In this
slightly more restrictive setting, our Corollary 2.4 improves and generalizes
[Mik95, Theorem 1.3 and Proposition 1.4] and implies [Mik95, Conjecture 1.5].

Under additional geometric assumptions on D, more precise results than Corol-
lary 2.3 can be obtained. We assume that D has C! boundary and that b intersects
0D transversally in the sense that (n(x),b(x)) > 0 for every z € 0D, where n(x)
is the outer normal of OD. Let us choose L’ small enough to ensure SR C D and
recall (2.4).

Corollary 2.6. Under the same conditions as Theorem 2.2 and the additional smooth-
ness and transversality assumptions introduced in the above paragraph, we have

sup ‘e’ﬁ(a)]P’{TD — tp(Xny) > aloge™ +r(e)} — v(z)| = o),
|z|<K(e)

where 1 = Vo ) m 15 given in (2.13).

3. PROOF OF MAIN RESULTS

Corollaries 2.3 and 2.6 are direct consequences of Theorem 2.2, our geometric
assumptions, and the following standard FW large deviation estimate which implies
that, upon exiting R, the process X closely follows a deterministic trajectory:

Lemma 3.1. For each fized time T > 0, and each v € [0,1), there are C,c>0 such
that the following holds uniformly over all initial points Xy = x:
P{ sup |X; — S'x| > ¢’} < Cexp(—ce?@™V).
0<t<T
This lemma can be proved using Lipschitzness of the vector field b, boundedness
of o, Gronwall’s inequality, and the exponential martingale inequality (see [Basll,
Problem 12.10]). The key idea can be seen at the very beginning of [FW12, Chap-
ter 3.



8 YURI BAKHTIN AND HONG-BIN CHEN

The rest of this section is our proof of Theorem 2.2.

From now on we will often use Einstein’s convention of summation over matching
upper and lower indices. Let us introduce a new process Y; = f(X;), which by Itd’s
formula and (2.5) satisfies

(3.1) dYy = NY/dt + eF/(Y,)dW] + €G'(Y,)dt,
where

Fi(y) = o' (F )y (7 W), v € f(0),
) = S ONS W) W), v e FO),

(-,-) denotes the inner product, and we set A\’ = )\; to avoid the summation over 1.
Note that F, G € C3(f(0)) and, due to (2.6), we have

(3.2) F(0) = o(0).

We shift our focus from the process X; with Xy = ex to Y; = f(X;) with Yy =
ey = f(ex) by the following considerations. Due to (2.6), there is a constant C'y such
that |z] < Cf|f(2)| for all z € O. Set K'(e) = C'f_lK(e). Therefore, for e small
with Xy = ex € O, we have that if |y| < K'(¢), then |z| < K(e). Note that due
to Y; = f(X}) the exit time 7y defined in (2.7) in terms of the process X can be
rewritten as

(3.3) T=1inf{t >0:Y;, & R},

where R = H?;ﬂLL I’] = f(R) (see Figure 1). Hence, Theorem 2.2 follows from
the following result.

Proposition 3.2. Suppose Y; solves (3.1) with Yo = ey and let v satisfy(2.8). Then
there is a constant Ly > 0 such that for each o > 0 and each K'(€) satisfying, with
i =1(a),

lim_, el 7K’ (e) = 0, if i <d and a < %,
(3.4) lim,_,o el +12 K’ (e) = 0, ifi <d and o = %,

lim. e "“K’(e) = 0 for some c € (0,1), ifi=d+1,

we have, for any set of the form R = H;l:l[Lj_, I’ C O with 0 € R and L% | < Lo
forallj=1,...,d,

(3.5) sup |e” POPLr > aloge™ +7(e)} — w( l(ey) )| =o(e),
ly|<K”(e)

for some p = pla, g, A, f) € (0,1).

Let us describe the plan to prove Proposition 3.2. The proof can be split into two
main steps.

The first step is to show that P{r > aloge ! + r(¢)} can be approximated by
P{y+Uf, () € A}, where To(e) is a deterministic time, U* is a Gaussian-like process,

and A, C ]Rd is a deterministic set. Namely, the probability of the exit event can be
approximated by integrating over A, with respect to a Gaussian-like density. This
result is summarized in Lemma 3.3 below. The method is to find an explicit expression
of 7 by using the fact that 2R/, the set to exit, is a box.
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In the second step, we show that P{y+Uy, , € Ac} is approximately P{y+Z € A}
for a centered Gaussian vector Z with covariance (2.11). This is the content of
Lemma 3.4. To show this, we apply tools from the Malliavin Calculus to deduce that
the density of Uf,) is close to that of Zr(. Here T'(¢) is another deterministic time,
which can be much smaller than Tj(€), and Z is a Gaussian process independent of ¢
with Z,, equal to Z in distribution. This is done in Lemma 4.1. We use an iteration
scheme to extend the Gaussian approximation to the larger time Tg(e).

To conclude the proof of this proposition, we estimate the discrepancy between
properly scaled P{y + Z € A.} and (f *(ey)/e), as ¢ — 0. This is done in this
section after stating Lemma 3.3 and Lemma 3.4.

To state the two key lemmas, we start by introducing some useful objects.

Since F'(0) = ¢(0) is d x n with full rank and F' is continuous, we can choose Lg so
small that there is ¢g > 0 such that miny,_y ,era |uTF(x)]* > ¢ for all & € [— Lo, Lo]?,
where T stands for matrix transpose. Since we only care about exiting from a subset
of [~ Ly, Lo|?, we modify F,G outside [—Lg, Lo]¢ so that

min  |[uTF(z)|* > ¢y, for all x € RY
(36) |lu|=1,ucRd
F, G and their derivatives are bounded.

From now on, we fix this Ly and F, G modified according to (3.6). By Duhamel’s
principle, we can solve (3.1) with Yy = ey by

(3.7) VY = ey + UY),
where
(3.8) Ul = M} + eV
and
t
(3.9) M= [ e
0
(3.10) V7 = / e GI(Y,)ds.
0

We emphasize that M;, V;, and U; depend on y and e.
To make the notation less heavy we will assume that

(3.11) R =[-L,L]Y for some L € (0, L),
as it is easy to see that for general rectangles, all our arguments still hold.

Lemma 3.3. Let

(3.12) Ty = To(e) = aloge™ ' +7(e).
For each v > 0, there are g > 0 and vy;, j = 1,...,d, satisfying
(313) ()\ja—l)\/0<7j<)\j0z, jzl,...,d,

such that the following holds for all y satisfying |y| < K'(€) and all € < eq:
—& +P{y+Up € A} <P{r>aloge ' +7(e)} <P{y+Up € A, } + ¢,
where

(3.14) Ay ={zeR?: |2/ < o lLe MmO L 5 =1,....d}.
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Lemma 3.4. Let Ty be defined in (3.12) and Z be a centered Gaussian vector with
covariance matriz given by (2.11). Then for each v € (0,1), there are constants
€0,0 > 0 such that, for € € (0, €

sup |[P{y+Ur, € AL} —P{y+ Z € As}| = O(EB(Q)+5).

ly|<ev—1

These two lemmas are proved in Section 4.

Proof of Proposition 3.2. Let

1 -1
—5x7Cy Tdr.

~8(a)

3.15 (y) = POP{y+Z € A :6—/ e
(3.15) Ye(y) {v +} 2ideice s,
Here and below, we use the same argument to treat the cases of A, and A_ and often
omit the dependence on the choice of + or —.

Since we have assumed (3.11), we have

Hv<12L6_/\jr(0) 711'TC71£B > . 1
(y) J (2m)? det Co Jpa-isr €727 peizy<i 0T if o < 3,
T/} Yy) = —X;r(0)
[I,<;2Le 7 71:1:TC71:1:‘ >i 1
— s ) ) 2 0 ) ) = if = L.
Srtame Je O Ly xas © peimmy @ M@= 5

The key estimate is the following, to be proved later:
(3.16) sup  |¢(y) — w(@)} < o(e?), for some ¢ € (0,1).
ly|<K'(e)

By (3.15), (3.16), Lemma 3.3 and Lemma 3.4, we obtain (3.5). By the discussion
above (3.5), the desired result (2.14) is attained. O

Proof of (3.16). We remind the notations introduced in (2.12). Let IT?, IT>* and 1=
be projection maps defined by II'x = 2%, Iz = x> and 112’z = x=*. For any set
E C R?, we define

317 BB B oE B -1

In addition, for a fixed y € R? in (3.16), and each # € R%, let 7 = (—y~%, 22%) € R4
Since ¢(0) has full rank, by the definition of Cy in (2.11), there is ¢ > 0 such that

(3.18) e~397C e < pelof?
Here and below the value of the constant C' may vary from instance to instance. To
-1
estimate [c(y) — w(%(ey))\, we need the following intermediate quantities:
E_B(a)
I=—
Vv (2m)ddetCy Jay—y

Hj<i 2Le ()

IT = / eféﬁcoilidxzi.
V(2m)ddet Cy Jiay —y)=i

_lzre-ls
e 5T C, md.ﬁlf,

Let us write

(3.19)
0ey) — ()| < [oe(y) — I + [T — I + [TT — ¢(y)| + [o(y) — ()
and estimate each term on the right of (3.19).

9
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By the symmetry and positive definiteness of Cy, we have, for any =, w € R,
(3.20)
}e_%ﬂco_lx — e_%“ﬂco_lw‘ < C(e= P v e )|z + w||z — w)|
< Ce(122] + | — w]) |2 — w[Lyjaigrupy + Cem T (120] + o — w)|z — 0| ajsup
< ClelP v el (jo — w| + |z — w]?)
for some positive ¢; < c¢. Therefore, we have

sup ‘6—%xTC()_1m_e——$TCO x} < sup Ce c1|m>l|2(|x<z‘+y<i| + |x<i+y<i|2)

T€EAL—y T€EAL—Y
< Cearle™'? Z ((exfo"lLe’Af”(E) + €4 4 (Mo Lem i) 4 e'“)z>
j<i
< Ceeil*Pen

for some ¢; > 0. With this, we estimate

(3.21) e (y) — I| < Ce P / el = et gy < Cen,

Atr—y
Note that
Hj<i 2<Le_)‘j7"(5) + 67;'—()\]-04—1))

I =
H]<z 2L€_>\ T(O)

II.

Also, clearly we have |II| < C. Hence, due to (2.8) and (3.13) we have, for some
q2 > 07

Le—)\ r(e€) + €'yj—()\joz—1)
(3.22) 1-11| < ‘HK’ )

ST —1||11] < Ce.
]<z

For the term |II — ¢ (y)|, note that if ¢ = d + 1, then IT = ¢ (y). Let us consider
the case ¢ < d. Due to (3.4), we have that if either & < i and j >4, or @ = - and
j>14+ 1, then

o0
—eclzdl2 i —clzil? i
/ o—clad[2 7.0 :/ o—clad[2 7.0
R\(A+—y)J P Le M) 1 —yi

7€>\ja—1Le—>\jT(e)$€'Vj 7yj -
— J y
(3.23) L / el ? g
—00
o0
—elzi|2 1
§2/ e~ dad < Cle,
e)‘jaflLefkjr(e):Fewj —K'(e)

For the case with o < -, by (3.18) and (3.23), we have

11— ()| < c/
Rd—i+1\ (AL —y)2

<C / e~ele g < Ce?,
Z R\(A+—y)/

Jj=i

76‘ >1|2

d >1
(3.24)
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The case with o = Ai is more involved. Let
¥

Hj<i 2Le N7 (0)

(2m)8det Co J[—Le2im©) —y,Le=Nir O —y]x (A4 —y)>i

Then observe that, with A denoting the symmetric difference of two sets, by (2.8),

1~7p—1x .
111 = e 3T C Byt

11— III| < C e~ P gy

(Ax—y)Z A ([—Le™ im0 —y, Le =i (0) —y] x (AL —y)>7)

<C e~ele'l gyt
(Aj:_y)'LA[_Lef)\i'r(O)_y7Lef)\i'r(0)_y]

< C’(\Le*)‘”’(ﬁ) — Le*’\"(o)| + ) < Ce®

for some g3 > 0. On the other hand, by (3.23), we have
|III - ( | < C/ fc|m>z‘2d >i
e im0 —y, Le=2im(0) —y) x (RI—1\ (A% —y)>?)

< CZ/ e~ P i < Ce2,
~i YR\(A+—y)J

j
The last two displays together give

(3.25) if o = /\%-’ then |II — ¢ (y)| < C(e” + €®B).

To estimate the last term |¢(y) — es E(ey )|, first observe that by (3.4), there
exists ¢ such that for all € < ¢, if |y| < K'(¢), then ey € f(O). Due to (2.6), there

is C' > 0 such that ’f ) —y| < Cely|? for all |y| < K'(€) with e < . By this and
(3.20), we have, using the exponential term to absorb powers of |y|,

o) — () < | e ([ o [y )

Rd—i+1

(3.26)
SC/ e (e + 2)dz? < Ce.
Rd—i+1

Combining (3.19), (3.21), (3.22), (3.24), (3.25), and (3.26), we obtain (3.16). O

4. APPROXIMATIONS

4.1. Proof of Lemma 3.3. Let us recall that v > 0 is fixed and we work with
processes defined in (3.7)—(3.10). We define an exit time along each direction:
(4.1) m=inf{t>0:|Y/|>L}, j=12,..,d

Recalling (3.3) and (3.11), we obtain 7 = min;<;j<47;. By (3.4), there is € such that
for € < €g, we have |YJ| = |ey?| < L for all j and all y with |y| < K'(¢). This fact
together with (3.7) and (4.1) implies that, for € < ¢y and |y| < K'(e),
, . 1 L

4.2 L= 66)\jTj J —+ Ug_ y i.e., 7, = —lo T E———
2) WU e, 7= ylos
Due to (3.12), on {7 > aloge™* +r(e)}, we have 7; > T, so (4.2) implies

1 o j j Ajoa—11 —Xjr(e) , _
P{r > aloge™ +r(e)} =P{[y + Ul | < eV Le ™", j=1,...,d}

4.3 , .
(43) =P{ly/ + U \p| < M Le ™ and 1, > Ty, j=1,...,d}.
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Next, we approximate UﬁjvTO by U%O. Using the definition of M; given in (3.9) and
the boundedness of F' and r(¢), we get, for some Cy,Cy > 0,

<Mj>Tj\/TO - <MJ>TO < 01672)‘1'710 < 0262)\]'04.
By the exponential martingale inequality (see [Basll, Problem 12.10]), this leads to
P{‘M%'VTO - M%O| > %EW} < 2exp(—$€2’vr2x\ja)7

where 7; is chosen to satisfy (3.13). For the drift term V;, by the boundedness of G
and 7(e), we have the following estimate: for each ¢ > 0, there is C; > 0 such that

]P){‘Evé\/To - EVIZO‘ > g€} < (26177j)qE|V7']]"\/T0 - VT];)|q < C(16(17%“]0%-
By choosing ¢ large, we derive from the above two displays and (3.13) that
(4.4) IP>~{|UijT0 —Ul|>eny<e,

uniformly in y for e small.
Now (4.3) and (4.4) immediately imply the upper bound in Lemma 3.3.

To get the lower bound, first observe that by (4.3) we have
(4.5)
P{r >loge ' +7(e)} > P{|ly + Uﬁj| < MO Lem i) Ty |Uﬁj — U%O| < €7,VY5}
>P{y+Up, € A; |UL, —UJ | < €,V5}
>P{y+Un, € A} —P{y+ Uy, € A; U, — U} | > €7, 35}
To estimate the second term on the right-hand side, we bound it by

(4.6) P{r > To; |U, — Ujy| > €,35} + P{7 < To;y + Ur, € A_}.

By (4.4), the first term can be bounded by de” for € small. For the second term, we
first introduce the following notations. For z € R% A C R? and ¢t € R, we write

(4.7) Mo = (eM'al)) eRY, eMA={Mr:z e A} C R

We recall that if Yy = ey, then (3.7) holds. Using the strong Markov property of Y;
and the definition of A_ given in (3.14), we obtain

P{r < To;y +Up € A} =P{7 < Ty; Y, € ee™°A_}
d
S B, < Tl < 1 o)
(4.8) j=1

Y

d
< ZEPYU’{ inf |V} < L~ elwamexjr(e)}
j=1

te [O,T()

where PY denotes the probability measure under which Y; satisfies (3.1) with Yy =
y € R% Note that if |Y{| = L, then |Y/| = |e¥!(Y +€U/)| > L—¢€|U/|. By this, using
—Aja +y; < 0 (which is due to (3.13)), the boundedness of V;, and the exponential
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martingale inequality, we have, for some ¢, ¢ > 0 and small e,
(4.9)

IPYTJ'{ inf |§@j|§L—el—*f“+WeAﬂ”(E>}
t€[0,To)

< ]P’YTJ{ inf (L—e|lU]|)<L-— el’AJ’O‘+'“e’\f”(E)} < P {e”\f‘”“’fe’\”(e) < sup \Utj|}
t€[0,To] te[0,To]

< PY7 {e”\f"*“’fe’\”(e) —ce < sup |Mtj\} < Qexp(—c'e2(’)‘fa+“’f)) < €.
t€(0,To]

Combining (4.5), (4.6), (4.8), and (4.9) leads to the desired lower bound.

4.2. Proof of Lemma 3.4. First of all, we state two density estimates that we need.
For a random variable X with values in R?, its Lebesgue density, if exists, is denoted
by px. Since Uy in (3.7) depends on y, we denote its density by p, .

Lemma 4.1. Consider (3.7) with Yy = ey. Let

d
(4.10) p(x) = Z xi, forxz >0,
jk=1
(4.11) 7] = / e N F(0)dWL.
0
Then

1) there is 6 > 0 such that for each v € (0,1) there are C,c,6 > 0 such that, for e
sufficiently small,

—v 761'2
107, (@) = P25 (2)] < CE (L (e lyl)) e, 2,y € RY,

holds for all deterministic functions T(+) satisfying 1 < T'(e) < floge™, e € (0,1);
2) for each @ > 0, there are C',,§' > 0 such that, for e sufficiently small,

220 (@) = pz (@) < O™,z eRY,
holds for all deterministic functions T(-) satisfying T'(e) > 0'loge™, e € (0,1).

This lemma will be proved in Section 5.

We recall the notation introduced in 4.7 and the definition of Ty = Ty(e) in (3.12).
We set N = min{n € N: I < gloge™!, Ve € (0,1/2]}, where # was introduced in
Lemma 4.1, and t, = %Tg. Hence, each increment ¢, — t;,_; satisfies the condition
imposed on time T'(¢) in part 1 of Lemma 4.1, so we can get the following iteration
result.

Lemma 4.2. For each v € (0,1), there are constants €, Cy, 0 >0, k =1,2,..., N,
and v' > 0 such that

(4.12)
sup  sup |PU{y+ Uy, +e Mwe AL} —Ply+ Z;, + e Mw e Ay}| < Cpe® T,
[y|<ev—1 |w|<ev'—1

holds for each k =1,2,..., N and for all € € (0, ¢].

Let us first derive Lemma 3.4 from Lemmas 4.1 and 4.2, and then return to the
proof of the latter.
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Proof of Lemma 3.4. Set k = N and w = 0 in Lemma 4.2. As ty = Tj, we have that
for each v € (0, 1), there is 6 > 0 such that

sup [PU{y + Ur, € As} — P{y + Zp, € AL}| = o(P@F).

|y‘§5v71

It is easy to see from (4.11) that Z is defined (in the sense of a.s.-convergence)
and has the same distribution as Z: it is a centered Gaussian vector with covariance
matrix (2.11) since F(0) = ¢(0) by (3.2). Taking ' > 0 such that Ty > ¢'loge™" for
all €, part 2 of Lemma 4.1 and the definition of AL given in (3.14), imply that, for €
sufficiently small,

IP{y+ Zn, € A} —P{y+ Z € AL} = o(’@T), vyeR%
The above two displays together imply the desired result. O

Proof of Lemma 4.2. Let us choose v’ € (0,1) to satisfy

(4.13) > N >v', forallj=1,2, .. d.

For the case k = 1, (4.12) follows from Lemma 4.1 and the definition of AL in
(3.14). Then we proceed by induction. Assume (4.12) holds for k — 1 with &£ < N.
Set z(u) = e\ =1 (y + u). The strong Markov property of Y; implies that

(4.14)
Py + Uy, + e w e Ay} =PU{Y,, + ew € eeX" Ay}

=EVP"%-1{Y,, + ew € ee™ AL}
—E (]Pez(“){z(u) + U, +eMw e e”’“*lAi}\FUtkfl)'

We will show the error of replacing U;, by Z,;, and U,,_, by Z;,_, is small.
Using Lemma 4.1 (1) with ¢’ in place of v, we see that there are ¢, C’, ¢’ such that

‘Pez(“){z(u) + Uy, +eMwe 14} — PO (u) + Z, + e Muw e e)‘t’“—lAi}‘

<

/ C"e‘sl(l +p(el_vl|z(u)|))6_cl|“”|2dx.
{z€R:z(u)+xte 1 wgeﬂkﬂAi}

By (4.13), tx_1 = %To, and k < N, we have
ith-1haml < Aitv-r djal < envdia—1, 85 r(e) < V1)
Together with the definition of Ay in (3.14), this implies that, for some C' > 0,
e 2(u)| < C + €7V |,

for z(u) satisfying z(u) + z + e Mw € eM—1A, and |w| < €”'~'. Using ezl o
absorb powers of |z|, the above three displays give, for some C, ¢ > 0,

POz (w) + Uy, + e Mw € M1 AL} — P{z(u) + Zy, + e Mw € M1 ALY

<

/ _ 2 /_
¢ / Ce Pdy,  |w| < e’ L.
{zeR%:z(u)+a+e Mrwee k-1 41}
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—clz|?

Let NV be a centered Gaussian with density proportional to e and independent

of F,_,. Then the above display and (4.14) imply that

I=PYy+ U, +eMwe AL} — EY (]P’{z(u) + Zyy e M € €At’“’1Ai}\u=Utk71)’
<CEPYy+ Uy + e Mw4e N € AL}, |w| <L

Then we choose p large so that

(4.15) P{|N]| > ploge '} = o(? @), P{|Z,,| > ploge '} = o(# @+,

Note that e~ decays like a small positive power of €. So, there is ¢, such that

(4.16)  if jw| < €' ! for e < e, then |e M w| + ploget < 7! for € < €.
Then, the following holds uniformly over |y| < €'~ |w| < €' and € € (0, e]:

I< Ce‘S/IP’Ey{y + Uy, +eMi(e My + N) € Ay N < ploge ™} + 0(65(0‘)”/)
< C’e‘s/P{y + 2y, + e Mk-1 (e_/\tlw +N)e AL} + 0(65(0‘)+6’“—1+6/) + 0(65(0‘)+6/),

where in the second inequality we used the induction assumption allowed by (4.16),
independence of N, Fubini’s theorem, and (4.15). One can check that for k —1 > 1,
there are C,c > 0 such that pz, (7) < Ce=*F for all z € R We also recall

that ¢ = i(«) is given in (2.9). Hence, we can estimate, using Fubini’s theorem, the
definition of A4 given in (3.14), the definition of f(«) in (2.10) and notations given
in (2.12)-(3.17),

Ply+ Zy , +e (e Mw+N)e A} <E / Cel*dy

Agp—y—e ME=1(e=M1yw4N)

< C’/ ez g < C‘(Ai)q‘ < OBl
(As)<ixRd—i

The above two displays indicate that, for some §” > 0

(4.17) I= o(eﬂ(o‘H‘S”), uniformly over |y| < "7 jw| < €L

Then we estimate the error caused by replacing U;, | by Z;, ,. Let Zl be a copy
of Z;, independent of F;, . Using this independence and (4.15), we have that the

following holds uniformly over |y| < €*~! and |w| < €'~ with € € (0, &

Eev (P{z(u) + Zy +e M e €Atk_1A:I:}|u=Utk_1)

=PY{y+ U, _, +e M1(e My + Zl) € A}

=PY{y+ U, _, +eM1(e My + Zl) € Ay \Zl\ < ploge '} + 0(65(0‘)”/)
—PYy+Z,  +e (e Muwt 7)) € As;|Zy | < ploge '} + o€ Fok-1) 4 o(PF)
=P y+ 2, _, + 6_)"5’6—1251 e Mo e ALY + o(eﬁ(a)Jr‘s’“—l/\‘sl),

where we used the induction assumption in the third identity allowed by (4.16),

independence of Zl and Fubini’s theorem. By this independence again, a simple
computation reveals that Z;, | + e_)‘t’f—thl has the same distribution as that of Z;, .
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Then the above display implies that

B (P{2(u) + Zy + ¢ Mw € ¥4 Astuns, ) = PUy + Zoy + e w € A}
= O(EB(a)+6k_1/\6/), uniformly over |y| < €%, Jw| < ¢ and € € (0, ).

From this and (4.17), we derive (4.12) for k, which completes our proof. O

5. DENSITY ESTIMATE

In this section, we prove Lemma 4.1.

We briefly introduce Malliavin calculus notations. For T > 0, on (W, t € [0,T]),
let D be the derivative operator; oy be the Malliavin covariance matrix for a random
vector X' € Fr; || - ||kp. 7 be the Sobolev norm defined in terms of derivatives up to
the kth order with LP integrability; D*?(T) be the corresponding Sobolev space, in
particular, D¥°°(T) = N,>;D*?(T). More details can be found in [Nua95|.

Theorem 2.14.B from [BC14] estimates the difference between derivatives of two
densities in terms of Sobolev norms and the covariance matrix. For our purposes,
in our statement of this result, Theorem 5.1 below, we simplify the conditions of
the original theorem by setting the localization random variable ® to be 1, the
derivative order ¢ = 0 and using Meyer’s inequality (c.f. [Nua95, Theorem 1.5.1])
to bound the Ornstein—Uhlenbeck operator. We stress that, although the conditions
of Theorem 2.14.B as it is stated in [BC14] do not formally allow for ¢ = 0, that
theorem is still valid for this value of ¢. In fact, in [BC14], Theorem 2.14 is derived
from Theorem 2.1 via an approximation argument. In turn, part B of Theorem 2.1
is restated and proved in the form of Theorem 3.10, where ¢ is allowed to be 0.

Theorem 5.1. Fori = 1,2, let X; € D**(T) with values in R? satisfy E(det oy,) P <
oo for every p > 1.

Then there exist positive constants C,a, b,y only depending on d such that for all
r € RY

o (2) = pus ()] <C1 = llar (| TT (1 Elaet o)) (14 1))

i=1,2

b

(P - el <2})
i=1,2

The independence of C,a,p of T is important because we will replace 7 by a
function of e converging to oo as € — 0.
Let us fix 0 and ¢ such that

200 <1, and eéﬁlog(efl) <1, €€ (0,¢€).
For all deterministic T = T'(¢) satisfying 1 < T < flog(e™!), we have
(5.1) e < ee®T <1 for all j, and 2T <1, e € (0, €).

Now, arbitrarily fix such a 7" = T'(¢). We will use 7 = T'(e) and simply write

Il = I+ e p.eo)-
In the following, we use < to omit a positive multiplicative constant independent

of e and T = T(e) € [1,0log(e™")]. Sometimes such a constant will be denoted
explicitly but generically as C. We also use the bracket [], = (E|- ) for p > 2 and
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note that this bracket satisfies the following properties, by BDG, Cauchy—Schwarz
and Minkowski’s integral inequalities, for p > 2:
] / X, 2ds|”

/‘)(lde = /‘)(ldel
< ElX.P) ds = [ [x.] ds,
_/t (Bl ds /t[}ps

1 1

p 2
p

(5.3)

to
[ Xsds = / de

t1

2 1 2 t2
p < (/ (E|Xs|p)5d3> < |ty —t1|/ [X:] ds,
t t1

1

Let H = L%([0, T],R%). The last property above implies
(5.4) 1 een]. < / (X o] ds'ds...ds", neN\ {0},
p [O,T]" o p

where H®™ is the n-fold tensor product of H and X is an H®"-valued random variable.
In the following, we fix an arbitrary p > 2, and use the above properties.

5.1. Estimates of Malliavin derivatives. The formulae for Malliavin derivatives
of a solution of an SDE can be found in [Nua95, Section 2.2.2|. We will use them
without further notice.

Remark 5.2. In [Nua95, Section 2.2.2], the coefficients of the SDE are required to
be C* in order to compute Malliavin derivatives of all orders but here we need to work
only with Malliavin derivatives up to order 3, and our assumptions on smoothness of
the coefficients are sufficient.

Let Ny =U; — Z; and H(-) = F(-) — F'(0). By (3.6), there are Cp1,Cy 2 > 0 such
that,

(5.5) \H(2)| < Cyalzl, |H(@)| < Cpa,  x€RY

For 0 <r <t <T, by (3.7) and (4.11), easy calculations yield

t
N} = / e H](Yo)dWy + €V DIZ = e M Fj(0);
(5.6) 0

DiY} = eeM(DIU}) = ee™'(DIN} + DI Z}).

5.1.1. 0th order derivatives. For some § € (0,1) to be chosen later, we define the
stopping times 7, = inf{t > 0: |YV}¥| > €®} and n = minj<p<a{m}



LONG EXIT TIMES NEAR A REPELLING EQUILIBRIUM 19

Using (5.5), (5.6), and the boundedness of V;* we have

T p
BING P SE| [l P e
0

TAn )
5@/‘Iemmwm%s e

P T r
2+@/)WAWNKW%Q
TAn

TAn
(5.7) <ZE)/ |e_/\15Yk|2ds +E)/ Bk ds e

ThAn
ThAn g
S| [ e
k=1 0

5 b + Ee—PAin 4P,

+ Ee—Pin 4P

By the definition of 7, and the relation ¢’ < Y| = ee’™[y* + Uy |, we have
M = A—lk log(e?~tyk + UF |7"), which implies that

A A (1-B)p3 k k pAk
Ee PN S Ee Pk < Z p’\kE|y + Unk |1”,\,c

&qu

2 _B)pi i
k=1 k=1

Note that any positive moment of U,, is bounded by an absolute constant independent
of €. Recall the definition of p given in (4.10). Then in view of the above display and
(5.7), for an arbitrary v € (0, 1) we can choose § = Sv so that there is dy independent
of p such that

(5.8) [N;] S eR(14p(e ), i=12....d e€c (0,6

5.1.2. 1st order derivatives. Consider r < t < T. Before estimating DI N}, we first
study DIU;. Observe that

(5.9)
t
DiU} :e_)‘iTFJ?(K)Jre/ A0 (Y ) DIURAW! + € / Ke=2)s g GUY,)DIUE ds.

Hence, using the boundedness of the derivatives of F' and G due to (3.7), the [],
properties (5.2) and (5.3), and lastly (5.1), we have

t
[MWLS@AWan+F[eWMWMWEWWMW%
t
+ [62 / N)sg,Gi (Y. )DJdes}

TN (€ 4 €'T) Z/ 22 [DIUE] ds
e N 2 Z/ 2k =Xi)s [DﬁUﬂpds.
k=1YT"
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We fix j, 7 momentarily and set a’(t) = [DZUﬂp, obtaining a system of inequalities

d t
(5.10) al(t) S e 2N 4 €2 Z/ MmNk (§)ds, i =1,2, ..., d.
k=1v"
This type of systems will occur a few more times. So, it is useful to state the following

bound proved in Section 5.4:

Lemma 5.3. Let d € N and m > 0. Then the system of inequalities
d t
(5.11) 0 <a'(t) < eme M 4 ¢ Z/ ANk (§Yds, e [T, i =1,2,...,d,
with T and € € (0, €] satisfying (5.1), implies that there is a constant C' independent
of e, T, and r such that a'(t) < Ce™e™" for allt € [r,T] andi=1,2,...,d.
Applying this lemma to (5.10), we obtain

(5.12) [DIU]] = a'(t) < Ce™ ", r<t<T, p>2, e€(0,q),
which gives, by (5.1) and (5.4),

T
(5.13) IDUr|], g/ [D,Ur] dr < Z/ [DiU7] dr S1, p>2.

0

2,7=1
The following estimate implied by (5.1) and (5.12) will be used later:

(5.14)
[DﬁYﬂp = 2Nt [DiUZ]p SE@eMtem™M < e <t <T, p>2, ec(0,¢).

Then we proceed to estimating DI Nf. The calculation (5.6) gives, for r <t < T,

t t
DIN{ = e M H(Y,) + / O HI(Y)DIYEAW! + € / 50, G Y, )DIYFds,

o\ 2
2)p

which implies

(1PN ], Z (E} / e (Y,
.S A
k= p

1.,
’H:|p

d
£ 3@
The terms in the first sum of the above display appeared in (5.7), and thus are

,7,k=1
Sev(1+ p(el_“\y\))Z. For the next two sums, we first invoke properties (5.2), (5.3)
and (5.4), and then apply (5.14) and (5.1) to get

T T
} < / { / e M0 H} (Y. )DJY’“dWl] dr
Hlp 0 P

/ / Z zsa Hz )Djyk deT </ / —2)\;s 'Djylc] ds dr 5 T < 6%

[H/ NS HI(Y,)DIY RdW!

1

/ e M0, G (Y ) DY Eds

M / e NSO HI (Y, ) DIY FdW!
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and similarly,
T 4 ' T T '
€ [ ) / e”\isﬁkGZ(n)D]Y;deH } < 62T/ / e’QAis[Df,Ysk}pds dr < €%
. H 0 T
p

Therefore, we conclude that for some §; > 0,

(5.15) [IDNzll] ) S € (L+p(e"ly)>s p>2. €€ (0.l

5.1.3. 2nd order derivatives. Since 2nd order derivatives of Z; vanish as can be seen
in (5.6), we have

(5.16) PPN, = DA,

where the superscript indicates the order of differentiation. So we only need to study
the latter.
Let us rewrite (3.7) as

t t
U = [ e B gawt e [ oGy s
0 0

t t
= / e M F (ee™(y + Us) ) dW! + 6/ e G (ee’*(y + Us))ds
0 0

and apply formula (2.54) in [Nua95, Section 2.2] to this equation in place of equa-
tion (2.37) therein. For ry,7y <t < T, we obtain
DIVEUL = e NMOGF] (Y, )DEYE + e N0, F (Y,,)DIY)

71,72 r2TT1 L]
t t
[N B DRIV DEYIW e [ g (DU
r1Vro r1Vro
t

t
" / e (0], 4, G (V) (DY) (DEYF)ds + ¢ / NG (Y, DI U ds.

r1,ro = S
r1VTo

1Vra

Here we choose to express some terms only in terms of the process Y while some terms
are expressed in terms of both U and Y (we recall that by (3.7) Y/ = eeit(y? + U7)).
This, along with (5.2), (5.3), the Cauchy—Schwarz inequality and the boundedness

of derivatives of F' and G, implies that
[DiRUL], S e [DRYE], + P [DivA]
p p p

T1,72 r2T Tl TLT T2
d t
+(1+€T) / e[y, (DY), ds
(517) ]ﬂ%l 1V [ 1 ]2p[ 2 }Qp
d ¢
ERS / 2N DB U] s,
k=1 r1Vra

1,72

Let us temporarily fix ji, jo, 71,72 and set a’(t) = [Djhj? Uﬂp and r = r; Ary. Then,
using (5.1) and (5.14) for p and 2p, from the above display we obtain

t d t

al(t) S e MiMe 4 emMire 4 / e it ds + € Z / e2Aemr)3gk () ds

r1Vry k=1 1Vra

d t
5 66—2)\1-7" + 62 Z / GZ(Ak—Ai)sak(s)dS’
E=1"T"
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which by Lemma 5.3 implies

(5.18) [D“”U’} =d'(t) < Cee™" iy <t<T, p>2 €€ (0,¢)l.

71,72

This, along with (3.7) and (5.1) implies the following estimate which will used later:

(5.19)
(DY) = Dinik?] Sl Sl i <t<T, p>22, e€ (06

Lastly we obtain, by (5.4), (5.16) and (5.18),

d

PP Nr[lys2] = [IDPUrllye2] S /[ . [Di2U;] drydry
a1 0T
(5.20) ) Jrda=l
geZ/ eI gy dry < €T < €2, p > 2.
i=1 7 [0,T]

5.1.4. 3rd order derivatives. Similarly to the above argument for second order deriva-
tives, we apply (2.54) from [Nua95, Section 2.2| to obtain that for ry, 7,73 <t < T,

D]17J27]3 UZ

T1,72,73

2
1 —AiTn, 2 7 in km 7 JnqsJn k
= 5 Z € 0 <ak17k2an0 (}/T‘”O) H Dinz Y;’n() + aijn() (}/T‘”O )Drni "22}/7'%0

{no,n1,n2}={1,2,3}

t
+/ _)\15< ]4;1714;27]4;3 H D]mykm

1VraVrs

m=1

DO | —

Ty Y RHO)DIIRRY)DRYE) + (Y, >z>ﬂ’m3U'f)dW’

T'ng r1,r2,r3 " S
{n1,n2,n3}={1,2,3}
+ e<a similar integral with F} and dWSl replaced by G* and ds, respectively),

where the factor of 1/2 comes from counting certain terms twice. Let us temporarily

fix j1, J2, J3, 71, T2, 3 and set a’(t) = [Dﬁ}%’{%Uﬂ and r = r{ AT Arz. Then, similarly

o (5.17), using Holder’s inequality, the [-], properties (5.2), (5.3), estimates (5.14)
and (5.19) for p,2p, 3p, and lastly (5.1), we obtain

ai(t)se—”\ir(€2+€2) Jr/ 2A15<€ FpE +Z 2,2M5,, k )ds

T

d
26—2>\i7" + 62 E / GQ(Ak—Ai)Sak(S)dS’
k=1Y"

which by Lemma 5.3 yields

[DJI’]%‘B Ulj| - a’l(t) S 0626_2)\dr7 r1,7T2,73 S t S Ta p Z 2.

T1,72,73
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Finally, by (5.4) and (5.1) we have, with r = ry A7y A 73,

IDOUles] | < Z / (DI UL dridradrs
3,J1,J2,J3=1 0,773
(5.21) )

<€ Z/ e dr drydrs < ET? <6, p>2, €€ (0,¢).

5.1.5. Conclusion of derivative estimates. Combining estimates (5.8), (5.15), (5.20),
and Jensen’s inequality, we obtain, for each p > 1, all € € (0, &),

1 1 Y
(5.22) |Ur = Zpllap = | Nrll2p = [Nr §+Z ID* Niplgger] 2 < € (1 +p(e"[yl))
k=1

for some 6 > 0.
By (5.13), (5.18), (5.21), Jensen’s inequality and the easy observation that all
moments of U; are bounded uniformly in ¢, we have

(5.23) Urllsp S 1, p>1, €€ (0,¢).
Lastly, a simple calculation shows that
(524) ||ZT||3,p S 1, Y% Z ]., €€ (0, 60].

5.2. Negative moments for determinants of Malliavin matrices oy, and oz,.
The goal is to show for each p > 1 there is a C}, > 0 such that

(5.25) E|det oy, | 7P, Eldetoz.|™? < Cp,, €€ (0,¢€).
Using the formula of DZ; in (5.6) and that F'(0) = o0(0) is of full rank, it is easy to

verify (5.25) for oz, as it is deterministic. For oy, we first simplify the expression
for DIU} in (5.9). Let

(5.26)
Ai(r) = e ME(Y,),  A(s) = e (Y,),  Bi(s) = Mg GNY,).
Then, we can rewrite (5.9) as
t t
DU} = Al(r) + / A, (s)DIUFAW! + / By (s)DIUkds.

By the boundedness of derivatives of F', G and (5.1), we have, for some C > 0,
(5.27) |Ai(s)| < Ce™*, [A, (s)| < Cez, [By(s)| < Ce?, s<T, ec(0,e)

Let us introduce two d x d-matrix-valued processes, where 5; is the Kronecker delta,

t _
Yi(t) =i+ /0 (ALY S (s)dW! + By ()Y ()ds).
(5.28) e B ‘o |
Zi (1) = 6 /0 (AL ZL ()W + (BL(s) — DAL, ()73 () Zi(s)ds ).
=1
These two processes correspond to (2.57) and (2.58) in [Nua95, Section 2.3.1]. The

computations below (2.58) there show Z(t)Y (t) = Y (t)Z(t) = I the identity matrix.
In addition, (2.60) and (2.61) from [Nua95, Section 2.3.1] state that oy, satisfies

(5.29) o, = Y(1)C,Y (1)
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where T denotes the matrix transpose operation and

. d t . .
(5.30) C/=> / Zi (5)AF(s)Z7 (5) A (s)ds.
1=1 70
Then, observe that, by (5.29) and Hélder’s inequality,

(5.31) E|det o, | < (E|det CT|—ZP)%(E\ det Z(T)rlp)%, p>1.

Therefore, to prove boundedness of E|det oy,.| 77, it suffices to prove that it holds for
E| det Cy|~? and E|det Z(T)|*. We first bound the latter.

__ Although it is more than what we need here, we shall find a bound on moments of
Z(T) with Z}(t) = supg<,<;|Z%(t)|, which will be used later. By (5.27), we have

T 4
—i—/ eZZZ(s)dS
0 k=1

Then, using BDG inequality, the [-], properties (5.2) and (5.3), (5.1) and (5.27), we
obtain, for all p > 2 and € € (0, ¢,

- d T - d T
Z,(T)] S1 +Z/ (e+€T) [Zi(s)] ds S 1 +€Z/ (Zi (s)
k=10 k=10

Summing up the above in j and using Gronwall’s inequality, we get, for some ¢ > 0,

7i 1 l
Zi(T) S 1+ sup ’/ AL Zi(5)dW!

0<r<T

(5.32) Zy(T)] <D [Z4(D)] ST S, p=2, e€(06)

p
k=1

Using this and the expression of the matrix determinant as a polynomial of the entries,
we apply Holder’s inequality to conclude that for each p > 1 there is C}, > 0 such

that (E|det Z(T)[*)? < C,, ¢ € (0, cg].

To bound E|det Cp|~% for all p > 1, it suffices to show that, for each p > 1,
there is C,, > 0 such that P{v < (} < C,(?, where v is the smallest eigenvalue of
Cr. Note that v > 0, because Cyp is positive semi-definite, which can be derived
from (5.29) since oy, is positive semi-definite and Y (7') is invertible. We need the
following lemma which will be proved in Section 5.4.

Lemma 5.4. Let A be a symmetric positive semi-definite random d x d matrixz. Let v
be its smallest eigenvalue. Then for each p > 1, there is a constant C,4 > 0 such
that

(5.33) P{r<(}< de( sup E|(v, Av)|~#+2d +E’ Z LAY |2
jol=

i,j=1

Yo, c20

For each p > 1, by (5.27), (5.32) and Hélder’s inequality, we have
EICHF)F < / " (BIZL) A7 ()47 ()

Z / semsds <1, e e (0, e).

k,m=1

’EI»—A

ds
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Hence, for each p > 1, there is ¢, > 0 such that E| E?,j:l \C’%ﬂg < ¢, € € (0,€).
Therefore, if we can show that for each p > 1 there is C), such that
(5.34) sup E[{(v, Crv)| P < C,, €€ (0,€),

|v|=1
then Lemma 5.4 and the discussion above imply that E|det Cr|™? is bounded for
each p > 1, when € is small (in comparison with [Nua95, Lemma 2.3.1], we need a

bound that is uniform in e € (0, ¢]). Consequently, this and (5.31) will imply the
desired result (5.25). Therefore, it remains to show (5.34).

Proof of (5.34). Let us fix an arbitrary v € S¥!, the (d—1)-sphere. By the definition
of C; given in (5.30),

(v, Cyv) — /0 0TZ(s)A(s) |2ds.

Recall A’ (s) given in (5.26). By (3.6), we have, in the sense of positive semi-definite
matrices, F(Y;)F(Y;)T > ¢ol. Therefore, we get

d

(5.35) (v, Crv) > ¢ /OT ’ (ZUZAZ;'(S)G_)‘J'S)?

=1
i=1 J

2
ds, €€ (0,¢).

Let us define

d
= Vo > wiZi(t)e ™' =r] + M + Al
(5.36) =
t ¢
= ré—l—/ ul (s)dW! +/ a’(s)ds, j=1,2,....d,
0 0
and additionally th = fot Rj(s)u{(s)dWé, j=1,2,...,d, where, by the It6 formula
and the expression for Z(t) given in (5.28),

(5.37) rj = Ve, ~Veo sz VAL (5)Z(s),

i,k=1

@/ (s) = —(\/%Zd:vikje‘*ﬁzé(s))—(\/% > e (By(s) = Ay (5)A7()) Zis) )

i,k,m,l

Then, (5.35) and (5.36) imply

P{(v, Cyv) SC}SP{/OT\RS\QdSSC}7 e € (0, €).

Recall that T'= T'(¢) > 1 is assumed. Since v € S*°! is arbitrary, Lemma 5.5 that
we state and prove below implies (5.34). O

Lemma 5.5. Let ¢y be given in (5.1), and Ry be given in (5.36) which depends on
the choice of v € S¥=1. For each p > 1, there is C, > 0 independent of v such that

(5.38) IP{ /T R, |%ds < g} <C0¥, e e (0.
0

This lemma is a variation of [Nua95, Lemma 2.3.2].
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Proof of Lemma 5.5. By (5.27), (5.32) and (5.37), there is ¢, > 0 independent of v
such that

T

B sup [u(s) <6 E( [ la(s)Pds) <6 e (0.al

0<s<T 0

This and Markov’s inequality imply that for some ¢, > 0 independent of v € S,

(5.39) IP’{ sup <|u(s)| +/ \a(’r)\er) > gfé} <3, (>0, e (0,6).
0<s<T 0

Recalling the definitions of M; and Ny in (5.36), we define, for each ¢ > 0 and each

EE(O,EQ],
T s L
B ={ [ 1RPas < s (jus)|+ [ lalr)Par) <,
0 0<s<T 0

By = {(M)r < 264, sup M]| 2 d7'¢T5},
0<t<T

€ ] 3 ; 1
By = {(N7)y < (1, sup |N}| > (i),

0<t<T

where the dependence on € comes from T = T'(¢), R, u(s), a(s), Ms, and Ng. The
exponential martingale inequality implies that, for some cp > (0 in dependent of v,
P{(UL, BE) U (UL, BSD)} < 2dexp(—Sr) + 2dexp(—S0) < 6,¢8, ¢ >0, e € (0,6,

Observe that by this and (5.39), we can attain the desired result (5.38) if we can
show there is a (y > 0 such that

(5.40) By C (U, BYS) U (USL,Bss), ¢ €(0,6), €€ (0,e).
Hence, it remains to show (5.40). Choose a (, to satisfy, with ¢y, 79 given in (5.37),

1 i L 1

Ga) 2 ) <o=Inl AF<va ad <L

We show (5.40) with this chosen (5. Argue by contradiction. Suppose (5.40) is
false. Then, for some ¢ € (0, (p) and some € € (0, €], there is

(5.42) weBy—(wﬁﬂﬁﬂMWﬂ%Q)

From now on, fix this pair of { and ¢, and evaluate all random variables at this w.
By w € B due to (5.42), we clearly have

T T
(Ve < [ IR P < (s Ju(s)F) [ IRPas < =
0

0<s<T

Then, since w & BS %

sup ’/ Riul (s)dW!| =
0<t<T

By w e BC due to (5.42) and the Cauchy—Schwarz inequality, we have

o?f%’/ Rld(s ds’ < (/0 |R§\2ds>§(/0 |aj(s)|2ds) < (26 =

j=1,2,...,d, due to (5.42), we deduce

Il < i, j=1,2,....d

0<t<T

Sk
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It6 formula applied to (5.36) gives |R;|> = |7’0\2+Z] L 2(Jo RiuldWi+ [ Ria/ (s)ds)+
Z?:1<Mj)t. The above two displays, (5.41), and w € B§* due to (5.42) imply

T d A T T , d t ‘
/ Z(M]>tdt:/ |RS|2dt—T|r0|2—/ (22/ R;ng)dt

< ¢ — Tlrol* +2dT(CT + ¢T5) < .

Because t — ijl(M 7); is nondecreasing, the above display indicates

Since w € B implies SUpPg< <7 |U(s)| < (7%, by the definition of M, in (5.36), we
get
d

S (MP)p — (MP)r_) < 4¢3

=1

The above two displays yield Z?:1<Mj>T < 47 4+ ¢, By (5.41), we can set
1

’y:C% < (5 <1 to obtain

d
Z r < CTE (T < 2Ch

Since w & B

15 J=1,2,...,d, due to (5.42), we have

d
(5.43) sup | M| <Z SUp |M7\ < dd~'(ts = (.

0<t<T

On the other hand, Markov’s inequality and w € Bg “ imply,
1 (T
m{t € [0,7]: |R,| > (5} < g—/ |Ry|?dt < (3,
5.J0

where m is the Lebesgue measure on the real line. By (5.43) and (5.36), we thus have
m{t € [0,7] : Jro + Ag| > (5 + (5} < 5.

1
Note that Q% < (5 < % < %T due to (5.41) and T > 1. Hence, for each ¢t € [0, T],
there is ¢ € [0, 7] satisfying [t — #/| < 2¢3 and |ro + Ay| < ¢3 + (15, Therefore, for
each t € [0, 71, it holds that, by the definition of A; in (5.36),

t
a(s)ds’
< CF (T V20T < AT,

Set ¢ = 0 to obtain |ro| < 4¢1s. However, V/€o = |rol, due to (5.37), and (5.41) imply
that

1
7o + Ay| < |ro + Ay 3)\2ds’2|t—t’ }

Vo = [ro| < 4¢T8 < 4G < Ve,
By contradiction, (5.40) holds for ¢y satisfying (5.41). O
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5.3. Proof of Lemma 4.1.

5.3.1. Part (1). We will apply Theorem 5.1 to Ur and Zp. First note that, since Uy, Z;
are solutions of SDEs, by [Nua95, Theorem 2.2.2], we know they belong to D> see
Remark 5.2. Since Ur = Mr+¢€Vr, using boundedness of V- and applying exponential
martingale inequality to Mp and Zr, after a simple computation, we have that there
are constants C', ¢ > 0 such that
(5.44) P{|Ur — z| <2}, P{|Zy — x| <2} < Cec,
Theorem 5.1, (5.22), (5.23), (5.24), (5.25) and (5.44) give rise to, for some C’, ¢’ > 0,
|0, (2) = pz; (2)]

< CllUr = Zpllsyr (1 VEldet ou, | ) (14 [Urllsr) )

: ((1 VE|detoz,| ) (1+ HZTHMT)) (P{|Ur — 2| < 2} + P{|Zy — 2| < 2})"
< C'E(1+plet|y)))e ",

5.3.2. Part (2). We estimate the difference |pz,. () —pz.. (z)|. The covariance matrix
of Zr is given by
d
k_ i gk _ j k
Cr =EZyZr = ;Uz (0)a;(0) N+ M
By T > 6)loge™", we have lim._,C/* = CJ*. Therefore, there is a constant ¢ > 0
such that

1 7h—1 1 rp—1
(5.45) e a%Ce v e 2%7C < 6*0\5’3\2_
We can write
det C, det C,
|pZT<I') - pZoo<x>| < ‘pZT - detCOpZT + ‘ detCOpZT - pZoo"

Since @/g%g; can be viewed as the square root of a polynomial of e=7 with positive

det Ce
det Co

Therefore, using the hypothesis §loge™' < T and (5.45), we obtain

< Ci(eT)n for some Cp,q > 0.

fractional powers, one can see that |1 —

/- 2
pzr =\t | < Crenthem T
For any matrix, we use | - | to denote its Frobenius norm. Then observe that, for

some ¢o > 0, we have, for some Cs, g3 > 0,
€t = G < 1C5 111G — ClICT| < Cole™™)™ < Coe™h,
As C. and Cy are positive definite, so are their inverses. Then by (5.45), we can get
‘eféx'rcglx . ef%xTCO*l:r‘ < (67%17(};11 \/ ef%xTCO*lm) ‘efé|mT(C§17C071)m| . 1‘
< fedFlaPiest — ¢t | < Cyeoe 22,

Therefore, we have

‘ det C.

/]2
detCopZT ~ PZs < C4€q200€ <"l :

In conclusion, |pz, (z)—pz.. (x)| < C'e” e<"1*I” which completes the proof of Lemma 4.1.
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5.4. Proofs of auxiliary lemmas.

Proof of Lemma 5.3. Let b(t) = Y20, a’(t). Summing up the inequalities (5.11) in i
and using A\; > Ay > ... > Ay, we get

t
0 <b(t) < eme M 4 62/ e*1%b(s)ds.

Now Gronwall’s inequality implies that, for some constant ¢ independent of ¢,

22T

0 S b(t) S €m6—2>\d7’66526

Finally, we use (5.1) and the fact a’(t) > 0 to derive a’(t) < b(t) < €me 2%" and it is
clear from this computation that all the constants involved do not depend on r. [

Proof of Lemma 5.4. This proof is a modification of the proof of [Nua95, Lemma 2.3.1].
Let us fix ¢ > 0. Let uy, ug, ..., uy, be unit vectors in R? such that

(5.46) ST Ul {w e RY: o —w| < €3,
where S is the unit sphere and N, is chosen so that

(5.47) Ny < Cy¢™

for a positive constant Cy only depending on the dimension d. Writing |A| =
(Z?J:l | A%[2)2, we obtain

Pl <} = P{inf (v, A0) < ¢}
v|=1

5.48
(5.48) < P{inf (1, Av) < G JA] < 1} + P{A| > 1.

[vl=1

The second term can be estimated using Markov’s inequality as

d 3
(5.49) P{|A] > 1} < CPEJAP = ng] 3 AP

ij=1

For the first term, more effort is needed. On the set

B = {inf (v.Av) < G 1A < 1}

suppose (ug, Aug) > 2¢ for all k =1,..., Ny. For any v with |v| = 1, by (5.46), there
is uy such that |[v —uy| < %. Then observe that, on B,
(v, Av) > (ug, Aug) — |(v, Av) — (ug, Auy)|
> 20 — ([(v, Av) — (v, Aug) | + [(v, Aug) — (ux, Aug)|)
> 2¢ — 2| Al — we| > 2¢ — 22§ = 3¢
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But on B, we necessarily have inf},|— (v, Av) < (. Hence, by contradiction, we must
have B C Up?, { (uy,, Aug) < 2¢}. This fact together with (5.47) implies

IP’{‘i‘n:fl@,Aw <GlAl < %} < P(Ugil (ug, Aug) < 2¢})

Na

<) 20OPE ug, Aug) | #H
k=1

< Na(2¢)7*** sup E| (v, Av)| =@+

[v]=1

< 27440, ¢P sup E| (v, Av)|- ¢,
lv|=1

The above display, (5.48) and (5.49) show that there is C, 4 > 0 depending only on p

and d such that (5.33) holds. O
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