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ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM

YURI BAKHTIN AND HONG-BIN CHEN

Abstract. We consider exit problems for small white noise perturbations of a dynam-
ical system generated by a vector field, and a domain containing a critical point with
all positive eigenvalues of linearization. We prove that, in the vanishing noise limit, the
probability of exit through a generic set on the boundary is asymptotically polynomial
in the noise strength, with exponent depending on the mutual position of the set and
the flag of the invariant manifolds associated with the top eigenvalues. Furthermore,
we compute the limiting exit distributions conditioned on atypical exit events of poly-
nomially small probability and show that the limits are Radon–Nikodym equivalent to
volume measures on certain manifolds that we construct. This situation is in sharp
contrast with the large deviation picture where the limiting conditional distributions
are point masses.
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1. Introduction

This paper is a part of our program on long-term behavior of dynamical systems with
multiple unstable equilibria organized into heteroclinic networks, under small noisy per-
turbations. The existing work in this direction (see [SH90], [SA99], [ASK03] for early
analysis with elements of heuristics and [Bak10], [Bak11], [AMB11], [BPG19], [BPG18],
[BC19] for rigorous analysis) is a departure from the classical Freidlin–Wentzell (FW)
theory of metastability. In FW, rare transitions can be described via large deviations
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theory and happen at rates exponential in −ǫ−2 where ǫ is the strength of the perturba-
tion:

dXǫ
t = b(Xǫ

t )dt+ ǫσ(Xǫ
t )dWt.(1.1)

In [Kif81], it was shown that the exit from a neighborhood of an unstable critical
point of b happens in time of the order of log ǫ−1, in the most unstable direction, along
the invariant manifold associated to the top eigenvalue of the linearization of the vector
field b. In the case where the top eigenvalue is not simple, the limit of the exit location
distribution was studied in [Eiz84].

In the case of a simple top eigenvalue, the results of [Kif81] were strengthened in
[Bak10], [Bak11], [AMB11], where scaling limits for the distributions of exit locations
were obtained and used to compute asymptotic probabilities of various pathways through
the network. In particular, it turned out that there are interesting memory effects and
in general the typical limiting behavior at logarithmic timescales is not simply a random
walk on the graph of heteroclinic connections.

To study the dynamics over longer times, one has to study the rare events realizing
unusual transitions that are improbable over logarithmic time scales, see the discussion
of heteroclinic networks in [BPG18]. It was also understood in [BPG19] and [BPG18]
that the leading contribution to these rare events is due to abnormally long stays in the
neighborhood of the critical point. Asymptotic results on the decay of probabilities of
these events were obtained for repelling equilibria in these papers for dimension 1 and
in [BC19] for higher dimensions. The general results of [BC19] can be briefly summarized
as follows. If all the eigenvalues of the linearization at the critical point are positive and
simple and the leading one is λ > 0, then, for all α > 1/λ and initial conditions at
distance of the order of ǫ to the critical point, it was shown that

P{τ > α log ǫ−1} = cǫβ(1 + o(1)), ǫ→ 0,

where c and β were explicitly computed. Note that this is a more precise estimate than
log P{τ > α log ǫ−1} = (β log ǫ)(1 + o(1)) conjectured in [Mik95].

In the present paper, we extend the study of atypical exit times from [BC19] to the
study of atypical exit locations in the same setting. We assume that the dynamics near
the critical point (which we place at the origin in R

d) admits a smooth conjugacy to the
linear dynamics with simple characteristic exponents λ1 > . . . > λd > 0 and consider
a neighborhood D of the origin, with smooth boundary ∂D. For any subset A of ∂D
possessing a certain regularity property (most relatively open subsets of ∂D fall into this
category), we prove that

(1.2) P{Xτ ∈ A} = ǫρ(A)µ(A)(1 + o(1)), ǫ→ 0,

where ρ(A) and µ(A) are constants. The values that the exponent ρ(A) can take belong
to a discrete set of values (ρi)

d
i=1:

(1.3) ρi =
∑

j<i

(
λj
λi

− 1

)
, i = 1, 2, . . . , d.

Here and throughout this paper, the sum over an empty set is understood to be 0.
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The relevant index i = i(A) to be used in (1.3), i.e, such that ρ(A) = ρi(A) in (1.2)
is defined in the following way. For each i = 1, . . . , d, there is a uniquely defined i-
dimensional manifold M i invariant under the flow generated by the drift vector field b,
with tangent space at the origin spanned by eigenvectors associated with eigenvalues
λ1, . . . , λi. These manifolds form a flag, i.e., M1 ⊂ M2 ⊂ . . . ⊂ Md, their traces
on ∂D defined by N i = M i ∩ ∂D also satisfy N1 ⊂ N2 ⊂ . . . ⊂ Nd and, additionally,
Nd∩∂D = ∂D and thus i(A) = min{i ∈ {1, . . . , d} : N i∩A 6= ∅} is always well-defined,
see Figure 1.

Our results mean that exits along manifolds of various dimensions have probabilities
of different polynomial decay rates. Since 0 = ρ1 < ρ2 < . . . ρd, these probabilities are of
the order of ǫρ1(= ǫ0 = 1) ≫ ǫρ2 ≫ . . .≫ ǫρd . The differences in the order of magnitude
for these probabilities are due to a drastic distortion caused by exponential expansion
with different rates in different eigendirections. One can say that the exit direction of the
system is largely determined by its behavior in infinitesimal time which is then amplified
by exponential growth with different rates in different directions.

In agreement with the results of [Kif81], exiting in the neighborhood of a two-point
set N1 (M1 is a 1-dimensional manifold, i.e., a curve, associated to the most unstable
direction) is a typical event which has asymptotic probability 1. Exiting away from
it happens with probability of the order of ǫρ2 and, conditioned on this polynomially
rare event, the exit distribution concentrates on N2. In general, exiting away from Nk

is a rare event of probability of the order of ǫρk+1 and, conditioned on this rare event,
the exit distribution concentrates on Nk+1. Moreover, these conditional distributions
converge weakly, as ǫ → 0, to a limiting measure that is Radon–Nikodym equivalent to
the k-dimensional volume on Nk+1, with a density that can be described explicitly. The
basic case where the domain D is a cube and the vector field b is linear is at the heart of
the analysis. It turns out that the limiting distributions of exit locations conditioned on
exits through various faces of the cube show equidistribution properties that cannot be
obtained through large deviation estimates and are surprising if one is used to the FW
mindset.

We discuss the simple situation described above and build our intuition in Section 2.
In Section 3 we give the general setting and our main results in detail. The proofs are
given in Sections 4—6.

The techniques that we are using are primarily probabilistic. Most are based on the
classical stochastic calculus tools and the key estimate is based on Malliavin calculus.
In principle, exit problems can be addressed using PDE tools. For exits near unstable
critical points, some elements of PDE-based analysis can be found in [Kif81], [Day95],
and [CGLM13]. So it would be interesting to find a PDE approach to the problem
solved in the present paper but we follow the path of probabilistic analysis using the
basic approach similar to [Eiz84], [Day95], [Bak10], [Bak11], [AMB11], [Bak15], [BPG19],
[BPG18], [BC19].

Concluding the introduction, let us briefly discuss two directions that will be natural
continuations of the present work.

Although our new results and those on exit times from [BC19] are based on the same
density estimates, we do not develop that connection further in this paper. In particular,
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Figure 1. The dashed line segment and the shaded surface are the por-
tions of M1 and M2 inside D, respectively. The sets Ai, i = 1, 2, 3,
lie on ∂D. Probabilities of exit through these sets have different de-
cay rates: there are constants c1, c2, c3 such that P{Xτ ∈ A1} → c1,
P{Xτ ∈ A2} ∼ c2ǫ

ρ2 , P{Xτ ∈ A3} ∼ c3ǫ
ρ3 . Moreover, conditioned

on {Xτ ∈ A2}, the distribution of Xτ has a limit concentrated on
A2 ∩ N2 = A2 ∩M2 and equivalent to the length measure on this curve;
conditioned on {Xτ ∈ A3}, the distribution of Xτ has a limit equivalent
to the area.

the detailed asymptotic analysis of the joint distribution of exit locations and exit times
seems possible but harder, and we postpone it to another publication.

A more important question is the asymptotic behavior of exit distributions near hy-
perbolic critical points (saddles) of the driving vector field. Atypical events described in
terms of the exit location are responsible for atypical transitions in heteroclinic networks.
Similarly to the situation in this paper, their probability is expected to decay polyno-
mially in ǫ leading to a hierarchy of transitions observable at various polynomial time
scales, see the heuristic analysis in [BPG18]. The approach of the present paper based
on Malliavin calculus density estimates from [BC19], will be an important ingredient in
making this analysis rigorous in another forthcoming publication.

Acknowledgments. The conditional asymptotic equidistribution first emerged in
discussions with Zsolt Pajor-Gyulai in connection to our project on noisy heteroclinic
networks. YB thanks NSF for the partial support via award DMS-1811444.

2. A heuristic computation for a simple case

Let us give a heuristic analysis of the simplest situation with exit distribution behavior
that is counterintuitive from the point of view of the FW theory.

Suppose the diffusion X = Xǫ in question is two-dimensional:

dX1
t = λ1X

1
t dt+ ǫdW 1

t ,

dX2
t = λ2X

2
t dt+ ǫdW 2

t ,



ATYPICAL EXIT EVENTS NEAR A REPELLING EQUILIBRIUM 5

where λ1 > λ2 > 0 and X1
0 = X2

0 = 0, and W 1,W 2 are independent standard Wiener
processes. We define τ = inf{t ≥ 0 : Xt ∈ ∂D}, where D = (−1, 1)2 is a square and
study the distribution of Xτ , the location of exit from D.

When ǫ is small, it takes a long time to exit, and for large times t, the Duhamel
principle gives

(2.1) Xk
t = ǫeλkt

∫ t

0

e−λksdW k
s ≈ ǫeλktNk,

where Nk =
∫∞

0
e−λksdW k

s is a centered Gaussian random variable with variance 1/(2λk).

Denoting τk = inf{t ≥ 0 : |Xk
t | = 1}, k = 1, 2, we obtain from (2.1) that

(2.2) τk ≈
1

λk
log

1

ǫ
+

1

λk
log

1

|Nk|
.

Therefore, for small ǫ, typically we have τ1 < τ2. Moreover, plugging (2.2) with k = 1
into (2.1) with k = 2, we obtain

X2
τ1
= ǫ

1−
λ2
λ1 |N1|

−
λ2
λ1N2 → 0, ǫ→ 0,

so the typical random locations of exit Xτ will concentrate near points q± = (±1, 0)
where the invariant manifold associated with the leading eigenvalue λ1 (i.e., the first
axis) intersects ∂D.

Let us now prohibit exits through the sides of D that contain q± and study the
unlikely event B of exiting D through [−1, 1]× {−1, 1}, i.e., we define B = {|X2

τ | = 1}.

It turns out that P(B) = cǫ
λ1
λ2

−1
(1 + o(1)) and the exit distribution conditioned on B

is, somewhat surprisingly, asymptotically uniform on [−1, 1]×{−1, 1}. Let us present a
heuristic argument for this.

Introducing events

Ar =
{
|N1| < rǫ

λ1
λ2

−1
|N2|

λ1
λ2

}
, r > 0,

we obtain from (2.2) that
B = {τ2 < τ1} ≈ A1,

and, plugging (2.2) with k = 2 for t into (2.1) with k = 1, we obtain that

{|X1
τ2
| ≤ r} ≈ Ar, r > 0.

Next,

P(Ar) =

∫

Σr,ǫ

g(x1, x2)dx1dx2,

where Σr,ǫ = {(x1, x2) : |x1| < rǫ
λ1
λ2

−1
|x2|

λ1
λ2 } and g is the joint Gaussian density of N1

and N2. As ǫ→ 0, the domain Σr,ǫ shrinks to the axis {x1 = 0}, so we can approximate
g(x1, x2) by g(0, x2) and conclude that

P(Ar) = cǫ
λ1
λ2

−1
r(1 + o(1)), ǫ→ 0,

where

c = 2

∫

R

g(0, x)|x|
λ1
λ2 dx.
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Therefore,

P(B) = P{τ2 < τ1} = cǫ
λ1
λ2

−1
(1 + o(1)), ǫ→ 0,

and
P{|X1

τ2
| < r}

P(B)
→ r, ǫ→ 0,

which, due to the symmetry of this example, implies that the limiting distribution is
uniform.

Another implication of this calculation is that to realize B one needs typical values
of N2 and atypically small values of N1. Due to (2.2), this translates into typical values
of τ2 and atypically large values of τ1. One can say that the main effect of conditioning
on B is conditioning X1 to stay within [−1, 1] for abnormally long times, with only a
moderate effect on the evolution of X2.

Let us now expand this example and consider a third coordinate evolving indepen-
dently according to

dX3
t = λ3X

3
t dt+ ǫdW 3

t ,

with 0 < λ3 < λ2 and X3
0 = 0. Now, the unlikely event of interest B = {|X2

τ | = 1}
corresponds to the exit through the union of two faces of the cube D = (−1, 1)3 given by
[−1, 1]× {−1, 1} × [−1, 1]. From the analysis above we know that the exit will happen
at time τ2 corresponding to moderate values of N2, i.e, near 1

λk
log 1

ǫ
. Plugging the

expression for τ2 from (2.2) into (2.1) for k = 3, we obtain that X3
τ2

= ǫ
1−

λ3
λ2 |N2|

−
λ3
λ2N3.

Hence, under conditioning on B, X3
τ2

converges to 0. Combining this with our analysis of
the two-dimensional situation above, we conclude that the exit distribution converges to
the uniform distribution on [−1, 1]× {−1, 1} × {0}. This union of two one-dimensional
segments should be viewed as the intersection of ∂D with the two-dimensional invariant
manifold associated with λ1 and λ2, i.e., the x1x2-plane.

The goal of this paper may be described as to give a rigorous treatment of this example
and its generalizations to higher dimensional nonlinear situations with space-dependent
diffusion matrix and general domains.

3. Setting and the main result

In R
d, we consider an open simply connected set D, a bounded vector field b : Rd → R

d

and the flow (St)t∈R associated with b via the ODE
d
dt
Stx = b(Stx),

S0x = x,
(3.1)

satisfying the following conditions:

— the origin 0 ∈ D;
— b(0) = 0;
— for all x ∈ D \ {0}, the deterministic exit time

(3.2) t(x) = inf{t ≥ 0 : Stx ∈ ∂D}

satisfies t(x) <∞. In particular, x = 0 is the only critical point of b in D;
— b is C5 and b(x) = ax+ q(x) where

· q(x) ≤ Cq|x|2 for some Cq > 0,
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· a is a d× d diagonal matrix with real entries λ1 > λ2 > ... > λd > 0;
— ∂D is C1;
— b is transversal to ∂D, i.e., 〈n(x), b(x)〉 > 0 for all x ∈ ∂D, where n denotes the

outer normal of ∂D.

A more general situation where a is only assumed to have eigenvalues λ1 > λ2 > ... >
λd > 0 can be reduced to this one by a diagonalizing linear transformation. Our results
also hold for a broad class of domains with piecewise smooth boundaries but we restrict
ourselves to domains with smooth boundaries for simplicity.

By the Hartman–Grobman Theorem (see, e.g., [KH95, Theorem 6.3.1]), there is an
open neighborhood U of 0 and a homeomorphism f : U → f(U) conjugating the flow S
to the linear flow S̄ generated by the vector field x 7→ ax and given by S̄tx = xeλt =
(xjeλjt)dj=1, namely,

d

dt
f(Stx) = af(Stx).

— in addition, we assume that f is a C5 diffeomorphism.

Remark 3.1. Due to [Ste57], for this C5 conjugacy condition to hold in our setting, it
suffices to require (i) a smoothness condition: b is Ck for some k ≥ 5 ∨ (λ1/λn), and
(ii) a no-resonanse condition:

λk 6= m1λ1 + . . .+mdλd

for all k = 1, . . . , d and all nonnegative integer coefficients m1, . . . , md satisfying m1 +
. . .+md ≥ 2.

The vector field x 7→ ax is the pushforward of b under f , and since a is diagonal, f
can be chosen to satisfy f(0) = 0 and Df(0) = I, the identity matrix.

We are interested in random perturbations of (3.1) given by (1.1), where

— ǫ ∈ (0, 1) is the noise amplitude parameter;
— (Wt,Ft) is a standard n-dimensional Wiener process with n ≥ d;
— σ = (σi

j)i=1,...,d; j=1,...,n is a map from R
d into the space of d×n matrices satisfying

· σ is C3 (and , by adjustments outside D, we may assume that σ has bounded
derivatives in R

d),
· σ(0) : Rn → R

d is surjective.

We will study the solutions of (1.1) with initial data Xǫ
0 = ǫξǫ ∈ F0, where

— ξǫ converges to some ξ0 ∈ F0 in distribution as ǫ→ 0;
— there are constants C, c > 0 independent of ǫ such that

P{|ξǫ| > x} ≤ Ce−|x|c for all x ≥ 0, ǫ ∈ [0, 1).(3.3)

To simplify notations, we often suppress the dependence on ǫ. In particular, we
write Xt instead of Xǫ

t . We introduce the first time for Xt to exit D as

τ = τǫ = inf{t > 0 : Xt 6∈ D}.(3.4)
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Our main results concern the asymptotic properties of the distribution of Xτ , the
location of exit ofXτ = Xǫ

τǫ
from D. To state them, we need to introduce more definitions

and notations.

— BL = [−L, L]d, L > 0;
— F

i
L± = BL ∩ {x ∈ R

d : xi = ±L} is a face of BL, and F
i
L = F

i
L+ ∪ F

i
L−;

— for A ⊂ B ⊂ R
d, ∂BA and intB A denote the boundary and the interior of A

relative to B;
— ∂ = ∂Rd, ∂L = ∂∂BL

, intL = int∂BL
;

— Hs denotes the s-dimensional Hausdorff measure.

For k = 1, . . . , d, we define sets Λk =
⊕k

i=1 Rei, where (ei)
d
i=1 is the standard basis

for Rd. The sets Λk are invariant manifolds for the linear flow (S̄t) associated with top k
exponents λ1, . . . , λk. Therefore, the sets

Mk = {x ∈ R
d : Stx ∈ f−1(Λk) for some t ∈ R}, k = 1, . . . , d,(3.5)

are the k-dimensional invariant manifolds associated with top k exponents for the flow (St).
Let us define the traces of these manifolds on the boundary by Nk =Mk ∩ ∂D and note
that due to our transversality assumptions, Nk is a (k − 1)-dimensional C1-manifold.
In particular N1 consists of two points, N2 is a closed curve in ∂D, and Nd coincides
with ∂D.

For any set A ⊂ ∂D we define the index of A to be

i(A) = min
{
k ∈ {1, . . . d} : A ∩Nk 6= ∅

}
,

see Figure 1. This notion is going to be useful because we will show that due to the
presence of different exponential growth rates in different directions, the probabilities for
the system to exit D near Nk have different orders of magnitude for different values of
k. Thus, the index of A picks the manifold with the dominating contribution. However,
this notion becomes truly meaningful and helps computing the asymptotics of exit prob-
abilities only for sets with an additional regularity property which is compatible with
the notion of weak convergence of probability measures, holds true for most relatively
open subsets of ∂D, and which we proceed to define.

Assuming d ≥ 2, we say that a set A ⊂ ∂D is N -regular if it is Borel and satisfies

(3.6) Hi(A)−1{∂∂DA ∩N i(A)} = 0.

In the case of d = 1, all subsets of ∂D are considered to be N -regular.
We still need a few more elements of our construction.
There is a Euclidean ball O centered at 0, satisfying f−1(O) ⊂ U, and such that the

vector field x 7→ ax is transversal to ∂O. Let us fix O and define

L(O) = sup{L > 0 : BL ⊂ O}.(3.7)

For every L ∈ (0, L(O)), we can define ψL : f−1(∂BL) → ∂D as the Poincare map along
the flow (St):

(3.8) ψL(x) = St(x)x, x ∈ f−1(∂BL),

where t(·) was introduced in (3.2). We can now define

(3.9) ζL = f ◦ ψ−1
L : ∂D → ∂BL.
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For x, y ∈ R
d, we define

χ̃i(xi, y) =
1√

(2π)d det C
|xi + yi|

∑
j<i

λj
λi

∫

Rd−i

e−
1
2
x⊺C−1

0 x
∣∣∣
(x1,...,xi−1)=−(y1,...,yi−1)

dxi+1 . . . dxd,

χi
+(y) =

∫

[−yi,∞)

χ̃i(xi, y)dxi and χi
−(y) =

∫

(−∞,−yi]

χ̃i(xi, y)dxi,

where

Cjk =

n∑

l=1

σj
l (0)σ

k
l (0)

λj + λk
.(3.10)

For L < L(O) and i = 1, 2, . . . , d, we define the following measure on ∂D:

µi
L(A) = L

−
∑

j<i

λj
λi

∑

•∈{+,−}

Eχi
•(ξ0) · H

i−1(ζL(A) ∩ F
i
L• ∩ Λi), A ⊂ ∂D.(3.11)

In this definition, the set F
i
L• ∩ Λi is the union of two (i− 1)-dimensional rectangles:

F
i
L• ∩ Λi = [−L, L]i−1 × {−L, L} × {0}d−i,

and Hi−1( · ∩ F
i
L• ∩ Λi) is simply the (i − 1)-dimensional Euclidean volume (Lebesgue

measure), so the measure µi
L is Radon–Nikodym equivalent to the volume measure on

of N i ∩ ζ−1(Fi
L).

Recalling the definition of ρi in (1.3), we can now state our main result.

Theorem 3.2. If A is an N-regular set with index i, then there is LA ∈ (0, L(O)) such
that for all L ∈ (0, LA)

lim
ǫ→0

ǫ−ρiP{Xτ ∈ A} = µi
L(A).(3.12)

Remark 3.3. The proof of this theorem also implies that the family of numbers (LA)
indexed by N -regular sets A can be chosen to satisfy LA′ ≥ LA for A′ ⊂ A.

Remark 3.4. Note that the scaling exponent ρi and the limiting constant µi
L(A) in (3.12)

are defined explicitly. Thus, (3.12) provides a very precise approximation. Although the
right-hand side of (3.12) seemingly involves L, in fact, it does not depend on L ∈ (0, LA).

It is easy to see that L
−

∑
j<i

λj
λi in the definition of µi

L(A) is the correct scaling factor
compensating for distortions in directions 1, . . . , i−1 introduced by the linear flow that is
a part of the definition of ζL(A). We also note that N -regular sets A such that µi

L(A) > 0
(so Theorem 3.2 provides the truly leading term in the asymptotics) form a large class
that includes, for example, ζL-preimages of small open balls with centers in F

i
L• ∩ Λi.

According to Theorem 3.2, the decay rate of probability of exit is the same for all
N -regular sets of the same index i. This, along with the fact that N -regular sets are
specifically defined to be continuity sets for Hi−1, allows us to state a corollary on the
limiting behavior of conditional exit distributions.

If P{Xτ ∈ A} 6= 0, let νǫA be the exit distribution of X conditioned on exiting from A:

νǫA(·) =
P{Xτ ∈ · ∩ A}

P{Xτ ∈ A}
.
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We denote the weak convergence of finite positive Radon measures by “⇀”.

Theorem 3.5. Let A be an N-regular set of index i and suppose that µi
L(A) > 0. Then

for all L < LA the following weak convergence holds as ǫ→ 0:

νǫA ⇀
µi
L( · ∩A)

µi
L(A)

.

Remark 3.6. The definition of µi
L in (3.11) together with the bi-Lipschitzness of ζL

and (4.2) implies that µi
L( · ∩ A) is equivalent to the (i − 1)-dimensional Hausdorff

measure restricted to A ∩N i−1.

In the special case where b(x) ≡ ax, D = intBL, A = F
i
L± for some L > 0 and

i = 1, . . . , d, the limiting measure in Theorem 3.5 is the uniform distribution on F
i
L±∩Λ

i.
Thus Theorems 3.2 and 3.5 are natural generalizations of the simple 2- and 3-dimensional
equidistribution examples discussed in Section 2.

It is important to stress that Theorem 3.5, where the limiting conditional distribution
is equivalent to the volume measure on the manifold N i, paints a picture drastically
different from the typical large deviations picture where the limiting conditional distri-
butions are often point masses concentrated at the minimizers of the large deviation rate
function.

The unconditioned exit distribution was also shown to converge to an explicitly com-
puted limit equivalent to the volume on a manifold of smaller dimension in [Eiz84]. In
that paper, the eigenvalues of the linearization are not required to be simple but the
assumptions on nonlinearity are fairly restrictive. At the core of the results of [Eiz84]
and ours, is the fact that the transition probability over a small time interval is approxi-
mately Gaussian and this distribution is carried to the boundary almost deterministically
by the flow, different directions being stretched with different rates. However, our re-
sults are more delicate since we have to zoom into the transition distribution studying
its regularity at small scales with Malliavin calculus tools.

The plan of the proof is the following.
We are going to decompose the dynamics into two stages: (i) the evolution in the

transformed coordinates until the exit from a small cube BL (or, equivalently, from
f−1(BL) in the original coordinates) and (ii) the evolution between exiting from f−1(BL)
and exiting from D. In the second stage, the process essentially follows the deterministic
flow trajectory (St) and the associated Poincare map ψL, with error controlled by a FW
large deviation estimate, so it is stage (i) that is central to the analysis. During stage (i),
the evolution is well approximated by a Gaussian process due to approximate linearity
of the drift, so to obtain the desired asymptotics we combine direct computations for
this Gaussian process with estimates on the error of the Gaussian approximation based
on Malliavin calculus bounds previously obtained in [BC19].

4. Proof of the main result

Theorem 3.2 will follow from two results that we give first. The first result helps to
reduce the problem to considering only sets A with ζL(A) being a subset of the union
of two faces of BL associated with coordinate i(A), and the second one computes the
asymptotic probability of exit through such a set.
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Proposition 4.1. Let A ⊂ ∂D satisfy i(A) = i. The number L′
A defined by

L′
A = sup{L ∈ (0, L(O)) : ζL(A) ∩ F

j
L = ∅, ∀j < i;BL ⊂ O}

is positive, (i.e., the set under the supremum is nonempty) and for all L < L′
A we have

(1) ζL(A) ∩ F
j
L = ∅ for all j < i;

(2) if i < d and A is N-regular, then there are N-regular A0, A1 ⊂ ∂D such that
(a) A0 ⊂ A ⊂ A0 ∪ A1;
(b) i(A0) = i; ζL(A) ∩ Λi = ζL(A0) ∩ Λi; ζL(A0) ⊂ int∂BL

F
i
L;

(c) i(A1) = i+ 1.

Proposition 4.2. There is L0 > 0 such that the following holds. Let A ⊂ ∂D be an
arbitrary N-regular set with i(A) = i. If L < L0 satisfies ζL(A) ⊂ int∂BL

F
i
L, then

lim
ǫ→0

ǫ−ρiP{Xτ ∈ A} = µi
L(A).

Proposition 4.1 and Proposition 4.2 will be proved in Sections 6.1 and 6.2, respectively.

Proof of Theorem 3.2. Let LA = L′
A ∧ L0, where L0 and LA are defined in the propo-

sitions above. We immediately see that if A′ ⊂ A, then LA′ ≥ LA, so Remark 3.3 is
automatically justified.

The idea of the proof is to use Proposition 4.1 in order to approximate A by a union of
regular sets of various indices such that Proposition 4.2 can be applied to each of them.
More formally, we will use induction on i(A), starting with the case i(A) = d.

Note that, by (1) of Proposition 4.1, i(A) = d implies ζL(A) ⊂ int∂BL
(Fd

L) for all
L < LA. Therefore, we can apply Proposition 4.2 to obtain

lim
ǫ→0

ǫ−ρdP{Xτ ∈ A} = µd
L(A), for all L < LA,

which completes the proof of the induction basis.
For the induction step, let us assume that the desired result holds for all A with

i(A) = k for i+ 1 ≤ k ≤ d. Let us show it is also true for A with i(A) = i.
Let us fix L ∈ (0, LA) arbitrarily. Since i < d now, we can define A0 and A1 according

to part (2) of Proposition 4.1. Since A0 ⊂ A, Remark 3.3 implies L < LA ≤ LA0 . Then,
using part (2b) of Proposition 4.1, Proposition 4.2, and the definition of µi

L in (3.11), we
obtain

lim
ǫ→0

ǫ−ρiP{Xτ ∈ A0} = µi
L(A0) = µi

L(A).(4.1)

By (2c) of Proposition 4.1, i(A1) = i + 1, so by the induction hypothesis, for each
L′ ≤ LA1 ,

lim
ǫ→0

ǫ−ρi+1P{Xτ ∈ A1} = µi+1
L′ (A1),

which implies that P{Xτ ∈ A1} = O(ǫρi+1) = o
(
ǫρi

)
. Due to (2a),

|P{Xτ ∈ A} − P{Xτ ∈ A0}| ≤ P{Xτ ∈ A1} = o
(
ǫρi

)
.

Combining this with (4.1), we complete the induction step and the entire proof. �

To prove Theorem 3.5, we need the following basic result.

Lemma 4.3. Let A ⊂ ∂D be arbitrary. Then the following holds:
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(1) i(A) = min
{
k ∈ {1, . . . , d} : ζL(A) ∩ Λk 6= ∅

}
for each L < L(O);

(2) if A is Borel, then the following statements are equivalent:
(a) A is N-regular,
(b) Hi(A)−1{∂L(ζL(A)) ∩ Λi(A)} = 0 for some L < L(O),
(c) Hi(A)−1{∂L(ζL(A)) ∩ Λi(A)} = 0 for all L < L(O).

Proof. First, ζL is a bi-Lipschitz homeomorphism, since it is a composition of a diffeomor-
phism f and the Poincaré map ψ−1

L constructed in (3.8) from smooth flows transversal
to locally smooth sections. Secondly, due to (3.5), the definition Nk = Mk ∩ ∂D, and
the invariance of Λk under the linear flow S̄, one can see that

ζL(A ∩Nk) = ζL(A) ∩ Λk and ζL(∂∂DA ∩Nk) = ∂L(ζL(A)) ∩ Λk,(4.2)

which implies both parts (1) and (2) straightforwardly. �

Proof of Theorem 3.5. We need to prove that

(4.3) νǫA(B) →
µi
L(B ∩ A)

µi
L(A)

, ǫ→ 0,

for every continuity set B of the measure µi
L( · ∩ A) or, equivalently, by the defini-

tion (3.11), of Hi−1
(
ζL( · ∩A)∩F

i
L± ∩Λi

)
which is equal to Hi−1

(
ζL( · ∩A)∩Λi

)
due to

L < LA. Using the inclusion ∂D(B∩A) ⊂ (∂DB∩A)∪ (B ∩∂DA), the N -regularity of A
(see (3.6)) and (2) of Lemma 4.3, we conclude that the continuity property of B implies
that of B ∩ A. Combining this with the fact that νǫA(B ∩ Ac) = 0 for all ǫ, we obtain
that it is sufficient to check (4.3) for Borel subsets B of A with continuity property. For
such a set B, either i(B) = i(A), or i(B) > i(A). In the first case, writing

∂DB = ∂D(B ∩A) ⊂ (∂DB ∩ A) ∪ (B ∩ ∂DA),

using the continuity of B, part (2) of Lemma 4.3, and the N -regularity of A, we conclude
that B is also N -regular, so (4.3) follows from Theorem 3.2. In the second case, part (1)

of Lemma 4.3 implies ζL(B) ∩ Λi = ∅. Therefore, r = dist(ζL(B),Λi) > 0, where

(4.4) dist(C,D) = inf{|x− y| : x ∈ C, y ∈ D} ∧ 1, C,D ⊂ R
d.

Since Hi−1
(
ζL(B∩A)∩F

i
L±∩Λi

)
= 0, it suffices to prove νǫA(B) → 0 to ensure (4.3). Let

us define Bi
L(r) = {x ∈ BL : dist({x},Λi) ≥ r}. Since ζL(B) ⊂ Bi

L(r), and ζ−1
L (Bi

L(r))
is an N -regular set of index i+ 1 due to parts (1) and (2) of Lemma 4.3, we can apply
Theorem 3.2 to ζ−1

L (Bi
L(r)) and conclude that P{Xτ ∈ B} = o

(
ǫρi(A)

)
= o

(
P{Xτ ∈ A}

)
,

so (4.3) holds in this case as well. The proof is completed. �

5. Exit from a box

Recall the definitions of BL = [−L, L]d and F
i
L± in Section 3. Let

F
i
L±,δ = {x ∈ F

i
L± : |xj | ≤ L− δ for j 6= i},

F
i
L,δ = F

i
L+,δ ∪ F

i
L−,δ.

Set

τL = inf{t > 0 : Xt /∈ f−1(BL)},(5.1)
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where f is the linearizing conjugacy. The main result of this section gives the exit
probability asymptotics for sets whose images under f are rectangles:

Proposition 5.1. There exists L0 > 0 such that for all positive L ≤ L0, we have

lim
ǫ→0

ǫ−ρiP{XτL ∈ f−1(A)} =L
−

∑
j<i

λj
λi

∑

•∈{+,−}

Eχi
•(ξ0)H

i−1(A ∩ F
i
L• ∩ Λi)

for all i ∈ {1, 2, . . . , d}, and for all sets A with the following properties:

— A is a product of intervals which can be open, closed, or half-open.
— A = [a1, b1]× . . .× [ai−1, bi−1]×{±L}× [ai+1, bi+1]× . . .× [ad, bd], where [aj , bj ] ⊂

(−L, L) for all j 6= i and aj , bj 6= 0 for j > i.

5.1. Derivation of Proposition 5.1 from auxiliary results. From now on, we use
standard summation convention over matching upper and lower indices. Let Yt = f(Xt),
where f is the linearizing conjugacy. Using Itô’s formula, we obtain

dY i
t = a

i
jY

j
t dt+ ǫ∂kf

i(f−1(Yt))σ
k
j (f

−1(Yt))dW
j
t

+
ǫ2

2

d∑

j,k=1

∂2j,kf
i(f−1(Yt))〈σ

j(f−1(Yt)), σ
k(f−1(Yt))〉dt

= λiY i
t dt+ ǫF i

j (Yt)dW
j
t + ǫ2Gi(Yt)dt,

(5.2)

where

— λi = λi to avoid summation in i;
— F and G are C3 (since f is C5 and σ is C3);
— since f(0) = 0 and Df(0) = I, we have F (0) = σ(0).

Since F (0) = σ(0) is d × n with full rank and F is continuous, we can find L0 > 0
small so that there is c0 > 0 such that min|u|=1,u∈Rd |u⊺F (x)|2 ≥ c0 for all x ∈ [−L0, L0]

d.
We shrink L0 further, if necessary, to ensure L0 ≤ L(O) as in (3.7). Since we will only
care about exiting from a subset of [−L0, L0]

d, we modify F,G outside [−L0, L0]
d so that

min
|u|=1,u∈Rd

|u⊺F (x)|2 ≥ c0, for all x ∈ R
d;

F,G and their derivatives are bounded.
(5.3)

With this L0 chosen, we will consider the following for the rest of this section, applying
Duhamel’s principle to (5.2) and setting Y0 = ǫy,

Y j
t = ǫeλjtyj + ǫeλjt

( ∫ t

0

e−λjsF j
l (Ys)dW

l
s + ǫ

∫ t

0

e−λjsGj(Ys)ds
)

= ǫeλjt(yj +M j
t + ǫV j

t ) = ǫeλjt(yj + U j
t ),

(5.4)

where F,G are modified to ensure (5.3). We emphasize that Mt, Vt and Ut all depend
on y and ǫ. We define P

ǫy = P{ · |Y0 = ǫy}.

Let Cf be the Lipschitz constant of f and cf = C−1
f . Since f(0) = 0, we have

|ǫ−1f(ǫx)| ≤ Cf |x| for all x and ǫ. In view of (3.3), we choose κ > 0 large so that for

K(ǫ) = (log ǫ−1)κ(5.5)
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we have

P{|ξǫ| > cfK(ǫ)} ≤ ǫρd+δ, for all ǫ ∈ (0, 1], for some δ > 0.(5.6)

By our definition of cf , we have

if |x| ≤ cfK(ǫ), then |ǫ−1f(ǫx)| ≤ K(ǫ).

Remark 5.2. Later, when needed, κ in (5.5) will be adjusted to be even larger. This
will not affect our results.

According to (5.1), τL = inf{t > 0 : Yt /∈ BL}. To prove Proposition 5.1, we first
obtain asymptotics for Yt exiting rectangular sets uniformly in Y0 = ǫy with |y| ≤ K(ǫ).
Recall that ρi is given in (1.3).

Proposition 5.3. Consider Yt defined by (5.4). If L < L0, i = 1, . . . , d, and A is a
rectangle described in Proposition 5.1, then

lim
ǫ→0

sup
|y|≤K(ǫ)

∣∣∣∣ǫ
−ρiP

ǫy{YτL ∈ A} − χi
±

(
ǫ−1f−1(ǫy)

)
cA

∣∣∣∣ = 0,(5.7)

where

cA = L
−

∑
j<i

λj
λi

∏

j<i

(bj − aj)
∏

j>i

1{0∈(aj ,bj)}.(5.8)

Here and throughout the paper, the product over an empty set is understood to equal 1.

Derivation of Proposition 5.1 from Proposition 5.3. Consider (1.1) with X0 = ǫξǫ de-
scribed in (3.3) and observe that, by (5.6) and the above proposition,

ǫ−ρiP{XτL ∈ f−1(A)} = Eǫ−ρiP
f(ǫξǫ){YτL ∈ A}1{|ξǫ|≤cfK(ǫ)} + o(1)(5.9)

= cAEχ
i
±(ξǫ)1{|ξǫ|≤cfK(ǫ)} + o(1).

There is C > 0 such that

|χi
±(y)| ≤ C(1 + |y|

∑
j<i

λj
λi ), x ∈ R

d.(5.10)

Due to the fast decay of the tail of ξǫ imposed by (3.3), all positive moments of |χi
±(ξǫ)|

are bounded uniformly in ǫ. Therefore, due to (5.6) and Hölder’s inequality, we have
Eχi

±(ξǫ)1{|ξǫ|>cfK(ǫ)} = o(1), which implies

cAEχ
i
±(ξǫ)1{|ξǫ|≤cfK(ǫ)} = cAEχ

i
±(ξǫ) + o(1).(5.11)

This, along with the uniform tail bound on ξǫ in (3.3), the polynomial bound on χ± in
(5.10), and continuity of χ±, implies

lim
ǫ→0

cAEχ
i
±(ξǫ) = cAEχ

i
±(ξ0).(5.12)

Combining (5.9), (5.11), and (5.12), we obtain

lim
ǫ→0

ǫ−ρiP{XτL ∈ f−1(A)} = L
−

∑
j<i

λj
λi Eχi

±(ξ0)H
i−1{A ∩ Λi},

completing the proof. �
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5.2. Proof of Proposition 5.3. Let us fix any L < L0 and i ∈ {1, 2, . . . , d}. First, we
remark that it suffices to consider A satisfying

0 ∈ (ai, bi), ∀j > i.(5.13)

In fact, if A does not satisfy (5.13), then we can find two rectangles A′ and A′′ such that

(i) π≤i(A) = π≤i(A′) = π≤i(A′′) where π≤i is the projection onto the first i coordinates;
(ii) A′ ⊂ A′′ and A ⊂ A′′ \ A′;
(iii) A′ and A′′ satisfy (5.13).

By (5.8), we have cA = 0 since A does not satisfy (5.13), and cA′ = cA′′ due to (i). These
together with (ii) imply (we use η± = χi

±(ǫ
−1f−1(ǫy))):

∣∣ǫ−ρiP
ǫy{YτL ∈ A} − η±cA

∣∣ =
∣∣ǫ−ρiP

ǫy{YτL ∈ A}
∣∣

≤
∣∣ǫ−ρiP

ǫy{YτL ∈ A′} − η±cA′

∣∣+
∣∣ǫ−ρiP

ǫy{YτL ∈ A′′} − η±cA′′

∣∣.

Finally, (iii) allows us to apply (5.7) to A′ and A′′, and thus (5.7) holds for A.
To avoid heavy notation, we also assume that A is closed. It can be readily checked

that all our arguments are still valid if A is not closed.
Recall τL given in (5.1). Since L is fixed, for brevity, we write τ = τL for the rest of

the section. Here, we only study the case where A ⊂ F
i
L+, which corresponds to Y i

τ = L.
The case where A ⊂ F

i
L− (corresponding to Y i

τ = −L) can be considered in the same
way.

We will need the following two statements.

Lemma 5.4. Assume 0 ∈ (aj , bj) for all j > i. Let

T0 = T0(ǫ) =
1

λi
log

L

ǫ(log ǫ−1)κ+1
.(5.14)

There are γj, j = 1, . . . , d, satisfying

0 ∨
(λj
λi

− 1
)
< γj <

λj
λi

j = 1, 2, . . . , d,(5.15)

such that

P{y+UT0 ∈ B−}− o
(
ǫρi

)
≤ P{Y j

τ ∈ [aj , bj ], ∀j 6= i; Y i
τ = L} ≤ P{y+UT0 ∈ B+}+ o

(
ǫρi

)

holds uniformly in |y| ≤ K(ǫ), where

B± = ∪xi∈I±

(
B

(xi)
±,<i × {xi} × B

(xi)
±,>i

)

= ∪xi∈I±

(
(J

(xi)
±,1 × ...× J

(xi)
±,i−1)× {xi} × (J

(xi)
±,i+1 × ...× J

(xi)
±,d )

)(5.16)

with I± =
(
∓ ǫγi , (log ǫ−1)κ+1 ± ǫγi

]
, and for j 6= i

J
(xi)
±,j =

[
ajL

−
λj
λi ǫ

λj
λi

−1
(|xi| ± ǫγi)

λj
λi ∓ ǫγj , bjL

−
λj
λi ǫ

λj
λi

−1
(|xi| ± ǫγi)

λj
λi ± ǫγj

]
.

Note that due to (5.15), for small ǫ > 0, the terms ǫγj are small compared to the

leading order terms in the definition of J
(xi)
±,j .
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Lemma 5.5. Let T0 be given in (5.14) and Z be a centered Gaussian vector with co-
variance matrix C given in (3.10). Then for each υ ∈ (0, 1), there is δ > 0 such that

sup
|y|≤ǫυ−1

∣∣P{y + UT0 ∈ B±} − P{y + Z ∈ B±}
∣∣ = o

(
ǫρi+δ

)
.

Let us define

hǫ(y) = ǫ−ρiP{y + Z ∈ B±},(5.17)

h0(y) = L
−

∑
j<i

λj
λi χi

±(y)
∏

j<i

(bj − aj).(5.18)

Note the dependence on ±, which is suppressed to avoid heavy notation. Proposition
5.3 follows from Lemmas 5.4, 5.5 and the following estimate:

sup
|y|≤K(ǫ)

∣∣hǫ(y)− h0(ǫ
−1f−1(ǫy))

∣∣ = o(1).(5.19)

Our plan is to derive (5.19) in the remainder of this subsection and then prove Lem-
mas 5.4 and 5.5 in Subsection 5.3.

5.2.1. Proof of (5.19). We split (5.19) into estimating |hǫ(y) − h0(y)| and |h0(y) −
h0(ǫ

−1f−1(ǫy))| separately. The techniques involved are elementary but the proof is
tedious. We proceed in steps.

Step 1. We express hǫ and h0 explicitly in the form of Gaussian integrals over some
sets. For each x ∈ R

d, let

x<i = (x1, ..., xi−1), x≥i = (xi, ..., xd), x>i = (xi+1, ..., xd), x̂ = (x<i, x>i);

B̂
(xi)
± = B

(xi)
±,<i × B

(xi)
±,>i(5.20)

where B
(xi)
±,<i and B

(xi)
±,>i are given in (5.16). When y is fixed as in Y0 = ǫy, we write

x̃ = (−y<i, x≥i) ∈ R
d for each x ∈ R

d.
Now, let us introduce

gǫ(x
i, y) =

ǫ−ρi

√
(2π)d det C

∫

B̂
(xi+yi)
± −ŷ

e−
1
2
x⊺C−1xdx̂,(5.21)

g0(x
i, y) =

∏
j<i(b

j − aj)L
−

λj
λi |xi + yi|

λj
λi

√
(2π)d det C

∫

Rd−i

e−
1
2
x̃⊺C−1

0 x̃dx>i.(5.22)

Recall the definition of I± below (5.16). Additionally, we set

I+(y
i) = [−yi,∞) and I−(y

i) = (−∞,−yi].(5.23)

Using the definitions (5.17)–(5.18), we can see

hǫ(y) =

∫

I±−yi
gǫ(x

i, y)dxi,

h0(y) =

∫

I±(yi)

g0(x
i, y)dxi.
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Step 2. We record some useful estimates, which will be proved later. For simplicity of
notation, we write

zǫ(y) = ǫ−1f−1(ǫy).(5.24)

For convenience, we set z0(y) = y. The following holds for all ǫ ∈ [0, 1] and xi ∈ R,

sup
|y|≤K(ǫ)

|gǫ(x
i, y)| ≤ C

(
1 +K(ǫ)

)p
e−c|xi|2,(5.25)

sup
|y|≤K(ǫ)

|gǫ(x
i, y)− g0(x

i, y)| ≤ Cǫqe−c|xi|2 ,(5.26)

sup
|y|≤K(ǫ)

|y − zǫ(y)| ≤ Cǫq,(5.27)

sup
|y|≤K(ǫ)

|g0(x
i, y)− g0(x

i, zǫ(y))| ≤ Cǫqe−c|xi|2,(5.28)

for some C, c, p, q > 0.

Step 3. We estimate |hǫ(y)−h0(y)| for |y| ≤ K(ǫ). We shall only treat the case where
± is + and ∓ is −. The other case is similar. We start by writing

|hǫ(y)− h0(y)| ≤

∫

I+−yi
|gǫ(x

i, y)− g0(x
i, y)|dxi +

∫ −yi

−ǫγi−yi
|gǫ(x

i, y)|dxi

+

∫ ∞

(log ǫ−1)κ+1+ǫγi−yi
|g0(x

i, y)|dxi.

Using (5.25) and (5.26), we have, for some q′ > 0,

sup
|y|≤K(ǫ)

|hǫ(y)− h0(y)| ≤

∫

R

Cǫqe−c|xi|2dxi + Cǫγi(1 +K(ǫ))p

+

∫ ∞

(log ǫ−1)κ+1+ǫγi−K(ǫ)

C(1 +K(ǫ))pe−c|xi|2dxi = o(ǫq
′

).

(5.29)

Step 4. We estimate |h0(y)− h0(zǫ(y))| for |y| ≤ K(ǫ). Recall the definition of I±(y
i)

in (5.23) and note that, due to (5.27),
∣∣I±(y

i)△I±(z
i
ǫ(y))

∣∣ ≤ |yi − ziǫ(y)| ≤ Cǫq.(5.30)

Here △ denotes the symmetric difference of sets. By the formula for h0(y) in Step 1, we
first write

|h0(y)− h0(zǫ(y))|

≤

∫

I±(ziǫ(y))

|g0(x
i, y)− g0(x

i, zǫ(y))|dx
i +

∫

I±(yi)△I±(ziǫ(y))

|g0(x
i, y)|+ |g0(x

i, zǫ(y))|dx
i.

We can bound |g0(xi, zǫ(y))| by using (5.25) and (5.28). Apply this, (5.28) and (5.30) to
see

sup
|y|≤K(ǫ)

|h0(y)− h0(zǫ(y))| ≤

∫

R

Cǫqe−c|xi|2dxi + Cǫq(1 +K(ǫ))p = o(ǫq
′′

)(5.31)

for some q′′ > 0.
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In conclusion, (5.19) follows from (5.29) and (5.31).

It remains to prove estimates listed in Step 2. We prove them in the following order:
(5.27), (5.25), (5.28), (5.26).

Proof of (5.27). Recall the definition of zǫ(y) in (5.24) and that the local diffeomor-
phism f satisfies f(0) = 0 and Df(0) = I. Since |y| ≤ K(ǫ), if ǫ is small, then |ǫy| is
uniformly close to 0. By expanding f−1 at 0, we can see that there are C, q > 0 such
that

|y − zǫ(y)| = |y − ǫ−1(f−1(ǫy))| ≤ Cǫ|y|2 ≤ Cǫq, ∀|y| ≤ K(ǫ).

This gives (5.27). �

Proof of (5.25). Since σ(0) has full rank, by definition of C in (3.10), there is c > 0 such
that

e−
1
2
x⊺C−1x ≤ e−c|x|2, ∀x ∈ R

d.(5.32)

Hence, there is C > 0 such that

|g0(x
i, y)| ≤ C|xi + yi|

∑
j<i

λj
λi e−c|xi|2.

Absorb polynomials of xi into the exponential to see, for some C, c, p > 0,

sup
|y|≤K(ǫ)

|g0(x
i, y)| ≤ C

(
1 +K(ǫ)

)p
e−c|xi|2.

From this and (5.26), we obtain (5.25). �

Proof of (5.28). We simplify the expression (5.22) into

g0(x
i, y) = C|xi + yi|p0

∫

Rd−i

e−
1
2
x⊺C−1x

∣∣
x<i=−y<idx

>i,

for some C, p0 > 0. Then, we have

|g0(x
i, y)− g0(x

i, zǫ(y))|

≤ C
(
|xi + yi|p0 − |xi + ziǫ(y)|

p0

)∫

Rd−i

e−
1
2
x⊺C−1x

∣∣
x<i=−z<i

ǫ (y)
dx>i

+ C|xi + yi|p0
∫

Rd−i

∣∣∣∣e
− 1

2
x⊺C−1x

∣∣
x<i=−y<i − e−

1
2
x⊺C−1x

∣∣
x<i=−z<i

ǫ (y)

∣∣∣∣dx
>i.

(5.33)

Let us estimate the terms on the right of (5.33). Using (5.27), we have, for some
C, p, q > 0,

∣∣∣|xi + yi|p0 − |xi + ziǫ(y)|
p0

∣∣∣ ≤ C(|xi|p + |y|p)ǫq
′

≤ Cǫq(|xi|p + 1), ∀|y| ≤ K(ǫ).(5.34)

By (5.32), there are C, c > 0 such that
∫

Rd−i

e−
1
2
x⊺C−1x

∣∣
x<i=−y<idx

>i ≤ Ce−c|xi|2 .(5.35)
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To estimate the integrand of the last integral in (5.33), we need the following obser-
vation. Since C is symmetric and positive definite, there are C,C ′ > 0 such that, for all
w, z ∈ R

d,
∣∣e− 1

2
w⊺C−1w − e−

1
2
z⊺C−1z

∣∣ ≤ C(e−c|w|2 ∨ e−c|z|2)|w + z||w − z|

≤ Ce−c|w|2(|2w|+ |w − z|)|w − z|1{|w|≤|z|}

+ Ce−c|z|2(|2z|+ |w − z|)|w − z|1{|w|>|z|}

≤ C ′(e−c′|w|2 + e−c′|z|2)(|w − z|+ |w − z|2).(5.36)

Using this estimate and (5.27), we can obtain
∣∣∣e−

1
2
x⊺C−1x

∣∣
x<i=−y<i − e−

1
2
x⊺C−1x

∣∣
x<i=−z<i

ǫ (y)

∣∣∣

≤ e−c|x≥i|2
(
|y<i − z<i

ǫ (y)|+ |y<i − z<i
ǫ (y)|2

)

≤Cǫqe−c|x≥i|2, ∀|y| ≤ K(ǫ),(5.37)

Insert (5.34), (5.35), and (5.37) to the right hand side of (5.33) to see

|g0(x
i, y)− g0(x

i, zǫ(y))|

≤ Cǫq(|xi|p + 1)e−c|xi|2 + C(|xi|p0 + |K(ǫ)|p0)ǫqe−c|xi|2

≤ Cǫq
′

e−c′|xi|2, ∀|y| ≤ K(ǫ),

for some c′, q′ > 0. This completes the proof.
�

Proof of (5.26). Again, the techniques involved are elementary while the proof is tedious.
Recall gǫ and g0 in (5.21)–(5.22), and the notation in (5.20). To estimate the difference
between gǫ and g0, we introduce

I =
ǫ−ρi

√
(2π)d det C

∫

B̂
(xi+yi)
± −ŷ

e−
1
2
x̃⊺C−1x̃dx̂,

II =

∏
j<i(b

j − aj)L
−

λj
λi |xi + yi|

λj
λi

√
(2π)d det C

∫

B
(xi+yi)
±,>i −y>i

e−
1
2
x̃⊺C−1x̃dx>i.

Then, we write
∣∣gǫ(xi, y)− g0(x

i, y)
∣∣ ≤

∣∣gǫ(xi, y)− I
∣∣+

∣∣I− II
∣∣+

∣∣II− g0(x
i, y)

∣∣.(5.38)

We proceed in steps. In each step, we estimate one term on the right of the above display.

Step 1. We estimate |gǫ(xi, y)− I| for |y| ≤ K(ǫ). We start by writing

|gǫ(x
i, y)− I| ≤ Cǫ−ρi

∫

B̂
(xi+yi)
± −ŷ

|e−
1
2
x⊺C−1x − e−

1
2
x̃⊺C−1x̃

∣∣dx̂

Let us estimate the integrand. Recall the estimate (5.36). Using
λj

λi
− 1 > 0 for j < i,

|y| ≤ K(ǫ), and e−c|x|2 to absorb powers of |xi|, we obtain that, for all x, y satisfying
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x̂ ∈ B̂
(xi+yi)
± − ŷ and |y| ≤ K(ǫ),
∣∣e− 1

2
x⊺C−1x − e−

1
2
x̃⊺C−1x̃

∣∣ ≤ Ce−c1|x≥i|2
(
|x<i + y<i|+ |x<i + y<i|2

)

≤ Ce−c1|x≥i|2
∑

j<i

(|vj|+ |vj|2)
∣∣∣
vj=

∣∣ǫ
λj
λi

−1
(|xi+yi|+ǫγi)

λj
λi +ǫ

γj

∣∣ ≤ Cǫq1e−c2|x≥i|2,

for some C, c1, c2, q1 > 0. This, along with the definitions of B̂
(xi+yi)
± in (5.20), B

(xi+yi)
±,<i

in (5.16) and ρi in (1.3), implies

|gǫ(x
i, y)− I| ≤ Cǫ−ρi

∫

B̂
(xi+yi)
± −ŷ

ǫq1e−c2|x≥i|2dx̂

= Cǫq1−ρie−c2|xi|2
(∫

B
(xi+yi)
±,<i −y<i

dx<i

)(∫

B
(xi+yi)
±,>i −y>i

e−c2|x>i|2dx>i

)

≤ Cǫq1−ρi
∣∣B(xi+yi)

±,<i

∣∣ e−c2|xi|2

≤ Cǫq1−ρiǫ
∑

j<i

λj
λi

−1
(|xi|+ 1)

∑
j<i

λj
λi e−c2|xi|2 ≤ Cǫq1e−c3|xi|2.

(5.39)

Here and henceforth we use |B| to denote the Lebesgue measure of a set B.

Step 2. We estimate |I − II|. First note that, by integrating over the first i − 1

coordinates in I and the definition of B
(xi,yi)
±,<i in (5.16), we have

I =

∏
j<i

(
(bj − aj)L

−
λj
λi (|xi + yi| ± ǫγi)

λj
λi ± 2ǫ

γj−(
λj
λi

−1))

∏
j<i(b

j − aj)L
−

λj
λi |xi + yi|

λj
λi

II.

Also, |II| ≤ C
∏

j<i |x
i + yi|

λj
λi e−c|xi|2 for some C > 0. Hence, using |y| ≤ K(ǫ) and

e−c|xi|2 to absorb powers of |xi|, we can obtain, for some C, c, q2 > 0,
∣∣I− II

∣∣ ≤ Cǫq2e−c|xi|2.(5.40)

Step 3. We estimate |II− g0(x
i, y)|. Note that

|II− g0(x
i, y)| ≤ C

∫ ∞

Rd−i\(B
(xi+yi)
±,>i −y>i)

|xi + yi|
∑

j<i

λj
λi e−c|x≥i|2dx>i

≤ e−c|xi|2
∑

j>i

∫

R\(J
(xi+yi)
±,j −yj)

|xi + yi|
∑

j<i

λj
λi e−c|xj |2dxj.

We split the integrals after the last inequality into∫

R\(J
(xi+yi)
±,j −yj)

|xi + yi|
∑

j<i

λj
λi e−c|xj |2dxj

=

∫ ∞

bjL
−

λj
λi ǫ

λj
λi

−1
(|xi+yi|±ǫγi)

λj
λi ±ǫ

γj−yj
|xi + yi|

∑
j<i

λj
λi e−c|xj |2dxj

+

∫ ajL
−

λj
λi ǫ

λj
λi

−1
(|xi+yi|±ǫγi)

λj
λi ∓ǫ

γj−yj

−∞

|xi + yi|
∑

j<i

λj
λi e−c|xj|2dxj.
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Choosing q′ > 0 sufficiently small, we consider two cases. If |xi+ yi| ≤ ǫq
′

, then for some
q3 > 0, the above display is bounded by Cǫq3 . For the case where |xi + yi| > ǫq

′

, let us

set cj = (|aj| ∧ |bj |)L
−

λj
λi and recall that

λj

λi
− 1 < 0 for j > i. For some q4, q5, p > 0, the

above display can be bounded by

2

∫ ∞

cjǫ

λj
λi

−1
(ǫq′−ǫγi )

λj
λi −ǫ

γj−K(ǫ)

|xi + yi|
∑

j<i

λj
λi e−c|xj|2dxj

≤ Cǫq4 |xi + yi|
∑

j<i

λj
λi ≤ Cǫq5(|xi|p + 1) ∀|y| ≤ K(ǫ).

In deriving the above inequality, we have used
λj

λi
−1 < 0 and chosen q′ < γi. Combining

the above, we have

|II− g0(x
i, y)| ≤ C

(
ǫq3 + ǫq5(1 + |xi|p)

)
e−c|xi|2 ≤ Cǫq6e−c′|xi|2.(5.41)

To conclude, we insert (5.39), (5.40), and (5.41) into (5.38). As a consequence, we
obtain that, for some constants q′, C, c′ > 0, the following holds for ǫ sufficiently small,

sup
|y|≤K(ǫ)

|gǫ(x
i, y)− g0(x

i, y)| ≤ Cǫq
′

e−c′|xi|2,

as desired.
�

5.3. Proofs of Lemmas 5.4 and 5.5.

Proof of Lemma 5.4. Let τj = inf{t > 0 : |Y j
t | = L}. We recall (5.1) and the notation

τ = τL. Hence, we have τ = minj=1,2,...,d{τj}. First, we show the following.

Lemma 5.6. If [aj , bj ] ⊂ (−L, L) for all j 6= i, then, with ρi defined in (1.3),

sup
|y|≤K(ǫ)

∣∣P{Y j
τ ∈ [aj , bj ], ∀j 6= i; Y i

τ = L} − P{Y j
τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
= L}

∣∣ = o
(
ǫρi

)
.

Proof. Since

P{Y j
τ ∈ [aj , bj], ∀j 6= i; Y i

τ = L} = P{Y j
τi
∈ [aj, bj ], ∀j 6= i; Y i

τi
= L; τ = τi},

it remains to estimate the right-hand side of

P{Y j
τi
∈ [aj , bj], ∀j 6= i; Y i

τi
= L} − P{Y j

τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
= L; τ = τi}

= P{Y j
τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
= L; τi > τ}.

Using the strong Markov property and setting cj = |aj | ∨ |bj |, we can bound it by
∑

j 6=i

P{|Y j
τi
| ≤ cj , τi > τj}

≤
∑

j 6=i

E

∑

l=±L

1{Y j
τj
=l}P

Yτj {|Y j
τi
| ≤ cj} ≤

∑

j 6=i, l=±L

E1{Y j
τj
=l}P

Yτj{eλjτi |l + ǫU j
τi
| ≤ cj}

≤
∑

j 6=i

E1{Y j
τj
=l}P

Yτj {L− ǫ|U j
τi
| ≤ cj} ≤

∑

j 6=i

ǫp(L− cj)
−p
E|U j

τi
|p
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for any p > 0. Let p > ρi. By (5.3), there is C > 0 such that, for all j, almost surely,

sup
t∈[0,∞)

〈M j〉t ≤ C and sup
t∈[0,∞)

|V j
t | ≤ C.(5.42)

This, along with BDG inequality, implies that E|U j
τi
|p is bounded uniformly in ǫ, and

completes the proof. �

We will approximate Uτi by UT0 , where T0 is given (5.14). By (5.4),

L = |Y i
τi
| = ǫeλiτi |yi + U i

τi
|, or τi =

1

λi
log

L

ǫ|yi + U i
τi
|
.(5.43)

Now (5.4) and (5.43) give

Y j
τi
= L

λj
λi ǫ

1−
λj
λi (yj + U j

τi
)|yi + U i

τi
|
−

λj
λi ,

which implies

(5.44) P{Y j
τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
= L} = P{Y j

τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
> 0}

= P

{
yj + U j

τi
∈ L

−
λj
λi ǫ

λj
λi

−1
|yi + U i

τi
|
λj
λi [aj, bj ], ∀j 6= i; yi + U i

τi
> 0

}
.

Then, we compare τi with T0 by showing that, for an appropriate choice of κ,

P{τi < T0} = P{|yi + U i
τi
| > (log ǫ−1)κ+1} = o

(
ǫρi

)
.(5.45)

By (5.42) and the exponential martingale inequality (see Problem 12.10 in [Bas11]), the
following holds uniformly in |y| ≤ K(ǫ) and ǫ sufficiently small,

P{τi < T0} = P{|yi + U i
τi
| > (log ǫ−1)κ+1; τi < T0} ≤ P{|yi + U i

τi∧T0
| > (log ǫ−1)κ+1}

≤ P{|M i
τi∧T0

| > (log ǫ−1)κ+1 − (log ǫ−1)κ − Cǫ}

≤ P{|M j
τi∧T0

| > 1
2
(log ǫ−1)κ}

≤ 2 exp
(
− (8C)−1(log ǫ−1)2κ

)
.

Therefore, it suffices to choose κ large enough (see Remark 5.2) to guarantee (5.45). So,
with high probability, τi ≥ T0. Let us choose δ to satisfy

0 < δ < 2λd

λi
= 2min

j
{λj

λi
} < 2.

Using the boundedness of F , and G, we can write for some Cδ > 0:

(5.46) 〈M j〉τi∨T0 − 〈M j〉T0 =

∫ τi∨T0

T0

e−2λjT0 |F j(Ys∧τ)|
2ds

≤ Ce−2λjT0 ≤ Cǫ
2
λj
λi (log ǫ−1)

2
λj
λi

(κ+1)
≤ Cδǫ

2
λj
λi

−δ

and

|V j
τi∨T0

− V j
T0
| ≤ Ce−λjT0 ≤ Cδǫ

λj
λi

− 1
2
δ
.(5.47)

Then we can choose γj > 0, j ∈ {1, 2, . . . , d} to satisfy, as anticipated in (5.15),

0 ∨
(λj
λi

− 1
)
< γj <

λj
λi

−
1

2
δ.(5.48)
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By the exponential martingale inequality, estimates (5.46), (5.47), and the second in-
equality in (5.48), we have

P{|U j
τi∨T0

− U j
T0
| > ǫγj} ≤ P{|M j

τi∨T0
−M j

T0
| > 1

2
ǫγj}+ P{ǫ|V j

τi∨T0
− V j

T0
| > 1

2
ǫγj}

≤ 2 exp
(
− 1

2Cδ
ǫ
2γj−2

λj
λi

+δ)
+ P{Cδǫ

λj
λi

− 1
2
δ+1

> 1
2
ǫγj} = o

(
ǫρi

)
, for all j.

(5.49)

To see the upper bound in Lemma 5.4, observe that

P{Y j
τ ∈ [aj, bj ], ∀j 6= i; Y i

τ = L} ≤ P{Y j
τi
∈ [aj , bj ], ∀j 6= i; Y i

τi
= L}+ o

(
ǫρi

)

= P

{
yj + U j

τi
∈ L

−
λj
λi ǫ

λj
λi

−1
|yi + U i

τi
|
λj
λi [aj , bj ], ∀j 6= i; yi + U i

τi
> 0

}
+ o

(
ǫρi

)

≤ P

{
yj + U j

τi∨T0
∈ L

−
λj
λi ǫ

λj
λi

−1
|yi + U i

τi∨T0
|
λj
λi [aj , bj ], ∀j 6= i;

yi + U i
τi∨T0

∈
(
0, (log ǫ−1)κ+1

]}
+ o

(
ǫρi

)

≤ P{y + UT0 ∈ B+}+ o
(
ǫρi

)

where we used Lemma 5.6 in the first inequality, (5.44) in the identity,(5.45) in the
second inequality, (5.49) in the third inequality.

For the lower bound, we have

P{Y j
τ ∈ [aj , bj ], ∀j 6= i; Y i

τ = L}

≥ P

{
yj + U j

τi
∈ L

−
λj
λi ǫ

λj
λi

−1
|yi + U i

τi
|
λj
λi [aj , bj ], ∀j 6= i; yi + U i

τi
> 0

}
− o

(
ǫρi

)

≥ P

{
yj + U j

τi∨T0
∈ L

−
λj
λi ǫ

λj
λi

−1
|yi + U i

τi∨T0
|
λj
λi [aj , bj], ∀j 6= i;

yi + U i
τi∨T0

∈
(
0, (log ǫ−1)κ+1

]}
− o

(
ǫρi

)

≥ P

{
yj + U j

τi∨T0
∈ L

−
λj
λi ǫ

λj
λi

−1
(
|yi + U i

T0
| − ǫγi

)λj
λi [aj , bj ], ∀j 6= i;

yi + U i
T0

∈
(
ǫγi , (log ǫ−1)κ+1 − ǫγi

]}
− o

(
ǫρi

)

≥ P{y + UT0 ∈ B−} − o
(
ǫρi

)

where we used Lemma 5.6 and (5.44) for the first inequality, (5.45) for the second inequal-
ity, (5.49) for the last two inequalities. We remark that in the penultimate inequality

the factor (|yi + U i
T0
| − ǫγi)

λj
λi is well-defined on the event we consider. This completes

our proof of Lemma 5.4. �

In order to prove Lemma 5.5, we recall the density estimates obtained in [BC19,
Lemma 4.1] for the same setup and assumptions as in the present paper. For a random
variable X with its value in R

d, its density, if exists, is denoted as ρX . Since Ut depends
on y, we denote its density by ρyUt

.
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Lemma 5.7. Consider (5.4) with Y0 = ǫy. Let p(x) =
∑d

j,k=1 x
λj
λk for x ≥ 0 and

Zj
t =

∫ t

0

e−λjsF j
l (0)dW

l
s.(5.50)

Then

(1) there is a constant θ > 0 such that for each υ ∈ (0, 1) there are C, c, δ > 0 such
that, for ǫ sufficiently small,

|ρyUT (ǫ)
(x)− ρZT (ǫ)

(x)| ≤ Cǫδ
(
1 + p(ǫ1−υ|y|)

)
e−c|x|2, x, y ∈ R

d,

holds for all deterministic T (ǫ) with 1 ≤ T (ǫ) ≤ θ log ǫ−1;
(2) for each θ′ > 0, there are constants C ′, c′, δ′ such that, for ǫ sufficiently small,

|ρZT (ǫ)
(x)− ρZ∞(x)| ≤ C ′ǫδ

′

e−c′|x|2, x ∈ R
d,

holds for all deterministic T (ǫ) with T (ǫ) ≥ θ′ log ǫ−1,

We will derive the following result from Lemma 5.7 and use it to prove Lemma 5.5.

Lemma 5.8. For each υ ∈ (0, 1), there is δ > 0 such that

sup
|y|≤ǫυ−1

∣∣P{y + UT0 ∈ B±} − P{y + ZT0 ∈ B±}
∣∣ = o

(
ǫρi+δ

)
.

Let us derive Lemma 5.5 from these lemmas first and prove Lemma 5.8 after that.

Proof of Lemma 5.5. The definition (5.50) implies that Z∞ is well-defined and has the
same distribution as Z. The definition of B± in (5.16) implies that there is p > 0 such
that for small ǫ,

B± ⊂
d∏

j=1

(
ǫ
λj
λi

−1
(log ǫ−1)p[−1, 1]

)
.(5.51)

Since there is some θ′ > 0 such that T0 ≥ θ′ log ǫ−1, by part (2) of Lemma 5.7
and (5.51), we obtain that, for ǫ sufficiently small,

|P{y + ZT0 ∈ B±} − P{y + Z ∈ B±}
∣∣ = o

(
ǫρi+δ′(log ǫ−1)pd

)
, ∀y ∈ R

d.

The above display and Lemma 5.8 together imply the result of Lemma 5.5. �

To prove Lemma 5.8, we need some notation. For v ∈ R
d, A ⊂ R

d and t ∈ R, we
write eλtv = (eλjtv

j)dj=1 ∈ R
d and eλtA = {eλtx : x ∈ A} ⊂ R

d.
Recalling T0 = T0(ǫ) from (5.14) and θ from the statement of Lemma 5.7, we set

N = min{n ∈ N : T0

n
≤ θ log ǫ−1, ∀ǫ ∈ (0, 1/2]} and tk = k

N
T0.

Lemma 5.8 is a specific case of the following result with k = N and w = 0:

Lemma 5.9. For each υ ∈ (0, 1), there is a constant υ′ and constants ǫk, Ck, δk, k =
1, 2, ..., N such that

sup
|y|≤ǫυ−1

sup
|w|≤ǫυ

′−1

∣∣Pǫy{y + Utk + e−λtkw ∈ B±} − P{y + Ztk + e−λtkw ∈ B±}
∣∣ ≤ Ckǫ

ρi+δk ,

(5.52)

holds for all k = 1, 2, ..., N and ǫ ∈ (0, ǫk].
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Proof of Lemma 5.9. First, let us choose υ′ ∈ (0, 1) to satisfy

1

N

λj
λi

≥
1

N

λd
λi

> υ′, for all j = 1, 2, ..., d.(5.53)

For the case k = 1, Lemma 5.7 and (5.51) imply that

sup
|y|≤ǫυ−1

sup
|w|≤ǫυ

′−1

∣∣Pǫy{y + Ut1 + e−λt1w ∈ B±} − P{y + Zt1 + e−λt1w ∈ B±}
∣∣

≤ sup
|y|≤ǫυ−1

sup
|w|≤ǫυ

′−1

∫

{x∈Rd:y+x+e−λt1w∈B±}

Cǫδ
(
1 + p(ǫ1−υ|y|)

)
e−c|x|2dx ≤ Cǫδ|B±| ≤ C1ǫ

ρi+δ1

for some C1, δ1 > 0.
We proceed by induction. Let k ≤ N and let us assume that (5.52) holds for k − 1.
Set z(u) = eλtk−1(y + u). The Markov property of Yt implies that

P
ǫy{y + Utk + e−λtkw ∈ B±} = P

ǫy{Ytk + ǫw ∈ ǫeλtkB±}

= E
ǫy
P
Ytk−1{Yt1 + ǫw ∈ ǫeλtkB±}

= E
ǫy
(
P
ǫz(u){z(u) + Ut1 + e−λt1w ∈ eλtk−1B±}

∣∣
u=Utk−1

)
.

To check (5.52) for k and complete the induction step, we must show that the error
caused by replacing Ut1 by Zt1 and Utk−1

by Ztk−1
in this expression is small. More

precisely, (5.52) for k will follow immediately once we prove that there are ǫk, δ
′, δ′′ > 0

such that the following relations hold uniformly in |y| ≤ ǫυ−1, |w| ≤ ǫυ
′−1 and ǫ ∈ (0, ǫk]:

(5.54) |EǫyAǫ(Utk−1
, w)− E

ǫyBǫ(Utk−1
, w)| = o(ǫρi+δ′)

and

(5.55)
∣∣EǫyBǫ(Utk−1

, w)− Cǫ(y, w)
∣∣ = o(ǫρi+δ′′),

where

Aǫ(u, w) = P
ǫz(u){z(u) + Ut1 + e−λt1w ∈ eλtk−1B±},

Bǫ(u, w) = P{z(u) + Zt1 + e−λt1w ∈ eλtk−1B±},

Cǫ(y, w) = P{y + Ztk + e−λtkw ∈ B±}.

Let us derive (5.54). Due to part (1) of Lemma 5.7, there are δ′, C ′, c′ > 0 such that

|Aǫ(u, w)−Bǫ(u, w)| ≤

∫

{x∈Rd:z(u)+x+e−λt1w∈eλtk−1B±}

C ′ǫδ
′(
1 + p(ǫ1−υ′

|z(u)|)
)
e−c′|x|2dx.

(5.56)

By (5.53), we have, for ǫ sufficiently small,

eλjtk−1ǫ
λj
λi

−1
(log ǫ−1)p ≤ eλjtN−1ǫ

λj
λi

−1
(log ǫ−1)p ≤ ǫ

1
N

λj
λi

−1
(log ǫ−1)p < ǫυ

′−1.

This, together with (5.51), implies that there is a constant C > 0, such that
if z(u) + x+ e−λt1w ∈ eλtk−1B± and |w| ≤ ǫυ

′−1, then

ǫ1−υ′

|z(u)| ≤ C + ǫ1−υ′

|x|.(5.57)
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Using e−c′|x|2 to absorb polynomials of |x|, from (5.56) and (5.57) we obtain, for some
C, c > 0,

|Aǫ(u, w)−Bǫ(u, w)| ≤ ǫδ
′

∫

{x∈Rd:z(u)+x+e−λt1w∈eλtk−1B±}

Ce−c|x|2dx, |w| ≤ ǫυ
′−1.

Let N be a centered Gaussian with density proportional to e−c|x|2 and independent
of Ftk−1

. The above display implies that if |w| ≤ ǫυ
′−1, then

|EǫyAǫ(Utk−1
, w)− E

ǫyBǫ(Utk−1
, w)| ≤ Cǫδ

′

P
ǫy{y + Utk−1

+ e−λtkw + e−λtk−1N ∈ B±}.

Each entry of e−λt1 decays like a small positive power of ǫ. So, for small ǫ,

|w| ≤ ǫυ
′−1 implies |e−λt1w|+ log ǫ−1 ≤ ǫυ

′−1.(5.58)

Therefore,

|EǫyAǫ(Utk−1
, w)− E

ǫyBǫ(Utk−1
, w)|

≤ Cǫδ
′

P
ǫy{y + Utk−1

+ e−λtk−1(e−λt1w +N ) ∈ B±; |N | ≤ log ǫ−1}+ o
(
ǫρi+δ′

)

≤ Cǫδ
′

P{y + Ztk−1
+ e−λtk−1(e−λt1w +N ) ∈ B±}+ o

(
ǫρi+δk−1+δ′

)
+ o

(
ǫρi+δ′

)

= o
(
ǫρi+δ′

)
,

uniformly in |y| ≤ ǫυ−1 and |w| ≤ ǫυ
′−1. Here, in the second inequality we used the

induction assumption allowed by (5.58), independence of N , Fubini’s theorem, and the
superpolynomial decay of P{|N | > log ǫ−1}. In the last line we used (5.51), the uniform
boundedness of the density of Ztk−1

, independence of N and Fubini’s theorem. This
completes the proof of (5.54).

Let us now prove (5.55). Let Z̃t1 be a copy of Zt1 independent of Ftk−1
. The following

holds uniformly in |y| ≤ ǫυ−1 and |w| ≤ ǫυ
′−1:

E
ǫyBǫ(Utk−1

, w)

= P
ǫy{y + Utk−1

+ e−λtk−1(e−λt1w + Z̃t1) ∈ B±}

= P
ǫy{y + Utk−1

+ e−λtk−1(e−λt1w + Z̃t1) ∈ B±; |Z̃t1 | ≤ log ǫ−1}+ o
(
ǫρi+δ′

)

= P{y + Ztk−1
+ e−λtk−1(e−λt1w + Z̃t1) ∈ B±; |Z̃t1 | ≤ log ǫ−1}+ o

(
ǫρi+δk−1

)
+ o

(
ǫρi+δ′

)

= P{y + Ztk−1
+ e−λtk−1Z̃t1 + e−λtkw ∈ B±}+ o

(
ǫρi+δk−1∧δ

′)
,

= Cǫ(y, w) + o
(
ǫρi+δk−1∧δ

′)
,

where we used the induction assumption in the third identity allowed by (5.58), indepen-

dence of Z̃t1 and Fubini’s theorem. In the last line, we used the identity in distribution

between Ztk−1
+ e−λtk−1Z̃t1 and Ztk . This proves (5.55) with δ′′ = δk−1 ∧ δ′ completing

the induction step and the entire proof. �

6. Extension to a general domain

6.1. Proof of Proposition 4.1. We use the notation introduced in (3.5)–(3.9).
Let us first prove the inequality L′

A > 0 and part (1). The assumption i(A) = i together

with definitions (3.5) and (3.9) implies that for any L < L(O), ζL(A)∩Λi−1 = ∅. Let us
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fix any L0 < L(O). Since the set ζL0(A) ⊂ ∂BL0 is compact, we can find r > 0 such that

max{|ym| : m > i− 1}/|y| ≥ r for all y ∈ ζL0(A). Let us choose t0 > 0 such that for all
t > t0 the following holds: if j ≤ i− 1 ≤ m and |xm| ≤ |xj |, then |eλmtxm|/|eλjtxj | < r.
Now if L is small enough to ensure that S̄t0BL ⊂ BL0 , then for every j ≤ i − 1 and
every x ∈ F

j
L, we are guaranteed that the orbit of x under S̄ intersects ∂BL0 at a point

y satisfying max{|ym| : m > i− 1}/|y| ≤ max{|ym| : m > i− 1}/|yj| < r, so y /∈ ζL0(A)

and thus x /∈ ζL(A), which completes the proof of L′
A > 0 and part (1).

To prove part (2), we fix L < L′
A arbitrarily and recall that i(A) = i. It suffices to

define

B = {x ∈ ∂BL : |xj| ≤ L/2 for all j > i},

C = {x ∈ ∂BL : |xj| > L/2 for some j > i} = ∂BL \B,

A0 = ζ−1
L (ζL(A) ∩B) = A ∩ ζ−1

L (B),

A1 = ζ−1
L (C).

Property (2a) is obvious from the construction. The first of (2b) and (2c) hold due
to (1) of Lemma 4.3 and the construction. The second item of (2b) follows from the
construction, and the last one follows from part (1) and the definition of B. Lastly, the
N -regularity of A0 and A1 can be verified through the construction and (2) of Lemma 4.3.

6.2. Proof of Proposition 4.2. We recall the definitions of τ and τL given in (3.4)
and (5.1). The goal is to show that the asymptotics of P{Xτ ∈ A} is exactly captured
by that of P{XτL ∈ f−1 ◦ ζL(A)} for suitable A ⊂ ∂D, by which we are able to prove
Proposition 4.2.

To this end, we need to approximate ζL(A). Simply taking a small neighborhood of
that set makes it difficult to verify the continuity with respect to the measure Hi−1( · ∩
F

i
L,δ ∩ Λi), which is required in Proposition 5.1. Hence, the following lemma is needed.

We recall the definition of dist(·, ·) in (4.4).

Lemma 6.1. Let d ≥ 2. Let A ⊂ ∂D be N-regular with i(A) = i. For L < L0 defined
in Proposition 5.1, let B = ζL(A) and assume that B ⊂ intLF

i
L. Then, there are two

families of Borel sets (Bδ)δ>0 and (B−δ)δ>0 with the following properties:

(1) B−δ ⊂ B ⊂ Bδ ⊂ F
i
L,δ1

for some δ1 > 0 and all δ > 0;

(2) limδ→0Hi−1(B±δ ∩ Λi) = Hi−1(B ∩ Λi) for all δ > 0;
(3) B±δ are finite unions of rectangles described in Proposition 5.1, whose interiors

are pairwise disjoint;
(4) dist

(
∂BL \Bδ, B

)
> 0 and dist

(
∂BL \B,B−δ

)
> 0 for all δ > 0.

The next result shows that P{f(XτL) ∈ (ζL(A))±δ} is a very good approximation
for P{Xτ ∈ A}.

Lemma 6.2. Let L < L0. For each A ⊂ ∂D as in Lemma 6.1, there is δ0 > 0 depending
on A such that for each δ ∈ (0, δ0)

O(e−Cδǫ
−2

) + P{f(XτL) ∈ (ζL(A))−δ} ≤ P{Xτ ∈ A} ≤ P{f(XτL) ∈ (ζL(A))δ}+O(e−Cδǫ
−2

),

(6.1)

as ǫ→ 0, for some Cδ > 0 depending on δ.
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To prove this lemma, we will need an estimate on the discrepancy between the deter-
ministic path Stx and the perturbed one, i.e., the process Xt under P

x = P{ · |X0 = x}.
To that end, we will use the following consequence of Proposition 2.3 and Theorem 2.4
in [Aze80, Chapter III] which is an extension of the standard FW large deviation bound
without an assumption of uniform ellipticity of σ. We state it here because we can use
it directly for the case d = 1 in the proof of Proposition 4.2.

Lemma 6.3. Let b and σ be Lipschitz and bounded. For all ǫ > 0, let (Xǫ
t )t≥0, be

a solution of the Itô equation (1.1) with initial condition Xǫ
0 = x, under a probability

measure P and recall the definition of the flow (St) from (3.1). For each deterministic
T > 0 and η > 0,

P

{
sup

0≤t≤T

|Xx
t − Stx| > η

}
= O(e−Cǫ−2

)

holds uniformly in x, where C depends only on T , η and the Lipschitz constant of b.

Proof of Proposition 4.2. First, we consider d ≥ 2. Splitting A into two sets if necessary,
we can assume that ζL(A) ⊂ intL F

i
L+ without loss of generality. Let δ1 be defined by

part (1) of Lemma 6.1. By compactness of ζL(A), there is ∆ ∈ (0, L0 ∧ δ1) such that
ζL(A) ⊂ F

i
L+,∆. We use (3) of Lemma 6.1 to represent (ζL(A))±δ as a finite union

of rectangles with disjoint interiors. Applying Proposition 5.1 to these rectangles and
noting that the contribution from (perhaps overlapping) boundaries of these rectangles
is 0, we obtain

lim
ǫ→0

ǫ−ρiP{f(XτL) ∈ (ζL(A))±δ} = L
−

∑
j<i

λj
λi Eχi

+(ξ0)H
i−1{(ζL(A))±δ ∩ Λi}.

Therefore, due to (2) of Lemma 6.1 ,

lim
δ→0

lim
ǫ→0

ǫ−ρiP{f(XτL) ∈ (ζL(A))±δ} = L
−

∑
j<i

λj
λi Eχi

+(ξ0)H
i−1{ζL(A) ∩ Λi}.

Applying Lemma 6.2 we complete the proof for d ≥ 2.
In the special case d = 1, we have ∂D = {q−, q+} with q− < 0 < q+, and i = 1. It

suffices to study P{Xτ = q±}. Note that f−1(F1
L±,δ) = {p±} where p± = f−1(±L) satisfy

q− < p− < 0 < p+ < q+. Proposition 5.1 implies that

lim
ǫ→0

P{XτL = p±} = Eχ1
±(ξ0).

Using Lemma 6.3 we conclude that P{XτL = p±; Xτ 6= q±} = O
(
e−Cǫ−2)

, which imme-
diately implies that limǫ→0 P{Xτ = q±} = Eχ1

±(ξ0) and completes the proof. �

Proof of Lemma 6.1. Without loss of generality we may assume that B ⊂ intL F
i
L+. Let

us choose δ1 > 0 such that

B ⊂ int
L
F

i
L+,δ1

.

If i = 1, then F
i
L+,δ1

∩ Λ1 = B ∩ Λ1 = {p}, where p = (L, 0, . . . , 0). Part (2) of

Lemma 4.3 implies H0(∂LB ∩ Λ1) = 0, so p 6∈ ∂LB and thus p ∈ intLB. Hence, we can
pick a closed rectangle R on F

i
L+,δ1

such that p ∈ R ⊂ intLB. Setting B−δ = R for all
δ > 0, we ensure properties (1)—(4) for B−δ. Choosing δ1 sufficiently small and setting
Bδ = F

i
L,δ1

, for all δ > 0, we ensure properties (1)—(4) for Bδ.
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If i = d, then F
i
L+,δ1

∩ Λd = F
i
L+,δ1

. Since F
i
L+,δ1

is (d − 1)-dimensional and flat, the

measure Hd−1( · ∩Fi
L+,δ1

∩Λd) = Hd−1( · ∩Fi
L+,δ1

) can be viewed as the (d−1)-dimensional

Lebesgue measure restricted on F
i
L+,δ1

. By the standard approximation arguments, we
can choose B−δ and Bδ to be two unions of finitely many rectangles, which satisfy (1)
and (2). Slightly adjusting the rectangles, we can ensure (4).

For 1 < i < d, we need an extended version of this construction. We construct the
family (Bδ)δ>0 first. Let us define a closed (i− 1)-dimensional rectangle

Q = F
i
L+,δ1

∩ Λi = {x ∈ R
d : |x1|, . . . , |xi−1| ≤ L− δ1; xi = L; xi+1 = . . . = xd = 0}.

For every δ > 0, using the compactness of B ∩Q and the fact that

(6.2) Hi−1(∂LB ∩Q) = 0

(which follows from the regularity of A and Lemma 4.3), we can find a set Gδ satisfying
the following:

Gδ is a finite union of open (i− 1)-dimensional rectangles;(6.3)

B ∩Q ⊂ Gδ ⊂ Q;(6.4)

Hi−1(Gδ \ (B ∩Q)) = Hi−1(Gδ \ (B ∩Q)) < δ.(6.5)

Since Q \Gδ and B are compact, we can adjust Gδ to additionally ensure that

dist(Q \Gδ, B) > 0.(6.6)

Let π be the orthogonal projection onto Λi, namely

π : x ∈ R
d 7→ (x1, x2, ..., xi−1, 0, . . . , 0) ∈ R

d.

Since F
i
L+,δ1

\ B is open and Q \ Gδ is closed in the relative topology of F
i
L,δ1

, (6.6)
implies that there is some “thickness” h(δ) ∈ (0, δ) such that

Kδ = {x ∈ F
i
L,δ1

: π(x) ∈ Q \Gδ; |xj| < h(δ), ∀j > i}(6.7)

satisfies

(6.8) dist(Kδ, B) > 0.

Let us define Bδ = F
i
L+,δ1

\Kδ. Parts (1) and (4) of the lemma now follow from (6.8).

Using (6.3) and subdividing rectangles if needed we can represent Gδ as a finite union
of (i − 1)-dimensional closed rectangles with disjoint interiors. Part (3) follows now
from (6.7) and the definition of Bδ.

Since
Bδ ∩Q = Bδ ∩ Λi = Gδ,

we have Hi−1(Bδ ∩ Λi) = Hi−1(Gδ). Thus,

0 ≤ Hi−1(Bδ ∩ Λi)−Hi−1(B ∩ Λi) = Hi−1(Gδ \ (B ∩Q)) < δ,

by (6.4) and (6.5), so part (2) also follows.
To construct B−δ, we apply the same approach to the set B− = FL+,δ1 \ B and note

that due to the regularity of A, the set B− satisfies a version of (6.2), namely,

Hi−1(∂LB− ∩Q) = 0,
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so we can find a cover G−δ of B− ∩Q satisfying the versions of requirements (6.3)–(6.6)
with B,Gδ replaced by B−, G−δ. We can now define K−δ via B− and G−δ similarly
to (6.7)–(6.8), and check that properties (1)–(4) hold if we set B−δ = K−δ. �

Proof of Lemma 6.2. To derive the upper bound in (6.1), we write

P{Xτ ∈ A} ≤ P{f(XτL) ∈ (ζL(A))δ}+ I,

where I = P{f(XτL) /∈ (ζL(A))δ, Xτ ∈ A} is the term we need to estimate.
Let Γ = f−1(∂BL). Since b is transversal to both Γ and ∂D, the inverse of the map ψL

defined in (3.8) is Lipschitz on ∂D.
Let us introduce Fδ = f−1((ζL(A))δ) and notice that γ = dist(∂D \ ψL(Fδ), A) > 0

due to the Lipschitz property of ψ−1
L and (4) of Lemma 6.1.

Let T0 = sup{t(x) : x ∈ Γ}, where t(·) was defined in (3.2), and T1 = T0 + 1. Due
to the same transversality properties, by time T1, all orbits under S originating from Γ
exit D and end up at distance from ∂D that is bounded away from 0. Therefore there
is η > 0 such that for every x ∈ Γ, and every continuous path y : [0, T1] → R

d such that
supt∈[0,T1] |y(t)− Stx| ≤ η, the point yD of the first intersection of the path y with ∂D is
well-defined and satisfies |yD − ψL(x)| < γ.

We can now apply this statement along with Lemma 6.3 to see that

I =

∫

Γ\Fδ

P{XτL ∈ dx}Px{Xτ ∈ A}

≤

∫

Γ\Fδ

P{XτL ∈ dx}Px

{
sup

0≤t≤T1

|Xx
t − Stx| > η

}
= O(e−Cǫ−2

)

for some C = C(δ) > 0, which completes the proof of the upper bound in (6.1). The
lower bound in (6.1) is derived similarly. �
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