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Generic unitary dynamics drive quantum many-body systems 
into highly entangled states characterized by volume law scal-
ing of subsystem entanglement entropies. When this dynam-

ics is intercepted by rapid local measurements, individual quantum 
trajectories are expected to collapse into low-entanglement states 
characterized by area law scaling of subsystem entanglement entro-
pies. Recently, it was discovered that, at least in a class of models, 
these two phases are separated by a scale-invariant ‘critical point’ at 
a finite measurement rate1–3. Several aspects of this transition and its 
generalizations have been studied recently4–19.

In the limit of infinitely rapid local measurements, the state of 
the system crucially depends on the choice of measurement basis. 
Assuming one measures only commuting single-qubit operators, 
the wavefunction collapses into an unentangled trivial product 
state. However, if one chooses to measure a set of stabilizer opera-
tors that stabilize a topological or a symmetry-protected topological 
(SPT) wavefunction, the resulting state—despite also having area 
law scaling of entanglement—would be topologically distinct from 
the product state20,21.

In this Article, we consider the competition between these two 
types of measurement with each other, as well as with the uni-
tary dynamics. This raises the question of whether the notion of a 
topological phase is well defined in random quantum circuits that 
include both unitary dynamics and local measurements. To make 
progress in answering this question, we consider a (1 + 1)D quan-
tum circuit model comprising three elements: (1) measurement of 
stabilizer operators that stabilize a Z2 ´Z2

I
 SPT realized by the ‘clus-

ter model’22,23; (2) single-qubit measurements in the computational 
basis; (3) random, symmetry-allowed Clifford unitary gates. At each 
step of the circuit, one element is selected at random with probabili-
ties pt, ps and pu respectively (pt + ps + pu = 1) and applied at a random 
position in space. A typical snapshot of the circuit is shown in Fig. 1a.

Using suitably defined order parameters, we discover a rich phase 
diagram, shown in Fig. 1b. We find not only a stable SPT phase in 

an extended region of the phase diagram, but our results indicate a 
tricritical point, with logarithmic scaling of entanglement entropy 
separating the volume law, trivial and SPT phases in the absence of 
unitary dynamics pu = 0; that is, when only measurements are pres-
ent. The existence of this tricritical point implies that a volume law 
phase can be stabilized by an infinitesimally small rate of unitary 
dynamics.

Moreover, we find an exact analytical mapping that maps the case 
without unitary dynamics pu = 0 to two copies of a (non-standard) 
classical 2D percolation problem. Away from the pu = 0 line, we 
extensively study the phase transitions numerically. The numerical 
results are consistent with the correlation length critical exponent 
ν remaining the same on the phase boundaries all the way down to 
the tricritical point, which has ν = 4/3 based on the analytical map-
ping to percolation. On the other hand, we find that the coefficient 
of the logarithmic scaling of the entanglement entropy changes con-
siderably, suggesting that the conformal field theory (CFT) descrip-
tion changes along the phase boundaries.

Model
We study a family of (1 + 1)D random quantum circuits that real-
ize quantum trajectories extrapolating between wavefunctions in an 
SPT phase, a trivial product state and a volume law entangled phase.

We choose our SPT to be the Z2 ´Z2
I

 symmetry-protected phase 
realized by the cluster model defined on an open chain of N qubits 
(where N is even throughout) in (1 + 1)D (refs. 22,23):

H0 ¼ �
XN�1

i¼2
Xi�1ZiXiþ1 ð1Þ

where Xi and Zi denote Pauli matrices. Note that all terms commute 
with each other and this model is therefore exactly solvable. This 
model realizes a SPT phase24–26 protected by the Z2 ´Z2

I
 symmetry 

generated by
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G1 ¼
Y

i is even
Zi ; G2 ¼

Y
i is odd

Zi: ð2Þ

We say that an eigenstate of H0 is a symmetry-invariant eigen-
state if it is an eigenstate of all terms in H0 as well as G1 and G2. 
All symmetry-invariant eigenstates within the same symme-
try sector can be related to each other by a symmetry-preserving 
constant-depth local unitary circuit.

On an open chain, a particular generalization of entanglement 
entropy23,27–29 can be used as an order parameter for this SPT phase. 
Consider dividing the system as shown in Fig. 2. The generalized 
topological entanglement entropy Stopo is defined as

Stopo  SAB þ SBC � SB � SABC: ð3Þ

SAB is the von Neumann entanglement entropy of the region A ∪ B 
in the chain. Other terms are defined similarly. One can show that 
for all symmetry-invariant eigenstates of H0, Stopo = 2.

To realize a wavefunction in this SPT phase (that is, a 
symmetry-invariant eigenstate of H0), we can, for example, use a 
quantum circuit that starts with an arbitrary eigenstate of G1 and G2 
and then proceed to measure all stabilizer operators gi ≡ Xi−1ZiXi+1.

To realize wavefunctions in the trivial phase, we use a quantum 
circuit that measures all single-qubit operators in the Zi basis. The 
choice of the single-qubit measurement basis Zi is fixed by requir-
ing that all measurement operators commute with the symmetry 
generators G1 and G2 (see Supplementary Section 1 for the case with 
symmetry-violating measurements). All wavefunctions in the triv-
ial phase have Stopo = 0.

To realize wavefunctions in the volume law phase, we use random 
Clifford unitary gates that are allowed by the symmetry. The sim-
plest class of gate to consider would be two-qubit nearest-neighbour 
random unitaries. However, due to the symmetry restrictions, this 
set is not effective in entangling the qubits. Ergo, we work with 
three-qubit random unitary gates.

We are now in a position to construct our full quantum circuit 
model: we start with the 0j iN

I
 state. In each updating step, we either: 

(1) apply a random three-qubit Clifford unitary between qubits i − 1, i 
and i + 1 with probability pu, for a random i drawn from 2, ⋯ , N − 1; 

(2) measure the single-qubit operator Zi with probability ps for a ran-
dom i drawn from 1, ⋯ , N; or (3) measure the stabilizer gi ≡ Xi−1ZiXi+1 
with probability pt = 1 − ps − pu for a random i drawn from 2, ⋯ , N − 1. 
A time step is defined as N consecutive updating steps.

In the limiting case pu = 1 and ps = 0, the random unitary circuit 
drives the system into a volume law phase, whereas for the other two 
limiting cases—that is, pu = 0, ps = 0 and pu = 0, ps = 1—the system 
is in an area law phase, one with SPT order and the other without.

We detect the presence of the different phases in several distinct 
ways. First, at each time step we calculate Stopo, averaged over quan-
tum trajectories, and run the circuit until a steady-state value is 
obtained. To detect the phase transition from the area law phase to 
the volume law phase, we also extensively use the order parameter 
originally introduced in ref. 6; to do so, we first run the circuit for 
time 2N to reach the steady state. Then we entangle an ancilla qubit 
with the two qubits in the middle of the chain by measuring the fol-
lowing stabilizers:

ZN=2�1Za; ZN=2þ1Za; XN=2�1XaXN=2þ1; ð4Þ

where Xa and Za act on the ancilla qubit. Note that all three  
stabilizers commute with the symmetry generators G1 and G2. Next, 
we let the circuit run for an extra OðNÞ

I
 time steps, and then mea-

sure the entanglement entropy of the ancilla qubit, denoted by Sa. 
Here, O(N) stands for linear time in N. As shown in ref. 6, if the 
system is in the area law phase, the ancillla’s entanglement entropy 
Sa should be zero by the time we measure it, whereas in a volume law 
phase, the ancilla should be still entangled with the system.

We also use a slightly modified version of the ancilla order param-
eter6, which we call the scrambled ancilla order parameter denoted 
by ~Sa

I
, such that instead of one ancilla we use ten, and instead of 

measuring the stabilizers listed in equation (4), the ancillas are 
entangled with the system via ten time steps of a scrambling circuit, 
where at each updating step a random (non-symmetric) three-qubit 
Clifford gate is applied to three randomly drawn qubits. As was 
the case for Sa, we measure the entropy of the ancilla subsystem 
after the qubit chain evolves OðNÞ

I
 time steps under the symmet-

ric random circuit. While in the trivial phase, the ancilla subsystem 
would have been entirely disentangled from the qubit chain, giving 
~Sa ¼ 0
I

, whereas in the SPT phase, the ancilla subsystem should have 
remained entangled with the two edge degrees of freedom that are 
protected by the symmetry, resulting in ~Sa ¼ 2

I
. In the volume law 

phase, the ancilla subsytem should remain entangled with the bulk 
as well and hence ~Sa>2

I
.

Compared with ~Sa
I

 and Stopo, Sa shows a sharper SPT phase to 
volume law phase transition when pu > 0 (Supplementary Section 
11)—and hence it is used to extract the corresponding critical expo-
nents—but is unable to detect the topological phase transition at 
pu = 0. On the other hand, ~Sa

I
 can be used as an experimentally acces-

sible probe to detect the phase transition at pu = 0.
We note that a type of Edwards–Anderson glass order parameter 

can also be used to detect the topological phase (Supplementary 
Section 4), although it cannot distinguish the trivial and volume law 
phases.

Finally, we note that the random quantum circuits studied here, 
viewed as a quantum channel, eventually transform the initial state 
of the system into the maximally mixed state allowed by the sym-
metry (see Supplementary Section 3 for a proof and a bound on how 
fast this happens). The steady-state expectation value of any opera-
tor therefore stays the same throughout the phase diagram and thus 
cannot serve as an order parameter.

Mapping the case without unitary dynamics pu = 0 to 
classical percolation
Here we show how to map the entire pu = 0 line in the random circuit 
presented above to two copies of a classical 2D percolation problem  
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Fig. 1 | Schematic of the circuit and its corresponding phase diagram. 
a, Schematic of a typical quantum circuit. Yellow boxes correspond to 
a three-qubit random Clifford unitary, blue and green boxes represent 
projective measurements. b, Phase diagram describing the entanglement 
structure of the steady state. Red squares and blue circles are obtained 
from numerical simulations, whereas the rest of the phase boundaries are 
extrapolated. c, Mapping the dynamics of the random circuit on the pu = 0 
axis to the 2D percolation on a square lattice. Each cluster is assigned a 
unique colour and qubits of the same colour make up their own SPT state 
(see Proposition 1 for details).
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on a square lattice. This percolation model is non-standard, although 
our numerical results indicate that it has the same critical proper-
ties as the standard classical percolation model on the square lattice. 
There is a distinct, but closely related, random quantum circuit that 
we define in Supplementary Section 9 that does map directly to (two 
copies of) standard classical percolation.

We divide the operators measured by the random circuit into two 
sets. One set, which we call the odd site operators, is comprised of 
single-qubit operators Zi for odd i alongside the stabilizers gj, which 
end on the odd sites; that is, for even j. The even site operators are 
defined analogously. Note that each member of one set commutes 
with all elements of the other set.

Let us focus on the measurements of odd site operators. Consider 
the N/2 × M square lattice shown in Fig. 1c, where M is the total 
number of updating steps in the circuit. We call this lattice the odd 
sites’ percolation lattice. The N/2 vertices on each row correspond to 
the odd sites of the system and we label them accordingly. The verti-
cal (horizontal) links ending (residing) on the mth row are related 
to the Zi (gj) measurements in the mth step of the circuit in the fol-
lowing way: if Zi is not measured at updating step m, we draw a ver-
tical link between the (i, m − 1) and (i, m) vertices. If the stabilizer 
gj is measured at step m, we also draw a horizontal link between 
the (j − 1, m) and (j + 1, m) vertices. At the end, we assign a unique 
colour to each connected cluster of vertices. We construct the even 
sites’ percolation lattice analogously. The randomness of the quan-
tum circuit translates into random connections in the percolation 
lattices; the probability distributions for the links in the percolation 
lattice are detailed in Supplementary Section 5.

The entanglement structure of the system at step M can be 
extracted from the colours of the vertices on the last row of the two 
aforementioned percolation lattices. As the following proposition 
specifies, qubits of the same colour make up their own SPT state.

Proposition 1. Group the qubits on the basis of their colour on the last 
row of the percolation lattice. Let Aj ¼ fqig

n
i¼1

I
 denote the ordered set 

of qubit indices corresponding to jth colour; that is, qi label a set of 
qubits that are all the same colour at step M. Then, up to a minus sign, 
the operators that stabilize the state of the system at step M are of the 
following form

Yn

i¼1
Zqi and gqi;qiþ1

for i ¼ 1; 2;    n� 1; ð5Þ

where gqi;qiþ1

I

 is defined as

gi;j ¼ Xi

Yj�i
2 �1

k¼0
Ziþ2kþ1

 
Xj: ð6Þ

By considering similarly defined stabilizer operators for all of the 
different colours (Aj with different j), we get a complete set of stabi-
lizers that specify the state of the system. The proof of Proposition 1 
is presented in Supplementary Section 8.

As shown in Lemma 1 in Supplementary Section 2, the minus 
sign ambiguity in Proposition 1 has no bearing on the entanglement 

spectrum of the system’s state. Thus the percolation lattices exactly 
determine the (von Neumann or Rènyi) entanglement entropy for 
any subset of qubits.

Numerical results
We start by briefly reviewing the quantities we numerically calculate 
to obtain the phase diagram and to characterize the critical phase 
boundaries.

A signature of criticality in (1+1)D systems is the logarithmic 
scaling of the entanglement entropy. Thus, we calculate the entan-
glement entropy at the tth time step (which corresponds to tN 
updating steps) S(x, L; t) of a subsystem of length x for a system of 
total length L = N, averaged over all of the quantum trajectories of 
the circuit.

In the large time limit, this averaged entanglement entropy satu-
rates to a logarithmic form at the phase transitions as in (1+1)D 
CFTs30:

Sðx; LÞ ¼ axlog
L
π
sin

πx
L

� �
þ b: ð7Þ

We can also characterize the entanglement growth with time. At 
criticality, for timescales much smaller than the saturation time, we 
have

Sðx; L; tÞ ¼ at log ðtÞ þ b0: ð8Þ

Note that contrary to unitary CFTs, the coefficient of the logarith-
mic scaling ax is not given by the central charge of any underlying 
CFT. In the context of the area law to volume law transition, ref. 31 
provides an appealing interpretation of ax and at as universal quanti-
ties given by the scaling dimension of certain ‘boundary condition 
changing’ operators; b and b′ are non-universal constants.

Throughout the phase boundaries, we find ax = at within the 
margin of error, which is consistent with a dynamical exponent 
z = 1, as the entanglement growth rate is similar along the time and 
space directions.

We can use Stopo as the order parameter to distinguish the three 
different phases: Stopo would be extensive in the volume law phase, 
whereas in the thermodynamic limit it should converge to values 2 
and 0 in the topological and trivial phases, respectively. Let Stopo(p, 
L) denote the steady-state value of Stopo when some tuning param-
eter (for example, the single-qubit measurement probability) is p 
and system size is L. On general grounds, we expect the following 
scaling form in the vicinity of the critical point:

Stopo p; Lð Þ ¼ F p� pc
� �

L1=ν
� �

; ð9Þ

where F(x) is some unknown function, pc is the critical value of tun-
ing parameter p and ν is the correlation length critical exponent, ξ 
∝ ∣p − pc∣−ν.

As explained in the ‘Model’ section, the entanglement entropy 
of a suitably entangled ancilla system, Sa or ~Sa

I
, can also be used as 

the order parameter to distinguish the volume law phase from the 
other two area law phases. Assuming the dynamical exponent z = 1, 
for Sa we have6:

Saðp; L; tÞ ¼ Gððp� pcÞL1=ν ; t=LÞ; ð10Þ

where G(x) is some unknown function. ~Sa
I

 has a similar scaling form.
We now present our numerical results. We study system sizes up 

to 512 qubits and average over 105 random quantum trajectories. 
We start with the 0j iN

I
 state and let the circuit run for 2N time steps 

for the system to reach the steady state. We have explicitly verified 
that saturation is reached before t = 2N. After entangling the ancilla 

A B D C

Fig. 2 | Chain cuts used to define the generalized topological 
entanglement entropy. The A, B and C regions that are used to define 
Stopo (equation (3)) are marked; Stopo basically measures the quantum 
conditional mutual information I(A: C∣B) (note that the labels are not in 
alphabetical order).

Nature Physics | VOL 17 | March 2021 | 342–347 | www.nature.com/naturephysics344

http://www.nature.com/naturephysics


ArticlesNatuRe PHysIcs

qubit, we simulate the system for an additional OðNÞ
I

 time steps to 
calculate Sa (as explained above).

Figure 3 shows numerical results along the pu = 0 line. Figure 3a,c 
shows the steady-state value of Stopo and ~Sa

I
 versus ps for different 

system sizes. As is evident from both diagrams, there is a clear con-
tinuous phase transition at pc = 1/2 in the thermodynamic limit. A 
simple argument based on duality shows that if there is a continuous 
phase transition between the trivial and topological phase, it has to 
be at ps = 1/2. This duality argument is provided in Supplementary 
Section 6. We find that Sa seems to be unable to capture the area 
law to area law phase transition at pu = 0, at least for numerically 
accessible systems sizes. On the other hand, from collapsing the data 
near the critical point pc = 1/2, we find that ν = 4/3 results in a near 
perfect collapse (Fig. 3c,d).

Figure 3e shows the steady-state value of entanglement entropy 
S(x) of the subregion [1, x] at the critical point pu = 0 and ps = 1/2, for 

L = 512. As shown, the entanglement entropy fits the CFT form of 
equation (7) with ax = 0.20(1). The number in the parentheses is the 
uncertainty in the last digit. See Methods for more details on how 
the errors are estimated.

Figure 3f shows the entanglement entropy of the half chain ver-
sus time at p = pc for different chain sizes. The entanglement entropy 
grows logarithmically with time, until the finite size effects show 
up. By comparing the corresponding fitted analytical expressions we 
find at = ax = 0.20(1).

We note that the values of ν, z, ax and at at the pu = 0, ps = 1/2 tran-
sition agree with the values of our other random measurement-based 
quantum circuit model presented in Supplementary Section 9, which 
in turn maps to (two copies of) the standard classical link percola-
tion problem on the square lattice. Our results are thus consistent 
with the pu = 0, ps = 1/2 transition studied in Fig. 3 being governed by 
(two copies of) the standard classical percolation fixed point.
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I

 
measured t = N time steps after scrambling. d, Scaling collapse of the data in c. e, The entanglement entropy of the [0, x] segment of the chain S(x, L) at 
late times for p = pc and L = 512. f, The entanglement entropy of the half chain versus time for ps = pc. All entropies are in units of log2

I
. See Supplementary 

Section 8 for an analytical derivation of the a coefficient using the percolation map.
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We now proceed to the case with unitary dynamics pu ≠ 0.  
Figure 4 shows Stopo, Sa and ~Sa

I
 versus ps for the fixed value of pu = 0.3. 

For ps = 0, the system is in the topological phase, as can be seen from 
Fig. 4a. By increasing ps, the entropies exhibit a continuous phase 
transition to the volume law phase at first, and then another con-
tinuous phase transition to the trivial phase.

By using analogous plots for different values of pu, we can 
determine the 2D phase diagram in the (ps, pu) space. The result 
is illustrated in Fig. 1b. Note that as the probability of measuring a 
stabilizer is 1 − pu − ps, the phase diagram is restricted to the region 
pu + ps ≤ 1. The data points in the plot have been extracted using 
numerical simulations and the schematic phase diagram is then 
drawn based on them. For more detailed results used to obtain the 
phase diagram see Supplementary Section 11.

The SPT/volume law phase boundary intersects the pu axis  
at pu = 0.355(3) and the volume law/trivial phase boundary ends 
at pu = 0.663(4) on the pu + ps = 1 line. Our numerical simulations 
demonstrate that the volume law phase still exists for pu as low as 
0.1. Unfortunately, clearly detecting the transition from the SPT 
to volume law phases requires increasingly large system sizes as pu 
is lowered (see Supplementary Section 10 for details). Therefore,  
we extrapolate the phase diagram for smaller values of pu. By fol-
lowing the trend of the data points, it seems that the volume law  
phase survives all the way down to pu = 0, hence suggesting that the 
critical point at ps = 0.5 and pu = 0 is actually a tricritical point. This 
in turn means that at ps = 1/2, arbitrarily sparse random Clifford 
gates in the quantum circuit can still drive the system into the vol-
ume law phase.

By using the scaling form in equation (9) and collapsing the 
data, we can extract the correlation length critical exponent ν along 
the phase boundaries. Taking into account the margins of error, 
our numerical results are consistent with ν = 4/3 everywhere along 
the phase boundaries (see Supplementary Section 11 for the cor-
responding plots and numerical values). However ax = at changes 
considerably along the phase boundaries at the largest system sizes 
we have studied. If the ax = at that we extract are close to their values 
in the thermodynamic limit, this suggests that the volume law to 
area law critical lines may be related to two copies of the classical 
percolation fixed point by marginal deformations.

Entanglement phase transitions involving topological or SPT 
phases also seem to be closely related to quantum error correction. 
In particular, the rapid stabilizer measurements are reminiscent 
of syndrome measurements in active error correction schemes. 
Moreover, random single-qubit measurements can be viewed as 
faulty syndrome measurements or qubit decoherence, whereas uni-
tary dynamics models the random noise affecting the qubits. In this 

context, ‘entanglement phase transitions’ could be related to ‘error 
thresholds’ beyond which the long-range entanglement structure of 
the code space, which is responsible for the topological protection 
of the encoded information, is entirely lost, rendering recovery of 
logical information impossible. Within this framework, our results 
might have natural applications to quantum error correcting codes. 
Note that this is a different analogy to quantum error correction 
than the one presented in refs. 5,8, where the volume law phase is 
considered to be a quantum error correcting code.
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Methods
Binary representation of the stabillizer circuit. We use the binary representation 
of the stabilizer formalism to simulate the Clifford circuits studied in this work. 
This representation is based on the observation that, up to some phase factor, any 
Pauli string operator s over N qubits can be uniquely mapped to a binary vector 
w ¼ ðu; vÞ 2 Z2N

2
I

 where u; v 2 ZN
2

I
 and

s ¼ eiθ
YN

i¼1
Xui
i

YN

i¼1
Zvi
i ð11Þ

If Pauli string operators s1 and s2 correspond to vectors w1 and w2, their 
multiplication s1s2 corresponds to w1 + w2. Moreover, [s1, s2] = 0 if, and only if, 
wT

1 gw2 ¼ 0
I

, where wT stands for w transposed and g is the 2N × 2N matrix  
defined as

It is also easy to apply Clifford unitaries in the binary representation. Let 
U be a unitary in the Clifford group. Since U belongs to the Clifford group, the 
images of Xi and Zi under U (that is, UXiU† and UZiU†) are themselves Pauli string 
operators and have binary representations in Z2N

2
I

. Let MU be the 2N × 2N matrix 
whose first and second N columns correspond to the images of Xi and Zi under U 
respectively, for i = 1, ⋯ , N. It is easy to see that, if w is the binary representation 
of a Pauli string s, the binary representation of UsU† would be given by the matrix 
multiplication MUw in Z2

I
.

Given a stabilizer set R, an N × 2N stabilizer matrix MR
I

 can be formed by 
taking the binary representation of the elements of R as its rows. For example, the 
stabilizer matrix that corresponds to the state 0j iN

I
 is given as

MR ¼ ð0N ´N j1N ´N Þ ð13Þ

One may keep track of the phase factors using an additional N element vector, but 
as we are interested in the entanglement structure, which is independent of the 
phase factors (see Lemma 1 in Supplementary Information), we ignore the phase 
factor in what follows.

In our numerics, we use the stabilizer matrix of the system to keep  
track of the entanglement dynamics of the system. As was discussed above, 
applying a unitary U would transform MR

I
 to MRMT

U
I

 where MU is the  
binary representation of U and T stands for transpose (note that the stabilizers are 
stored as the rows of MR

I
 rather than its columns). It is also straightforward  

to keep track of the Clifford measurements owing to the Gottesman–Knill 
theorem32,33. Let s* represent the Pauli string operator that is being measured.  
First we find the stabilizers in R that do not commute with s*, which can be  
done efficiently by computing MRgs�

I
 with g as defined in equation (12). If s* 

commutes with every stabilizer in R, then measuring it has no effect on the state of 
the system. On the other hand, if s* does not commute with some stabilizers in R, 
say s1, ⋯ , sm, the stabilizer set of the system after measuring s* can be  
obtained by replacing s1 with ±s* and si with s1si for i = 2, ⋯ , m, where the  
± sign is chosen at random. As we are ignoring the phase factors in the binary 
representation, this amounts to replacing the row corresponding to s1 with the 
binary representation of s* and adding the binary representation of s1 to the rows 
corresponding to s2 ⋯ sm.

To sample the three-qubit symmetric Clifford unitary set, we use the procedure 
outlined in ref. 4 to generate all possible binary representations of three-qubit 
Clifford unitaries and then choose the symmetric subset by explicitly checking 
whether a unitary respects the Z2 ´Z2

I
 symmetry.

As the last remark in this section, we note that given the stabilizer matrix MR
I

, 
the entanglement entropy of a subset A of the qubits can obtained via34:

SA ¼ rank ðMRjAÞ � nA; ð14Þ
where MRjA

I
 is the submatrix of MR

I
 obtained via keeping only the columns that 

correspond to the qubits in A, nA is the number of qubits in A and the rank is 
computed in Z2

I
.

Estimating the errors. In this section, we briefly summarize the procedure that 
was used to estimate the numerical values of parameters and their corresponding 
errors.

The critical value pc can be found by plotting the order parameter for different 
system sizes and locating the scale-invariant point at which all the curves for 
different system sizes cross. The reported value of pc corresponds to the crossing 
point of the order parameter curves for L = 512 and L = 256, whereas the curves 
for smaller system sizes are used to estimate the error. We find pc(L) for L = 512, 
256 and 128, where pc(L) is defined as the crossing point between curves of system 
sizes L and L/2. The y-axis intercept of the linear fit to pc(L) as a function of 1/L 
gives an estimate for pc(L → ∞). The error in pc is then estimated by the difference 
between the extrapolated value pc(L → ∞) and its value at L = 128. We use Sa as the 
order parameter to detect the phase transition from SPT to volume law entangled 
phase, while we use Stopo for the phase transition from the volume law entangled 
phase to the trivial phase. The reason for using two different order parameters is 

that although Stopo has less noise than the ancilla order parameter, one has to go to 
larger system sizes to properly detect the SPT–volume law phase transition using 
this order parameter. On the other hand, although Sa has to be averaged over a 
higher number of realizations, it displays a sharper crossing compared with Stopo or 
~Sa
I

 (Supplementary Section 11).
The value of correlation length critical exponent ν is found from the data 

collapse. Assume that a certain quantity, say Sa, has the following finite size scaling 
form:

Saðp; LÞ ¼ Fððp� pcÞL1=νÞ ð15Þ

for some arbitrary function F. It follows that if one plots Sa as a function  
of (p − pc)L1/ν, for the right choice of ν, all the data points would collapse  
on the y = F(x) curve. To find the best collapse, we use the objective  
function ϵ(ν) defined as:

ϵðνÞ ¼ 1
n� 2

Xn�1

i¼2
yi � �yi
� 2

; ð16Þ

where

�yi ¼
ðxiþ1 � xiÞyi�1 � ðxi�1 � xiÞyiþ1

xiþ1 � xi�1
; ð17Þ

with xi ¼ ðpi � pcÞL
1=ν
i

I
 and yi = Sa(pi, Li). Here i labels the ith data point (including 

system sizes L = 64, 128, 256 and 512) sorted on the basis of their x value such that 
x1 < x2 < ⋯ < xn, and n denotes the total number of data points. �yi is the expected 
value of yi if it was on the line passing through the two adjacent data points. For 
the perfect collapse and in the limit of infinitely close data points, ϵ(ν) would 
vanish. To obtain the best collapse, we find the value ν* that minimizes the objective 
function ϵ(ν) for a given set of numerical data. To estimate the error, we find the ν 
interval for which ϵ(ν) < 2ϵ(ν*).

The numerical values of at and ax (equations (7) and (8)) are obtained by  
fitting the numerical data for L = 512 to the analytical expressions via the 
method of least squares. As these equations are field theory results and are valid 
only in length scales much larger than lattice spacing, we exclude data points 
corresponding to first and last ten sites before fitting the data to equation (7). As 
for equation (8), we exclude data points for t < 10 as well as data points close to 
the saturation value of the half-chain entropy, SL/2(t) > 0.9SL/2(∞). Let ε1 denote the 
error that characterizes the fit quality. There is also a systematic source of error 
related to finite size effects, which we denote ε2. To estimate ε2, we evaluate ax(L) 
and at(L) for L = 128, 256 and 512, find the y-axis intercept of the linear fit to ax(L) 
(and at(L)) as a function of 1/L and then estimate ε2 as the difference between the 
y-axis intercept and the parameters evaluated at L = 128. The reported error is  
then maxðε1; ε2Þ

I
.
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