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ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM
YURI BAKHTIN AND HONG-BIN CHEN

ABSTRACT. We consider exit problems for small white noise perturbations of a dynam-
ical system generated by a vector field, and a domain containing a critical point with
all positive eigenvalues of linearization. We prove that, in the vanishing noise limit, the
probability of exit through a generic set on the boundary is asymptotically polynomial
in the noise strength, with exponent depending on the mutual position of the set and
the flag of the invariant manifolds associated with the top eigenvalues. Furthermore,
we compute the limiting exit distributions conditioned on atypical exit events of poly-
nomially small probability and show that the limits are Radon—Nikodym equivalent to
volume measures on certain manifolds that we construct. This situation is in sharp
contrast with the large deviation picture where the limiting conditional distributions
are point masses.
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1. INTRODUCTION

This paper is a part of our program on long-term behavior of dynamical systems with
multiple unstable equilibria organized into heteroclinic networks, under small noisy per-
turbations. The existing work in this direction (see [SH90|, [SA99], [ASKO3]| for early
analysis with elements of heuristics and [Bak10], [Bak11], [AMB11], [BPG19], [BPG18],
[BC19] for rigorous analysis) is a departure from the classical Freidlin-Wentzell (FW)
theory of metastability. In FW| rare transitions can be described via large deviations
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theory and happen at rates exponential in —e™= where € is the strength of the perturba-

tion:
(1.1) dX; = b(Xf)dt + ea(Xf)dVVt.

In [Kif81], it was shown that the exit from a neighborhood of an unstable critical
point of b happens in time of the order of loge™!, in the most unstable direction, along
the invariant manifold associated to the top eigenvalue of the linearization of the vector
field b. In the case where the top eigenvalue is not simple, the limit of the exit location
distribution was studied in |Eiz84].

In the case of a simple top eigenvalue, the results of [Kif81] were strengthened in
[Bak10], [Bak11], [AMBI11], where scaling limits for the distributions of exit locations
were obtained and used to compute asymptotic probabilities of various pathways through
the network. In particular, it turned out that there are interesting memory effects and
in general the typical limiting behavior at logarithmic timescales is not simply a random
walk on the graph of heteroclinic connections.

To study the dynamics over longer times, one has to study the rare events realizing
unusual transitions that are improbable over logarithmic time scales, see the discussion
of heteroclinic networks in [BPG18|. It was also understood in [BPG19] and [BPG18]
that the leading contribution to these rare events is due to abnormally long stays in the
neighborhood of the critical point. Asymptotic results on the decay of probabilities of
these events were obtained for repelling equilibria in these papers for dimension 1 and
in [BC19] for higher dimensions. The general results of [BC19| can be briefly summarized
as follows. If all the eigenvalues of the linearization at the critical point are positive and
simple and the leading one is A > 0, then, for all @« > 1/\ and initial conditions at
distance of the order of € to the critical point, it was shown that

P{r > aloge '} = c’(14+0(1)), €—0,

where ¢ and 3 were explicitly computed. Note that this is a more precise estimate than
logP{T > aloge '} = (Bloge)(1 + o(1)) conjectured in [Mik95.

In the present paper, we extend the study of atypical exit times from [BC19| to the
study of atypical exit locations in the same setting. We assume that the dynamics near
the critical point (which we place at the origin in R?) admits a smooth conjugacy to the
linear dynamics with simple characteristic exponents A\; > ... > A\; > 0 and consider
a neighborhood D of the origin, with smooth boundary 0D. For any subset A of 0D
possessing a certain regularity property (most relatively open subsets of 9D fall into this
category), we prove that

(1.2) P{X, € A} = Wpu(A)(1 +0(1)), €—0,

where p(A) and u(A) are constants. The values that the exponent p(A) can take belong
to a discrete set of values (p;)%;:

(1.3) pi:Z(%—l), i=1,2,....d
j<i i

Here and throughout this paper, the sum over an empty set is understood to be 0.



ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM 3

The relevant index ¢ = i(A) to be used in (1.3), i.e, such that p(A) = p;a) in (1.2)
is defined in the following way. For each ¢ = 1,...,d, there is a uniquely defined -
dimensional manifold M* invariant under the flow generated by the drift vector field b,
with tangent space at the origin spanned by eigenvectors associated with eigenvalues
Als..., X These manifolds form a flag, i.e., M' Cc M? C ... C M¢?, their traces
on D defined by N* = M N D also satisfy N' € N? C ... C N and, additionally,
N?NOD = dD and thus i(A) = min{i € {1,...,d} : N'NA # 0} is always well-defined,
see Figure 1.

Our results mean that exits along manifolds of various dimensions have probabilities
of different polynomial decay rates. Since 0 = p; < pa < ... pg, these probabilities are of
the order of €’ (=€’ = 1) > ¢ > ... > ¢”¢. The differences in the order of magnitude
for these probabilities are due to a drastic distortion caused by exponential expansion
with different rates in different eigendirections. One can say that the exit direction of the
system is largely determined by its behavior in infinitesimal time which is then amplified
by exponential growth with different rates in different directions.

In agreement with the results of [Kif81], exiting in the neighborhood of a two-point
set N1 (M! is a 1-dimensional manifold, i.e., a curve, associated to the most unstable
direction) is a typical event which has asymptotic probability 1. Exiting away from
it happens with probability of the order of ¢” and, conditioned on this polynomially
rare event, the exit distribution concentrates on N,. In general, exiting away from Nj
is a rare event of probability of the order of e”*+! and, conditioned on this rare event,
the exit distribution concentrates on Nj.;. Moreover, these conditional distributions
converge weakly, as € = 0, to a limiting measure that is Radon-Nikodym equivalent to
the k-dimensional volume on Ny, with a density that can be described explicitly. The
basic case where the domain D is a cube and the vector field b is linear is at the heart of
the analysis. It turns out that the limiting distributions of exit locations conditioned on
exits through various faces of the cube show equidistribution properties that cannot be
obtained through large deviation estimates and are surprising if one is used to the FW
mindset.

We discuss the simple situation described above and build our intuition in Section 2.
In Section 3 we give the general setting and our main results in detail. The proofs are
given in Sections 4—6.

The techniques that we are using are primarily probabilistic. Most are based on the
classical stochastic calculus tools and the key estimate is based on Malliavin calculus.
In principle, exit problems can be addressed using PDE tools. For exits near unstable
critical points, some elements of PDE-based analysis can be found in [Kif81], [Day95],
and [CGLM13|. So it would be interesting to find a PDE approach to the problem
solved in the present paper but we follow the path of probabilistic analysis using the
basic approach similar to |[Eiz84], [Day95|, [Bak10|, [Bak11]|, [AMB11], [Bak15|, [BPG19|,
[BPG18], [BC19].

Concluding the introduction, let us briefly discuss two directions that will be natural
continuations of the present work.

Although our new results and those on exit times from [BC19] are based on the same
density estimates, we do not develop that connection further in this paper. In particular,
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FIGURE 1. The dashed line segment and the shaded surface are the por-
tions of M! and M? inside D, respectively. The sets A;, i = 1,2,3,
lie on OD. Probabilities of exit through these sets have different de-
cay rates: there are constants ci,cs,c3 such that P{X, € A} — ¢,
P{X, € Ay} ~ coe”?, P{X, € A3} ~ c3e”. Moreover, conditioned
on {X, € As}, the distribution of X, has a limit concentrated on
Ay N Ny = Ay N My and equivalent to the length measure on this curve;
conditioned on {X, € A3}, the distribution of X, has a limit equivalent
to the area.

the detailed asymptotic analysis of the joint distribution of exit locations and exit times
seems possible but harder, and we postpone it to another publication.

A more important question is the asymptotic behavior of exit distributions near hy-
perbolic critical points (saddles) of the driving vector field. Atypical events described in
terms of the exit location are responsible for atypical transitions in heteroclinic networks.
Similarly to the situation in this paper, their probability is expected to decay polyno-
mially in e leading to a hierarchy of transitions observable at various polynomial time
scales, see the heuristic analysis in [BPG18]. The approach of the present paper based
on Malliavin calculus density estimates from [BC19], will be an important ingredient in
making this analysis rigorous in another forthcoming publication.

Acknowledgments. The conditional asymptotic equidistribution first emerged in
discussions with Zsolt Pajor-Gyulai in connection to our project on noisy heteroclinic
networks. YB thanks NSF for the partial support via award DMS-1811444.

2. A HEURISTIC COMPUTATION FOR A SIMPLE CASE

Let us give a heuristic analysis of the simplest situation with exit distribution behavior
that is counterintuitive from the point of view of the FW theory.
Suppose the diffusion X = X€ in question is two-dimensional:

dX} = M X[} dt + edW},
dX? = N X2dt + edW?,



ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM 5

where A\ > Xy > 0 and X} = X2 = 0, and W', W? are independent standard Wiener
processes. We define 7 = inf{t > 0: X; € 9D}, where D = (—1,1)? is a square and
study the distribution of X, the location of exit from D.

When € is small, it takes a long time to exit, and for large times ¢, the Duhamel
principle gives

t
(2.1) XF = et / e MW x e Ny,
0

where Nj, = [7 e **dW} is a centered Gaussian random variable with variance 1/(2A).
Denoting 73, = inf{t > 0 : |XF| = 1}, k = 1,2, we obtain from (2.1) that

1 1 1 1
(2.2) T ~ —log — + — log —.

Therefore, for small €, typically we have 71 < 75. Moreover, plugging (2.2) with £ = 1
into (2.1) with k& = 2, we obtain
X2 = RN R
n =€ 1|N1| 1N2—)O, e — 0,

so the typical random locations of exit X, will concentrate near points ¢ = (£1,0)
where the invariant manifold associated with the leading eigenvalue A; (i.e., the first
axis) intersects 0D.

Let us now prohibit exits through the sides of D that contain ¢+ and study the
unlikely event B of exiting D through [—1,1] x {—1,1}, i.e., we define B = {|X?| = 1}.
It turns out that P(B) = ce%_l(l + o(1)) and the exit distribution conditioned on B
is, somewhat surprisingly, asymptotically uniform on [—1, 1] x {—1,1}. Let us present a
heuristic argument for this.

Introducing events

Moy A
A = {|N1| < rei |N2|A2}, r >0,
we obtain from (2.2) that
B = {’7‘2 < 7'1} %Al,
and, plugging (2.2) with k£ = 2 for ¢ into (2.1) with & = 1, we obtain that
{( XL <r}=A4,, r>0.
Next,
P(A,) = / 9(@1, x2)dw1dzs,
Z:'r,e

A A
where ¥, = {(z1,22) : |21] < r6§_1|x2|§} and g is the joint Gaussian density of N;
and Ny. As € — 0, the domain ¥, . shrinks to the axis {z; = 0}, so we can approximate
g(z1,x2) by g(0,x9) and conclude that
A
P(A,) = ce%_lr(l +0(1)), €—0,
where

A
c= 2/g(0,x)|z|*2 dzx.
R
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Therefore,
A1
P(B) =P{m < 1} = cex2 (1+0(1), €—0,
and Bl
<
—{| IP)T(%) r} —7r, €—0,

which, due to the symmetry of this example, implies that the limiting distribution is
uniform.

Another implication of this calculation is that to realize B one needs typical values
of Ny and atypically small values of N;. Due to (2.2), this translates into typical values
of 7 and atypically large values of 7;. One can say that the main effect of conditioning
on B is conditioning X! to stay within [—1,1] for abnormally long times, with only a
moderate effect on the evolution of X2.

Let us now expand this example and consider a third coordinate evolving indepen-
dently according to

dX} = N X} dt + edW?,
with 0 < A3 < Ay and X3 = 0. Now, the unlikely event of interest B = {|X?| = 1}
corresponds to the exit through the union of two faces of the cube D = (—1,1)? given by
[—1,1] x {=1,1} x [-=1,1]. From the analysis above we know that the exit will happen
at time 7, corresponding to moderate values of Ny, i.e, near )\—lklogé. Plugging the

expression for 7, from (2.2) into (2.1) for k = 3, we obtain that X? = 61_%|N2|_%N3.
Hence, under conditioning on B, X§2 converges to 0. Combining this with our analysis of
the two-dimensional situation above, we conclude that the exit distribution converges to
the uniform distribution on [—1,1] x {—1,1} x {0}. This union of two one-dimensional
segments should be viewed as the intersection of D with the two-dimensional invariant
manifold associated with A; and Ag, i.e., the xyx9-plane.

The goal of this paper may be described as to give a rigorous treatment of this example
and its generalizations to higher dimensional nonlinear situations with space-dependent
diffusion matrix and general domains.

3. SETTING AND THE MAIN RESULT

In R?, we consider an open simply connected set D, a bounded vector field b : R? — R?
and the flow (S;)er associated with b via the ODE

1) 5w = HSia),
Sor = x,
satisfying the following conditions:
— the origin 0 € D;
— b(0) = 0;
— for all z € D\ {0}, the deterministic exit time
(3.2) t(x) =inf{t > 0: Sz € OD}

satisfies t(z) < oo. In particular, x = 0 is the only critical point of b in D;
— bis C° and b(z) = az + ¢(z) where
- q(x) < C,|x]? for some C, > 0,
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- ais a d x d diagonal matrix with real entries A\;y > Xy > ... > Ay > 0;
— 0D is O
— b is transversal to D, i.e., (n(x),b(x)) > 0 for all € 9D, where n denotes the
outer normal of dD.

A more general situation where a is only assumed to have eigenvalues A\; > Ay > ... >
Aq > 0 can be reduced to this one by a diagonalizing linear transformation. Our results
also hold for a broad class of domains with piecewise smooth boundaries but we restrict
ourselves to domains with smooth boundaries for simplicity.

By the Hartman—Grobman Theorem (see, e.g., [KH95, Theorem 6.3.1]), there is an
open neighborhood U of 0 and a homeomorphism f : U — f(U) conjugating the flow S
to the linear flow S generated by the vector field z + az and given by S,z = ze =
(z7eM")9_,, namely,

d
%f(stl') = af(StZlf)
— in addition, we assume that f is a C° diffeomorphism.

Remark 3.1. Due to [Ste57], for this C® conjugacy condition to hold in our setting, it
suffices to require (i) a smoothness condition: b is C* for some k& > 5V (\;/)\,), and
(ii) a no-resonanse condition:

)\k;éml)\1+...+md>\d

for all k = 1,...,d and all nonnegative integer coefficients mq, ..., my satisfying m; +

The vector field  +— ax is the pushforward of b under f, and since a is diagonal, f
can be chosen to satisfy f(0) =0 and Df(0) = I, the identity matrix.

We are interested in random perturbations of (3.1) given by (1.1), where

— € € (0,1) is the noise amplitude parameter;
— (W, Fy) is a standard n-dimensional Wiener process with n > d;
— 0= (0';'-)@-:17.,.@; j=1...n is a map from R? into the space of d x n matrices satisfying
- 0 is C? (and , by adjustments outside D, we may assume that ¢ has bounded
derivatives in RY),
- 0(0) : R" — R? is surjective.
We will study the solutions of (1.1) with initial data X§ = e£. € Foy, where

— &, converges to some {y € Fy in distribution as € — 0;
— there are constants C, ¢ > 0 independent of € such that

(3.3) P{|&| > 2} < Ce I for all 2 > 0,e € [0,1).

To simplify notations, we often suppress the dependence on e. In particular, we
write X; instead of X;. We introduce the first time for X; to exit D as

(3.4) T=71=inf{t >0: X, & D}.
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Our main results concern the asymptotic properties of the distribution of X, the
location of exit of X, = X7 from D. To state them, we need to introduce more definitions
and notations.

— B =[-L,L]%, L >0;

— F,, =B, N{zeR?: 2" = £L} is a face of By, and F}, =F;  UF} _;

— for A ¢ B C R% 0pA and intz A denote the boundary and the interior of A
relative to B;

— 0 = Oga, O = Osp,,, inty, = intyp, ;

— H? denotes the s-dimensional Hausdorff measure.

For k = 1,...,d, we define sets A* = @F | Re;, where (es); is the standard basis
for R?. The sets A* are invariant manifolds for the linear flow (S;) associated with top &
exponents Aq, ..., \;. Therefore, the sets

(3.5) MF ={r e RY: S;z € fH(A") for some t € R}, k=1,...,d,

are the k-dimensional invariant manifolds associated with top k exponents for the flow (.S;).
Let us define the traces of these manifolds on the boundary by N* = M* N oD and note
that due to our transversality assumptions, N* is a (k — 1)-dimensional C'-manifold.
In particular N' consists of two points, N? is a closed curve in 9D, and N¢ coincides
with 0D.

For any set A C 0D we define the index of A to be

i(A) =min {k € {1,...d} : AN N* £ 0},

see Figure 1. This notion is going to be useful because we will show that due to the
presence of different exponential growth rates in different directions, the probabilities for
the system to exit D near N* have different orders of magnitude for different values of
k. Thus, the index of A picks the manifold with the dominating contribution. However,
this notion becomes truly meaningful and helps computing the asymptotics of exit prob-
abilities only for sets with an additional regularity property which is compatible with
the notion of weak convergence of probability measures, holds true for most relatively
open subsets of 0D, and which we proceed to define.
Assuming d > 2, we say that a set A C D is N-regular if it is Borel and satisfies

(3.6) HADp AN N = 0.

In the case of d = 1, all subsets of JD are considered to be N-regular.
We still need a few more elements of our construction.

There is a Euclidean ball O centered at 0, satisfying f~1(O) C U, and such that the
vector field x — ax is transversal to 0O. Let us fix O and define

(3.7) L(O) =sup{L > 0: B, C O}.

For every L € (0, L(O)), we can define vy, : f~1(0B;) — 0D as the Poincare map along
the flow (S;):

(3.8) V() = Sywz, € fTHIBL),
where ¢(-) was introduced in (3.2). We can now define

(39) CL:fO¢Zl : 0D — 90By.
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For z,y € RY, we define

UG Fp — / e s o+ dad
’ (2m)d det C R (i) (gL 1) )
o= [ Rt ad = [
[=y"00) (—o0,~y]
where

(3.10) et =% % _

=1
For L < L(O) and i = 1,2, ...,d, we define the following measure on dD:

. _ g . . . .
(311 pp(A)=L7=<n YT Exi(&) K THGA) NFLNAY), A CD.
.E{+,—}
In this definition, the set F%, N A’ is the union of two (i — 1)-dimensional rectangles:
FiLo N A= [_La L]i_l X {_L>L} X {O}d_i>

and H7'(- NFL, N AY) is simply the (i — 1)-dimensional Euclidean volume (Lebesgue
measure), so the measure % is Radon-Nikodym equivalent to the volume measure on
of N'Nn¢~Y(FY).

Recalling the definition of p; in (1.3), we can now state our main result.

Theorem 3.2. If A is an N-regular set with index i, then there is Ly € (0, L(O)) such
that for all L € (0, La)

(3.12) lim e PP{X, € A} = u(A).

Remark 3.3. The proof of this theorem also implies that the family of numbers (L,4)
indexed by N-regular sets A can be chosen to satisfy Ly > L, for A’ C A.

Remark 3.4. Note that the scaling exponent p; and the limiting constant u (A) in (3.12)

are defined explicitly. Thus, (3.12) provides a very precise approximation. Although the

right-hand side of (3.12) seemingly involves L, in fact, it does not depend on L € (0, L,).
A .

It is easy to see that L 2<% in the definition of wi (A) is the correct scaling factor
compensating for distortions in directions 1, ...,7—1 introduced by the linear flow that is
a part of the definition of (7, (A). We also note that N-regular sets A such that u' (A) > 0
(so Theorem 3.2 provides the truly leading term in the asymptotics) form a large class
that includes, for example, (z-preimages of small open balls with centers in F%, N A“.

According to Theorem 3.2, the decay rate of probability of exit is the same for all
N-regular sets of the same index ¢. This, along with the fact that N-regular sets are
specifically defined to be continuity sets for H*~!, allows us to state a corollary on the
limiting behavior of conditional exit distributions.

IfP{X, € A} # 0, let 5 be the exit distribution of X conditioned on exiting from A:

e P{Xre-nA}
val) = —prx e ay
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We denote the weak convergence of finite positive Radon measures by “—".

Theorem 3.5. Let A be an N-regular set of index i and suppose that j' (A) > 0. Then
for all L < Ly the following weak convergence holds as € — 0:

e H(-NA)
vy =
1y (A)
Remark 3.6. The definition of p} in (3.11) together with the bi-Lipschitzness of (f,
and (4.2) implies that p%(- N A) is equivalent to the (i — 1)-dimensional Hausdorff
measure restricted to AN N1,

In the special case where b(z) = az, D = int By, A = F%, for some L > (0 and
i =1,...,d, the limiting measure in Theorem 3.5 is the uniform distribution on F%_ NA".
Thus Theorems 3.2 and 3.5 are natural generalizations of the simple 2- and 3-dimensional
equidistribution examples discussed in Section 2.

It is important to stress that Theorem 3.5, where the limiting conditional distribution
is equivalent to the volume measure on the manifold N?, paints a picture drastically
different from the typical large deviations picture where the limiting conditional distri-
butions are often point masses concentrated at the minimizers of the large deviation rate
function.

The unconditioned exit distribution was also shown to converge to an explicitly com-
puted limit equivalent to the volume on a manifold of smaller dimension in |[Eiz84|. In
that paper, the eigenvalues of the linearization are not required to be simple but the
assumptions on nonlinearity are fairly restrictive. At the core of the results of [Eiz84]
and ours, is the fact that the transition probability over a small time interval is approxi-
mately Gaussian and this distribution is carried to the boundary almost deterministically
by the flow, different directions being stretched with different rates. However, our re-
sults are more delicate since we have to zoom into the transition distribution studying
its regularity at small scales with Malliavin calculus tools.

The plan of the proof is the following.

We are going to decompose the dynamics into two stages: (i) the evolution in the
transformed coordinates until the exit from a small cube By (or, equivalently, from
f7Y(By) in the original coordinates) and (ii) the evolution between exiting from f~'(Br)
and exiting from D. In the second stage, the process essentially follows the deterministic
flow trajectory (S;) and the associated Poincare map 1, with error controlled by a FW
large deviation estimate, so it is stage (i) that is central to the analysis. During stage (i),
the evolution is well approximated by a Gaussian process due to approximate linearity
of the drift, so to obtain the desired asymptotics we combine direct computations for
this Gaussian process with estimates on the error of the Gaussian approximation based
on Malliavin calculus bounds previously obtained in [BC19).

4. PROOF OF THE MAIN RESULT

Theorem 3.2 will follow from two results that we give first. The first result helps to
reduce the problem to considering only sets A with (;,(A) being a subset of the union
of two faces of B associated with coordinate i(A), and the second one computes the
asymptotic probability of exit through such a set.
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Proposition 4.1. Let A C 0D satisfy i(A) =i. The number L'y defined by
Ly =sup{L € (0,L(0)): ((A)NF, =0,Vj <i;B, C O}
is positive, (i.e., the set under the supremum is nonempty) and for all L < L'y we have
(1) CL(A)NFL =0 for all j < i;
(2) if i <d and A is N-regular, then there are N-regular Ay, Ay C OD such that
(CL) A()CACA()UAl; ‘ ' ‘
(b) Z(AQ) = i,’ CL(A) N AN = CL(AO) N AZ,' CL(AO) - iIltaBL FZL,
(c) i(Ay) =i+ 1.
Proposition 4.2. There is Ly > 0 such that the following holds. Let A C 0D be an
arbitrary N-regular set with i(A) =i. If L < Ly satisfies (1,(A) C intgp, FY, then
1iII(1) e PP{X, € A} = u’(A).
e~

Proposition 4.1 and Proposition 4.2 will be proved in Sections 6.1 and 6.2, respectively.

Proof of Theorem 3.2. Let Ly = L'y A\ Ly, where Ly and L, are defined in the propo-
sitions above. We immediately see that if A" C A, then Ly > Ly, so Remark 3.3 is
automatically justified.

The idea of the proof is to use Proposition 4.1 in order to approximate A by a union of
regular sets of various indices such that Proposition 4.2 can be applied to each of them.
More formally, we will use induction on i(A), starting with the case i(A) = d.

Note that, by (1) of Proposition 4.1, i(A) = d implies (;(A) C intyp, (F¢) for all
L < L4. Therefore, we can apply Proposition 4.2 to obtain

lim e™"P{X, € A} = pi(A), forall L < Ly,
which completes the proof of the induction basis.

For the induction step, let us assume that the desired result holds for all A with
i(A) =k for i+ 1 <k < d. Let us show it is also true for A with i(A) = 1.

Let us fix L € (0, L4) arbitrarily. Since ¢ < d now, we can define Ay and A; according
to part (2) of Proposition 4.1. Since Ay C A, Remark 3.3 implies L < L4 < L4,. Then,

using part (2b) of Proposition 4.1, Proposition 4.2, and the definition of x4 in (3.11), we
obtain

(41) lim e PP, € Ao} = i (Ao) = i (A).
By (2c¢) of Proposition 4.1, i(A;) = 7 + 1, so by the induction hypothesis, for each
L < LA17

lim e P{X; € A} = W (Ay),

e—
which implies that P{X, € A4;} = O(e”+') = o(e”*). Due to (2a),

IP{X, € A} —P{X, € Ao}| < P{X, € A1} = o(e").
Combining this with (4.1), we complete the induction step and the entire proof. U
To prove Theorem 3.5, we need the following basic result.

Lemma 4.3. Let A C 0D be arbitrary. Then the following holds:
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(1) i(A) =min{k € {1,...,d} : (L(A) N AF £ 0} for each L < L(O);
(2) if A is Borel, then the following statements are equivalent:
(a) A is N-regular,
(b) HD=HO (¢ (A) N A} =0 for some L < L(O),
(c) H'D=HOL(CL(A) NAAY =0 for all L < L(O).
Proof. First, (y, is a bi-Lipschitz homeomorphism, since it is a composition of a diffeomor-
phism f and the Poincaré map @Z)Zl constructed in (3.8) from smooth flows transversal

to locally smooth sections. Secondly, due to (3.5), the definition N kF = M* N oD, and
the invariance of A* under the linear flow S, one can see that

(4.2) CL(ANNY) = (A)NA* and  CL(Osp AN N¥) = 9L (CL(A)) NAF,

which implies both parts (1) and (2) straightforwardly. O
Proof of Theorem 3.5. We need to prove that

‘ pr(BNA)
4.3 vy(B) » —/—————=, — 0,

for every continuity set B of the measure p’(- N A) or, equivalently, by the defini-
tion (3.11), of H*1 (¢ (- NA)NFi, NAY) which is equal to H*™ (¢, (- N A)NA?) due to
L < Lya. Using the inclusion p(BNA) C (dpBNA)U(BNdpA), the N-regularity of A
(see (3.6)) and (2) of Lemma 4.3, we conclude that the continuity property of B implies
that of BN A. Combining this with the fact that v5(B N A°) = 0 for all ¢, we obtain
that it is sufficient to check (4.3) for Borel subsets B of A with continuity property. For
such a set B, either i(B) =i(A), or i(B) > i(A). In the first case, writing

OpB =0p(BNA)C (0pBNA)U(BNopA),

using the continuity of B, part (2) of Lemma 4.3, and the N-regularity of A, we conclude
that B is also N-regular, so (4.3) follows from Theorem 3.2. In the second case, part (1)

of Lemma 4.3 implies (;(B) N A* = (). Therefore, r = dist((1(B), A*) > 0, where

(4.4) dist(C, D) =inf{|lzr —y|: € C, ye D}A1, C,DcCR%

Since ! (¢L(BNA)NF; . NAY) = 0, it suffices to prove v5(B) — 0 to ensure (4.3). Let
us define Bt (r) = {z € By, : dist({x},A*) > r}. Since ((B) C Bi(r), and ;' (Bi(r))
is an N-regular set of index 7 4+ 1 due to parts (1) and (2) of Lemma 4.3, we can apply
Theorem 3.2 to ¢; '(Bj(r)) and conclude that P{X, € B} = o(e”) = o(P{X, € A}),
so (4.3) holds in this case as well. The proof is completed. O

5. EXIT FROM A BOX
Recall the definitions of By, = [ L, L]? and F%, in Section 3. Let
pes={r € Fpy:|2/| < L -6 for j # i},
FiL,(S = FiL-i—,(S U FiL—,(S'
Set
(5.1) o, =inf{t >0: X, ¢ f(By)},
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where f is the linearizing conjugacy. The main result of this section gives the exit
probability asymptotics for sets whose images under f are rectangles:

Proposition 5.1. There exists Ly > 0 such that for all positive L < Ly, we have

>\. . . . .
lim e #P{X,, € f7(A)} =L a3 Ex (&) H T ANFL, N AY)
e—
.E{J’_v_}
foralli € {1,2,...,d}, and for all sets A with the following properties:
— Ais a product of intervals which can be open, closed, or half-open.
— A=[a", b x ... x [0 0] x {£L} x [a", b x ... x [ad, b9, where [af, V] C
(—=L,L) for all j #1i and a’, b/ # 0 for j > 1.
5.1. Derivation of Proposition 5.1 from auxiliary results. From now on, we use

standard summation convention over matching upper and lower indices. Let Y; = f(X;),
where f is the linearizing conjugacy. Using It6’s formula, we obtain

dYy = alYidt + e, f(f 7 (V) ok (f 71 (Ya))dW]

(5.2) + 5 Z 2 PPNV (FHYR), o (fH (V)

7,k=1
= NY/dt + eF}(Y,)dW] + €G' (Y;)dt
where
— A = )\; to avoid summation in i;
— F and G are C? (since f is C° and o is C®);
— since f(0) =0 and Df(0) = I, we have F'(0) = o(0).

Since F'(0) = ¢(0) is d x n with full rank and F' is continuous, we can find Ly > 0
small so that there is ¢y > 0 such that miny,_; ,ega [uTF(x)[* > ¢ for all x € [—Lg, Lo)*.
We shrink L, further, if necessary, to ensure Ly < L(O) as in (3.7). Since we will only
care about exiting from a subset of [—Lg, Lo]%, we modify F, G outside [—Lg, Lo]¢ so that

min  |uTF(z)]> > ¢, for all z € RY;
(53) lu|=1,ucRd
F, G and their derivatives are bounded.

With this Ly chosen, we will consider the following for the rest of this section, applying
Duhamel’s principle to (5.2) and setting Yy = ey,

t t
Y = eeMlyl + e (/ e N F (V) dW! + 6/ e_’\stj(YS)ds)
0 0
= eeM(y) + M] + €V) = eeM(y) + UY),
where F,G are modified to ensure (5.3). We emphasize that M;, V; and U; all depend
on y and e. We define P¥ = P{ - |Y; = ey}.

Let Cy be the Lipschitz constant of f and c¢; = C’;l. Since f(0) = 0, we have
le7 f(ex)| < Cylz| for all z and e. In view of (3.3), we choose x > 0 large so that for

(5.5) K(e) = (loge )"

(5.4)
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we have
(5.6) P{|&| > c;K(e)} < eka™ for all € € (0, 1], for some & > 0.
By our definition of ¢y, we have

if || < c;K(e), then | f(ex)| < K(e).

Remark 5.2. Later, when needed, x in (5.5) will be adjusted to be even larger. This
will not affect our results.

According to (5.1), 7, = inf{t > 0 : Y; ¢ B.}. To prove Proposition 5.1, we first
obtain asymptotics for Y; exiting rectangular sets uniformly in Yy = ey with |y| < K(e).
Recall that p; is given in (1.3).

Proposition 5.3. Consider Y; defined by (5.4). If L < Ly, i = 1,...,d, and A is a
rectangle described in Proposition 5.1, then

(5.7) lim sup | "PY{Y;, € A} — X' (e f(ey))ca| =0,
0y |<K(e)
where
Aj . .
(5.8) cq= L Zi<in H(b’ —d’) H Tgoe(ai piyy-

j<i j>i
Here and throughout the paper, the product over an empty set is understood to equal 1.

Derivation of Proposition 5.1 from Proposition 5.53. Consider (1.1) with X, = €& de-
scribed in (3.3) and observe that, by (5.6) and the above proposition,

(5.9) e PP{X;, € fTH(A)} = Be #PINY,, € AMye, e k(e + 0(1)
= CAEXY (€)1 e, j<c; k(0 + 0(1).

There is C' > 0 such that

(5.10) ()] < C(L+ [y<i™), = eRY

Due to the fast decay of the tail of ¢ imposed by (3.3), all positive moments of |x (&)
are bounded uniformly in e. Therefore, due to (5.6) and Hoélder’s inequality, we have

Ex’ (§e)]l{|§€\>ch(e)} = o(1), which implies
(5.11) CABXL (€ qie < i (o) = CaBXL (&) +o(1).

This, along with the uniform tail bound on & in (3.3), the polynomial bound on x4 in
(5.10), and continuity of x4, implies

(5.12) 11_:()1(1) caEX'L (&) = caEx'L(&).
Combining (5.9), (5.11), and (5.12), we obtain
N , .
lime " P{X;, € f(A)} = L7 == NExL (G T {AN AT,
e—

completing the proof. O
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5.2. Proof of Proposition 5.3. Let us fix any L < Ly and 7 € {1,2,...,d}. First, we
remark that it suffices to consider A satisfying

(5.13) 0€(a, v, Vj>i.

In fact, if A does not satisfy (5.13), then we can find two rectangles A’ and A” such that
(i) m=1(A) = 7=(A") = 7=(A”) where 7=' is the projection onto the first i coordinates;
(i) A Cc A” and A C A"\ A

(iii) A" and A” satisfy (5.13).

By (5.8), we have c4 = 0 since A does not satisfy (5.13), and ¢4 = c4» due to (i). These

together with (ii) imply (we use e = X’ (e 2 f~*(ey))):

e P PUY;, € A} —nica| = |€ PPUY,, € A}|
< ‘G—Pi]P)ey{YTL c A/} —neca| + }e—m]P)ey{erL c A//} — nacan

Finally, (iii) allows us to apply (5.7) to A" and A”, and thus (5.7) holds for A.

To avoid heavy notation, we also assume that A is closed. It can be readily checked
that all our arguments are still valid if A is not closed.

Recall 7, given in (5.1). Since L is fixed, for brevity, we write 7 = 7, for the rest of
the section. Here, we only study the case where A C FY ,, which corresponds to Yi=L.
The case where A C Fi_ (corresponding to Y = —L) can be considered in the same
way.

We will need the following two statements.

Lemma 5.4. Assume 0 € (a?,V’) for all j > 4. Let
(514) T() = TQ(E) = — lOg
There are v;, j = 1,...,d, satisfying

A; A
(5.15) 0v<A—7—1><7j<A—? i=12....d

such that
P{y+Ur, € B_} —o(e”) < P{Y/ € [/, V],Vj # ;Y] = L} <P{y+Up, € By} +o(e")
holds uniformly in |y| < K(€), where

By = Uyicr, (BY), x {a'} x BYY,)

+,>14

(5.16) i S i
= Ugier, ((‘]:(I:,l) X X J:(I:,i)—l) x {z'} x (J:(I:,izi-l X X ‘]:(l:,d)))

with I, = (F €, (loge )" £ €], and for j # i
. R YEPY ) by VDY ] by
Jﬂ(:gfj) = [aJL_TzeTz_l(m” + E’n)TZ T G'Yj’ HL—TZG*%_IOQA + E'Yi)Tz + E'in|‘

Note that due to (5.15), for small ¢ > 0, the terms €% are small compared to the

leading order terms in the definition of Jf;)
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Lemma 5.5. Let Ty be given in (5.14) and Z be a centered Gaussian vector with co-
variance matriz C given in (3.10). Then for each v € (0,1), there is 6 > 0 such that

sup |P{y+ Up, € Bi} —P{y+ Z € By }| = o(e"™).
ly|<ev—1
Let us define
(5.17) he(y) = e PP{y+ Z € By},
(5.18) ho(y) = L™ =< %X (y) [T — o).

j<i
Note the dependence on =4, which is suppressed to avoid heavy notation. Proposition
5.3 follows from Lemmas 5.4, 5.5 and the following estimate:

(5.19) sup |he(y) — ho(e™' f (ey))| = o(1).

ly|<K(e)

Our plan is to derive (5.19) in the remainder of this subsection and then prove Lem-
mas 5.4 and 5.5 in Subsection 5.3.

5.2.1. Proof of (5.19). We split (5.19) into estimating |h.(y) — ho(y)| and |ho(y) —
ho(e7*f~1(ey))| separately. The techniques involved are elementary but the proof is
tedious. We proceed in steps.

Step 1. We express h, and hg explicitly in the form of Gaussian integrals over some
sets. For each 2 € RY, let

et = (2.2, 22 =(2f .2, 27 = (22, 2= (2%

(5.20) BYY = B, x BYY,

where szz and Bf;)l are given in (5.16). When y is fixed as in Yy = ey, we write
T = (—y<!, 22" € R? for each r € RY.

Now, let us introduce

: €_pl 1 1701
5.21 (@)= [ ey
(5.21) 9e(e",) 2m)ZdetC /ngww_g
[ — @)L et 4y
. (0 —a i|lx i R .
(5.22) ol y) = ~H< Y / - 4E7C 18 g i
(2m)ddet C R

Recall the definition of I below (5.16). Additionally, we set
(5.23) Zi(y') = [y 00) and I_(y) = (—o00,—y]
Using the definitions (5.17)—(5.18), we can see

hely) = / el y)dat,
Iy —y?

holy) = / e )’
+(y*
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Step 2. We record some useful estimates, which will be proved later. For simplicity of
notation, we write

(5.24) Zey) =€ f 7 ey).
For convenience, we set 29(y) = y. The following holds for all € € [0, 1] and z* € R,
(5.25) sup gc(a',y)] < C(1+ K(e))'e ",
ly|<K(e)
(5.26) sup (2, y) — gola',y)| < Cete T,
ly|<K(e)
(5.27) sup |y — z(y)| < Ce,
ly|<K(e)
(5.28) sup |go(',y) — gola', z(y))| < Cete T,
ly|<K(e)

for some C, ¢, p,q > 0.

Step 3. We estimate |h.(y) — ho(y)| for |y| < K(e). We shall only treat the case where
+ is 4+ and F is —. The other case is similar. We start by writing

3

) = to)l < [ la) —golat e+ [ ot

I —y? i —yi
+/ |go(a’, y)lda’.
(log e=1)+1 4% —yi
Using (5.25) and (5.26), we have, for some ¢’ > 0,
sup |he(y) — ho(y)| S/Ceqe_”mdxi + O (1+ K(e))
R

ly|<K(e)

(5.29) o |
+/ C(1+ K(e))Pe~ P dzt = o(e?).
Q

oge1)rtl4evi —K(e)

Step 4. We estimate |ho(y) — ho(2:(y))| for |y| < K(€). Recall the definition of Z. (y*)
in (5.23) and note that, due to (5.27),

(5.30) Z (v AL (2 ()| < |y — 2i(y)| < Ce.

Here A denotes the symmetric difference of sets. By the formula for ho(y) in Step 1, we
first write

ho(y) — ho(z(4))
S/’.Im%w—wﬁawwff/. ety + lgo(at, 2 () da.
T1(2L(y)) T+ (y) AL+ (2L (y))

We can bound |go(?, z.(y))| by using (5.25) and (5.28). Apply this, (5.28) and (5.30) to
see

(5.31) sup |ho(y) — hol(z(y))| < /R Cele 1" Pzt + Cet(1 + K(e))P = o(e")

ly|<K(e)

for some ¢” > 0.
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In conclusion, (5.19) follows from (5.29) and (5.31).

It remains to prove estimates listed in Step 2. We prove them in the following order:
(5.27), (5.25), (5.28), (5.26).

Proof of (5.27). Recall the definition of z.(y) in (5.24) and that the local diffeomor-
phism f satisfies f(0) = 0 and Df(0) = I. Since |y| < K(e), if € is small, then |ey| is
uniformly close to 0. By expanding f~! at 0, we can see that there are C,q > 0 such
that

ly—z(y)| =y — e ' (f (ey))] < Cely|> < Ce?,  V|y| < K(e).
This gives (5.27). O

Proof of (5.25). Since ¢(0) has full rank, by definition of C in (3.10), there is ¢ > 0 such
that

(5.32) e 20T < emelel®  yp e RY.
Hence, there is C' > 0 such that
. . . Aj i
lgo(a’,9)| < Clat 4y s X em .
Absorb polynomials of #¢ into the exponential to see, for some C, ¢, p > 0,

sup |go(z',y)| < C(1+ K(e)) e™"
ly|<K ()

From this and (5.26), we obtain (5.25). O

i‘2

Proof of (5.28). We simplify the expression (5.22) into

ol ) = Clat + P [ e e

for some C, pg > 0. Then, we have

lg0(2",y) — go(a, z())|

i 0|0 [ g () |PO —32TC e ; ~!
(5.3 < C<|x + 1] |z" + 2! (y)] ) /Rdi e 2 ‘x<i=—z§’(y)dx
i i —laTc e —327C7 e >
+ Clz* + y*|P /Rdi € 2 ‘x<i:—y<i —e 2 }:B<i:—zs<i(y) de™".

Let us estimate the terms on the right of (5.33). Using (5.27), we have, for some
C.p,q>0,

(5:30) |2 + o' — [o' + 2i(y) | < O’ + yP)e?” < Cet(|2'P +1),  V]y| < K(e)

By (5.32), there are C, ¢ > 0 such that

1 — . 7|2
(535) /d .e_EmTC 1m‘x<i:_y<idx>2 < Ce—c|m‘ .
Rd—i
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To estimate the integrand of the last integral in (5.33), we need the following obser-
vation. Since C is symmetric and positive definite, there are C, C’ > 0 such that, for all
w, z € RY,

}6_%w7c*1w . 6—%ZTC*1z} < C(e—CIw\2 V, e_c|z|2)|w + z||w — Z|
< Ce™MP(12w] + |w — 2|)|w — 2|1 jui<pa);
—CZ2
+ Cem (122 + |w — 2|)|w — 2[Lfju)> 2

(5.36) < C'(e 1P 4 e (Jw = 2| + |w — 2]?).
Using this estimate and (5.27), we can obtain
—lgte-1y Lzt
ez ¢ ‘x<i:_y<i —e ¢ ‘m<i:—z€<i(y)
<e P (™ =S )+ Iy = 22 W)P)
(5.37) <Cele Tyl < K(e),

Insert (5.34), (5.35), and (5.37) to the right hand side of (5.33) to see
l90(2", y) = go(a", 2e(y))]
< Ce(fap + 1) F 4 O(Ja'pr + K (Of)ete
<Ol Yy < K(e),

i‘2

for some ¢, ¢’ > 0. This completes the proof.
O

Proof of (5.26). Again, the techniques involved are elementary while the proof is tedious.
Recall g. and go in (5.21)—(5.22), and the notation in (5.20). To estimate the difference
between g. and gg, we introduce

1ato—15 5.0
—ngC xd7

E_pi
el
J@mderC Jae
. N N
l_lj<i(b7 —al )L Nilat +yt N / o YETCTNE g >
(27T)d det C Bgi:iyi)_y» )

IT =

Then, we write

(5.38) 9:(2",y) — g’ y)| <

We proceed in steps. In each step, we estimate one term on the right of the above display.

ge(z',y) — I| +|T = II| + |II — go(a’,y)|.

Step 1. We estimate |g.(x*,y) — I| for |y| < K(¢). We start by writing

|Mﬂm—ns057/ e TCT —ema T
B

iggiy
E: y)_y

dz

Let us estimate the integrand. Recall the estimate (5.36). Using % —1>0for j <1,
ly| < K(e), and e~ to absorb powers of |#7|, we obtain that, for all ,y satisfying
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-, B(xi'i‘yi) 5 d < K
T € B g and |y| < K(e),
‘6—%1‘"’0*11‘ N e—%:?;chlfc‘ < Ce—c1|x2i\2 (|x<z + y<i| + |l,<i + y<i|2)

< Cem =N " (of| + [v7]?)

j<i V=

z|2
9

A A < Cqu —02|9E
21

eri o (|aiytlei) N e

for some C, c1, c2,q1 > 0. This, along with the definitions of BY" Y n (5.20), Bix;;y.)
in (5.16) and p; in (1.3), implies

|ge(2',y) — 1| SCe‘“/ o enemal Py
P ST AN
B:(tac +y )—y
539 = Cen—rig=el 2</ o dx“) (/ o e_cz|x>i|2dx>i)
( . ) ng<‘t:y )_y<i ng>“;y)_y>i
< Cler—pi B(xl‘f‘yl) e—cg\xﬂz

>N X 2
< Qe —Pigeai<i A (|:L’ | + 1) J<i N e—cz\x < Cele —ca|zt \
Here and henceforth we use |B| to denote the Lebesgue measure of a set B.
Step 2. We estimate |I — II|. First note that, by integrating over the first i — 1

coordinates in I and the definition of ijj ) in (5.16) we have

>

J

Hj<i ((b7 - aj)L_Ti(
Hj<i(bj —al)

X; )
|z* + y"\ﬁe_c"“‘z for some C' > 0. Hence, using |y| < K(e) and

6”) :I:QEKYJ (k ))

I= II.

Also, |II] < C']]

_ j<i .
e~<l'* to absorb powers of |z"|, we can obtain, for some C, ¢, g > 0,
(5.40) |1 — 11| < Cetemel=,
Step 3. We estimate |IT — go(x%,y)|. Note that
o0
II — go ZL’i < C LU + Z]<1 )\Z e c|m,z‘2dx>i

Rdfi\(B(1i+yi)_y>z)
ey / g e ey
o1 TR =)
We split the integrals after the last inequality into

. . Aj : .
[ ety R
IIJ’L+ 1 .

R\(J1" YY) —yi)

>

o0 A
- Ly e
=5 1 . . ~- . ]

WL Niedi "(|loiyt|eri) M teli—yd
MM 2
Xi e A

@ LR N (i) N e~y .
R S B
+/ |2ty |2 N el

—00



ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM 21

Choosing ¢’ > 0 sufficiently small, we consider two cases. If |27 4 3| < €7, then for some

g3 > 0, the above display is bounded by Ce%®. For the case where |z° + | > €7, let us
>\ .

set ¢; = (Ja?| A |bj|)L_TZ and recall that % —1 <0 for j >i. For some q4, g5, p > 0, the
above display can be bounded by

>

jeAi (eq/—e'yi) Ai —€%—K (€)

o0 N T
2/ A |x" 4 y| =<t N e~ gt
C

J
i

J

< Cetlat 4y [Z ™ < CeB (2P +1) Yy < K(e).

In deriving the above inequality, we have used :\\—J —1 < 0 and chosen ¢ < «;. Combining
the above, we have

(5.41) 11T — go(', y)| < O (e + eB(1 + [2'7))e ' < Cetoele

i|2

To conclude, we insert (5.39), (5.40), and (5.41) into (5.38). As a consequence, we
obtain that, for some constants ¢’, C, ¢ > 0, the following holds for e sufficiently small,
sup [ge(@',y) — go(a’,y)| < Ce? e,

ly| <K (e)

as desired.

5.3. Proofs of Lemmas 5.4 and 5.5.

Proof of Lemma 5.4. Let 7; = inf{t > 0 : [Y{/| = L}. We recall (5.1) and the notation
T = 71,. Hence, we have 7 = min;_; 5 _4{7;}. First, we show the following.

.....

Lemma 5.6. If [/, V] C (=L, L) for all j # i, then, with p; defined in (1.3),
sup |P{Y? € [o/, V],V # ;Y] = L} = P{Y] € [/, V'],V] # ;Y,, = L}| = o(¢”).

ly|<K(e)
Proof. Since
P{Y! € [o/,V'),Vj #i;Y] = L} =P{Y? € [/, V'],Vj # ;Y] = L;7 = 713},
it remains to estimate the right-hand side of
P{Y? € [a/, V], V) # i;Y] = L} —P{Y] € [/, V/],Vj #4Y. = L;T = 7;}
:IP’{YTi € [a?, 1], V] # i;YT’; =L;7; > 71}
Using the strong Markov property and setting ¢; = |a’| V [b/|, we can bound it by
ZPHYEA < Cj, Ty > Tj}
J#
STy P o) S Y By Pl | <o)
j#i I=%L i, I=%L
< ZM{YTJF”P%{L — UL < ¢} < (L —¢;) PE|ULP
i i



22 YURI BAKHTIN AND HONG-BIN CHEN

for any p > 0. Let p > p;. By (5.3), there is C' > 0 such that, for all j, almost surely,
(5.42) sup (M7), <C and sup |V/|<C.

te[0,00) t€[0,00)
This, along with BDG inequality, implies that E|UZ|? is bounded uniformly in e, and
completes the proof. O
We will approximate U,, by Ur,, where Tj is given (5.14). By (5.4),
. . . 1 L
5.43 L=Yi|=eNTly+U |, or 7,=—log—— .
(5.43) Y2 ly' + U, | y g€|yZ+Ué_|

Now (5.4) and (5.43) give

N A

= L% TN (Y + ULy + UL,

.

Y

which implies
(5.44) P{Y] € [/, V'],Vj #i; Y. =L} =P{Y! € [/, V'],Vj #1i; Y} >0}

ST R . B PP o
:P{yj—i_U% GL AZ‘EAJZ' l‘yl_'_U:f_l AZ [CLJ’HLVJ%Z’ yl_i_qu—l >0}

Then, we compare 7; with Ty by showing that, for an appropriate choice of &,
(5.45) P{r; < To} =P{|y' + UL| > (loge ")"*'} = o(e”).

By (5.42) and the exponential martingale inequality (see Problem 12.10 in [Basl11]), the
following holds uniformly in |y| < K(e€) and € sufficiently small,

P{r; < To} = P{|y’ + Uﬁ| > (loge ) thm < Ty} <P{ly" + UimTo| > (loge ) 11
< P{IME | > (loge™)*1 — (loge™1)" — Ce}
< P{M, 7] > 2(oge )"}
< 2exp (— (8C) ' (loge 1)™).

Therefore, it suffices to choose k large enough (see Remark 5.2) to guarantee (5.45). So,
with high probability, 7, > Tj. Let us choose § to satisfy

0<5<2§—j=2mjm{§—j}<2.

Using the boundedness of I, and G, we can write for some Cs > 0:

. . TiVTO .
(5.46) (M)rp, — (M7)g, = / e M| FI (Y, ) Pds
Tt
0 A_J N

j 2 2
< Ce T < 0N (log 6_1)2& (+1) < 0562 % 70

and
1

(5.47) V2 = Vi | < CeN™ < Cpeni 2,
Then we can choose v; >0, j € {1,2,...,d} to satisfy, as anticipated in (5.15),

: o
(5.48) 0\/(%—1) <7j<%—§5.
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By the exponential martingale inequality, estimates (5.46), (5.47), and the second in-

equality in (5.48), we have

(5 49) P{i T:VTo U%Oi > E’yj} < P{i TZVT() MJJ"Oi > _EPYJ} +IP){€| 7:VTy ijbi > %Eﬂyj}
. < 2exp (— 2é662” -2 +6) + P{Cs eA EERAREN 1€} = o(e”), for all j.

To see the upper bound in Lemma 5.4, observe that

P{Y! € [, V'],Vj #i;Y} = L} <P{Y! € [/, V/],Vj # ;Y] = L} + o(”)
NN S I . .
—P{y + Ul € L™ Nex Ny + UL N[ V], V) £ 65y + UL > 0} +ofe”)

. >‘J

u

<B{y 4 U2y € LNy Ul ¥ o D],V # 5

y' + ULyp, € (0, (loge ) ] } + o(e”)
< P{y + Up, € B:} + o(e")
where we used Lemma 5.6 in the first inequality, (5.44) in the identity,(5.45) in the

second inequality, (5.49) in the third inequality.
For the lower bound, we have

P{Y/ € [d, V'],V ;éz"Yi =L}

>P{y LUl e L RSy U

_[aj VVj#i y +UL > 0} — o(€”)
Tf[aj,b"],w #i

+ UL, € (0, (loge™")™+] } — o(€e”)

NNy,
]P){y +U VT € L A€t |y _I_UTiVT()

Aj

P{y +U]vTo GL T en ! (\y +UTO|—€%> [a?, V], V] # i;

y' 4+ Up, € (€7, (loge ")+t — €] } —o(€e”)
> P{y+ U, € B_} — o(”)

where we used Lemma 5.6 and (5.44) for the first inequality, (5.45) for the second inequal-
ity, (5.49) for the last two inequalities. We remark that in the penultimate inequality

the factor (|y" + Uf, | — €)™ J is well-defined on the event we consider. This completes
our proof of Lemma 5.4. U

In order to prove Lemma 5.5, we recall the density estimates obtained in [BC19,
Lemma 4.1] for the same setup and assumptions as in the present paper. For a random
variable X with its value in R?, its density, if exists, is denoted as py. Since U; depends
on y, we denote its density by py .
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A

Lemma 5.7. Consider (5.4) with Yy = ey. Let p(z) = Z;’l,kzl T for x>0 and

t
(5.50) 7] = / e N F (0)dWL.
0

Then
(1) there is a constant 0 > 0 such that for each v € (0,1) there are C,c,d > 0 such
that, for € sufficiently small,
—v —C|T 2
|p(y]T(€)(x) - PZT(E)($)| < 066(1 +p(€1 |y|))€ = o T,y € Rda
holds for all deterministic T'(¢) with 1 < T'(e) < 0loge™?;
(2) for each 0" > 0, there are constants C', ', such that, for € sufficiently small,
P21 (1) = pzo(@)] < C'e ™, w e RY,
holds for all deterministic T (¢) with T(€) > ¢'loge™!,
We will derive the following result from Lemma 5.7 and use it to prove Lemma 5.5.
Lemma 5.8. For each v € (0,1), there is 6 > 0 such that
sup |P{y+ Up, € Bi} —P{y+ Zp, € Bi}| = o(e" ™).

ly|<ev—t
Let us derive Lemma 5.5 from these lemmas first and prove Lemma 5.8 after that.

Proof of Lemma 5.5. The definition (5.50) implies that Z., is well-defined and has the
same distribution as Z. The definition of By in (5.16) implies that there is p > 0 such
that for small e,

(5.51) B.C H( 7 log 1y [—1,1]).

Since there is some ¢ > 0 such that T, > 6'loge™!, by part (2) of Lemma 5.7

and (5.51), we obtain that, for e sufficiently small,
IP{y+ Zp, € Bo} —P{y+ Z € B.}| = o(¢" " (loge ™ )*%), VyeR™

The above display and Lemma 5.8 together imply the result of Lemma 5.5. 0

To prove Lemma 5.8, we need some notation. For v € RY, A C R? and t € R, we
write eMv = (eM'v/)1_; € RY and eMA = {Mr 2z € A} C R

Recalling Ty = To( ) from (5.14) and 6 from the statement of Lemma 5.7, we set
N =min{n € N: Lo <floge! Ve € (0,1/2]} and t;, = £T;.

Lemma 5.8 is a specific case of the following result with £ = N and w = 0:

Lemma 5.9. For each v € (0,1), there is a constant v' and constants €, Cy, 0k, k =
1,2,..., N such that
(5.52)

sup  sup [Py + Uy + e Mwe Bi} —P{y+ Z,, + e w e By} < Cre’ ™,

\y|§e“*1 I’LU‘SEUI71

holds for all k =1,2,.... N and € € (0, ¢].
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Proof of Lemma 5.9. First, let us choose v’ € (0, 1) to satisfy

LA 1) , ‘
: — 2> _"° forall j =1,2,...,d.
(5.53) N)\i_N)\i>v, or all j 2, .,d
For the case k = 1, Lemma 5.7 and (5.51) imply that

sup  sup |PY{y+U, + e My e BLy —P{y+ Z,, + e Muw € By}

[y|<ev—! |w|<ev' -1

< sup  sup 065(1 + p(el_“\y\))e_dm'zdx < 065|Bi\ < Chelith

[y|<ev—1 |w|<ev'—1 /{‘xERd:y—}—x-l—eMl wEB4}

for some C1,0; > 0.
We proceed by induction. Let & < N and let us assume that (5.52) holds for k£ — 1.
Set z(u) = eM+=1(y + u). The Markov property of Y; implies that
Pey{y + Utk + 6_)\tkw c B:I:} = ]P)Ey{Y;k + ew € ee’\thi}
= EYP"%-1{Y,, + ew € eeM* B, }

= Ev (sz(“){z(U) + Uy +eMwe By )
—Ytp—1

To check (5.52) for k and complete the induction step, we must show that the error
caused by replacing U;, by Z;, and U, _, by Z;, , in this expression is small. More
precisely, (5.52) for k£ will follow immediately once we prove that there are €, ", d” > 0
such that the following relations hold uniformly in |y| < =1, |w| < ¢! and € € (0, e]:

(5.54) EYA (U, ,,w) — EYB(U,, ,,w)| = o(e" )
and
(5.55) ‘EEyBe(Utkfl,w) - Cg(y,w)‘ = o(epi””),
where
A (u,w) = Pez(“){z(u) + U, + e My e e’\tklei},
B.(u,w) = P{z(u) + Z;, + e Mw € M-1B.},
w

(

(
C.(y,w) =P{y+ Z;, +e Mw e By}
Let us derive (5.54). Due to part (1) of Lemma 5.7, there are ¢',C’, ¢ > 0 such that
(5.56)

|Ac(u, w) — Be(u,w)| < / C'e” (1+ p(el_“'|z(u)|))e—0'|~’0|2dx.

{z€R%:z(u)+z+e Mlwee h—1BL}

By (5.53), we have, for e sufficiently small,

>

A s 1
) 2J_q _ ) 271 _ 125 q _ ’_
e)‘ﬂtkfleki (lOgE 1)p S 6)\]th1€>\1- (lOgE 1)p S eN N (IOgE 1)17 < v 1.

This, together with (5.51), implies that there is a constant C' > 0, such that
if 2(u) + o+ e Mw e eM1BL and |w| < €7, then

(5.57) eV 2(u)] < C + €7Vl
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Using e~“I*I* to absorb polynomials of |z|, from (5.56) and (5.57) we obtain, for some
C,c>0,

|Ae(u, w) = Be(u, w)| < €6l/ Ce~dlal gz w| < &1,
{z€RL:z(u)+x+e~ 1 wee k-1 Bi}

Let N be a centered Gaussian with density proportional to e~ and independent
of F;,_,. The above display implies that if |w| < ¢~ then

‘EeyAE(Utkfp w) - EeyBé(Utkfww)‘ < 065’]P)6y{y + Uf/k71 + e_Mkw + e_MkilN S Bi}

Each entry of e decays like a small positive power of €. So, for small e,
(5.58) lw| < e”~' implies  |e M w| 4+ loge ! < 'L
Therefore,

|E6yAe(Utk71 ) w) - EEyBE(UtkA? w)|
< CEPYy+ U, +eM1(e™Mw 4 N) € Bx; [N <loge '} + 0(6“*‘5’)
< CEP{y+ Z,  + e M1(e™Mw+ N) € BL} + o(epi”’c*l*‘s/) + 0(€pi+6l)

— 0(6,01'—‘:-5’)’
1

uniformly in |y| < €’~' and |w| < €¢”~'. Here, in the second inequality we used the
induction assumption allowed by (5.58), independence of N, Fubini’s theorem, and the
superpolynomial decay of P{|N| > loge™'}. In the last line we used (5.51), the uniform
boundedness of the density of Z;, |, independence of N/ and Fubini’s theorem. This
completes the proof of (5.54).

Let us now prove (5.55). Let Zl be a copy of Z;, independent of F;, . The following
holds uniformly in |y| < ™! and |w| < €

EYBe(Uy,_,, w)

—PYy+ U, , +e M 1(eMw+ Z,) € By}

=Py + Uy, +e (e Mw+Z,) € Bes |Z,,| < loge '} + o)

= P{y -+ Ztk,l + e—Atk,I(e_)\tlw + 21&1) S B:I:7 ‘2t1| < IOg 6_1} + O(Epi—l-(;kfl) + O(EPH-&’)
= P{y + Ztk71 + e_M]%thl + €_>‘tku} - B:I:} + O(Epi—i_ék*l/\él)’

= Ce(y7 w) + O(Epi+5k71/\5’)’

where we used the induction assumption in the third identity allowed by (5.58), indepen-

v —1.

dence of Ztl and Fubini’s theorem. In the last line, we used the identity in distribution
between Z;, , + e 17, and Z; . This proves (5.55) with 6 = §,_; A ' completing
the induction step and the entire proof. O

6. EXTENSION TO A GENERAL DOMAIN

6.1. Proof of Proposition 4.1. We use the notation introduced in (3.5)-(3.9).
Let us first prove the inequality L/, > 0 and part (1). The assumption i(A) = i together
with definitions (3.5) and (3.9) implies that for any L < L(O), (1(A)NA™ = . Let us




ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM 27

fix any Ly < L(O). Since the set (,(A) C 0By, is compact, we can find r > 0 such that
max{|y™| :m >1—1}/|y| > r for all y € {,(A). Let us choose ¢ty > 0 such that for all
t > to the following holds: if j <i— 1 <m and |2™| < |27|, then |e*tz™|/|eNtzi| < r.
Now if L is small enough to ensure that Sy By, C Bp,, then for every j < ¢ — 1 and
every r € F%, we are guaranteed that the orbit of x under S intersects 9By, at a point

y satisfying max{|y™|:m > — 1}/|y| < max{|y™| : m > i —1}/|y/| <7, soy & (1,(A)
and thus « ¢ (;(A), which completes the proof of L/, > 0 and part (1).

To prove part (2), we fix L < Ly arbitrarily and recall that i(A) = i. It suffices to
define

B={x€0B,: |z;| < L/2forall j >i},

C={x€0B,: |zj| > L/2for some j>i} =08\ B,

Ao = (C(A) N B) = AN (B),

A= ¢ H(O),
Property (2a) is obvious from the construction. The first of (2b) and (2c) hold due
to (1) of Lemma 4.3 and the construction. The second item of (2b) follows from the

construction, and the last one follows from part (1) and the definition of B. Lastly, the
N-regularity of Ag and A; can be verified through the construction and (2) of Lemma 4.3.

6.2. Proof of Proposition 4.2. We recall the definitions of 7 and 7, given in (3.4)
and (5.1). The goal is to show that the asymptotics of P{X, € A} is exactly captured
by that of P{X,, € f~' o (.(A)} for suitable A C D, by which we are able to prove
Proposition 4.2.

To this end, we need to approximate (,(A). Simply taking a small neighborhood of
that set makes it difficult to verify the continuity with respect to the measure H=(- N
FiL’(; N A?), which is required in Proposition 5.1. Hence, the following lemma is needed.

We recall the definition of dist(-,-) in (4.4).

Lemma 6.1. Let d > 2. Let A C 0D be N-regular with i(A) =i. For L < Ly defined
in Proposition 5.1, let B = (1 (A) and assume that B C int, F%. Then, there are two
families of Borel sets (Bs)sso and (B_s)s=o with the following properties:

(1) B.s C B C Bs C FiLﬁl for some 6y > 0 and all 6 > 0;

(2) lims_o H™ (BLs NAY) = HH (BN AY) for all § > 0;

(8) Bys are finite unions of rectangles described in Proposition 5.1, whose interiors

are pairwise disjoint;
(4) dist(0By, \ Bs, B) > 0 and dist (0B, \ B, B_s) > 0 for all § > 0.

The next result shows that P{f(X,,) € ((L(A))+s} is a very good approximation
for P{X, € A}.

Lemma 6.2. Let L < Ly. For each A C 0D as in Lemma 6.1, there is 69 > 0 depending
on A such that for each § € (0, dp)

(6.1)

O(e™% ") + P{f(X,) € (CL(A)—s} SP{X, € A} SP{f(X,,) € (CL(A))s} + Oe” ),
as € — 0, for some Cs > 0 depending on ¢.



28 YURI BAKHTIN AND HONG-BIN CHEN

To prove this lemma, we will need an estimate on the discrepancy between the deter-
ministic path S;z and the perturbed one, i.e., the process X; under P* = P{ - |X, = z}.
To that end, we will use the following consequence of Proposition 2.3 and Theorem 2.4
in [Aze80, Chapter III] which is an extension of the standard FW large deviation bound
without an assumption of uniform ellipticity of o. We state it here because we can use
it directly for the case d = 1 in the proof of Proposition 4.2.

Lemma 6.3. Let b and o be Lipschitz and bounded. For all € > 0, let (X{)i>0, be
a solution of the Ité equation (1.1) with initial condition X§ = x, under a probability
measure P and recall the definition of the flow (S;) from (3.1). For each deterministic
T>0andn >0,
IP’{ sup |X] — Six| > 7}} = 0> %)
0<t<T
holds uniformly in x, where C depends only on T', n and the Lipschitz constant of b.

Proof of Proposition 4.2. First, we consider d > 2. Splitting A into two sets if necessary,
we can assume that (;(A) C int, F}, without loss of generality. Let §; be defined by

part (1) of Lemma 6.1. By compactness of ((A), there is A € (0, Ly A 1) such that
(L(A) € Fi, A. We use (3) of Lemma 6.1 to represent ((.(A))+s as a finite union
of rectangles with disjoint interiors. Applying Proposition 5.1 to these rectangles and
noting that the contribution from (perhaps overlapping) boundaries of these rectangles
is 0, we obtain

lim e P{f(Xr, ) € (CulA))as}h = L™ == NEX () H T {(CL(A)) s N AT}
Therefore, due to (2) of Lemma 6.1 ,

lim lim e PP (X,) € (Co(A))as} = L™ 205 MEX, (§0)HCu(4) N A},

6—0e—0

Applying Lemma 6.2 we complete the proof for d > 2.

In the special case d = 1, we have 0D = {q_,q,} with ¢ <0< ¢y, and i = 1. It
suffices to study P{X, = ¢+ }. Note that f~'(Fj 5) = {p+} where p. = f~'(£L) satisfy
q- < p_ <0< ps < qy. Proposition 5.1 implies that

lim P{X, = ps} = Exk(6).

Using Lemma 6.3 we conclude that P{X,, =py; X; #qs} = 0(6_0672), which imme-
diately implies that lim. o P{X, = ¢+ } = Ex.(&) and completes the proof. O

Proof of Lemma 6.1. Without loss of generality we may assume that B C inty F% 4 Let
us choose 6; > 0 such that

B C i%t Fi s

If i = 1, then Fy, ; NA' = BN A" = {p}, where p = (L,0,...,0). Part (2) of
Lemma 4.3 implies H°(0, BN A') =0, so p € 9, B and thus p € int; B. Hence, we can
pick a closed rectangle R on F, s such that p € R C int; B. Setting B_s = R for all
d > 0, we ensure properties (1)—(4) for B_s. Choosing ¢; sufficiently small and setting
Bs = Fi 5, for all § > 0, we ensure properties (1)—(4) for Bs.
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If i = d, then F ; NAY=TF} ;. Since F}_; is (d — 1)-dimensional and flat, the
measure H* (- NF} 5 NAY) = H41(-NF}, 5 ) can be viewed as the (d—1)-dimensional
Lebesgue measure restricted on F% +s,- By the standard approximation arguments, we
can choose B_s and Bj to be two unions of finitely many rectangles, which satisfy (1)
and (2). Slightly adjusting the rectangles, we can ensure (4).

For 1 < i < d, we need an extended version of this construction. We construct the
family (Bs)sso first. Let us define a closed (i — 1)-dimensional rectangle

Q:Fi-i-,(ﬁ ﬁAi:{LE’ERdZ |I1‘,...,‘SL’Z’_1‘ SL—(Sl, IZ:L7 Tit+1 = :Id:O}
For every 6 > 0, using the compactness of BN Q and the fact that
(6.2) HHOBNQ) =0

(which follows from the regularity of A and Lemma 4.3), we can find a set G satisfying
the following:

(6.3) Gy is a finite union of open (7 — 1)-dimensional rectangles;

(6.4) BNQ cGsCQ;

(6.5) H G5\ (BNQ)) =H G\ (BNQ)) <.

Since Q \ Gs and B are compact, we can adjust G5 to additionally ensure that
(6.6) dist(Q \ G5, B) > 0.

Let 7 be the orthogonal projection onto A%, namely

m:x € R (2,22, ..., 271 0,...,0) e R

Since Fi, 5 \ B is open and @ \ Gs is closed in the relative topology of Fj 5, (6.6)
implies that there is some “thickness” h(d) € (0,0) such that

(6.7) Ks={zeF; m(x) € Q\Gs; 27| <h(d), Vj>i}
satisfies
(6.8) dist(Ks, B) > 0.

Let us define B; = F7, 5 \ K;. Parts (1) and (4) of the lemma now follow from (6.8).

Using (6.3) and subdividing rectangles if needed we can represent G5 as a finite union
of (i — 1)-dimensional closed rectangles with disjoint interiors. Part (3) follows now
from (6.7) and the definition of By.

Since

B5ﬂQ:BgﬁAi:G5,
we have H'™'(Bs N AY) = H"Y(G5). Thus,
0<H N BsNA)—H(BNA)=H"Gs\ (BNQ)) <6,

by (6.4) and (6.5), so part (2) also follows.
To construct B_s, we apply the same approach to the set B_ = Fp, 5 \ B and note
that due to the regularity of A, the set B_ satisfies a version of (6.2), namely,

H(9,B-NQ) =0,
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so we can find a cover G_s of B_ N Q satisfying the versions of requirements (6.3)—(6.6)
with B, Gs replaced by B_,G_s. We can now define K_s via B_ and G_; similarly
to (6.7)—(6.8), and check that properties (1)—(4) hold if we set B_s = K_;. O

Proof of Lemma 6.2. To derive the upper bound in (6.1), we write
P{X; € A} <P{f(X;,) € (CL(A))s} + 1,

where I =P{f(X,,) ¢ ((L(A))s, X, € A} is the term we need to estimate.

Let I' = f~1(0BL). Since b is transversal to both I' and D, the inverse of the map 1y,
defined in (3.8) is Lipschitz on dD.

Let us introduce F5 = f~'((¢1(A))s) and notice that v = dist(OD \ v (Fs), A) > 0
due to the Lipschitz property of ¢, and (4) of Lemma 6.1.

Let Ty = sup{t(z) : z € I'}, where ¢(-) was defined in (3.2), and 73 = Ty + 1. Due
to the same transversality properties, by time 77, all orbits under S originating from I
exit D and end up at distance from 0D that is bounded away from 0. Therefore there
is 7 > 0 such that for every o € T, and every continuous path y : [0, 71] — R? such that
SUPejo.ry] [Y(t) — Sex| <, the point yp of the first intersection of the path y with 0D is
well-defined and satisfies |yp — ¥ ()| < 7.

We can now apply this statement along with Lemma 6.3 to see that

I= / P{X,, € dz}P*{X, € A}
I'\F}s

< / P{X,, € dx}P” { sup | X[ — Sz| > 77} = O(e )
I\ F;

0<t<Ty

for some C' = C(6) > 0, which completes the proof of the upper bound in (6.1). The
lower bound in (6.1) is derived similarly. O
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