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Measurement-induced topological entanglement
transitions in symmetric random quantum circuits

Ali Lavasani®'?X, Yahya Alavirad"? and Maissam Barkeshli'?

Random quantum circuits, in which an array of qubits is subjected to a series of randomly chosen unitary operations, have pro-
vided key insights into the dynamics of many-body quantum entanglement. Recent work has shown that interleaving the uni-
tary operations with single-qubit measurements can drive a transition between high- and low-entanglement phases. Here we
study a class of symmetric random quantum circuits with two competing types of measurement in addition to unitary dynamics.
We find a rich phase diagram involving robust symmetry-protected topological, trivial and volume law entangled phases, where
the transitions are hidden to expectation values of any operator and are only apparent by averaging the entanglement entropy
over quantum trajectories. In the absence of unitary dynamics, we find a purely measurement-induced critical point, which
maps exactly to two copies of a classical two-dimensional percolation problem. Numerical simulations indicate that this transi-
tion is a tricritical point that splits into two critical lines in the presence of arbitrarily sparse unitary dynamics with an interven-
ing volume law entangled phase. Our results show that measurements alone are sufficient to induce criticality and logarithmic
entanglement scaling, and arbitrarily sparse unitary dynamics can be sufficient to stabilize volume law entangled phases in the

presence of rapid, yet competing, measurements.

into highly entangled states characterized by volume law scal-

ing of subsystem entanglement entropies. When this dynam-
ics is intercepted by rapid local measurements, individual quantum
trajectories are expected to collapse into low-entanglement states
characterized by area law scaling of subsystem entanglement entro-
pies. Recently, it was discovered that, at least in a class of models,
these two phases are separated by a scale-invariant ‘critical point’ at
a finite measurement rate'~’. Several aspects of this transition and its
generalizations have been studied recently* .

In the limit of infinitely rapid local measurements, the state of
the system crucially depends on the choice of measurement basis.
Assuming one measures only commuting single-qubit operators,
the wavefunction collapses into an unentangled trivial product
state. However, if one chooses to measure a set of stabilizer opera-
tors that stabilize a topological or a symmetry-protected topological
(SPT) wavefunction, the resulting state—despite also having area
law scaling of entanglement—would be topologically distinct from
the product state**?'.

In this Article, we consider the competition between these two
types of measurement with each other, as well as with the uni-
tary dynamics. This raises the question of whether the notion of a
topological phase is well defined in random quantum circuits that
include both unitary dynamics and local measurements. To make
progress in answering this question, we consider a (1+1)D quan-
tum circuit model comprising three elements: (1) measurement of
stabilizer operators that stabilize a Z, x Z, SPT realized by the ‘clus-
ter model”>*; (2) single-qubit measurements in the computational
basis; (3) random, symmetry-allowed Clifford unitary gates. At each
step of the circuit, one element is selected at random with probabili-
ties p,, p, and p, respectively (p, + p,+ p,=1) and applied at a random
position in space. A typical snapshot of the circuit is shown in Fig. 1a.

Using suitably defined order parameters, we discover a rich phase
diagram, shown in Fig. 1b. We find not only a stable SPT phase in

{ i eneric unitary dynamics drive quantum many-body systems

an extended region of the phase diagram, but our results indicate a
tricritical point, with logarithmic scaling of entanglement entropy
separating the volume law, trivial and SPT phases in the absence of
unitary dynamics p,=0; that is, when only measurements are pres-
ent. The existence of this tricritical point implies that a volume law
phase can be stabilized by an infinitesimally small rate of unitary
dynamics.

Moreover, we find an exact analytical mapping that maps the case
without unitary dynamics p,=0 to two copies of a (non-standard)
classical 2D percolation problem. Away from the p,=0 line, we
extensively study the phase transitions numerically. The numerical
results are consistent with the correlation length critical exponent
v remaining the same on the phase boundaries all the way down to
the tricritical point, which has v=4/3 based on the analytical map-
ping to percolation. On the other hand, we find that the coefficient
of the logarithmic scaling of the entanglement entropy changes con-
siderably, suggesting that the conformal field theory (CFT) descrip-
tion changes along the phase boundaries.

Model

We study a family of (1+1)D random quantum circuits that real-

ize quantum trajectories extrapolating between wavefunctions in an

SPT phase, a trivial product state and a volume law entangled phase.
We choose our SPT to be the Z, x Z, symmetry-protected phase

realized by the cluster model defined on an open chain of N qubits

(where N is even throughout) in (1+1)D (refs. *>*):

N-1
Ho=— Zi:z Xis1ZiXin (1)

where X; and Z; denote Pauli matrices. Note that all terms commute
with each other and this model is therefore exactly solvable. This
model realizes a SPT phase* protected by the Z, x Z, symmetry
generated by
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Fig. 1| Schematic of the circuit and its corresponding phase diagram.

a, Schematic of a typical quantum circuit. Yellow boxes correspond to

a three-qubit random Clifford unitary, blue and green boxes represent
projective measurements. b, Phase diagram describing the entanglement
structure of the steady state. Red squares and blue circles are obtained
from numerical simulations, whereas the rest of the phase boundaries are
extrapolated. ¢, Mapping the dynamics of the random circuit on the p,=0
axis to the 2D percolation on a square lattice. Each cluster is assigned a
unique colour and qubits of the same colour make up their own SPT state
(see Proposition 1 for details).

Gl = Hiisevenzi; G2 = Hiisoddzi' (2)

We say that an eigenstate of H, is a symmetry-invariant eigen-
state if it is an eigenstate of all terms in H, as well as G, and G,.
All symmetry-invariant eigenstates within the same symme-
try sector can be related to each other by a symmetry-preserving
constant-depth local unitary circuit.

On an open chain, a particular generalization of entanglement
entropy*»”’~* can be used as an order parameter for this SPT phase.
Consider dividing the system as shown in Fig. 2. The generalized
topological entanglement entropy S, is defined as

Stopo = SaB + Spc — S — Sasc- (3)

S5 is the von Neumann entanglement entropy of the region A U B
in the chain. Other terms are defined similarly. One can show that
for all symmetry-invariant eigenstates of Hy, S,,,=2.

To realize a wavefunction in this SPT phase (that is, a
symmetry-invariant eigenstate of H,), we can, for example, use a
quantum circuit that starts with an arbitrary eigenstate of G, and G,
and then proceed to measure all stabilizer operators g, =X, | ZX,,,.

To realize wavefunctions in the trivial phase, we use a quantum
circuit that measures all single-qubit operators in the Z; basis. The
choice of the single-qubit measurement basis Z, is fixed by requir-
ing that all measurement operators commute with the symmetry
generators G, and G, (see Supplementary Section 1 for the case with
symmetry-violating measurements). All wavefunctions in the triv-
ial phase have §,,,=0.

To realize wavefunctions in the volume law phase, we use random
Clifford unitary gates that are allowed by the symmetry. The sim-
plest class of gate to consider would be two-qubit nearest-neighbour
random unitaries. However, due to the symmetry restrictions, this
set is not effective in entangling the qubits. Ergo, we work with
three-qubit random unitary gates.

We are now in a position to construct our full quantum circuit
model: we start with the [0)“" state. In each updating step, we either:
(1) apply a random three-qubit Clifford unitary between qubits i — 1, i
and i+ 1 with probability p,, for a random i drawn from 2, --- , N—1;
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(2) measure the single-qubit operator Z; with probability p, for a ran-
dom i drawn from 1, ---, N; or (3) measure the stabilizer g, =X, | Z X,
with probability p,=1—p,—p, for arandom i drawn from 2, --- ,N—1.
A time step is defined as N consecutive updating steps.

In the limiting case p,=1 and p,=0, the random unitary circuit
drives the system into a volume law phase, whereas for the other two
limiting cases—that is, p,=0, p,=0 and p,=0, p,=1—the system
is in an area law phase, one with SPT order and the other without.

We detect the presence of the different phases in several distinct
ways. First, at each time step we calculate S,,,, averaged over quan-
tum trajectories, and run the circuit until a steady-state value is
obtained. To detect the phase transition from the area law phase to
the volume law phase, we also extensively use the order parameter
originally introduced in ref. ¢ to do so, we first run the circuit for
time 2N to reach the steady state. Then we entangle an ancilla qubit
with the two qubits in the middle of the chain by measuring the fol-
lowing stabilizers:

Znjr-1Zas  Znjri1Zay Xnja-1XaXNj241s (4)
where X, and Z, act on the ancilla qubit. Note that all three
stabilizers commute with the symmetry generators G, and G,. Next,
we let the circuit run for an extra O(N) time steps, and then mea-
sure the entanglement entropy of the ancilla qubit, denoted by S,.
Here, O(N) stands for linear time in N. As shown in ref. ¢, if the
system is in the area law phase, the ancillla’s entanglement entropy
S, should be zero by the time we measure it, whereas in a volume law
phase, the ancilla should be still entangled with the system.

We also use a slightly modified version of the ancilla order param-
eter’, which we call the scrambled ancilla order parameter denoted
by S, such that instead of one ancilla we use ten, and instead of
measuring the stabilizers listed in equation (4), the ancillas are
entangled with the system via ten time steps of a scrambling circuit,
where at each updating step a random (non-symmetric) three-qubit
Clifford gate is applied to three randomly drawn qubits. As was
the case for S,, we measure the entropy of the ancilla subsystem
after the qubit chain evolves O(N) time steps under the symmet-
ric random circuit. While in the trivial phase, the ancilla subsystem
would have been entirely disentangled from the qubit chain, giving
Sa = 0, whereas in the SPT phase, the ancilla subsystem should have
remained entangled with the two edge degrees of freedom that are
protected by the symmetry, resulting in S, = 2. In the volume law
phase, the ancilla subsytem should remain entangled with the bulk
as well and hence S, >2.

Compared with S, and S, S, shows a sharper SPT phase to
volume law phase transition when p,>0 (Supplementary Section
11)—and hence it is used to extract the corresponding critical expo-
nents—but is unable to detect the topological phase transition at
Po=0. On the other hand, S, can be used as an experimentally acces-
sible probe to detect the phase transition at p,=0.

We note that a type of Edwards—Anderson glass order parameter
can also be used to detect the topological phase (Supplementary
Section 4), although it cannot distinguish the trivial and volume law
phases.

Finally, we note that the random quantum circuits studied here,
viewed as a quantum channel, eventually transform the initial state
of the system into the maximally mixed state allowed by the sym-
metry (see Supplementary Section 3 for a proof and a bound on how
fast this happens). The steady-state expectation value of any opera-
tor therefore stays the same throughout the phase diagram and thus
cannot serve as an order parameter.

Mapping the case without unitary dynamics p,=0 to
classical percolation

Here we show how to map the entire p,=0 line in the random circuit
presented above to two copies of a classical 2D percolation problem
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Fig. 2 | Chain cuts used to define the generalized topological
entanglement entropy. The A, B and C regions that are used to define
Siopo (Qquation (3)) are marked; S, basically measures the quantum
conditional mutual information I(A: C|B) (note that the labels are not in
alphabetical order).

onasquare lattice. This percolation model is non-standard, although
our numerical results indicate that it has the same critical proper-
ties as the standard classical percolation model on the square lattice.
There is a distinct, but closely related, random quantum circuit that
we define in Supplementary Section 9 that does map directly to (two
copies of) standard classical percolation.

We divide the operators measured by the random circuit into two
sets. One set, which we call the odd site operators, is comprised of
single-qubit operators Z; for odd i alongside the stabilizers g, which
end on the odd sites; that is, for even j. The even site operators are
defined analogously. Note that each member of one set commutes
with all elements of the other set.

Let us focus on the measurements of odd site operators. Consider
the N/2 XM square lattice shown in Fig. 1c, where M is the total
number of updating steps in the circuit. We call this lattice the odd
sites’ percolation lattice. The N/2 vertices on each row correspond to
the odd sites of the system and we label them accordingly. The verti-
cal (horizontal) links ending (residing) on the mth row are related
to the Z, (g;) measurements in the mth step of the circuit in the fol-
lowing way: if Z, is not measured at updating step m, we draw a ver-
tical link between the (i, m —1) and (i, m) vertices. If the stabilizer
g is measured at step m, we also draw a horizontal link between
the (j—1, m) and (j+1, m) vertices. At the end, we assign a unique
colour to each connected cluster of vertices. We construct the even
sites’ percolation lattice analogously. The randomness of the quan-
tum circuit translates into random connections in the percolation
lattices; the probability distributions for the links in the percolation
lattice are detailed in Supplementary Section 5.

The entanglement structure of the system at step M can be
extracted from the colours of the vertices on the last row of the two
aforementioned percolation lattices. As the following proposition
specifies, qubits of the same colour make up their own SPT state.

Proposition 1. Group the qubits on the basis of their colour on the last
row of the percolation lattice. Let A’ = {g;}_, denote the ordered set
of qubit indices corresponding to jth colour; that is, g, label a set of
qubits that are all the same colour at step M. Then, up to a minus sign,
the operators that stabilize the state of the system at step M are of the
following form

n

o fori=1,2,---n—1, (5)

Z‘L and &4, i1

where g, s defined as

j—i

oy
8ij=Xi {H":O Zi+zk+1] X;. (6)

By considering similarly defined stabilizer operators for all of the
different colours (A’ with different j), we get a complete set of stabi-
lizers that specify the state of the system. The proof of Proposition 1
is presented in Supplementary Section 8.

As shown in Lemma 1 in Supplementary Section 2, the minus
sign ambiguity in Proposition 1 has no bearing on the entanglement
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spectrum of the system’s state. Thus the percolation lattices exactly
determine the (von Neumann or Rényi) entanglement entropy for
any subset of qubits.

Numerical results

We start by briefly reviewing the quantities we numerically calculate
to obtain the phase diagram and to characterize the critical phase
boundaries.

A signature of criticality in (14+1)D systems is the logarithmic
scaling of the entanglement entropy. Thus, we calculate the entan-
glement entropy at the ftth time step (which corresponds to tN
updating steps) S(x, L; £) of a subsystem of length x for a system of
total length L=N, averaged over all of the quantum trajectories of
the circuit.

In the large time limit, this averaged entanglement entropy satu-
rates to a logarithmic form at the phase transitions as in (1+1)D
CFTs*:

X

S(x,L) = aylog (Iésin7> +b. (7)

We can also characterize the entanglement growth with time. At
criticality, for timescales much smaller than the saturation time, we
have

S(x,L;t) = adog (t) + b'. (8)

Note that contrary to unitary CFTs, the coefficient of the logarith-
mic scaling a, is not given by the central charge of any underlying
CFT. In the context of the area law to volume law transition, ref. *'
provides an appealing interpretation of a, and 4, as universal quanti-
ties given by the scaling dimension of certain ‘boundary condition
changing’ operators; b and b’ are non-universal constants.

Throughout the phase boundaries, we find a,=a, within the
margin of error, which is consistent with a dynamical exponent
z=1, as the entanglement growth rate is similar along the time and
space directions.

We can use S, as the order parameter to distinguish the three
different phases: S,,,, would be extensive in the volume law phase,
whereas in the thermodynamic limit it should converge to values 2
and 0 in the topological and trivial phases, respectively. Let S,,,,(ps
L) denote the steady-state value of S,,,, when some tuning param-
eter (for example, the single-qubit measurement probability) is p
and system size is L. On general grounds, we expect the following
scaling form in the vicinity of the critical point:

S‘DPO(pv L) = F((p _pc)Ll/U)’ (9)

where F(x) is some unknown function, p. is the critical value of tun-
ing parameter p and v is the correlation length critical exponent, &
o [p—pd™.

As explained in the ‘Model’ section, the entanglement entropy
of a suitably entangled ancilla system, S, or S, can also be used as
the order parameter to distinguish the volume law phase from the
other two area law phases. Assuming the dynamical exponent z=1,
for S, we have®:

$a(p, L, 1) = G((p — p L' t/L), (10)

where G(x) is some unknown function. S, has a similar scaling form.

We now present our numerical results. We study system sizes up
to 512 qubits and average over 10° random quantum trajectories.
We start with the [0)“" state and let the circuit run for 2N time steps
for the system to reach the steady state. We have explicitly verified
that saturation is reached before t=2N. After entangling the ancilla
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Fig. 3 | The numerical results pertaining to the tricritical pointat p,=0. a, S

topo

Sie(®

15+

10" 10?

near the tricritical point versus p.. b, Scaling collapse of the datain a. ¢, S,

measured t= N time steps after scrambling. d, Scaling collapse of the data in c. e, The entanglement entropy of the [0, x] segment of the chain S(x, L) at
late times for p=p. and L =512. f, The entanglement entropy of the half chain versus time for p,= p.. All entropies are in units of log,. See Supplementary
Section 8 for an analytical derivation of the a coefficient using the percolation map.

qubit, we simulate the system for an additional O(N) time steps to
calculate S, (as explained above).

Figure 3 shows numerical results along the p,=0 line. Figure 3a,c
shows the steady-state value of S, and S, versus p; for different
system sizes. As is evident from both diagrams, there is a clear con-
tinuous phase transition at p.=1/2 in the thermodynamic limit. A
simple argument based on duality shows that if there is a continuous
phase transition between the trivial and topological phase, it has to
be at p,=1/2. This duality argument is provided in Supplementary
Section 6. We find that S, seems to be unable to capture the area
law to area law phase transition at p,=0, at least for numerically
accessible systems sizes. On the other hand, from collapsing the data
near the critical point p.=1/2, we find that v =4/3 results in a near
perfect collapse (Fig. 3c,d).

Figure 3e shows the steady-state value of entanglement entropy
S(x) of the subregion [1, x] at the critical point p, =0 and p,=1/2, for
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L=512. As shown, the entanglement entropy fits the CFT form of
equation (7) with a,=0.20(1). The number in the parentheses is the
uncertainty in the last digit. See Methods for more details on how
the errors are estimated.

Figure 3f shows the entanglement entropy of the half chain ver-
sus time at p =p_for different chain sizes. The entanglement entropy
grows logarithmically with time, until the finite size effects show
up. By comparing the corresponding fitted analytical expressions we
find a,=a,=0.20(1).

We note that the values of 1, z, a, and a, at the p, =0, p,=1/2 tran-
sition agree with the values of our other random measurement-based
quantum circuit model presented in Supplementary Section 9, which
in turn maps to (two copies of) the standard classical link percola-
tion problem on the square lattice. Our results are thus consistent
with the p, =0, p,=1/2 transition studied in Fig. 3 being governed by
(two copies of) the standard classical percolation fixed point.
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on the phase diagram in Fig. 1b.

We now proceed to the case with unitary dynamics p,#0.
Figure 4 shows S, S, and S, versus p, for the fixed value of p,=0.3.
For p,=0, the system is in the topological phase, as can be seen from
Fig. 4a. By increasing p,, the entropies exhibit a continuous phase
transition to the volume law phase at first, and then another con-
tinuous phase transition to the trivial phase.

By using analogous plots for different values of p, we can
determine the 2D phase diagram in the (p,, p,) space. The result
is illustrated in Fig. 1b. Note that as the probability of measuring a
stabilizer is 1 — p,— p,, the phase diagram is restricted to the region
putp.<1. The data points in the plot have been extracted using
numerical simulations and the schematic phase diagram is then
drawn based on them. For more detailed results used to obtain the
phase diagram see Supplementary Section 11.

The SPT/volume law phase boundary intersects the p, axis
at p,=0.355(3) and the volume law/trivial phase boundary ends
at p,=0.663(4) on the p,+p,=1 line. Our numerical simulations
demonstrate that the volume law phase still exists for p, as low as
0.1. Unfortunately, clearly detecting the transition from the SPT
to volume law phases requires increasingly large system sizes as p,
is lowered (see Supplementary Section 10 for details). Therefore,
we extrapolate the phase diagram for smaller values of p,. By fol-
lowing the trend of the data points, it seems that the volume law
phase survives all the way down to p, =0, hence suggesting that the
critical point at p;=0.5 and p, =0 is actually a tricritical point. This
in turn means that at p,=1/2, arbitrarily sparse random Clifford
gates in the quantum circuit can still drive the system into the vol-
ume law phase.

By using the scaling form in equation (9) and collapsing the
data, we can extract the correlation length critical exponent v along
the phase boundaries. Taking into account the margins of error,
our numerical results are consistent with v=4/3 everywhere along
the phase boundaries (see Supplementary Section 11 for the cor-
responding plots and numerical values). However a,=a, changes
considerably along the phase boundaries at the largest system sizes
we have studied. If the a, =g, that we extract are close to their values
in the thermodynamic limit, this suggests that the volume law to
area law critical lines may be related to two copies of the classical
percolation fixed point by marginal deformations.

Entanglement phase transitions involving topological or SPT
phases also seem to be closely related to quantum error correction.
In particular, the rapid stabilizer measurements are reminiscent
of syndrome measurements in active error correction schemes.
Moreover, random single-qubit measurements can be viewed as
faulty syndrome measurements or qubit decoherence, whereas uni-
tary dynamics models the random noise affecting the qubits. In this
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context, ‘entanglement phase transitions’ could be related to ‘error
thresholds’ beyond which the long-range entanglement structure of
the code space, which is responsible for the topological protection
of the encoded information, is entirely lost, rendering recovery of
logical information impossible. Within this framework, our results
might have natural applications to quantum error correcting codes.
Note that this is a different analogy to quantum error correction
than the one presented in refs. >, where the volume law phase is
considered to be a quantum error correcting code.
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Methods
Binary representation of the stabillizer circuit. We use the binary representation
of the stabilizer formalism to simulate the Clifford circuits studied in this work.
This representation is based on the observation that, up to some phase factor, any
Pauli string operator s over N qubits can be uniquely mapped to a binary vector
w = (u,v) € 72" where u,v € Z) and

s= I I, 2 (1)
If Pauli string operators s, and s, correspond to vectors w, and w,, their
multiplication s, corresponds to w, +w,. Moreover, [s,, s,] =0 if, and only if,
wlgw, = 0, where w' stands for w transposed and g is the 2N x 2N matrix

defined as
s=

It is also easy to apply Clifford unitaries in the binary representation. Let
U be a unitary in the Clifford group. Since U belongs to the Clifford group, the
images of X; and Z; under U (that is, UX,U" and UZ,U") are themselves Pauli string
operators and have binary representations in Z2V. Let M, be the 2N X 2N matrix
whose first and second N columns correspond to the images of X; and Z; under U
respectively, for i=1, ---, N. It is easy to see that, if w is the binary representation
of a Pauli string s, the binary representation of UsU" would be given by the matrix
multiplication Myw in Z,.

Given a stabilizer set R, an N X 2N stabilizer matrix My can be formed by
taking the binary representation of the elements of R as its rows. For example, the
stabilizer matrix that corresponds to the state [0 is given as

Mg = (Onxn|TNxn) (13)

OnxN [Tnxn )

Tnxn |OnxwN

One may keep track of the phase factors using an additional N element vector, but
as we are interested in the entanglement structure, which is independent of the
phase factors (see Lemma 1 in Supplementary Information), we ignore the phase
factor in what follows.

In our numerics, we use the stabilizer matrix of the system to keep
track of the entanglement dynamics of the system. As was discussed above,
applying a unitary U would transform M to MrMJ; where My, is the
binary representation of U and T stands for transpose (note that the stabilizers are
stored as the rows of M rather than its columns). It is also straightforward
to keep track of the Clifford measurements owing to the Gottesman-Knill
theorem™*. Let s. represent the Pauli string operator that is being measured.

First we find the stabilizers in R that do not commute with s., which can be

done efficiently by computing Mggs, with g as defined in equation (12). If s.
commutes with every stabilizer in R, then measuring it has no effect on the state of
the system. On the other hand, if s. does not commute with some stabilizers in R,
say s;, - , S,,, the stabilizer set of the system after measuring s. can be

obtained by replacing s, with +s. and s; with ss, for i=2, --- , m, where the

+ sign is chosen at random. As we are ignoring the phase factors in the binary
representation, this amounts to replacing the row corresponding to s, with the
binary representation of s. and adding the binary representation of s, to the rows
corresponding to s, -+ s,,.

To sample the three-qubit symmetric Clifford unitary set, we use the procedure
outlined in ref.” to generate all possible binary representations of three-qubit
Clifford unitaries and then choose the symmetric subset by explicitly checking
whether a unitary respects the Z, x Z, symmetry.

As the last remark in this section, we note that given the stabilizer matrix Mg,
the entanglement entropy of a subset A of the qubits can obtained via®:

Sa = rank (Mg|,) — na, (14)

where Mg|, is the submatrix of My obtained via keeping only the columns that
correspond to the qubits in A, 7, is the number of qubits in A and the rank is
computed in Z,.

Estimating the errors. In this section, we briefly summarize the procedure that
was used to estimate the numerical values of parameters and their corresponding
errors.

The critical value p, can be found by plotting the order parameter for different
system sizes and locating the scale-invariant point at which all the curves for
different system sizes cross. The reported value of p. corresponds to the crossing
point of the order parameter curves for L=>512 and L =256, whereas the curves
for smaller system sizes are used to estimate the error. We find p (L) for L=512,
256 and 128, where p (L) is defined as the crossing point between curves of system
sizes L and L/2. The y-axis intercept of the linear fit to p (L) as a function of 1/L
gives an estimate for p (L — o). The error in p, is then estimated by the difference
between the extrapolated value p (L — o0) and its value at L =128. We use S, as the
order parameter to detect the phase transition from SPT to volume law entangled
phase, while we use S, for the phase transition from the volume law entangled
phase to the trivial phase. The reason for using two different order parameters is

that although §,,,, has less noise than the ancilla order parameter, one has to go to
larger system sizes to properly detect the SPT-volume law phase transition using
this order parameter. On the other hand, although S, has to be averaged over a
higher number of realizations, it displays a sharper crossing compared with S,,,,, or
Sa (Supplementary Section 11).

The value of correlation length critical exponent v is found from the data
collapse. Assume that a certain quantity, say S,, has the following finite size scaling
form:

Sa(p,L) = F((p — pJL'") (15)

for some arbitrary function F. It follows that if one plots S, as a function
of (p—p)L'", for the right choice of v, all the data points would collapse
on the y=F(x) curve. To find the best collapse, we use the objective
function e(v) defined as:

ew) =3 (-3 (16)

n—2
where
= (i1 — %)y — (%1 — xi)Ym , (17)
Xitl — Xi-1

with x; = (p; — pC)L}/V and y,=S,(p,» L,). Here i labels the ith data point (including

system sizes L =64, 128, 256 and 512) sorted on the basis of their x value such that
X; <X,< -+ <X, and n denotes the total number of data points. y; is the expected
value of y; if it was on the line passing through the two adjacent data points. For
the perfect collapse and in the limit of infinitely close data points, e(v) would
vanish. To obtain the best collapse, we find the value " that minimizes the objective
function e(v) for a given set of numerical data. To estimate the error, we find the v
interval for which e(v) < 2e(v).

The numerical values of a, and a, (equations (7) and (8)) are obtained by
fitting the numerical data for L=>512 to the analytical expressions via the
method of least squares. As these equations are field theory results and are valid
only in length scales much larger than lattice spacing, we exclude data points
corresponding to first and last ten sites before fitting the data to equation (7). As
for equation (8), we exclude data points for £ <10 as well as data points close to
the saturation value of the half-chain entropy, S, ,(t) > 0.9S,,(c0). Let €, denote the
error that characterizes the fit quality. There is also a systematic source of error
related to finite size effects, which we denote ¢,. To estimate ¢,, we evaluate a (L)
and a,(L) for L=128, 256 and 512, find the y-axis intercept of the linear fit to a,(L)
(and a,(L)) as a function of 1/L and then estimate ¢, as the difference between the
y-axis intercept and the parameters evaluated at L =128. The reported error is
then max(ey, &).
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