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Clean isotropic quantum Hall fluids in the continuum possess a host of symmetry-protected quantized invari-
ants, such as the Hall conductivity, shift, and Hall viscosity. Here we develop a theory of symmetry-protected
quantized invariants for topological phases defined on a lattice, where quantized invariants with no continuum
analog can arise. We develop topological field theories using discrete crystalline gauge fields to fully characterize
quantized invariants of (2 + 1)D Abelian topological orders with symmetry group G = U(1) x Ggpaee, Where
Gipace consists of orientation-preserving space group symmetries on the lattice. We show how discrete rotational
and translational symmetry fractionalization can be characterized by a discrete spin vector, a discrete torsion
vector which has no analog in the continuum or in the absence of lattice rotation symmetry, and an area vector,
which also has no analog in the continuum. The discrete torsion vector implies a type of crystal momentum
fractionalization that is only nontrivial for two, three, and fourfold rotation symmetry. The quantized topological
response theory includes a discrete version of the shift, which binds fractional charge to disclinations and
corners, a fractionally quantized angular momentum of disclinations, rotationally symmetric fractional charge
polarization and its angular momentum counterpart, constraints on charge and angular momentum per unit cell,
and quantized momentum bound to dislocations and units of area. The fractionally quantized charge polarization,
which is nontrivial only on a lattice with two, three, and fourfold rotation symmetry, implies a fractional charge
bound to lattice dislocations and a fractional charge per unit length along the boundary. An important role is
played by a finite group grading on Burgers vectors, which depends on the point group symmetry of the lattice.
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I. INTRODUCTION

One of the most striking discoveries in physics is the
quantized Hall conductivity of integer and fractional quantum
Hall (FQH) systems [1,2]. The quantized Hall conductivity
[3], which requires U(1) charge conservation to define, is
however only one of many symmetry-protected topological
invariants of FQH systems. In the continuum, clean isotropic
quantum Hall systems possess additional symmetry-protected
invariants, such as a quantized Hall viscosity [4-9], the shift,
and fractional orbital spin of quasiparticles [10]. These invari-
ants define quantized responses to deformations of the spatial
geometry [8,10-13].

The problem of interacting particles in the continuum is
in many cases an approximation to interacting particles on a
lattice. This approximation is typically only valid in a dilute
limit where the lattice effects can be ignored. However topo-
logically ordered phases can also occur when lattice effects
are strong, such as in fractional Chern insulators or quantum
spin liquids [14,15]. The crystalline symmetry can in principle
allow for new topological invariants that are not possible
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in continuum systems, while also modifying the known in-
variants of continuum systems. It is therefore important to
understand the possible topological invariants that are pro-
tected by the crystalline symmetry of the lattice, together with
the on-site symmetry.

In this paper we develop such an understanding in the
case of (24 1)D Abelian topological phases with symme-
try group G = U(1) X Ggpaces Where Ggpace = Z* X Ly, for
M =1,2,3,4,6, is a discrete orientation-preserving space
group symmetry of a lattice. To do this, we develop a the-
ory of discrete “crystalline gauge fields” coupled to the
emergent dynamical U (1) gauge fields that describe the topo-
logical order. The crystalline gauge fields include gauge
fields associated with the discrete translation and rotation
symmetries, which keep track of certain geometric prop-
erties of the lattice, such as the presence of dislocations
and disclinations, and areas and lengths of closed cycles in
lattice units. As such, they form a discrete analog of the
coframe field and spin connection used in continuum ge-
ometry. While crystalline gauge fields have been discussed
before in the theory of elasticity [16], previous treatments in
elasticity theory have not fully taken into account the non-
Abelian nature of the space groups involved. We note that
recently crystalline gauge fields have also been used in the
study of quantum phases of matter, see, e.g., Refs. [17,18],
although effective actions involving both translation and ro-
tation gauge fields have not to our knowledge been discussed
previously.
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TABLE 1. Summary of the parameters defining topologically nontrivial terms in the effective action [Eq. (31)] for G = U(1) X Gypace,
and their classification. g, 5, 7, /7 characterize symmetry fractionalization, while k; parametrize additional SPT (Dijkgraaf-Witten) terms in
effective action. The topological order is characterized by a D x D K matrix, and the vectors [y, A; are arbitrary D x 1 integer vectors. A is
the Abelian group arising from fusion of the anyons. Ky, = Z, Z%, L3, Ly, 2y, for M = 1,2, 3, 4, 6 respectively. Relabeling the dynamical
gauge fields can give redundancies among different choices of the above parameters.

Characterizing symmetry fractionalization SPT terms: integer contributions to response theory
Parameter g 5 7 ok ke ks ks ks ke K
Allowed values | ZP ZP ZP x 7P Z° |z Z Z 7> 7> 7Z 7
Trivial values | KA KA +MA; () +[1-UGDI({) KA |0 MZ MZ [1-UGDIZ> [1-UG)IZ*> 0 MZ
Classification A A/MA Ku® A A |\Z Zy Zy Ku Ky 7 Iy

Recently a powerful algebraic theory using G-crossed
braided tensor categories has been developed to compre-
hensively characterize and classify (2 4 1)D topologically
ordered phases of matter with symmetry [19]. In the case
of Abelian topological orders with symmetries whose action
does not permute distinct quasiparticle types, an alternate
approach using topological effective actions, which we de-
velop here, is significantly simpler and yields insight into the
physical response.

Our results may be of particular relevance in a number of
physical systems. These include the experimentally realized
fractional Chern insulators in van der Waals heterostructures
[14,20] and synthetic quantum Hall systems in photonics
[21,22] or ultracold atoms [23,24]. These platforms may in
particular be able to directly measure the (fractionally) quan-
tized charges bound to lattice dislocations and disclinations.
Our results are also of relevance for the study of quantum Hall
systems with crystalline symmetries on orbifolds [12,25,26],
polygons, and two-dimensional surfaces of polyhedra.

Our results are summarized in Tables I and II. We find that
in general symmetry fractionalization for G = U (1) x Ggpace
is determined by four invariants, which are specified by a
charge vector ¢, a discrete spin vector §, a discrete torsion
vector (7, fy), and an area vector 7. The discrete spin vector
5 is a discrete version of the well-known spin vector used
in continuum FQH states [10], which specifies a fractional
orbital angular momentum for the anyons [25]. The discrete
torsion vector 7 has no analog in the continuum and can only
be nontrivial for M = 2, 3, 4-fold lattice rotational symmetry;
it specifies a fractional linear momentum for the anyons that
does not appear to have been discussed in previous studies
of topological phases of matter. Finally, the area vector 7,
which also has no analog in the continuum, specifies the anyon
per unit cell [27] and determines how the anyons effectively
fractionalize the translation algebra [27-32]. The discrete spin
and torsion vectors § and 7 furthermore can only be nontrivial
when there is some appropriate commensuration between M,
the order of the point group symmetry, and the group structure
of the fusion rules of the anyons.

The quantized response theory, obtained by integrating out
the dynamical U (1) gauge fields, provides the response of
the system to background gauge fields describing background
electromagnetic fields and geometrical defects of the lattice
[see Eq. (45)]. We find, for example,

(1) A discrete analog of the shift of FQH states. This
binds a quantized fractional charge (modulo the charge of the

anyons) to disclinations and angular momentum to magnetic
flux.

(2) Fractional quantized angular momentum for disclina-
tions.

(3) Fractional quantized charge polarization for M =
2, 3, 4-fold rotational symmetry. This implies a fractional
charge bound to lattice dislocations (modulo the charge of the
anyons), fractional charge per unit length along boundaries
(modulo the charge of the anyons), and associates a quantized
momentum to U (1) flux.

(4) An angular momentum analog of the fractional charge
polarization, which associates a fractional angular momen-
tum with dislocations (modulo the angular momentum of the
anyons).

(5) Fractional quantized charge v., angular momentum vy,
and linear momentum ¥, per unit cell. The charge filling v,
gives a generalized Lieb-Schulz-Mattis constraint that im-
poses constraints on the topological order 771, and g given the
charge per unit cell [27].

(6) Fractional quantized torsional response which as-
sociates momentum with dislocations. In particular, this
addresses a long-standing issue raised by Refs. [33,34], where
the coupling to continuum geometry gave an unquantized
torsional Hall response; our work predicts that properly taking
into account the discrete crystalline space group symmetry
gives rise to a fractional quantized torsional response, but only
forM =2, 3, 4.

Our effective field theory allows us to explicitly classify
all distinct symmetry-enriched topological phases for a given
Abelian topological order (for the case where symmetries do
not permute the anyons). We find, for example, that there are
2304 distinct symmetry-enriched topological states with the
intrinsic topological order of the 1/2 Laughlin state on the
square lattice, once the integer part of the filling and Hall
conductivity are fixed.

The outline of this paper is as follows. In Sec. II we define
the background crystalline gauge field for G = U (1) X Ggpace
on a manifold M with a triangulation, and in Sec. III we
study their gauge transformations and the symmetry fluxes
associated with them. The effective action for SET phases
with G symmetry is discussed in Sec. IV by coupling the
crystalline gauge field and background U (1) gauge field to the
dynamical gauge fields that specify the intrinsic topological
order. In this section we also study the effective response
theory obtained by integrating out the internal gauge fields.
Specific examples involving the 1/2 Laughlin topological
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TABLE II. Summary of the quantized topological terms that arise in the effective action for a topological order coupled to a background
crystalline gauge field B = (4, R, C) for the symmetry G = U (1) x Gpace- A, R, and C refer to the U (1), translation (Z2), and point group
rotation (Z,,) components of the gauge field, while Ayy denotes the area element and can be written in terms of (R, 0). a’}(‘ is defined in
Eq. (15). Symmetry quantum numbers are associated with the coupling terms between B and the Abelian topological order, specified by a K
matrix of internal gauge fields. U (%’) is the elementary point group rotation matrix. The response coefficients are obtained by integrating out
the internal gauge fields. The classification of the parameters in the effective action is summarized in Table I.

Fractional symmetry quantum numbers

Generalized charge vector Associated quantum number

La"UdA Q; = "K', fractional charge of [

sLa' UdA L; = I"K™'3, fractional angular momentum of [

;—’na’ U dk P=[l- Uzt dTKE,, TTK‘]f),)T, fractional linear momentum of
%a’ UAyy = TK~Lin, fractionalization of translation algebra: T ;T ; = Y;,ﬂ;je"’i

Quantized fractional response terms

Response theory term Associated response property

”THA UdA oy = Hall conductivity

%A udcC Defines discrete analog of shift. Charge of 27t /M disclination is § /M, angular
momentum of ¢ flux given by S¢ /27

f—;C udcC Angular momentum of elementary disclination equals £;/M (up to framing
anomaly)

% -AUdR Fractional quantized charge polarization: (i) Charge of dislocation with Burgers
vector b equals P. - b (i) charge per unit length on a boundary along e equals
@C. - &; (iii) a U (1) flux of ¢ has linear momentum equal to ,97’64) /2

% .CUdR Fractional quantized angular momentum polarization: Angular momentum of
dislocation with Burgers vector b equals P b

%R,— UdR; Fractiogal qquantized toasional response: Momentum of dislocation with Burgers
vector bis Py ;= b

%A UAyxy v. = charge per unit cell (filling)

2CUAyy v, = angular momentum per unit cell

;—’ﬂ’ -RU Axy v, = ﬁ,ﬁ linear momentum per unit cell

order and the Z, gauge theory are discussed in Sec. V. In
Sec. VI we obtain the SET classification from the effective
action and discuss with examples how this classification is re-
duced when we account for relabelings of the gauge fields. In
Sec. VII we compare our formulation of crystalline gauge the-
ory on a discrete triangulation to the more standard continuum
field theory approach and compare the crystalline gauge fields
to the coframe fields and spin connection used in continuum
geometry. We conclude with a discussion in Sec. VIII.

II. CRYSTALLINE GAUGE FIELDS

At a formal mathematical level, our theory of crystalline
gauge fields is equivalent to treating the discrete space group
symmetry Ggpce as an internal symmetry of the topological
effective field theory. The main difference with usual internal
symmetries, which arise from on-site symmetries of a mi-
croscopic lattice model, is the physical interpretation of the
crystalline gauge fields, which in turn requires certain gauge-
invariant quantities to be determined by geometric properties
of the underlying lattice, as we describe below.

Ultimately, the topological field theory that we develop in
terms of the quantum Chern-Simons theory possesses an im-
plicit dependence on a space-time metric, which is the framing
anomaly associated with the chiral central charge [13,35].

To be physically meaningful, this space-time metric must be
determined by the crystalline gauge fields (see Sec. IVB 7).
Further discussion regarding the relation between the space
group symmetry in lattice systems and internal symmetries of
the topological effective field theory is presented in Sec. VIIIL.

We consider a (2 + 1)D space-time manifold M = £? x
R, where X2 is the space on which the clean lattice system
is defined. We fix an arbitrary triangulation of M and we
define on the links a gauge field valued in the symmetry
group G = U(1) x Ggpace- Gpace = 7% x Z contains trans-
lation symmetry and a discrete M-fold rotation symmetry
for M =1, 2, 3, 4, 6. Physical results will be independent of
triangulation. We define a U(1) gauge field A;; on the link
ij of the triangulation, with the link directed towards j (with
Ajj =—Aj; and A;; ~ A;; + 2m). Next, we define the crys-
talline gauge field

By = (Rij. Cyj). )
Here
Rl = (Xij. Yij) = [(Ri))x. (Rij)] € 227 )
is an integer gauge field corresponding to Z? translations. The
field C corresponds to point group rotations, where we take
2

Cije—1, 3
i€ (3)
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with Cj; ~ Cij +2m. Group multiplication is given by
(I_él, Cl)(ﬁz, G) = [1?1 + U (Cy )Rz,Cl + C,], where we use
addition in place of multiplication when the group is Abelian.
U(Cy) is the 2 x 2 rotation matrix corresponding to C;. For-
mally %B is a lift of an element of Gypyce t0 Z? x AL/IZ, while
A is alift from U(1) to R.

The gauge freedom in R corresponds to the freedom to
relabel lattice coordinates. It arises from the well-known am-
biguity in elasticity theory that the displacement vector is
only meaningful up to an integer lattice vector [16], which
we discuss further in Appendix B. The gauge freedom in C
corresponds to the freedom in locally orienting the x and y
axes at every point in space and time. For example, if for
M =4 we have C;; = 7 /2 on some link ij, this means the
local coordinate axes at i and j will be rotated relative to each
other by an angle 7 /2.

Under a gauge transformation which places the gauge vari-
able (7;, h;) at the vertex i, we have

Bi; — (¥, hy)"'Bi;(F;, hy)
= (U(-h)IRy; + U(Cy)F; = 7l —hi + Cyy + by} (&)

The underlying lattice of the physical system specifies the
gauge invariant quantities of the crystalline gauge field. Flux
of C corresponds to disclinations: fy C gives the total angle
of disclinations within the cycle y. If C vanishes everywhere,
then 99}/ R gives the total Burgers vector of dislocations con-
tained in y. If space is a torus and C vanishes everywhere,
then § X, fy Y give the lengths of the torus in the x and y

directions, while va gives the shear in the x direction upon

traversing the y cycle, and similarly for gﬁx Y.

When C is nonzero, one needs to take into account the local
change of coordinate frame along y. Consider the product
BoBia, ..., By_1n, Where B;j € Ggpace. The translation com-
ponent of this product is given by

n—1

/fz(o) = ZU(CO' +Cn+ -+ G i)Rekr1- - (5
k=0

Motivated by this, we define a Burgers vector fy RO, where

ﬁ,ﬁ?,iﬂ =U(Cot +Cia+ -+ C1 )Rk k11 (6)

for some arbitrary choice of origin 0 and path from 0 to k.
The extra C factors play a role analogous to the covariant
derivative allowing parallel transport of R on the lattice. Under
a gauge transformation,

?{ RO — U(—hy) f RO, ©)
14

14

corresponding to the fact that the Burgers vector rotates under
rotation of the local coordinate system at the origin 0.

The value of this Burgers vector is invariant under the
r-dependent part of the gauge transformation (i.e., the trans-
lation gauge transformations), but is only well defined up
to an overall rotation. In general, the value of this integral
around a closed loop y defines the total Burgers vector for any

dislocations located inside y. In the special case of a closed
loop in a flat configuration, §. RO =0.

To compare Burgers vectors in different regions, it is im-
portant that a common origin 0 is chosen.

(R, C) thus play a role similar to the coframe field and spin
connection used in continuum geometry (see Sec. VIIB for
further discussion); it is useful to distinguish them because
(R, C) have discrete gauge transformations, which plays a
crucial role in the classification of topological terms. Note
that we do not consider the continuous elastic response of the
crystal due to stresses and strains, which does not receive any
topological, quantized contributions [36,37].

III. SYMMETRY FLUXES

In order to construct the effective topological field theory,
we need to understand how to construct symmetry fluxes that
can be used in the effective action. While symmetry fluxes for
A and C are relatively straightforward, the symmetry fluxes for
the translation gauge field are more complicated, particularly
in the presence of the rotation gauge field C. Mathematically,
when the gauge fields are flat the symmetry fluxes define
representative 2-cocycles associated with the second group
cohomology H*(G, 7).

The U (1) gauge flux

dA[012] = Ag; + A2 — Az (®

defined on a 2-simplex [012] of the triangulation is gauge
invariant, with dA ~ dA + 27. Note that mathematically d
corresponds to the coboundary operation on the triangulation.

C behaves mathematically like a discrete version of A; the
flux |, p dC for any region D is gauge invariant and gives the
total angle of disclinations within D. Below we will discuss
the fluxes associated with translation symmetry, which are less
familiar.

A. The flux dK and its relation to dislocation density

Naively one may think that dR© should be the gauge-
invariant physical quantity corresponding to the dislocation
density. However, dR© depends on a choice of origin to-
gether with a choice of local coordinate frame at that origin.
Therefore d R is both nonlocal in general and also not gauge
invariant. Moreover, in the presence of a disclination, the
value of 7?5?) depends on the precise path chosen between the
origin and i, and is therefore ambiguous up to a rotation by the
disclination angle.

The solution is to instead use the R fields themselves,
which are local. But there is considerable ambiguity in R
under gauge transformations. In particular, we now show that
gauge transformations preserve the value of dR only up to
terms of the form [1 — U(%)]df‘ where %I: e 7.

We argue as follows. From the definition of R© we have
Eij = ﬁ??) +[1- U(Coai)]ﬁij- 9)

Here we have defined Cy_,; = fy C for some given path y
from the origin O to the point i. The last term is of the
form [1 — U(%)]Ei.j, for some integer k. Let Cy_,; = %
Using the fact that | —U* = (1 —=U)(1 + U +--- + UK,
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we conclude that

Ry = RY +[1 —UQr /M1 +UQr /M) +...

+U % =Y 2r /M)IR;; (10)

=R+ [1 - UQr /M), a1

The last line defines the vector field ' in terms of R, with
LT ez?
2 .

A general gauge transformation sends R; =

U (—hl‘)[ﬁl‘j + U(C;j)Fj — 7;]. But the above relation will
still hold with T' replaced by some I where %1:’ € 72
Now under gauge transformations, assume that the coordinate
axes at the origin are rotated by the angle 2zm/M. Then dR
transforms as

dR = dR© +[1 — UQx/M)|dT (12)
— UQrm/M)AR® +[1 —UQr /MY (13)
=dRO +[1 —UQr/M)|dA + dT"), (14)

where A =[1+UQr/M)+---+U""'Qr/M)IR®, and
also satisfies ;- A € Z2.

Therefore gauge transformations preserve the value of dR
only up to terms of the form [1 — U(zﬁ”)]df‘.

To summarize, the correct definition of a Burgers vector,
given in terms of R(?, is nonlocal due to the choice of origin
0, and so we are forced to use the field R instead in the
effective action. dR is not gauge invariant: it is determined
only up to terms of the form [1 — U (zﬁ”)]d I'. However, dR

and dR© are gauge equivalent up to such terms. Therefore
the fractional part of [1 — U (Zﬁ”)]’ldﬁ is (i) local, (ii) gauge
invariant, and (iii) equal to the physically meaningful quantity
E[1-U (%)]_ldﬁ(o) mod 1. This motivates us to define the

local quantity
- 27\
dR=|1-U|— dR, 15
A=) @

which captures the local, gauge-invariant part of a Burgers
vector.

The possible holonomies thus fall into different classes
based on the distinct values taken by

1 -
—% K mod 1. (16)
2 aD

Eq. (16) defines a finite group grading on Burgers vectors,
where we denote the finite group as Kj;, and which is formally
defined as

Ky = Z*/[1 —UQrx /M)Z°. (17)

To understand this physically, note that to each region D we
can assign a local Burgers vector with the choice of origin 0 €
D. Without picking a common origin, the Burgers vector for a
region containing two subregions D and D’ is thus ambiguous
up to separate local rotations of the coordinate axes for the
origins 0 € D and 0’ € D'. This is explained below in more
detail. The part of the Burgers vector that is gauge invariant
and can be defined locally defines a finite group grading on

TABLE III. Gauge invariant, locally well-defined part of the
Burgers vectors for different rotation point groups, with 5= § R® =
(a, b)T € Z*. We use a lattice basis where U (2 /M) takes & — $ for
M +# 2 (see Appendix A).

M [1- U(zﬁ”)]_l(a, b’ Gauge invariants mod 1 Ky

2 1@, b’ 1{(0,0),(1,0), (0, 1), (1, 1)} Z3
3 %(2a+b,b—a)7 {(0,0), (1/3,1/3),(2/3,2/3)} 7
4 %(a—l—b,b—a)T {(0,0), (1/2,1/2)} Zn
6 (a —b, a)T 0,0) YA

Burgers vectors, where we denote K), as the finite group. The
results for various M are given in Table III.

Note that a nontrivial Burgers vector is associated with
dislocation defects as well as disclination defects, which ad-
ditionally have a nonzero holonomy of C. A disclination
dipole is a composite of two defects in which the individual
C holonomies are equal and opposite; however, the net R
holonomy may still be nonzero. This is the gauge-theoretic
formulation of the well-known fact that a disclination dipole
is physically equivalent to a dislocation.

There are a number of ways to understand Kj; more
intuitively and physically. Let us consider the most direct
way following the mathematical derivation above. A second
derivation based on rotationally symmetric configurations of
boundary charge is discussed in Sec. IV B.

Let us first consider the case M = 2, and start by consider-
ing a small region with a locally defined Burgers vector (a, b)
(see Fig. 1). Under a local rotation of the space, this Burgers
vector transforms to (a, b) — (—a, —b). Thus the Burgers
vector (1,0) ~ (—1,0) and (0, 1) ~ (0, —1). Now consider
two regions, each with a locally defined Burgers vector (a, b)
and (d/, b'). The combined Burgers vector thus would be (a +
a',b+b'). Upon a m rotation of the second region however,
@,b)— (—d,=-b),so(a+d,b+b)—> (a—d,b-").
Therefore, when considering the Burgers vector of a large
region containing Burgers vectors in smaller regions, (2, 0) ~
(0, 0) and similarly (0, 2) ~ (0, 0). We see that the Burgers
vectors form the group Z, x Z,, due to the fact that the
Burgers vector of a region, when including these local rota-
tions, is only partially well defined. An equivalent analysis for
M = 3,4, 6 gives the groups Zs, Z,, and the trivial group (see
Fig. 1).

In general, dislocations whose Burgers vectors are of the
form [1 — U Q2n /M )]l; are equivalent to zero. If we have two
neighboring dislocations with b and —b, the total Burgers
vector associated with a loop containing the dislocations is
zero. However, a local rotation of —b by the angle 27 /M will
give a net holonomy equal to b—UQr /M )b around the same
loop. These values of Burgers vectors are therefore considered
to be in the trivial equivalence class. This is what we mean by
the statement that rotation gauge symmetry induces a finite
group grading on Burgers vectors. They are thus classified
by elements of Z> modulo [1 — U (27 /M)]Z?, which can be
taken as the mathematical definition of Kj;.

Mathematically, if we consider a generic group element
in Ggpace, We can define the K), grading of the translation
component of the group element. One can show that this
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FIG. 1. Visual representation of how the groups K), classify dislocation Burgers vectors. (a) For M = 2, the vectors (a, b) and (—a, —b) are

in the same equivalence class. Moreover, the sum of two neighboring Burgers vectors can be viewed as either (a, b) + (', b') or (a, b) — (d', b');
this gives the relations (0, 0) ~ (2, 0) ~ (0, 2), which reduce the classification to a group Z, x Z,. (b) For M = 3 we see that (3,0) ~
[1+UQ@nr/3)+U@r/3)](1,0)" = (0, 0); in general (2a + b, b — a) ~ (0, 0), so the classification is given by K3 = Z5. (c) For M = 6 we
can combine the M = 2 and M = 3 results to show that (0, 0) ~ (2, 0) ~ (3, 0); thus (0, 0) ~ (1, 0), and similarly (0, 0) ~ (0, 1). Therefore

every Burgers vector can be trivialized. Similar reasoning applied to the M = 4 case gives Ky = Z,.

Ky grading is invariant under conjugation; therefore this Kj,
grading can be viewed as an invariant of conjugacy classes of
Gipace- The same idea can be expressed intuitively as follows.
Suppose we have two well-separated symmetry defects p and
g which are defined by the holonomies of B as follows: fp B=

B, = (R,,C,) and $,B=B,= (R,, C,). Now the holonomy
of B around a loop encircling both p and g can be measured
equally by the group element B,B, = [R, + U(C,)R,, C, +
C,1 or by the group element B, B, = [I_éq +U (Cq)ﬁp, C,+
C,1. These values of the holonomy should therefore be treated
as physically equivalent. They are in fact gauge equivalent: the
difference in the translation component of the two holonomies
equals

R, +U(C,)R, — [R,+ U(C,)R,]

=[1-U(C)IR, — [1 —U(C,)IR,. (18)

In the most general case, the right-hand side is a multiple
of the matrix [1 — U (%)] by an integer vector. Therefore,
a dislocation Burgers vector which takes such values should
be regarded as trivial. Indeed, we can always find a gauge

transformation which sets these values of Burgers vectors to
Zero.

In the same way, we can consider three well-separated
defects p, g, r, whose holonomies are given by the group
elements B, B;, and B, = Bq_l. Now the holonomy of the
gauge field can be written either as B,B,B,' = B, or as
BqB,,B;l. Therefore two defects in the same conjugacy class
must be regarded as physically equivalent; the corresponding
translation components will be gauge equivalent and thus have
the same K),; grading.

The groups K, arise naturally while classifying the
allowed fractional U (1) charges associated with the R holon-
omy of a disclination. This was shown for topological
crystalline insulators in free fermion systems in Ref. [38]; we

will carry out a similar analysis for bosonic SET phases in
Sec. IV B.

B. Area flux

In terms of the translation gauge fields we can also con-
struct a flux Axy, which is quadratic in R and corresponds to
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an area element. We will see that Ayy is not by itself gauge
invariant, which is analogous to the fact that area elements
are not invariant under general diffeomorphisms in contin-
uum geometry. Nevertheless, we will see that under a gauge
transformation, when B = (R, C) is flat, Ayy changes by an
integer-valued coboundary, so that it gives a well-defined area
on closed manifolds. Physically this area corresponds to the
number of unit cells of the clean (defect free) lattice. With
some minor modifications, we will see that Ayy can also
provide a well-defined area for spaces with boundary.
We define
AXY[le] ! Rl] X [U(Clj)Rjk] (19)
where X is the cross product of vectors. When C = 0 every-
where, this gives the usual area element as expected, and it is
easy to verify that on a torus 72 whose side lengths are L, and

Ly 5
1

Axy =L.L,. (20)
2

The factor U(C;;) keeps track of the relative orientation of
the coordinate axes at i and j when C # 0. In the absence of
dislocations, Ayy is gauge invariant up to a boundary term, so
that Ayy integrated over a closed surface is gauge invariant.
To obtain a well-defined area on spaces with boundary, we
require the translation gauge transformations to reduce from
7Z* to the subgroup of translations preserved by the boundary.
Here we study the behavior of the area flux Ayy under a gauge
transformation and discuss its properties in the presence of
dislocations and boundaries.
The area flux on a 2-simplex [ijk] can be written as

1
AXY[le] Rl] X U(Clj)Rjk (21)

1 N N
= 17U Co-)Rij x UCo DU CipR e (22)

7T
1 o o 23)
4 ik

where x refers to the cross product: ¥ X ii = v,u, — vyu,. The

second line uses the fact that the cross product is invariant
under an equal rotation of both arguments; the symbol Cy_,;
refers to the sum of C’s on any given path from the origin 0
to the point i. The last line uses the definition of R®. Note
that the cross product of two R fields is thus local even
though a single such field is not. Since Ayxy is independent
of the choice of origin 0, we drop this superscript and simply
write

Axy = ERU X Rjk, (24)
with the understanding that 7%,7 is defined with respect to an
arbitrary choice of origin 0.

Under a gauge transformation, this equality implies that

4 Axylijk] = Rij x R (25)

— (Rij + dFi;) x (R +dFp). (26)

Here we have defined 7; = U (Cy_,;)7: (for the same arbitrary
choice of origin 0 used to define R). The difference 6Axy can
be written as

4 5Axylijk] = (7_?',”) X d?jk + d?i_j X (ﬁjk + dl:’,k) 227)

Defining
fii = Rij X Fj + 7 x (Ryj + diiyy), (28)
we see that Axy is a coboundary whenever d R =0:

A SAxy[ijk] = dflijk]. (29)

Therefore when Ayy is integrated over the entire manifold,
this property implies that a gauge transformation will only
contribute boundary terms to the integral (assuming R is flat).
Therefore % f):2 Axy over a closed 2-manifold 2 is gauge

invariant (when R is flat), which we physically interpret as the
area of the space ¥2. Note that since the cross product gives
the area of a parallelogram, the integration over the whole
space covers the manifold twice, such that Axy is quantized to
be an integer multiple of 27 when integrated over a 2-cycle.

Although we have defined a gauge-invariant area only for
closed manifolds, we can also define a gauge-invariant area
for manifolds with boundary by restricting the gauge trans-
formations on the boundary. Specifically, we require that the
quantity f defined above must vanish for every boundary
1-simplex. For this to occur, it is sufficient that the boundary
fields R; ; and the boundary gauge transformation variables ?j
be parallel to each other. This requirement can also be viewed
as a consequence of the fact that a boundary can be chosen to
break one of the two Z translation symmetries, so that the R
field essentially reduces to a Z gauge field on the boundary.

For example, suppose the space is a square formed by
the region 0 < x,y < a with origin (0,0). For simplicity let
C = 0 everywhere on the boundary except on links associated
with the corners, which have C = /2. Let the fields R; j on
the y = 0 line have zero Y component. Now as we meet the
corner (a, 0), we meet a 1-simplex withC =« /2 The above
condition on R now means that on the x = a line, R has zero X
component. In fact, one component of R is always constrained
to vanish on the boundary.

The discussion above has so far required that R be flat.
In particular, when R is flat, 7%,7 X ﬁjk = ﬁjk X ﬁki, so the
definition of Axy does not depend on the ordering of the
vertices. But if we assume that the simplex [ijk] contains
a dislocation, this equality no longer holds. we instead have
ﬁ,,(?) + ﬁﬁ) + 7%;{(3) =50 (where we have reinstituted the ex-
plicit dependence on the origin 0), so

RO X RY - RO x RO = 5O x RO £0.  (30)
This means that the area of a simplex with nonvanishing
holonomy of R is not well defined. This is physically ex-
pected: on a lattice with a dislocation, the number of unit
cells within a region containing a dislocation cannot be ob-
tained purely from the dimensions of the boundary. In fact,
the number of unit cells in a small region containing a dislo-
cation is not well defined. Moreover, as the dislocation moves,
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additional unit cells are added or removed. Therefore ex-
tensive observables such as the total charge or angular
momentum will no longer be gauge invariant. However, in-
tensive quantities such as the filling or angular momentum
per unit cell will still be well defined, because they are a
ratio of two extensive quantities computed with the same
triangulation.

A well-defined area can be defined for a given fixed con-
figuration of dislocations by cutting out the regions containing
the dislocations. Then the system is viewed as a manifold
with boundary, and a gauge-invariant area can be defined as
discussed above by restricting the gauge transformations on
the boundary. Effectively this approach treats the dislocation
as a hole in the simplicial formulation. In principle we can
consider alternatively treating it as a puncture (for example, a
sphere S? with a puncture would correspond to the plane R?),

J

1
L= _Eal U K]jdaj + ﬁfrac + ESPT’

1 -
Lirae = Zal U (grdA + 5;dC + 17 - dR + mjAxy),

2 2 2

but then we cannot describe the open set near the puncture in
terms of a finite triangulation.

IV. EFFECTIVE ACTION AND RESPONSE THEORY

With this understanding of the local gauge-invariant fluxes
of the crystalline gauge fields, we are now ready to study the
effective action.

A. Effective action

To derive the effective action, we rely heavily on group
cohomology, which classifies the distinct, inequivalent topo-
logical terms that can appear. The derivation of these terms
from group cohomology is detailed in Appendix D.

The topological effective Lagrangian is

2 2

k k k 1 B . - k k
Lpr = —]AUdA+—2AUdC+—3CUdC+2—AU(1<4~dR)+2—CU(k5~d}()+(—6A+—7C)UAXy. (31)
T T T

We have used the cup product from cohomology: (AU
dA)ijkl] = A;jdA[jkI] for a 3-simplex [i jk/].

The nondegenerate D x D symmetric integer matrix K
[39], which couples the dynamical U (1) gauge field a’, char-
acterizes the intrinsic topological order [40]. Topologically
distinct quasiparticles correspond to integer vectors I ~T+
KA, where I, A € ZP. The quasiparticles form an Abelian
group A = Z,, X -+ x Z,, under fusion, where the n; are the
diagonal entries in the Smith normal form of K.

This simplicial formulation of the Abelian CS theory was
recently used in Ref. [41] to develop a local bosonic model for
chiral topological phases.

Lirac, Which contains the coupling between the background
gauge fields and the @/, specifies symmetry fractionalization,
i.e., how the anyons carry fractional symmetry quantum num-
bers. Mathematically this is classified by the second group
cohomology H?(G, A) [19,31,42]. The distinct terms in Lo
are consistent with, and in fact can be derived from, the group
cohomology classification (see Appendix D)

HAG, A) = Ax (A/IMA) x (Ky @ A) x A, (32)

for G = U(1) x [Z? x Zy]. Here ® denotes the tensor prod-
uct of groups, defined in Appendix D; for example, Z, ®
Lp = Lge(p.q)-

The terms in Lgpr correspond to Dijkgraaf-Witten (DW)
terms, classified by H3[G, U(1)] = H*(G, Z) [43]. In our
case we have

HHU) x [Z* % Zyl, Uy =Z* x Z3, x Kiy.  (33)

The terms in Lspr correspond explicitly to representative co-
cycles in H*[G, U(1)], as discussed in detail in Appendix D.

(

Physically the DW terms can be understood in terms of stack-
ing symmetry-protected topological (SPT) states [19,44].

While we have defined our topological field theory using
the framework of discrete gauge theory, we can equivalently
use integral, real-valued differential forms, as discussed in
Sec. VITA.

The terms we have written above are complete for bosonic
systems. For fermionic systems, a partial understanding can
be achieved by changing the quantization of the integers k;,
to allow them to be half-integer; a complete understanding of
this should be determined by group supercohomology [45,46].
In the fermionic case there may also be symmetry-enriched
topological phases beyond group supercohomology, which
cannot be fully described by the above effective action. We
leave a comprehensive understanding of the fermionic case
for future work.

Note that the above action is only uniquely defined when

the gauge fields are flat: dd',dA, dC, dR,- € 2 7. When the
gauge fields are not flat, the action is not invariant under the
shift of a, A, or C by 2 on a single 1-simplex. More generally,
for nonflat gauge fields, one can add additional terms to the
action which depend on the field strength and which are not

uniquely specified [47]. Nontrivial fluxes of a, A, C, and K
can be included by treating them as punctures or holes in the
spatial manifold around which the gauge fields have nontrivial
holonomy, such that the gauge fields remain flat. The above
also implies the action is invariant under changes of lift a;; —
ajj +2m aslong as g, s, t, m are integer vectors.

In what follows, to read off physical properties, we use the
fact that objects charged under A, C, R correspond to U(1)
charge, angular momentum, and linear momentum. The gen-
eralized charges can be defined physically through the Berry
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phase obtained by adiabatically braiding charges around the
associated fluxes.

1. Charge vector ¢

The charge vector § € ZP assigns fractional electric charge
0; =K'l (34)

to the anyon I. Alternatively, this term induces an anyon g
under insertion of 27 flux. As such, § is also sometimes
referred to as a vison or fluxon.

Two charge vectors ¢, g’ describe the same anyon if 47’ =
G+ KA for some A € ZP. Therefore the group of inequiv-
alent choices for G is A. Note that for a fixed state, this
equivalence is realized in the effective action by relabeling
@ — @ — AA. Shifting § thus also changes the values of
ki, ky, k4 and kg, which couple A. The full equivalence relation
is

(G k1, ko, kais ko) ~ (G + KA k) — G- A — ATKA/2,

ky—5-A,kyi—1;- A, ke — i+ ).
(35)

2. Discrete spin vector 5

The discrete spin vector 5 € ZP is the analog for discrete
rotational symmetry of the spin vector defined previously for
continuum FQH systems [10]. However, as we discuss below,
this term is only nontrivial when there is a compatibility
between the intrinsic topological order and the order M of the
point group symmetry.

This term induces an anyon s under the insertion (fusion) of
M elementary disclinations. In particular, this term contributes
a phase €27 X'l {0 the adiabatic transport of an anyon [
around M elementary disclinations. Alternatively, this term
associates a fractional orbital angular momentum

Ly=5"K"'T (36)

to the quasiparticle I, which contributes a braiding phase
LM (o an anyon [ encircling a 27 /M disclination.

Consider a continuum FQH state where we adiabatically
transport an anyon [ around a region X of a manifold with cur-
vature. The resulting Aharonov-Bohm phase yap = yap1 +
yap, receives two contributions [25]. The first contribution
yap,1 is associated with the fractional U (1) charge of [ and
equals

yap.1 = Qa®(X), (37

where ®(X) is the total magnetic flux through ¥. The second
contribution is due to coupling to the spatial curvature:

ITk='T R
YaB2 = ( >+ ZTK_IS)NR(E). (38)

Here Ng(X) is the integrated curvature flux through X. The
quantity in parentheses defines the total spin of /,
I"K='T

Si=Li+ —5— (39)

The first contribution is the orbital angular momentum, which
comes from the symmetry fractionalization, and can be un-
derstood as the braiding of I with the anyon s associated with
a 2w curvature flux. The second contribution arises because
of self-interaction effects that result in the anyon ! braiding
around itself as it is transported around a closed loop. For
an explicit calculation of the full A-B phase in a continuum
geometry the reader is referred to Refs. [25,48].

In the discrete case that we are considering in this paper,
the same equations are expected to hold, with the modification
that the curvature N(X) arises only due to point sources of
27 /M curvature flux arising from disclinations and corners.

Note that taking § = M A for A € ZP is trivial, since it can
be completely accounted for by binding an anyon A to an
elementary disclination, which can in turn always be done by
adjusting the local energetics at disclinations. The nontrivial
case cannot be captured simply by associating an anyon to an
elementary disclination. Therefore we have two equivalence
relations:

G, (k) ~ G+KA, (k) (40)
(by relabeling a — a — AC), and
G, k) ~ G+ MA' k3). 41

The choices of s inequivalent under both relations consti-
tute the group A/MA. For A=7Z,, X -+ X Zy,, AIMA =
Lny iy X -+ X Lny,my, Where (n, M) = ged(n, M). We see,
therefore, that the order of the group A must be compatible
with M to obtain a nontrivial fractionalization class.

The equivalence on 5 implies that the theory predicts the
angular momentum of an anyon [ modulo M(ATK~'7).

3. Discrete torsion vector (¢,,1,)

The integer vector (7, fy), with 7; € Z”, which we refer to
as the discrete torsion vector, does not have an analog in the
continuum because torsion (i.e., the gauge-invariant part of the
dislocation density) is not quantized in continuum geometry.
Furthermore, this term is nontrivial only in the presence of ro-
tational symmetry, with M = 2, 3, 4, because, as summarized
in Table III, the gauge-invariant part of the dislocation density
(defined by the group grading K),) is nontrivial only when
M =234

7 associates an anyon (7, ) - (a, b) to a region with Burg-
ers vector [1 —U(Q2n/M)] - (a, b). Note that an anyon is
attached only for Burgers vectors in the trivial class in Kj,.
Values of ¥ which can be accounted for by attaching an anyon
to an elementary dislocation are topologically trivial, as they
can be accounted for by adjusting the local energetics of a
dislocation. It follows that the topologically distinct values
of (f,1,) are classified by the group Ky ® A, which for
M =2,3,4 equals A/2A x A/2A, A/3A, and A/2A, re-
spectively (see Appendix D for a definition of the symbol ®).

The term defining the torsion vector can be written in
full as %a’ U {t;;[1 — UQm /M)])"'dR;}. From this we ob-
tain that the discrete torsion vector furthermore associates a
fractional (linear) momentum

P=[1-UQr/M)" 1" b,
B =K% (42)
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to the anyon I, which is well-defined (i.e., topologically ro-
bust) modulo the equivalence on

o~ +[1—UQr/MIZ,
i~ +KZP,

fori=1,...,D,

fori =x,y. 43)

The momentum f’[ of an anyon can be defined by the Berry
phase ¢*"i"> obtained upon adiabatically braiding the anyon
[ around a dislocation with Burgers vector b.

Under a 2w /M rotation, the momentum transforms as

ﬁTT — PZ_TU (2w /M); in other words, under a 27w /M rota-
tion, the change in momentum is [UT (27 /M) — I]P} = —pr.
However this is precisely the first ambiguity in 7;: shifting
fi — 1 + [1 — U(2n /M)](—1;) changes the momentum 13l~ by
— pr. Therefore, the topologically robust part of the fractional
momentum 131- is consistent with rotational invariance.

We emphasize that this “crystal momentum fractionaliza-
tion,” which is only nontrivial for M = 2, 3, 4, is fundamen-
tally distinct from the more familiar notion usually discussed
in the context of quantum spin liquids (see, e.g., [31,32]).
The latter case is associated with noncommutativity of the
translation operator restricted to a given anyon and arises from
the existence of an anyon per unit cell (discussed below),
which can be nontrivial even in the case M = 1.

|
S ¢ P,
Lor= TAUdA+ =AUdC+ —2CUdC +
2 2 4 2

T

-

where

sgn(K)

cudc.
4871

Eanom = (46)
Note that as usual, the effective response theory is not well
defined on compact manifolds due to the fractional values of
the coefficients; nevertheless, the response theory can be used
to read off the fractionally quantized responses of the system
on an open patch of space.

The first term is the well-known Hall conductivity, which
is given by

on = ki +q3 K~'§)/27. 47)

The second and third terms are discrete analogs of the
known continuum geometric response of FQH states [4,5,8—
13].

The remaining terms in L. are intrinsic to the lattice and
have no analog in continuum FQH states. In what follows, we
discuss them individually in detail.

We note that the term formally written as Ayy Ud~'Axy,
with « = mf K, corresponds to Axy Uc, where dc =
Axy. This term arises from the fact that an anyon is associated
with each unit cell. However it is not clear how or whether
this term can be physically measured as a quantized geometric
response. We thus do not discuss this term further below.

- (AUdR) +

v = IT;; o _
+ ﬁ "RUAyxy + 4—ijR,- UdR; + —Axy Ud "Axy + Lanom,

4. Area vector it

Finally, m € ZP ., which we refer to as the area vector, also
has no analog in the continuum. This associates an anyon /7
per unit cell, as has been discussed algebraically in previous
work [27,49] and gives rise to certain notions of crystal mo-
mentum fractionalization discussed previously [28-32]. This
means that if a quasiparticle [ is taken around a region S
containing Num(S) unit cells, the wave function acquires a
braiding phase ¢>7' K~'Num(S)  Algebraically, this means that
the translation operators satisfy a magnetic translation algebra
when its action is restricted to the anyon I:

_ 2mil" K 'm
Lili=e T (“44)
where T ; and 7;[ are the translation operators in the x and y

direction, restricted to the anyon I. See Ref. [19] for a precise
formulation of symmetry operations restricted to anyons.

B. Response theory

Given the topological effective action, we can integrate out
the dynamical a gauge fields to obtain an effective response
theory:

-

s

21

L1
H(CUdR) + 5—(veA +1,C) UAxy
T

(45)

(
1. Discrete shift 8 and fractional charge of disclinations

The second term gives a discrete analog of the shift 8
[10,50-52], where

S=hk +g K's. (48)

In particular, this term implies that lattice corners and disclina-

tions carry fractional U (1) charge. Both an elementary 27 /M

disclination and a corner of angle 27w /M carry a fractional
U (1) charge of

k2 + qTKilg

Quisclin 27/ = S/M = m

(49)
For example, if M = 4 and the system is defined at the surface
of a 3D cube, there are effectively eight disclinations, each
one carrying a fractional charge 8/4. If the system is defined
on a square, each corner also has a fractional charge §/4.
This term therefore implies the system is a fractional “higher
order” topological state [53-55]. Note that when the edge of
the system is gapped, the corner charge is clearly well defined;
however when the corner lies along a chiral gapless boundary
of the system, it is not clear whether any remnant of the corner
charge persists.

Since the A U dC term defining the shift can also be written
as C U dA, this term also associates an angular momentum to
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a ¢ flux given by

LA_¢ = iSZ ¢

ST —1=

o E(kz + g K5). (50)
Note that the fractional part of the angular momentum of a
27 flux equals L; = G' K~'§ (mod 1), which is the angular
momentum of the anyon § associated with a 27 flux.

Note that the response theory only predicts the fractional
charge, angular momentum, and linear momentum of the
dislocations and disclinations up to those of the elementary
anyons, as anyons can always be bound to these defects by
adjusting the local energetics. Therefore in this case, the frac-
tional charge 8/M is determined only modulo the charges

Q; = G"K~'I, for any integer vector .

2. Disclination angular momentum

The third term contributes to a fractionally quantized con-
tribution Ly, to the angular momentum of the elementary
27 /M disclination,

Ix 1 ¢
L27'[/M = ]\_4 - A_lﬁ’
O, = ks +5TK7'S). 51)

The contribution proportional to the chiral central charge
¢ = sgn(K), where sgn(K) is the signature of K, arises from
the framing anomaly Ly,0m, Which we discuss further in
Sec. IVB 7.

3. Fractional quantized charge polarization P, and fractional
charge of dislocations

The term with
P.=[1-U"Qr /M) (ks + B7)
=P+ 1= U"Qr /M) "k (52)

is referred to as a fractionally quantized charge polarization.
As we discuss, this leads to three basic properties that are
predicted by the topological response theory:

(1) Fractionally quantized charge of dislocations (modulo
charge of anyons).

(2) Fractionally quantized momentum of U (1) flux.

(3) Fractionally quantized charge per unit length along
boundaries (modulo charge of anyons).

The quantization arises due to the rotational symmetry
of the lattice. Without rotational symmetry (M = 1), the
polarization is a nonquantized topological response [18]. Fur-
thermore, &, ; is only well-defined modulo Z.

This term associates a fractional charge

-

Qdisloc;l; = ‘@C b (53)

to a dislocation with Burgers vector b. Note that, as in the case
of the disclination charge, the topological response theory
only predicts the dislocation charge modulo the charges of the
anyons.

Whether the fractional charge of a dislocation is nontrivial
because of nontrivial values of the discrete torsion vector is
a somewhat subtle issue. In principle, the dislocation charge

can be fractions of the minimal anyon charge even when the
discrete torsion vector is trivial, due to the interplay between
the SPT term k4 and the minimal anyon charge. Observe that
the fractional charge receives two contributions: one from
the intrinsic topological order and symmetry fractionalization,
which arises from f’q, and one from the SPT term k4. The SPT
term can contribute a fractional charge in multiples of 1/2 (for
M =2,4)or 1/3 (for M = 3). Together with the charge of the
anyons Q; which can be trivially bound to dislocations due to
local energetics, this implies that in principle one can obtain
fractional charges at dislocations that may be fractions of the
anyon charge, but which arise from a trivial value of 7. For
example, consider the case of the 1/2 Laughlin topological
order on a honeycomb lattice (M = 3) and k4 = 1. There,
all choices of discrete torsion vector f are trivial, because
73 ® 7, = Zy; nevertheless, even a trivial value of 7 can give
rise to a dislocation charge 1/3 — 1/2 = 1/6. On the other
hand, on the square lattice (M = 4), a dislocation charge of
1/4 can only occur for the nontrivial choice of discrete torsion
vector f € Zy ® Zo = Z, while the trivial choice can only
give multiples of 1/2.

Let us compare the charge of a dislocation with Burgers
vector b and its rotated counterpart U (2 /M )b. The difference
is given by

AQ = Qdisloc;B - Qdisloc;U(Zn /M)b
=PIl —UQn/M)lb
= (kai + G K~'1)bi
= (kg + Q7)b;. (54)

In other words, the difference is given in integer multiples
of the fractional charge of 7, and 7,. Thus the contribution to
the dislocation charge from the topological response theory,
which is only well-defined modulo the charges of the anyons,
is rotationally invariant.

The charge polarization term also contributes to the charge
of a disclination, if it has nontrivial R holonomy. Interest-
ingly, the classification of free fermion SPT phases based
on their disclination charges is shown to equal Zj X Ky in
Ref. [38]. This agrees with the bosonic crystalline gauge the-
ory, which predicts that the disclination charge is classified by
the terms %A U (krdC + E4 . dR‘), where k, € Zj; and 124 €
K. (The coefficients in a crystalline gauge theory of fermions
can in principle have different quantization conditions than
in the bosonic case, but we will not discuss the fermionic
case in detail here). The classification approach in Ref. [38]
based on Wannier orbitals centered at high-symmetry points
is an example of a defect network construction. The prob-
lem of establishing a correspondence between the topological
responses in the defect network picture and the group coho-
mology picture is briefly alluded to in Sec. VIII.

If the dislocation described by b is connected to an edge
of the system, the holonomy at the edge is changed by the
amount —b. Hence there must be a compensating fractional
charge at the edge. However since the dislocation line is not
by itself well defined, this boundary fractional charge can be
delocalized along the boundary.

013040-11



NAREN MANJUNATH AND MAISSAM BARKESHLI

PHYSICAL REVIEW RESEARCH 3, 013040 (2021)

(a)

U(m)
———p
@

QZ? —q2

[ [P S —
—q1 _ a1 7f] i =
@ q2 ’ q2
(c) U(m/2)
A _—— A
f f
® —q1 IL____q_l.__, 4_‘112___J| _q$

._QZ _q.l

(b)

U@2n/3)

(d)

FIG. 2. The K, classification of rotationally symmetric configurations of boundary charge for (a) M =2, (b) M =3, (¢c) M = 4, and
(d) M = 6. We choose our coordinate axes to be normal to the boundaries, and place a charge per unit length equal to (g1, ¢»)"7 on the
boundary with normal vector 7. Thus in (b), for M = 3 we have the arrangement A = (g1, g2, —q1 — ¢») as we proceed anticlockwise around
the boundary segments. Now under a 277 /3 rotation of axes, the charge per unit length at the same three segments gets redefined as A’ =
(—=q1 — 92, q1, q2)- Since the fractional charge per unit length on each boundary segment remains the same if we only rotate the coordinate
axes, we should have A = A" mod 1. This implies that g, = ¢, and 3q, € Z; the three distinct choices of g, now determine the group K;. We

can follow similar reasoning in (a), (c), and (d).

This term also associates a momentum
Pry= Pp/2m (55)

to a U(1) flux of ¢ spread uniformly throughout the system.
The momentum of 27 flux has been discussed previously in
the context of Dirac spin liquids in Refs. [56,57]; our results
are consistent with these works for systems with orientation-
preserving symmetries. Note that the contribution to P from
the intrinsic topological order is equal to the momentum ﬁq of
the anyon ¢, which is the anyon associated with a 27 flux.

Finally, this term associates a fractional charge per unit
length P.etoa boundary along the direction e. This cor-
responds to a fractional charge polarization P. = P x % for
a system defined on a space with boundary. As above, this
fractional charge per unit length is only topologically robust
modulo the charge of the anyons. Under a rotation, the charge
per unit length along the boundary stays invariant up to the
charge of the elementary anyons. Therefore the contribution
of the topological response theory to the boundary charge per
unit length is rotationally invariant.

We note that because the boundary charge per unit length is
only topologically protected modulo the charge of the anyons,
the system does not necessarily have a nonzero polarization
on a space with boundary; one can arrange the local energet-
ics along the boundary so that the boundary charge per unit
length is the same on all boundaries. Nevertheless, the three
physical effects described above are all intimately related to
the quantum theory of polarization in higher dimensions [18],
which is why we refer to this term as the fractional charge
polarization.

The polarization response can be used to obtain another
simple way to understand the group Kj,. The group Kj, cor-
responds to the group of allowed fractional charges per unit

length along the boundary when the bulk has no intrinsic
topological order, as we explain below.

Consider a system with fractional charge per unit length
along its boundary given by P - /i, where P is the polarization
vector and 71 is the normal to the boundary. An integer value
of P corresponds to placing an integer charge per unit length
on the boundary, which can always be done locally. This is
shown pictorially in Fig. 2, where we assign fractional charge
per unit length to each boundary segment under one choice
of coordinate axes. For example, if we consider a system
with M = 4, the charge per unit length on the boundaries
normal to %, 9, —%, —y are (q1, g2, —q1, —q2), respectively.
Now we can perform rotations of the axes by 2w /M, which
will relabel the charge on each segment since the normal
vectors 7 get redefined. In this case, the coordinate axes are
rotated by an angle 7 /2, and the charges on the same bound-
ary segments will now be labeled as (—g2, q1, g2, —q1) (see
Fig. 2). However, the fractional charge on each edge should
be the same from either calculation. Therefore we must have
(g1, 92, —q1, —q2) = (—q2, 91, g2, —q1) mod 1. We can see
that the only solutions are (g, ¢q2) = (0,0) or (1/2,1/2).
Therefore the group of distinct assignments of charge at the
boundary is K4 = Z,. One can work out the other cases simi-
larly.

‘We note that in our initial discussion of Sec. II A, the Kj,
classification arose from general properties of the dislocations
that do not depend on a particular Lagrangian, while in the
second derivation given here, it arose from demanding rota-
tional invariance of a physical response related to the term
%A U dR in the Lagrangian.

Finally, we look at the case with M = 1, corresponding to
the absence of rotation symmetry. We cannot directly apply
the previous reasoning in this case to obtain a useful classifi-
cation. In a system without rotation symmetry, the Burgers
vector of any dislocation is well defined: the value of dR
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is gauge invariant. Since there is no gauge transformation
relating them, there is no grading of Burgers vectors. In the ex-
ample of boundary charge, one can now have any assignment
of fractional charges per unit length on the boundary of such
a system. In either case, the group classifying inequivalent
dislocations or fractional boundary charge configurations is
not a finite group. However, if we define K so that it classifies
the quantized fractional charges per unit length that can be
assigned to a boundary, the group is trivial. The quantization
was a direct result of discrete rotation symmetry, which is
broken when M = 1.

4. Quantized angular momentum polarization 97;

The term with @s is the rotational analog of .@C, where
P =1 —-U"@u/ M) (ks + p)
=B+ 1= U"Qr /M ks, (56)
It associates a fractionally quantized angular momentum

Ldisloc;[; = ‘@‘Y b N
to a dislocation with Burgers vector b. Note that the contri-
bution to 2, coming from the symmetry fractionalization is
simply P, the linear momentum of 5.

However it is not clear whether dual response, which is
the analog of attaching momentum to a U (1) flux, which here
would formally correspond to a momentum of a disclination,
is well defined. It is also unclear whether the analog of the
boundary charge per unit length has any meaning in this
context, because the boundary is not fixed by a rotation.

5. Charge, linear momentum, and angular momentum filling: v,
Vg, U,

The term proportional to A U Axy corresponds to a charge
of
ve =k + G K~ (58)

per unit area. This gives a generalized Lieb-Schulz-Mattis
constraint [27] which imposes constraints on ¢, K, and m
in terms of the filling v.. Likewise, the term proportional to
C U Axy associates a fractional angular momentum of

vy = (k7 + 57K ') (59)

to each unit area.
The term R U Axy associates a momentum of

(), = Y _ i K~ 'nl[l — U@ /M)];! (60)

per unit area of the system. It arises from the fact that there is
an anyon m per unit cell, which in turn carries a momentum
as specified by the coupling 7. Indeed, observe that

v, = P;. (61)

Remarkably, this implies that the ground state may carry mo-
mentum, depending on the area of the system; only for certain
commensurate areas is the ground state momentum trivial.

Furthermore, this term is also only nontrivial for M = 2, 3, 4-
fold rotational symmetry.

6. Fractionally quantized torsional response

The term with IT;; associates a fractionally quantized mo-
mentum of

Pisiocs = b (62)
to a dislocation with Burgers vector b. Here
IT;; = eiTKflej,
e =[1—UQr/M);' 5. (63)

This is closely related to the torsional Hall response that has
been discussed for continuum Dirac theories [33,34], although
there the corresponding term is not quantized and is sensi-
tive to the ultraviolet cutoff. The nontrivial quantization only
occurs for lattice systems with M = 2, 3, 4-fold rotational
symmetry.

We note that here we read off momentum as being defined
by the charge of the translation gauge field. It is not clear how
to define the momentum of a dislocation microscopically. For
example, naively one would define the charge in terms of the
Aharonov-Bohm phase obtained by braiding with a flux; in
this case this naively corresponds to the phase obtained by
braiding dislocations around each other. However to define
this microscopically, the restricted mobility of the dislocations
on a lattice with a conserved number of atoms must be taken
into account.

7. Framing anomaly

We note that the topological field theory itself does pos-
sess a continuous space-time symmetry corresponding to
diffeomorphism invariance, which corresponds to the retri-
angulation invariance of the path integral for a given fixed
configuration of flat gauge fields. For chiral topological
phases, a gravitational CS term, proportional to the chiral cen-
tral charge c, for the full SO(2,1) spin connection €2 also arises
upon evaluating the path integral. This arises from the implicit
metric dependence in the path integral measure required for
gauge fixing and quantizing the CS theory, and is referred to
as the framing anomaly [13,35]. In a continuum formulation,
this is written as

c

96

Lanom = ———Tr (stz + %sﬁ) (64)
This term may also be viewed as the gravitational anomaly
of the (1 + 1)D boundary of the system, which hosts a chiral
CFT with central charge c.

We note that the quantization of the CS theory also gives
rise to another contribution to the effective theory, given by
the Ray-Singer analytic torsion [35]. This term is a topolog-
ical invariant of the underlying space-time manifold, and is
unimportant for our discussion.

Mathematically we may consider €2 to be a separate quan-
tity depending on an underlying space-time metric, and to be
distinct from C and R. However to be physically meaningful,
the space-time manifold M should split into space and time
separately as assumed in this work, with the time components
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of Q2 vanishing:
., =9,=0,
w, = Q) (65)

2,0

Furthermore, the spatial component of €2, which we have
denoted w,,, is an SO(2) gauge field whose field strength
corresponds to the curvature of the system. The physical ori-
gin of this curvature in a lattice system arises from lattice
disclinations, so we require that @ should be determined by
the lattice rotation gauge field C. We can relate the continuum
definition of w to the definition of C on the triangulation by
integrating over a 1-simplex [ij] of the triangulation:

‘/"(,()M =Cij~ (66)

ij
We see therefore that the framing anomaly contributes the
following term to the effective response theory:

~_¢ cudc. (67)
48w

This term will then contribute an additional angular momen-
tum to disclinations proportional to ¢ [see Eq. (51)].

»Canom =

8. Additional coboundary terms in response theory

When we consider a system with only U (1) charge conser-
vation and Z? translation symmetries (i.e., M = 1), the charge
polarization corresponds to a nonquantized topological term

[18]. In our notation, this term has the form % -RUdA in

2 + 1 dimensions, where 2 is a pair of real numbers defined
modulo 1. This nonquantized term is not associated with sym-
metry fractionalization or to SPTs; rather than corresponding
to a nontrivial 3-cocycle, the above term can be understood as
a 3-coboundary of the group U(1) x Z>. Nevertheless, such
a term can be physically meaningful. This means that for a
complete understanding of the topological terms, we should
also study response terms that are not associated with SPT
responses but which correspond to group 3-coboundaries. In
this section we consider these possibilities when G = U (1) x
Gipace, and the rotation symmetry is nontrivial.

We first note that in the presence of rotation symmetry,
we do not find any nonquantized topological terms (i.e.,
terms that are retriangulation invariant in our simplicial for-
mulation). For example, the nonquantized polarization term
mentioned above becomes quantized as a result of the rotation
symmetry. However, we do find that we can add certain addi-
tional quantized topological terms beyond the SPT terms in
the effective action, Eq. (31). Although we have not explicitly
found a coboundary representation for these cocycles, these
terms correspond to coboundaries because the SPT terms al-
ready present in the effective action form a complete set of
cocycle representatives of H[G, U (1)] (see Appendix D).

First consider the response term E—;Ri UdR;, where I1;; =
[1-UTQr /M) ¢ K~ 't)[1 —UT 2r/M)]~". This coef-
ficient can be modified in a manner that preserves gauge
invariance, as follows: we can define

;=01 -U"Qr /M1 @G KT + kijl
x[1—=UT@r /M), (68)

where k;; € Z. In some cases this shift in the momentum of a
dislocation due to k;; can be considered to be trivial, and part
of the equivalence in the definition of 7;. However, in general
this contribution may not be completely accounted for by the
equivalences on f;.

Similarly, consider the response term 2”—‘7; -RUAyy. We can
modify the coefficient of this term as follows:

(V) = Z (& K="+ k)1 — UQr /M), (69)
1
where k; € 7.

Finally, in principle we can have terms which are not re-
lated to the response terms already present in Eq. (45). For
example, we can consider terms proportional to R U R U R, or
terms composed of various powers of A, R, and C. Most terms
of this kind will not be topological, i.e., will not satisfy the
requirement of retriangulation invariance. Those terms that
are retriangulation invariant will be coboundaries or equiva-
lent to one of the existing SPT terms, since we already have
a complete set of SPT cocycles. To our knowledge, none
of these terms are associated with nonquantized topological
responses. However, we have not checked all the possibilities
systematically.

V. EXAMPLES
A. 1/2 Laughlin topological order

Consider the 1/2 Laughlin topological order on a square
lattice (M = 4), with symmetry U (1) x [Z? x Z4]. We have
K =2 and A = Z,, with the anyons given by / = 0 (mod 2)
and § = 1 (mod 2). The symmetry fractionalization classifi-
cation is H*(G, A) = Z3, with A/4A = K4 ® A = Z,. Thus
there are two inequivalent symmetry fractionalization classes
associated with each of ¢, s, £, and m. Throughout this
discussion we will define the elementary rotation matrix as
U(r/2) = (_01 (1)> At various points we will comment on
the differences in the analysis when we consider different
values of M.

The charge, spin, and area vectors are each determined by
choosing g, s, m € {I, S}. The fractional charge and angular
momentum of the anyon a are thus given by

_ 9

0. 5 mod 1 (70)
and
Laz% mod 1, an

respectively. The charge filling gives a LSM constraint on m
and ¢:

Ve =-— mod I. (72)
Therefore half-filling (i.e., half-charge per unit cell) necessar-
ily fixes ¢ = m = S, while integer filling requires at least one
of g or m to be trivial.

There are two inequivalent choices of discrete torsion
vector, corresponding to (fx,t,) = (I,I) and (S,1), with
,I)~(S,S) and (S5,1)~ (I,S). To see this, note that
naively the possible discrete torsion vectors are (fy,1,) €
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{a€,n,,S), (S, 1), (S,S)}. The equivalence condition satis-
fied by them is

/ / /
<tx> ~ <IX> +[1=U(r/2)] (I’“> = (t"> + (t" t—").

ty fy 1 ty e
(73)
This condition implies that the symmetry fractionalization
class is completely determined by the value of (# +1,)
mod 2. Therefore the assignments (7, S), (S, ) are equiva-
lent and correspond to nontrivial symmetry fractionalization,

while the assignment (S, S) is in fact trivial. The latter as-

signment is seen to be trivial because we have ({) = [1 —

U(m/2)] ((1)), and thus (S,S) corresponds to attaching the
anyon S”I% to a dislocation with Burgers vector (by, by).
The momentum associated with each anyon a is

~ 1o 1 aft +t,

P,=[1-U(x/2)] 't 794=7 (ty B tx). (74)
Recall this momentum is only well defined (i.e., topologically
robust) up to the equivalences on f (and the representative a of
the anyon). Therefore for trivial choice of (¢,,1,) = (I, 1) ~
(S, S), we have 2P,; € Z; that is, we have 131,155 = (g) ~
(') ~ (1(/)2). Therefore half-integer momentum components
should be regarded as trivial. Physically this can be under-
stood from the fact that the change in the braiding phase
between a and an elementary dislocation can be compen-
sated for by attaching a semion to the elementary dislocation.
For the nontrivial choice of (t,t,) = (S,1) ~ (I, S), we have

135 = (_11/;14) ~ (};j) Observe that under a rotation, 2Ps is in-
variant modulo 1.

The above analysis shows that for the 1/2 Laughlin state, a
momentum whose components are integer or half-integer is an
indication of trivial symmetry fractionalization: it corresponds
to attaching the anyon S to an elementary dislocation in some
fixed direction. Thus, while considering some other M, we
will continue to associate the momentum 1/2 with trivial
symmetry fractionalization. For the 1/N Laughlin state with N
even, an analogous argument would imply that a momentum
of 1/N units corresponds to trivial symmetry fractionalization,
and therefore it is enough to check whether NP, , and NP, ,
are nontrivial.

Let us consider the classification of spin vectors in more
generality. For the 1/2 Laughlin state with M even, the spin
vector is always nontrivial if it equals 1 mod 2. However,
for M = 3, we have s = 3s mod 2. This means that every
spin vector can be thought of as associating the anyon s with
an elementary 2m /3 disclination. Therefore in this case, the
choice s = 1isin fact trivial. If we generalize to 1/N Laughlin
states with A = Zy, the number of distinct spin vectors equals
InIMZy = ZmNy.

Next we discuss the fractionally quantized responses. The
Hall conductivity is given by oy = % (q*/2 + 2ky), as usual.

The discrete shift is defined as & = % + ky. Therefore the
fractional charge associated with a 7 /2 disclination is

S_as ko

Odisclin, /2 = 1313

Thus we see that shifting k, by an integer changes the frac-
tional charge by 1/4; shifting k4 — k4 +4 adds a trivial

(75)

integer charge to the elementary disclination. Furthermore,
when ¢ = s = S, we obtain a 1/8 charge at the elementary
disclination.

The angular momentum of a 7 /2 disclination is

Loy = €,/4 — /48 LB (76)

/2 — Ls —C - 5 A~ T oo

/2 8 2 48

where we have included the contribution ¢ /48 from the central

charge ¢ = 1 which arises due to the framing anomaly. Note

that the fractional part of the angular momentum remains the

same when we shift k3 — k3 + 2, even though k3 has a Z4

classification. R
The charge of a dislocation with Burgers vector b is

Qiistoc.; = e - b, where

gcx 1 k4x+k4y q(t:+t,
)= (T T ) 2 ). a7
<=@c,y> 2 <k4,x - k4,y + 4\t — ty ( )

Observe that the SPT contribution from k4 can only take
two inequivalent values: (0, 0)” or (1/2, 1/2)7. This follows
from demanding rotational invariance of the polarization up
to integers, i.e., of 2. modulo integers. The nontrivial sym-
metry fractionalization [¢ = S and (%, 7,) = (S, 1) ~ (I, S)]
then contributes (1/4, 1/4)T ~ (1/4, —1/4)T . Therefore dis-
locations can carry charge of £1/4, even though the minimal
anyon charge is 1/2. A similar calculation can be performed
for the angular momentum polarization.

On a space with boundary, the nontrivial symmetry
fractionalization class [¢ =S and (Z, %) = (S,1) ~ (I, S)]
therefore contributes a charge of 1/4 (mod 1/2) per unit length
along the boundary. The other symmetry fractionalization
classes contribute a 0 charge (mod 1/2) per unit length along
the boundary.

The momentum per unit cell is given by the momentum of

. - = t 1 ..
the anyon per unit cell ¥, = P; = %(Ix + ty ). For trivial frac-
x Tty

tionalization (either m or f trivial), 27 »1s an integer vector. The
nontrivial fractionalization gives rise to v, = (1/4,1/4) ~
(1/4,—1/4).

Finally, we compute the momentum of a dislocation
with Burgers vector b. The i component of the momentum
equals I1;;b;, where I1;; =[1 —UT (/)17 "tTK~11;[1 -
U /2)]~ 1. Thus we obtain

_ 1((& +1,)

Hij—g 22
y X

2 2
o riy)2>' 78)

For nontrivial symmetry fractionalization, where 7, &1, is
odd, we see that IT;; has diagonal components equal to 1/8.
On the other hand, if we have trivial symmetry fractionaliza-
tion, the only possible values of the components are 0 and
1/2, which correspond to trivial values of crystal momentum,
as discussed above.

Finally, we note that different choices of the parameters k;
do not necessarily give different SET phases. This is because
of redundancies that arise when we consider gauge field rela-
belings, as we discuss for the 1/2 Laughlin state in Secs. VI
and VIB.
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B. Z, gauge theory

In this example we consider the case where the intrinsic
topological order is given by Z, gauge theory (i.e., that of
the Z, toric code), which has A = Z, x Z,. This is the case
relevant for gapped Z, quantum spin liquids.

0 2

> o) The
anyons are given by I = (0,0)7, e = (1,0)7, m = (0, )7,
and ¥ = (1, 1)7, and we have " K~'b = M.

The symmetry fractionalization classes are specified by
inequivalent choices of {7, 5, f;, i} € A x (A/MA) x (Ky ®
A) x A. Thus the classification of § and 7 is individually
Z, x Z,, irrespective of the value of M. Suppose we wish to
determine ¢. To do so, we first compute the fractional charge
07 = 7K = M, for each anyon I. From this data we
can uniquely determine the integers ¢; mod 2, which fix the
charge fractionalization. A similar method allows us to deter-
mine the anyon 7. Together these determine the charge filling,
which places a LSM-type constraint on the fractionalization
data:

The system is described by a K-matrix K = (

vemod 1 =" K~"in = M. (79)

Next we turn to the spin vector. We have A/MA = 7, x
Z, if M is even, and is Z; otherwise. As in the previous
example, we see that the anyons 5§ and M5 are equivalent
when M = 3, so any choice of § can be understood in terms of
attaching anyons to elementary disclinations in this case. Now
suppose M is even. When s = e, the fractional angular mo-

mentum of each anyon (modulo 1), given by 57K -17, equals

L;=0, L,=0, L,=1/2, Ly,=1/2. (80)

If we choose 5§ = m, a similar calculation yields

Ly=0, L.=1/2, L,=0, Ly=1/2 (81)
and choosing 5§ = Y gives
Ly=0, L. =1/2, L,=1/2, Ly, =0. (82)

Note that measuring the angular momentum for any one anyon
does not uniquely fix the value of 5. This result emphasizes
that in general we need to know the angular momentum of ev-
ery anyon in order to fix the symmetry fractionalization class.
All these calculations could formally be done in the same
manner for M odd; however, each set of angular momentum
values thus calculated would correspond to trivial symmetry
fractionalization.

For M = 2, 3, 4, the distinct torsion vectors are classified
by

Ky ® (7o x 1) = 75, (83)
K3 ® (Zy x L) =7, (84)
Ky ® (Zy X Zn) = Zn X Zos. (85)

We can understand the Z‘z1 classification as follows: when M =
2, the anyons f, and t: are fixed independently, and each can
be equal to I, e, m, or ¥r. The equivalence relation on 7, 7,
does not provide any additional constraint.

For M = 3, the equivalence relation is

Yo (B) v —vemmn(B) = (2)+ (508
S )~ - T =\-
L L 4 fy 1+ 2t
(86)
(see Appendix A for the explicit forms of the rotation point

group matrices). Notice that every anyon can be written in the

tl—t!
form (¥
(z;+2t‘/.

this case, although we can certainly adjust #,, 7, so as to obtain
nontrivial values of momentum for the anyons, the symmetry
fractionalization class is still trivial.

For M = 4 we find, as in the previous example, that 7, and
7, are not independent: we can only fix 7y + 7, € {I, e, m, ¥}.
This leads to the Z, x Z, classification. Finally, for M = 6,
the torsion vectors are always trivial, irrespective of the struc-
ture of A.

Let us consider below the fractional U (1) charges of the
defects, for the special case of the standard gapped Z, spin
liquid at half-filling and on the square lattice, where M =
4,G=m= (0,17, m=e=(1,0)7, and all k; = 0. In this
case, the Hall conductivity vanishes, oy = 0, and depending
on the value of § the U (1) charge of a pure 7 /2 disclination is
calculated as 8§/4 = G' K~'5/4. To find the U (1) charge of a
dislocation, we compute

q

@c,l
yc,Z
= LB+ h (88)
4 tx,l_ty,l ’

The four fractionalization classes related to the torsion vec-
tor are specified by choosing 7, + 1, ~ I, e, m, or . Note
that 7, = 1 if #; = e, ¥, while #;; = 0 if ; = I, m. Thus, if
the momentum fractionalization class is specified by I or
m (i.e., it is trivial), the polarization will take values of the
form (0, 0)7, (0, 1/2)7, (1/2, 0)T. The charge of a dislocation
computed using these values will be a multiple of 1/2 and
can be understood as the charge of some anyon associated
with that dislocation. If the momentum fractionalization is
specified by e or ¥, the polarization will take values of the
form (1/4, +1/4). Then the charge of a dislocation can take
the values 1/4 or 3/4, which cannot be understood through the
attachment of anyons to each dislocation. This is a feature of
nontrivial momentum fractionalization. Note that the seeming
asymmetry between e and m in this example is due to our
choice of § = m.

The rest of the responses are straightforward to compute in
this example given our general theory and we leave them for
more detailed studies of Z, spin liquids.

) mod 2. Therefore every assignment is trivial. In

T p—17
1 —U(x)2 1<‘£ K- ’i‘) 87
-G/ (Gref) @D

VI. CLASSIFICATION OF SETs AND REDUCTION
OF #3[G,U(1)]

A. Recovering the #*(G, A) and H>[G, U (1)] classification

The four generalized charge vectors g, 5, f, m described
above can all be included independently in the effective ac-
tion for G = U (1) X Ggpace. Therefore the group classification
of the generalized charge vectors is A x (A/MA) x (Ky ®
A) x A, which equals H*(G, A) as expected. For M = 1 the
correct A x A classification is produced by taking K, to be

013040-16



CRYSTALLINE GAUGE FIELDS AND QUANTIZED ...

PHYSICAL REVIEW RESEARCH 3, 013040 (2021)

trivial. When the magnetic flux per unit cell is not an integer,
the group structure becomes a nontrivial central extension of
Gypace by U(1) due to the magnetic translation algebra. This
case is left for future work.

The full classification of the allowed SPT terms is given
by Z* x Z3, x K, which indeed equals H3[G, U(1)], as we
derive in Appendix D. The classification based on H?(G, A)
and H3[G,U(1)] is summarized in Table I. However not
all of these choices give topologically distinct phases of
matter [19,58] as some of them can be trivialized by field
redefinitions. The particular redundancies that appear depend
sensitively on the choice of K matrix and the generalized
charge vectors [58] as we will describe below. For example,
we find that the 1/2 Laughlin topological order on a square
lattice (M = 4) possesses 2304 distinct symmetry-enriched
topological states when the integer part of the charge filling
per unit area (kg ) and the Hall conductivity (k;) are fixed.

B. Reduction of H3[G, U(1)] due to relabelings

As discussed above, Ly, specifies the symmetry fraction-
alization class through the choice of the generalized charge
vectors, which corresponds to the classification H?(G, A).
Lspr contains additional terms depending only on the back-
ground gauge fields, and is classified by H3[G, U(1)]. The
choice of H3[G, U(1)], which corresponds to changing the
coefficients k; in Lgpr, can be understood as stacking (2 + 1)D
SPT states. Physically, the effect of changing the action by a
choice of H3[G, U(1)] is to change the braiding and fusion
properties of the symmetry defects [19].

Depending on the choice of symmetry fractionalization
class and the precise topological order involved, it is possible
that changing the action by a nontrivial choice of H3[G, U (1)]
does not yield a distinct phase of matter. Therefore, keeping

J

the symmetry fractionalization choice fixed, the true clas-
sification of distinct symmetry-enriched topological states
(SETs) is reduced from H3[G, U(1)] to a subgroup. In the
G-crossed braided tensor category formulation [19], this re-
duction corresponds to cases where changing the algebraic
theory of defects by an element of #3[G, U(1)] can be com-
pletely accounted for by a relabeling of the symmetry defects.

We can also see this reduction from H3[G, U(1)] in the
context of our topological effective action. In this context we
see that field redefinitions can be made to absorb the effect of
changing the couplings in Lgpr by certain amounts. Since this
analysis is heavily dependent on the precise topological order
(precise choice of K matrix) involved, here we will focus on
some simple examples.

To illustrate the main idea, let us begin by considering
the case where G = Z,;, with the symmetry fractionalization
class specified by the spin vector 5, and the associated defect
class given by k € Zy. The Zy gauge field C couples to a as
follows:

1 I Jo S k
L=——Kya Uda' + —a UdC+ —CUdC. (89)
4 2 2

In this case there are naively M distinct choices of k, k =
0,...,M — 1, corresponding to H3[Z i, U] = Zy. First,
we note that the choice of couplings (5, k) has the following
redundancies:

G+MA, k)~ G, k)~ G, k+M). (90)

The first equivalence is because M % -aUdC is trivial, as
explained in the main text. The second equivalence follows
from H3[Zy, U(1)] = Zy.

Next, observe that we can rewrite the Lagrangian as

1 K 2k —uTKi—25-i
L= Ky +dC)Udd + ' C)+ L2 o L iey Udc + TS ey, 1)
4 2w 4
[
where ii € ZP. Since a’ is dynamical, the shifta’ — a/ + w/C  u=1and A = N/2. Then we have
can be trivially absorbed by redefining the integration vari-
ables. Note that a' 4+ u/C still obeys the flux quantization (s, k) ~ [s, (k — N/2 — s) mod 2]. (94)

condition since dC integrates to 27t Z over any 2-cycle.
Therefore we have the additional equivalence

_>TK_>
(§,k)~<E+Kﬁ,k—u2u—§Tii>. 92)

Combining the equivalences in (92) and (90), we see that
whenever Kii = M 7\, we get

5. k) ~ <§,k U : “ —§Tﬁ). (93)

For a fixed choice of §, this corresponds in general to a reduc-
tion of H3[Zy, U (1)].

Now we can work out some specific examples. Consider
the 1/N Laughlin state with N even, for which K = N, and
take M = 2. Since s ~ s + M, there are two possible spin
vector classes, given by s odd or s even. Suppose we choose

For s =1, then this relabeling will take k — (k — 1 —
N/2) mod 2. Hence, if N is a multiple of 4, the SET classes
corresponding to (s, k) = (1, 0) and (1,1) are the same, while
the two classes (s, k) = (0, 0) and (1,1) are distinct. The above
result was previously also obtained using the edge physics of
Chern-Simons theories in Ref. [58]; here we have reproduced
their result with the field theory in the bulk.

One can use similar reasoning to obtain the SET classifica-
tion for general K-matrix states and for general symmetries
G =U(1) X Ggpace, as explained in Appendix C. The sum-
mary of the relabeling analysis for 1/N bosonic Laughlin
topological orders and for the case where Gpace = VAW
is summarized in Table IV. In Appendix C we further do an
explicit counting of SET states for the 1/2 Laughlin topolog-
ical order, with G = U (1) x Ggpaee and considering all five
orientation-preserving 2d space group symmetries, Gpace =
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TABLE IV. The effect of relabelings on the SET classification for the 1/N Laughlin state (for N even) with U(1) charge conservation
and p4 = 7Z?* x Z4 space group symmetry. In the left column, N’ is an integer. The charge, spin, and area vectors are now integers, while the
torsion vector ; is valued in Z?, and ¢, + ¢, mod 2 specifies the symmetry fractionalization. The internal gauge fields can be relabeled so as
to leave the partition function invariant but transform the SPT parameters (k,, k3, ks, k7) to (k, k, ki, k%) (shown in the last column). Note that

the precise transformation of these coefficients is different for different symmetry fractionalization classes and for different values of V.

N Generalized charge vectors Relabeled SPT parameters (k;, k3, k5 ;, k7)
4N’ (g mod N, s mod 4,7,m mod N) (ky — q, k3 — % — 8, ks — ti, k; —m)
4N’ +2 (g mod N, s mod 2,7,m mod N) (ky —2q, ks — 25, ks ;, k; — 2m)

72 % Zy for M =1,2,3,4,6; these results are shown in
Table V.

VII. CRYSTALLINE GAUGE THEORY: CONTINUUM
APPROACH

In this section we discuss two aspects of crystalline gauge
theory. The first is that our method of defining discrete crys-
talline gauge fields on simplices and using simplicial calculus
to evaluate the action was a practical choice to make direct
the relation with the group cohomology classifications of
symmetry-enriched topological states (SETs) [19]. However
we expect that the same results can also be obtained by work-
ing with real-valued differential forms.

The second aspect is that the discrete translation and rota-
tion gauge fields defined in this work are directly related to the
coframe field and the spin connection that arise in continuum
geometry and are known to be closely related to elasticity
theory. (In Appendix B we provide some background on the
origin of crystalline gauge fields in terms of the gauge theory
of elasticity as discussed in Ref. [16]).

A. Crystalline gauge fields as differential forms

In order to construct actions from discrete gauge fields,
it was convenient to work in terms of simplicial cohomol-
ogy and simplicial calculus (see Appendix A of Ref. [47]
for a review). There our translation gauge fields could be
viewed as Z2-valued 1-cochains defined on the triangulated
space-time manifold M; thatis, X,Y € C'(M, Z). Similarly,
the rotation gauge field can be viewed as a Z, valued 1-
cochain, C € C' (M, Zy). [Strictly speaking, in the main text
C corresponded to a lift of the Z,, gauge field to %’Z. The
action is then invariant under changes of lift, e.g., shifting
Cij — Cij + 2n for a single 1-simplex ij.]

We can consider instead a formulation where we take the
gauge fields to be real-valued differential 1-forms. We thus

can define
ad,AX,Y,CeQ'(M,R), 95)

where Q%(M, R) denotes the space of real-valued differential
k forms. a!, A, R = (X,Y), and C are the internal, U (1), trans-
lation, and rotation gauge fields, respectively, now defined as
differential 1-forms.

The discreteness of the gauge fields enters through con-
straints on the holonomies of these gauge fields. Given a cycle
y, We require

) 2
7§R €272, fc ez, (96)
Y Y M

with the equivalence

fCNfC+2n, %A~¢A+2n,
¥ ¥

Y Y
a ~ 55 a +2r. 97)
Y Y

Dislocations and disclinations must therefore correspond to
singular sources of flux for X, Y, C. Differential forms which
are required to integrate to discrete values along cycles are
referred to as integral differential forms.

The gauge transformations are also real valued. In partic-
ular, large gauge transformations for a', A, and C must be
quantized in units of 2.

TABLE V. Count of SETs for the 1/2 Laughlin topological order with G = U (1) x [Z? % Zu]. We have fixed k, and kg, which are the
integer parts of the Hall conductivity and the charge filling. See Appendix C for the derivation.

Count of SETs for 1/2 Laughlin topological order (A = Z,) with G = U (1) x [Z* x Zy]

M H>(G, Z,) H3[G, U] Naive SET count (ky, kg fixed) Reduced SET count (k;, kg fixed)
2 /] 7> x 75 4096 800
3 72 7% x 73 972 972
4 73 72 x 13 x 173 4096 2304
6 z3 Z7? x L} 1728 972
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We then write the effective action using the wedge product:

1
L= —4—K11a1 N daj + Efrac + [’SPT’
v

1 L -
Lirac = Ea' A (qrdA + 5;dC + 17 - dR + miAxy),

k k k 1 a o 1 L o
CSPT:—IA/\dA+—ZA/\dC+—3C/\dC+—A/\(k4-dR)+—C/\(k5-dR)+
2 2 2 2 2 2

Here Ayy is the continuum analog of the area element we de-
fined in the simplicial formulation. For example, when C = 0,
Axy = &=(X AY —Y A X). Note that the terms in £ aside

from those involving Axy and dR are standard. To ensure
that the terms involving dR are invariant under large gauge

transformations of a’, A, and C, we require % Jw dR € 77
over any closed 2-cycle W. When W is the space, for example,
this physically corresponds to the fact that the total Burgers
vector of the whole closed space is trivial.

While we do not pursue a formal proof here, we expect that
the effective action defined using this continuum formulation
yields identical physical results as compared with the lattice
gauge theory formulation used in previous sections.

Given a triangulation of the space-time manifold M, we
can understand the relation between the discrete formula-
tion and the continuum formulation as follows. Given a link
(1-simplex) ij with vertices i and j, the discrete gauge fields
Aij, Cij, Xij, and Y;; are taken to be the integral from i to j
along the 1-simplex ij of their continuum counterparts. Note
that only those continuum gauge field configurations can be
used that give rise to the appropriate discrete values of C, X,
and Y. Since the only gauge invariant quantities for R and C
are associated with disclinations and dislocations, we expect
that such gauge configurations can always be found.

We can see how to specify the action of C on R by noting
that in the continuum setting, R and C correspond exactly
to the continuum coframe fields e and spin connection . In
the following section we discuss this correspondence in more
detail.

B. Gauge fields for continuous space-time symmetries: Coframe
field and spin connection

The Euclidean group E? = R? x SO(2) is a semidirect
product of the group of continuous rotations in 2D, SO(2) =
U (1) and the group of continuous translations R?. In this case
we can consider background gauge fields associated with the
continuous translation and rotation symmetries.

The translation gauge fields in the continuum setting now
correspond to the 1-form coframe fields ez, a =1, 2 associ-

ated with the space %2. For physically realistic space-time
manifolds of the form M = £? x R, where X2 is space,
we choose e', e to be of the form efdx’ = eldx + eidy.
There is also a fixed time component of the coframe field
¢® = dr. Below we will assume the space 2 can be curved,
but time is separate, as is appropriate for directly describing
a condensed matter system. That is, the metric tensor g =
gijdxidxj + gndtz.

ke k7
—A+ —C ) ANAyy. (98)
T 2

(

The coframe fields diagonalize the metric tensor

gij = 6’76?5(117, 99)

where §;; (the Kronecker delta) is the flat space metric. In the
linearized approximation where ef = §¢ 4- &7, we have
g,'jz(sij‘i‘élj‘i‘é{, (100)
where 8 = §,; is the Kronecker delta.
A translation gauge transformation can be identified as an
infinitesimal diffeomorphism:

x = i) =x"+ ), (101)
under which
el = difle" = (8] + die))e!
= (8 + de) (9 + ) =80 + & + de" + - -
=e! + 0"+ -, (102)

where the - - - indicate the subleading term which we ignore
in the linearized approximation. We see therefore that in the
linearized approximation, the gauge transformations of ef
are the continuous analog of the discrete translation gauge
transformations R;; — R;; +7; — F; on the lattice. Note that
as in the discrete case, the continuous translation gauge trans-
formations should preserve the gauge-invariant holonomies
associated with e. In particular, the gauge transformations
therefore correspond to diffeomorphisms that preserve the
lengths along noncontractible cycles.

Physically, the continuous translation gauge fields e cor-
respond to the plastic distortion tensor discussed in Ref. [16].
The full strain tensor u is the sum of the elastic strain tensor
u®! and the plastic strain tensor u”: u = u® + u”. The gauge-
invariant combination is u® = u — u?.

In addition to the translation gauge transformations, there
are also rotation gauge transformations. These correspond to
locally rotating the coordinate axes by an element of SO(2),
at every point. The gauge field associated with these gauge
transformations is the spin connection, which is a 1-form
gauge field w that corresponds to the continuous spatial ro-
tation symmetry. The spin connection specifies how the frame
fields at nearby points are rotated relative to each other. In
terms of the full 3D space-time spin connection €2 , the
spin connection associated with spatial rotations corresponds
to w, = Q% - In this language we can explicitly write the
correspondence between the continuum and discrete gauge
fields as R ~ (¢!, €?) and C ~ w. We emphasize that when the
continuous E? symmetry is broken down to a discrete space
group symmetry, there is no distinction between (R,C) and
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(¢, ). The gauge-invariant properties associated with (R, C)
can equally be calculated using ¢“, w.

To further clarify the correspondence between the dis-
crete translation and rotation gauge fields and the continuum
coframe fields and spin connection, we calculate the contribu-
tion of w to the covariant derivative of ¢ using our discrete
formulation with certain limiting arguments. At a point 7 +
87, the coframe field (written here using the translation gauge
field notation of the main text) is

As stated in the main text, the vector 13(7) parallel transported
to 7+ 87 is U (C;,;Jr(;;)ﬁ(?), where we have chosen 7 as the
origin. In the continuum we can write U(Cs 7457 = 6) as a
rotation matrix e/ [this would not be appropriate on a lattice,
where we need to use GL(2, Z) matrices in a lattice basis,
but it is not a problem in the continuum]. The total rotation
applied between r’ and r’ + dr’ is written in terms of @ as

—i 75,(1)(7’)(17’0).
e 7 . Here we have written the spin connection as a
vector with components w,,. This representation of C shows
that it directly corresponds to w in the continuum.

To first order in §7, we can approximate

P87

—i [ @(F)dFo,
UGrisr) =€ 7 (104)
~ 1 —ioyd(7) - 7. (105)

The covariant derivative of R in the direction x' can then be
written as

1 : ,
DiR;(F) = lim —{R; (7 +x') = WU (G 1)R(F)];} - (106)

1 . .
= lim —[3R;x' + wi(F)x' x (ioyR);] (107)
xi—0 x*
= B,ij + C!)i(l_")E‘ijk. (108)

This is precisely the formula for the covariant derivative D of
¢ in terms of w, which is written in the usual notation as

T = De" =de’ + efwe” = de” + Qi A e’ (109)

Here € , is the full spin connection. We have proved this
formula using the fact that Qf = —QZ is antisymmetric, so
that Q] = Q3 =0and Q) = —Q? = w.

T¢ is the torsion 2-form, which characterizes how the
frame field is rotated along the path traced by a curve in space-
time. The torsion as defined above can be directly related to
the dislocation density, i.e., to the holonomy of translation
gauge fields after accounting for parallel transport, similar
to the quantity dR used in our work. Furthermore, the flux
associated with rotational symmetry alone (dC in the lattice
formulation, or dw in the continuum) gives the curvature of
the manifold, which is directly related to the disclination den-
sity. Therefore couplings involving dC or dw are essentially
coupling the system to curvature. Given that torsion is not
quantized in the continuum, there cannot be any quantized
topological terms formed by coupling anyons or symmetry
charges to the torsion (although nonquantized terms which are
topological in the sense of being independent of changes in the
underlying metric are well known).

The classification of SET phases with U (1) x E? symme-
try is identical to the classification for U (1) x U (1) symmetry
(this can be proved, for example, by computing the relevant
cohomology groups) [59]. So while the translation group R?
has associated gauge fields X and Y, the Lagrangian does not
have any contribution from X and Y; the only relevant terms
for Euclidean group symmetry fractionalization and for the
associated SPT states are given by 2‘“—7’Ta’ A dw and %a) ANdo,
respectively.

VIII. DISCUSSION

A. Spatial vs internal symmetries

As we have discussed, at a formal level our mathematical
treatment of crystalline gauge fields is equivalent to treating
the symmetry as an internal symmetry of the low energy
quantum field theory. The main difference is (1) the physical
interpretation of the fluxes in terms of geometrical properties
of the lattice, with certain holonomies being restricted by the
lattice area and lengths, and (2) the fact that we ultimately tie
the space-time metric of the low energy topological quantum
field theory, which arises from the framing anomaly, to the
crystalline gauge fields. Here we will begin by discussing this
issue in some more detail.

We have two levels of description of the system. The first
is the microscopic lattice model, which has a global symmetry
G = U(1) X Ggpace, for some spatial symmetry group Gipace-
The second is the effective field theory description, which in
our case is a topological field theory. The symmetry of the
topological field theory is Gr x Diff(M), where Gir is the
internal symmetry of the field theory and Diff(M) is the group
of diffeomorphisms of the space-time manifold M. Here the
internal symmetry Gir allows us to couple the field theory to
background principal Gir bundles. The action of the micro-
scopic G symmetry in the low energy field theory is described
by a group homomorphism:

o : G — GRr x Diff(M). (110)
When g € G is a purely on-site symmetry of the microscopic
lattice model, then a(g) = [« (g)|c,, 1], where a(g)|g,, de-
notes the restriction of « to the first factor and 1 refers to
the identity element of Diff(#/). That is, an on-site symmetry
g in the microscopic lattice model is mapped to an internal
symmetry in the field theory. On the other hand, if g € Gis a
purely spatial symmetry of the microscopic lattice model, then
«(g) maps g to a combination of an internal symmetry and an
element of Diff(M). For example, a Z,, spatial rotation in the
microscopic lattice model will be mapped in general to a Zy,
internal symmetry combined with a Z, rotation of space in
the field theory. The distinct ways that a microscopic lattice
symmetry can act in the field theory is taken into account
by the different ways of coupling the effective field theory to
background Gr gauge fields.

Another way to state the above is that given any spatial
symmetry g, one can always consider the combination «(g)
followed by an appropriate element of Diff(M), to obtain a
symmetry action in the field theory that has trivial component
in Diff(M). Therefore, given any spatial symmetry in the mi-
croscopic lattice model, the effective field theory description
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can also in general contain a corresponding internal symmetry.
To fully describe all possible SETs, we thus take Gijr = G, and
we classify all the ways that the effective field theory can be
coupled to G bundles.

Observe that in the above description the symmetry defects
associated with spatial symmetries in the microscopic lattice
model, such as dislocations and disclinations, should therefore
be described in the field theory by symmetry fluxes of the
internal symmetry of the field theory and, simultaneously,
torsion and curvature defects in the space-time metric of the
effective field theory. This reflects the fact that « maps to
both Gir and Diff(M). This explains why we equate the spin
connection of the space-time metric to the rotation gauge field
in Eq. (66).

The above explanation is not a proof that spatial sym-
metries in lattice models can always be treated as internal
symmetries in the effective field theory description. Nev-
ertheless, all known examples of effective field theories of
quantum many-body systems can be understood via the above
paradigm. As a simple example, consider the action of trans-
lation symmetries in spin chains and their description in the
low energy Luttinger liquid theory [60].

The conjecture that spatial symmetries can always be
treated as internal symmetries in the field theory has recently
been formalized in Ref. [17] as the “crystalline equivalence
principle,” where additional arguments have also been given
in support of it. This principle has also received significant
support from the theory of crystalline SPTs, where the SPT
classifications obtained by treating spatial symmetries as in-
ternal symmetries can be compared with other more direct
methods [61-64], and the results agree with each other.

B. Connection between points on the triangulation and points
on the lattice

In our formulation of the crystalline gauge field, the un-
derlying lattice model does not feature explicitly in the for-
mulation, although one can give an interpretation to the crys-
talline gauge fields in terms of the microscopic lattice sites
as done in the gauge theory of elasticity [16]. The O cells
of the triangulation of M need not be assumed to belong
to any microscopic or coarse-grained lattice. The motivation
for the gauge field itself is the assumption that the topologi-
cal response is completely determined by the gauge-invariant
data of the underlying lattice, defined as the lengths around
noncontractible cycles, the area, the Burgers vectors of dis-
locations, and the angle of disclinations in the lattice. Now
these quantities can all be specified by constructing loops
which encircle all the defects, and which span the nontrivial
cycles of the manifold, and then keeping track of the change in
coordinate labels and the local orientation of coordinate axes
as we go around each loop. This can all be achieved using
a triangulation. Therefore it does not matter whether or not
the vertices of the triangulation actually correspond to points
or coarse-grained regions of the original lattice. As such, the
precise locations of the lattice defects is unimportant for the
analysis of the topological, quantized response properties.

Introducing a triangulation moreover has significant addi-
tional value: the condition that the effective action is indeed
topological can be reformulated as a condition that the parti-

tion function is invariant under retriangulations. This in turn
means that the action satisfies a group cocycle condition,
which provides the link to the group cohomology classifica-
tion of SETs, as we discuss in Appendix D.

C. Relation to defect network constructions

Reference [63] gives a general construction of crystalline
SET phases in terms of defect networks; a similar approach
has been studied for invertible phases in Ref. [64]. Here the
manifold M is decomposed by means of a cellulation, and
the defects in the theory, which include anyons as well as
symmetry defects, are assumed to live on the 0 cells (vertices)
of the cellulation.

The authors of Ref. [63] show that the defect network
picture is equivalent to the crystalline equivalence principle.
Our formalism is equivalent to assuming the crystalline equiv-
alence principle and proceeding with the G-crossed braided
tensor category [19] and associated group cohomology clas-
sifications of SET phases. In this sense we expect that our
approach formally yields the same classification results as the
defect network picture.

However, the two approaches differ in details of physical
interpretation. Let us restrict ourselves to the SPT case for
concreteness. In this special case the defect network picture is
mathematically related to an equivariant cohomology theory,
in which one considers the high-symmetry points of a space
group unit cell and places symmetry charges on these high
symmetry points. Two configurations of symmetry charge
are in different SPT phases if they cannot be deformed into
one another by local, symmetry-preserving unitaries. (This
procedure is essentially the “block state” construction of SPT
phases developed in Refs. [61,62]). It is not fully clear how
this approach is equivalent to the topological response theory
that we have described in our work. We can also express this
distinction as follows: the equivariant cohomology approach
has symmetry charges, but in this picture it is not apparent
how these arrangements of charge give rise to different re-
sponses upon introducing symmetry fluxes. Reconciling the
two pictures properly is an interesting direction, but beyond
the scope of the present work.

D. Outlook

We have predicted a type of momentum fractionalization,
characterized by the discrete torsion vector, which can only
be nontrivial for M = 2, 3, 4-fold rotation symmetry together
with translation symmetry. This term leads to a number of
fractionally quantized response properties with no analog in
the continuum. Perhaps most notably this includes a fraction-
ally quantized charge polarization, which can assign nontrivial
fractional charges to dislocations and fractional charges per
unit length to boundaries (modulo the anyon charge). In
addition to this, the theory predicts fractionally quantized
linear and angular momenta for disclinations, dislocations,
and units of area. It is important to verify the predictions of
this crystalline gauge theory through microscopic studies of
model Hamiltonians and wave functions. While the fractional
charges of dislocations and disclinations can in principle
also be probed by experiments on fractional Chern insulators
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with sufficiently weak disorder, it is an interesting theoretical
question to understand the extent to which the fractionally
quantized linear and angular momenta of anyons, lattice de-
fects, and units of area can be experimentally measured.

Our theory is expected to be complete for topological
phases of bosons, where symmetries do not permute anyon
types. For fermionic states, which are most relevant for ex-
perimental studies of fractional Chern insulators in solid state
systems, our theory will still apply, although we expect some
modifications in terms of different quantizations of certain
coupling constants (e.g., some k; can be half-integer). There
may also be additional fermionic SET phases and physical
phenomena that cannot be fully captured with these effective
actions, corresponding to “beyond group supercohomology”
phases.

When the space group symmetries do permute anyon types
[65,66], lattice defects can be non-Abelian and the classifi-
cation of SETs is different. Furthermore, certain values of
the coefficients of the response theory may be constrained by
the symmetry permutation. A detailed study of this is left for
future work.

The crystalline gauge theory we have developed treats
the lattice defects as a fixed background configuration that
is described in terms of a fixed background gauge field.
Such a gauge theory apparently does not take into account
the restricted mobility of dislocations and disclinations in a
crystalline environment. The restricted mobility of these lat-
tice defects can be described using higher rank tensor gauge
fields, which are known to be dual to fracton theories (see,
e.g., Refs. [67-69]). It would be interesting to understand the
relation between the topological field theory developed here
and a formulation including higher rank tensor gauge fields
which explicitly takes into account the restricted mobility of
the lattice defects.

Finally, we note that in general, given a symmetry G of
a condensed matter system, the effective field theory must
include coupling to background gauge fields of the symmetry
in order to be fully specified. It would be interesting to revisit
the large family of effective field theories used throughout
condensed matter physics, including gapless theories, and to
properly understand the coupling to background crystalline
gauge fields.
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APPENDIX A: 2D POINT GROUP ROTATION MATRICES

An important role in the main text was played by the 2 x 2
rotation matrix U (%), associated with the generator of point
group rotations. Due to the presence of a lattice, there is a
natural basis in which point group rotation matrices U (%z)
can be defined. We define the x and y axes to be the lattice
vectors, such that for M-fold point group rotations, the x and

TABLE VI. Elementary rotation matrices U (%) for different M.

M 2 3 4 6
. -1 0\ (0 1 0 1\ (0 1
TN ) N Ry Gy N
wat L1 012 1\1/1 1[0 1
vy v )sG)aG ) )

y axes subtend an angle % For M =2, U(zﬁ”) = —1, where
1 here denotes the 2 x 2 identity matrix. For M = 3,4, 6 an
elementary %’ rotation can always be defined to take x — y.
In turn, the existence of a lattice ensures the rotated position
of y can be expressed as a linear combination of the original
x and y. The result for U (%) is given in Table VI, along with

the matrices [1 — U (zﬁ”)]’1 that also arise frequently.

In our calculations we have assumed that the lengths Ly, L,
are defined along these possibly nonorthogonal axes. More-
over, integrals [ f(x, y)dxdy should be carried out with x
and y defined by this lattice-specific coordinate system. The
advantage of using these coordinates is that we always work
with integer vectors and matrices, so the coefficients of the
theory are always integers or fractions of integers.

APPENDIX B: CRYSTALLINE GAUGE THEORY AND
RELATION TO GAUGE THEORIES OF ELASTICITY

The discrete translation gauge field R that we use has
previously been discussed in elasticity theory [16]. Here we
provide a brief review of how the discrete crystalline gauge
fields arise in elasticity theory, following Chap. 9 of Ref. [16].

In elasticity theory, the basic variables are the displace-
ments u;(7) of a particle on a lattice whose mean position is
7, along each direction i. The elastic energy is a function of
the strain tensor components 0;u; and to lowest order has the
form

1
E = 3 Zlijklaiujakul, BD

where the operator d is now interpreted as a discrete gradient.
The corresponding classical partition function is given by

o0

du,(?) _
z=T] BE
. / a ¢
Tt %)

Demanding that the energy is invariant under rigid rotations
leads to the conditions A;jx; = Awij = Ajiy among the elastic
moduli [36]. This is the most general translation-invariant
Lagrangian that can be written at lowest order in derivatives
of u;.

At low temperatures and in a classical theory, the dis-
placements u;(7) are generally much smaller than the lattice
spacing a. However, it is possible for thermal or quantum
fluctuations to result in particles exchanging their positions
over long times. Indeed, the diffusion of particles within the
lattice means that it is appropriate to think of u; as being
defined only up to a lattice constant; therefore, our partition

(B2)
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function must be invariant under a transformation

ui(F) = ui(F) + aNi(F), (B3)

where a is the lattice spacing and ; is an integer vector field
defined at the discrete positions 7. The transformation (B3)
is a gauge transformation which reflects the physical reality
that the coordinates can be relabeled up to integers. To ensure
gauge invariance under this transformation, we introduce new
integer-valued gauge fields %RU- € Z and replace

Bu1e;(7) — B (F) — ——Ryj(F). (B4)

2

[Here i, j € {x, y} and R;;(¥) is a function defined on a lattice;
this notation should not be confused with the notation ﬁij
in a simplicial formulation, where ij is a 1-simplex on a
triangulation].

Note that to model the particles precisely, we should make
sure that the gauge transformation induces a permutation of
the location of all lattice sites. This requires that the integers
N;(7) must in principle be correlated with each other, so that
we do not allow multiple atoms to occupy the same lattice site,
leaving other lattice sites completely empty. The assumption
of the crystalline gauge theory [16] is that the highly nontrivial
interdependency of N;(¥) can be ignored, and the N;(¥) can be
treated as independent integers.

The partition function then includes a sum over all possible
values of R;;:

7= 211 /"“(”

{Rij(P)} 7
- 1
E= 3 Z I:)\ijkl(aiuj -

The change of variables and subsequent sum over R;; encode
the fact that the quantities d;u; can change by any integer
values at every lattice point, and that the different particle
configurations are all treated equally. As originally desired,
Z is now invariant under the gauge transformation

(BS)

iﬂsz) <3ku1 - %Rkl):l- (B6)

ui(F) = ui(F) + aNi(F), (B7)

Rij(F) = R;ij(#) + 2m o;N; (7). (B8)

The R;; are precisely the discrete translation gauge fields
suitably defined on a lattice: R,; = X;, Ry; = Y;. Integrating out
the displacements u; will result in a pure gauge theory in terms
of the gauge fields R;;.

To further understand the fields R;;, we next look at how
this gauge theory treats dislocations. A lattice dislocation
corresponds to a missing or extra line of atoms such that the
number of nearest neighbors at the dislocation point changes.
The fields R;; allow for such configurations, which are devia-
tions from an ideal lattice configuration. These configurations
would not be included in the partition function if we restricted
ourselves to a change of variable u;(¥) — u;(¥) + aN;(¥), as
this transformation amounts to a relabeling of coordinates but
keeps the particles in an ideal lattice configuration. Another
way to say this is that the integral fy N;dl, where dI is
the infinitesimal line element along the loop y, will always
be zero in an ideal lattice and cannot represent a dislocation.

A dislocation Burgers vector is obtained from the holonomy
= SE,/ R. The symmetrized quantity §(R;; + Rj;) is the dis-
continuous part of the symmetrized strain tensor. A similar
procedure can be followed for a continuous elastic medium,
where the analog of ﬁRi_,« is referred to as the plastic strain

tensor u(p ) and is directly related to the coframe field used in
dlfferentlal geometry, as discussed in Sec. VII B.

We can also introduce disclinations in elasticity theory via
a rotation symmetry gauge field. Disclinations, the fluxes of
this rotation symmetry field, are related to the antisymmetric
component of the strain tensor, which does not enter the action
at the usual quadratic order. These effects can be included
by adding higher derivative terms to the usual Lagrangian.
Conventional elasticity theory does not, however, include
translation as well as rotation symmetry via a non-Abelian
gauge field, as we have done. Instead, it makes certain ap-
proximations that allow rotations to be incorporated without
dealing with the full space group symmetry. This does not
affect the calculations greatly for thermodynamic purposes,
but in dealing with topological properties we saw that the
non-Abelian gauge field led to a situation where only certain
properties of dislocations are gauge invariant. This feature
cannot be reproduced by an approximate calculation.

APPENDIX C: COUNT OF SETs FOR THE LAUGHLIN
STATE WITH G = U (1) x Ggpace

In Sec. VI we discussed a general procedure to account for
redundancies in the #>[G, U (1)] classification of SET phases
using relabelings of the gauge field, when G = Z),. Here we
will generalize that procedure to G = U (1) x Ggpace-

We first recall the effective action written in Eq. (31):

1
L= —Eal U K”daj + Lirac + Lspr,

1 I N -
—a U (qidA+ s;dC +1; - d}(—‘r mjAxy),

Acfrac = o

k k k
Lspr = —~AUdA + ~2AUdC + —CUdC
2 2 2

1 o - 1 > >
+ —AU (ks - dR) + —C U (ks - dR)
2 2w
(C1)

(Kot Be)ua
2t 2n xr

The integer coefficients k; through k; have the following in-
dependent redundancies arising from the group structure of
H3[G, U(1)] (k; and kg have no redundancy):
ky ~ ky +MMx,,
ks ~ k3 + M3,
ko~ ks +(1— U(z—”>)i4,
M
ks ~ ks + (1 — U(z—”))is,
M

k7 ~ k7 +MMXq, (2)
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where A; € Z. We also have the following independent equiv-
alence for the anyon s, introduced in Eq. (90):

sy~ st +MAg g, (C3)

where A are integers.

Now there is an additional independent equivalence involv-
ing the anyons #;. Note that the following term is trivial, and
can therefore be added to the effective action with no change
to the partition function:

2
m]\, dd UR= - R, dd' UR, (C4)
2 ’ 2r
where f\,, ; are integer vectors. The second expression is al-
ways a multiple of 27 for a flat gauge field configuration of @/,
and is therefore trivial. This implies the following equivalence
relation, which we have discussed previously:

-~ S 2w\ -
H~4+0-U i VA1 (C5)

Now the most general relabeling of the gauge fields a'
which preserves the flux quantization condition [ da’ € 27 Z,

includes the gauge field ,;( as well as the gauge field C:
d —d +u'C+v R, (C6)

where u, v’

field configuration, both dC and dR are multiples of 27, and
therefore this relabeling does not affect the flux quantization
condition.

We can now repeat the procedure adopted in Sec. VI. First
we relabel the fields a’ as indicated above. Then we find the
constraints on u/, 3’ such that s; and #; can be shifted back to
their original values by the addition of trivial terms. Finally,
we compute the change in the coefficients k; through k7 that
is required in order to leave the effective action invariant after
this relabeling.

The result is the following: s; and 7; can be shifted back to
their original values when

Ku = MA,,,

ko' =|1-v( )& c7
v—|: - <M>] » )

For such relabelings, the SPT coefficients change simultane-
ously, in the following way:

are all integers. For a flat background gauge

ky — ko — q'uy,

MIKIJMJ I
— S u,

k3 ad k3 —

%4 e E4 — ﬁl(,]],

iés — ES - 1_51S1 - ulf} — MIKIJDJ,

k7 ad k7 — mIM]. (C8)
Note that all coefficients except k; and k¢ can be transformed
in principle by these relabelings.

We will now use this result to perform some specific com-

putations. Consider an example with the 1/N Laughlin state

(with N even) and U(1) x p4 = U(1) x [Z? x Z4] symme-
try.

In this case we have M = 4 and K = N. The integer s is
defined modulo gcd(4, N), which is either 2 or 4, since we
consider N to be even; the integers g, m are defined modulo
N. The equivalence class of the torsion vector 7 is given by
the value of #, +¢, mod 2. The condition on the relabeling
indices u, v, Eq. (C7), now becomes

Nu = 4A,, (C9)

N© = [1 —U(%)]]\,.

The transformation of SPT coefficients, Eq. (C8), now reads

(C10)

ky = ky — qu,

2
k3 — ks — — — su,
3 3 2
124 — E4 —qv,
ks — ks — sU — uf,
k; — k7 — mu. (C11
Note that the SPTs parametrized by 124, k_; are nontrivial only
if ky x + ka4, (respectively ks, + ks ) is odd. Since N must be
even, the term —Nu? in the transformation of 125 is trivial, and
has been ignored. With N a multiple of 4, we can without loss
of generality take u = 1 to satisfy the constraint; however, we
must choose v; to be even. Hence ¥ will not be responsible for
any nontrivial relabelings.

When N is of the form 4N’ + 2 we must choose u = 2,
while ¥ must be chosen so that v, + v, is even. However, this
means that v still gives a trivial contribution to the relabelings
of k4, ks, and hence we only need to consider transformations

due to u.

The SET equivalences for this example are summarized in
Table IV. Note that in our examples, it is crucial that C, R be
discrete, so that we can add trivial terms such as A;—jal udcC.
This is not possible for continuous symmetry gauge fields: a
term 24—7’Ta1 U dA cannot be trivial on its own for any nonzero
integer value of ¢;. This means that there is no chain of equiv-
alences relating different elements of H*[U (1), U(1)] while
keeping the charge vector g fixed. This is consistent with the
fact that the different U (1) SETs with the same charge vector
all have different Hall conductivities, and are thus physically
distinct states of matter.

In our final example below, we will count the number of
distinct SETs associated with the 1/2 Laughlin state with
U(1) X Ggpace symmetry. We will only present the results,
which can be derived using the arguments above. In this case,
the parameters ¢, s, f,, t,, m can correspond to the identity
particle / or to the semion S. The parameters k; and k¢ will not
be affected by relabelings and will always contribute a factor
of Z x 7Z to the overall SET classification; we assume they
are fixed. The remaining SPT parameters k,, k3, E4, 755, ky
are classified by the group Zy x Zy X Ky X Ky X Zy. The
relabeling equation is now

ky = ky — qu,

k3—>k3—u2—su,
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%4 — 754 — qv,

ks — ks — sU — uf — 2ud,

k7 — k7 — mu, (C12)
where
2u = M A,
. 27\ |-
20=|1=-U(— ) |A;. (C13)
M

We analyze M = 2, 3, 4, 6 separately below:

(1) For M =2 there are two ways to choose each of
q, s, Ly, t,, m. We also have |Z% X K22| = 27. We can choose
u and v arbitrarily. There are now different cases. If g = s =1
there is a factor 2 reduction due to u. If exactly one of ¢, s
equals S, there is a factor 23 = 8 reduction due to both « and ©.
By varying v, we see that if ¢ = S, all values of 124 are trivial,
while if s = S, all values of 1;5 are trivial. Finally, ifg = s = S,
we have a factor 2° = 32 reduction, and both 124 and 1_55 will be
trivial.

Therefore we obtain

8 16 8
27(—+—~|——>=800

14
2 8 32 (€14

SETs.

(2) For M = 3 there are two choices each for ¢ and m,
but all possible choices for s and 7 are trivial. Thus there are
four symmetry fractionalization classes. We also have |Z3 x
K3| = 3°. There are no relabelings involving either u or ¥,
since we must choose both # and v, — v, to be multiples of
3. Hence we get 3° = 243 distinct SETs for each symmetry
fractionalization class, and 4 x 243 = 972 SETs in total.

(3) For M = 4 there are two choices each for ¢, s, m, and
t, +t,, giving 16 choices of charge vectors in total. We also
have |Zé31 X K42| = 23. First we note that we have to choose
vx + v, even, implying that ¥ is not responsible for any non-
trivial equivalences. Therefore we only consider equivalences
due to u = 2.

We have 2% x 43 =256 SETs whenever g =s=m =1
(there are no relabelings); otherwise we have 2 x 4° = 128
SETs. This gives 2 x 256 + 14 x 128 = 2304 SETs in total.

(4) For M = 6 there are two choices each for ¢, s, m,
while 7 is anyway trivial, and so we do not have to consider
relabelings involving ¥. We also have |Z}| = 6°. The only
relabelings come from setting # = 1. Now we have 6° = 216
SETs whenever g = M =1 and s = S (there are no relabel-
ings in these cases); otherwise we have 63/2 = 108 SETs.
This gives 1 x 216 4+ 7 x 108 = 972 SETs in total.

If we specialize to the M =4 case, we find that there
are 2304 distinct SETs, in contrast to the naive estimate of
|H2(G, A) x H3[G, U(1)]] = 4096. Note that much of the
analysis was simplified by our choice of the 1/2 Laughlin
topological order. If we consider more complicated topologi-
cal orders, the analysis will become much more involved.

APPENDIX D: TOPOLOGICAL TERMS AND GROUP
COHOMOLOGY

The correspondence between the topological effective ac-
tion and the group cohomology formulation runs deeper than
giving the same overall classification. There is a one-to-one
correspondence between topological terms in the action in-
volving flat background G gauge fields and cocycles in group
cohomology. In this Appendix we will explain this relation-
ship through concrete calculations.

Let us first summarize the relationship between
H3[G,U(1)] and the topological terms in Lgspr, which
correspond to topological effective actions for (2 4+ 1)D SPT
states. See Refs. [43,44] for a more detailed discussion. For
an overview of simplicial calculus, see Ref. [47].

(1) A topological Lagrangian for an SPT involving flat
G gauge fields (defined on 1-simplices) can be integrated
over a 3-simplex of a triangulation, which gives an action §
associated with a single 3-simplex. The resulting ¢S, which
depends on the values of the flat gauge field defined on the
1-simplices, is thus a 3-cochain of G valued in U (1), i.e., an
element of C3[G, U (1)].

(2) In fact ¢ is a 3-cocycle of G valued in U(1), ie.,
an element of Z3[G, U (1)]. The 3-cocycle condition arises by
demanding that the theory be independent of the triangulation.

(3) Gauge transformations applied to the G gauge fields
on a triangulation change the value of ¢S by an amount eldr,
which corresponds to a 3-coboundary of G valued in U (1), or
an element of B*[G, U (1)].

Therefore we see that gauge-inequivalent topological ac-
tions for flat G gauge fields fall into equivalence classes

determined by the quotient H3[G, U (1)] := %. It has
been shown that this fully characterizes topolo’gical gauge
theories for gauge group G [43], and also believed to fully
characterize (2 4+ 1)D SPTs [44,70]. It is also known to clas-
sify the fusion and braiding properties of symmetry defects in
(2 + 1)D SETs once the symmetry fractionalization class has
been fixed [19].

Let us now summarize the relationship between H2(G, A)
and Ly,.. Consider the coupling of flat G gauge fields to flat
internal gauge fields describing the Abelian topological order
(we assume that the symmetry does not permute anyons):

(1) Consider a single internal U (1) gauge field a. Consider
a topological term which is an integer multiple of ﬁa U B,
where B € 2 Z is obtained in terms of the G gauge field and
is defined on 2-simplices. Note that B € 27 Z in order for this
term to be invariant under large gauge transformations of a.

(2) This action can be thought of as an action for U (1) x
G symmetry. Demanding retriangulation invariance implies
that %a U B must be a 3-cocycle: %d(a UB) = %(da U
B+ aUdB) € 2nZ. Since a is flat, da € 2nZ, so we find
dB =0.

A G gauge transformation which takes B — B +dT,
where ﬁf‘ € Z, changes the Lagrangian by a 2-coboundary
of G with Z coefficients. Therefore the gauge inequivalent ac-
tions fall into equivalence classes determined by the quotient

2 . 7XG.Z)
When there are D independent internal gauge fields, the

coefficient changes from Z to ZP.
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(3) The K-matrix coupling ensures that if B is of the form
i

KA where A is an integer vector, the theory is trivial.
This is because the anyon associated with the “symmetry
flux” B is trivial. Therefore the correct coefficients which
classify physically distinct couplings of the K-matrix theory
to the background G gauge field are ZP/KZP = A. This is
in fact the definition of .4, the group of anyons. Therefore the
classification of such actions is given by H?(G, A).

In what follows we describe in more detail the precise
relation between the topological terms in the effective action
and the group cohomology cocycles for the symmetry group
discussed in this paper, G = U (1) X Ggpace. Note that the sym-
bol H refers to cohomology with measurable cochains, also
known as Borel cohomology. For n > 0, the groups H"(G, Z)
and H"(BG, Z) coincide. Here H(BG, Z) refers to the coho-

mology of the classifying space BG of G.

1. Cocycle representatives for G = U(1) and G = Zy,
G = U(1): In this case we have

1
Lfrac = —61101 U dAa (Dl)
2

Lspr = iA UdA, (D2)
2

where g, k € Z. Here § is the charge vector. Define a flat,
real-valued gauge field A such that Aj, = a and A3 = b. For-
mally A is the lift of a U (1) gauge field to R. A corresponding
element of U(1) = R/2x7Z is written as [a] = a mod 2x;
therefore a = [a] + 2mn, for some n, € Z. Now for the 3-
simplex [0123], Ly, becomes

qi qr
Ea(l)ldAm = ga(l)l{[a] + [b] — [a + b] + dn(a, b)},
(D3)
where dn(a, b) = ny 4 ny — nayp. The quantity J-{[a] +

[b] — [a + b] + dn(a, b)} defines an anyon, i.e., an element
in A, and thus can be viewed as an .A-valued 2-cocycle,
i.e., an element of Z*[U(1), A]. The quantity +dn(a,b) is
an A-valued 2-coboundary, i.e., an element of B>[U(1), A].
In general, coboundaries correspond to changes of lift. In-
equivalent choices of § determine inequivalent classes in the
cohomology group H2[U (1), A] = A.

A similar analysis can be made for the SPT term %A UdA.
In this case, choose a 3-simplex [0123] with Ag; = a, A, =
b, Az = c (the other values are fixed by the flatness of A).
Again, A is formally a lift from U (1) to R. Then we have

k k
—AUdA[0123] = —Ag; X dAj23,
2 2

k
= 2—([a] + n){[b] + [c]
T

—[b+cl+dnb,c)). (D4

When evaluated modulo 27, the right-hand side is a 3-cocycle
which represents a cohomology class in HIUMD, UMD =Z
identified by k; the terms which explicitly depend on n arise
by choosing alternative lifts. For each choice of charge vector
g, it is possible to add a Z worth of SPT states. This means
that for each symmetry fractionalization class, one can obtain

a set of topological phases related to each other by stacking
G-SPT states, given by elements of #3[G, U(1)].

G = Zy: Effective SPT actions for G = Zj; have been
related to Z, group cocycles in previous work [71]. The
action for G = Z is

1

Line = —d' UdC, (D5)
2
k

Lspr = —CUdC. (D6)
27

Define a flat gauge field C € %Z such that Cy, = 2mwa/M
and Cy3 = 2wb/M where a, b are integers. Formally C is a
lift from Zj to ZM”Z. A corresponding element of Z, is
written as 24y — 27¢ 64 27, where we define laly = a
mod M; therefore a = [aly + Mn, for some n, € Z. Now
Lac becomes

ST I
—a, dC123

= Srapllaly + [bly — [a+ bly + Mdn(a,b)). (D7)
The quantity 37{[aly + [bly — [a + bly + Mdn(a, b)} is a
2-cocycle in the group Z*(Zy;, A). The quantity s;dn(a, b),
which is the difference between two different choices of lifts,
is a 2-coboundary in the group B*(Z;, A). Note that the most
general coboundary relation implies that shifting s; by a multi-
ple of M corresponds to changing the lift; therefore s; + M A;
for A; € Z is equivalent to s;. With these conditions we see
that the equivalence classes of s are in bijection with coho-
mology classes [t0] € H*(Zy, A). When A =7Z, x ---x
Z,,, we simply have H*(Zy, A) = L) X =+ X Lpn,) =
A/MA (M A is defined as {Mala € A}).

Next we analyze Lspr. The Lagrangian integrated on a 3-
simplex with Cp; = a, Cjp = b, Cy3 = c gives

k cUacrornz) = Mn){[b
7 [l 1= W([G]M + Mn ){[bly + [clm

—[b+ cly + Mdn(b, c)}.

Taken modulo 2w, this function is a 3-cocycle in
Z3[Zy, U] Choosing k to be a multiple of M results in a
3-coboundary; therefore the classification is H3[Zy, U (1)] =
Zy. Since the 3-cocycles of Zjy, and U (1) have a similar form,
the resulting SPT terms, which are of the form A U dA and
C U dC, also have the same Chern-Simons structure.

(D8)

2. Calculation of H*(Ggpaces Z) and H3[Ggpaces U(1)]

The part of the action with terms from the group Gypace is

s -
Line = ~Lal UdC + a UdR+ L d UAyy, (DY)
2w 2 2m

Lor=3cuac+ Bcvags Fcuay. o)
2 2 2

Since the group cocycles for Ggpace are less common than
those of U (1) or Zy;, we will first derive them abstractly and
then discuss their relationship to the gauge fields R and C. A
space group Ggpace can always be written as a group extension
of a point group H by the group of translations Z?, with some
action 0 : H — Aut(Z?), as summarized by the short exact
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sequence

l—>Zz—>Gspm—>H—>1.

(D11)

When a group G can be expressed in terms of a direct product
extension, we can use the Kiinneth formula and its associated
decomposition to determine its cohomology groups. When H
is a rotation point group, the above extension is on the other
hand always a semidirect product. If it were possible to apply
the Kiinneth decomposition to the above semidirect product
extension for the cohomology of Ggpee With Z coefficients,
we would obtain

Hn(Gspacea Z)= 1_[ Hgk [H, Hn_k(Zz, 7))].

k=0

(D12)

This equation will be further explained below; however we
first note the following caveats. For a general semidirect
product extension, it is not possible to use the Kiinneth decom-
position. The more general technique that is applicable in this
case involves what are referred to as spectral sequences (see,
e.g., Refs. [72,73] for an introduction). When G = Ggpace,
however, the cohomology groups H"(Ggpace, Z) can be nu-
merically computed using a program such as GAP, as was
done in Ref. [17]. Although we do not show the calculations
here, we can apply spectral sequence techniques (specifically,
we use the Lyndon-Hochschild-Serre spectral sequence) and
compare them to the known numerical results. From this we
can infer that the correct expansion for H" (Ggpace, Z) is indeed
given by the Kiinneth decomposition. Knowing this result, we
can finally use the Kiinneth decomposition again to obtain the
cohomology of the group U (1) X Ggpace-

In (D12) the action 6 is not on Z? itself, but on the
cohomology group H"%(Z?, A); it is induced by the action
6 of H on Z2, and will be discussed further below.

Let us first study the classification of symmetry fraction-
alization. It is easiest to first compute Hz(Gspace, 7)) and then
shift to A coefficients. Eq. (D12) gives

H*(Gpace Z) = M [Zog, HU(Z?, 1))
x My [Zy, H'(Z?, 1))
x My [Zy, H (2, 1)]
= M3 (Zn, Z) x Hp (Zy, Z x Z.)
xHy (Zy, L)
=Zy X Ky x 7.

(D13)

(D14)
(D15)

The first line is the Kiinneth decomposition. In the second line
we substituted the known cohomology groups H*(Z?, Z) =

Z®. The result of evaluating these cohomology groups is
shown on the last line; these calculations will be discussed
further below.

Using Eq. (D12) we can next compute

HH (Gopaces Z) = Hiy [Zyg, HO(Z?, L)
xHy, [Zy, H'(Z2, 1)
xHg (Zy, H (2, 1)]
= Hi (Zy, Z) x H (L, T x Z)

(D16)

xHg (Zy, L)

=ZMXKMXZM.

(D17)
(D18)

For a finite group or a compact Lie group G, it is a general
result that #"[G, U(1)] = H""'(G, Z) when n > 0. Thus we
can compute the cohomology groups of U(1) with both Z
and U (1) coefficients. However, this statement does not hold
for arbitrary G. Verifying this requires additional spectral se-
quence computations, which we will not show here. However,
these computations indeed reveal that

H [Gopace U] = H* (Gipaces Z) (D19)

for Gepace = 72 x Zy (we in fact expect this relation to hold
for a general 2D space group, although we have not done
the more general computation). Finally, we use the Kiinneth
decomposition for the direct product U (1) X Ggpace and use
the above results to obtain [74]

H3U (1) X Gypace, U] = H[U (1), U(1)]

x HA(Gypaces Z.) X H[Gypace, U(1)] (D20)

=7%x 73, x Kg. (D21)

Note that since U(1) is a continuous group, and we are
working with measurable (Borel) cohomology, it is difficult
to compute its cohomology groups directly, and in doing so
we must rely on technical mathematical results. To provide
some additional intuition about the cohomology of U (1) using
results on finite groups, Ref. [44] computed the cohomology
groups of Z, and showed how they were related to those
of U(1) upon taking an appropriate limit where n — oo. In
a similar spirit, we can compute the cohomology of G =
Zy % Ggpace for an arbitrary integer n using the Kiinneth de-
composition, and obtain [74]

H3[Zy % Gypaces U(D] = H[Z,, U(1)]

x H*(Gspaces Zn) X H[Gspaces U(1)] (D22)

=72 xZ% x Ky X Zgny X (Kt ® Zy). (D23)

Thus we obtain a result which bears a significant resem-
blance to the claimed result for U(1) x Ggpace: the difference
is that some groups in the above classification depend on the
commensuration between n and M. If we choose n to be a
multiple of M, and take n — oo, so that the initial factors
of Z, are replaced by Z, we recover the result for the group
U(l) X Gspace-

3. Cocycle representatives for H2(Ggpaces Z)

Note that all 2-cocycles must satisfy the following condi-
tion:

f2(g1, 82) + f2(8182, 83) = f2(g2, &3) + f2(81, £283).
(D24)

Where, lf 8i = (7,‘, hi), then 8182 = [71 + U(I’ll)?z, ]’l] + hz]
In what follows, we assume that the translation gauge field R
is valued in 27t Z2, while the Z? group elements 7; are assumed
to be integer valued. Cocycles in z¢ (Gspace> Z) are denoted as

fa-
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a. H [ Zus HO(Z2, 1)

The cocycles in the coefficient group H°(Z?, Z) in the first
term of Eq. (D13) are constant functions valued in Z. The Zy,
rotations, which act on Z2, therefore do not change the value
of these functions, so that 9, is the trivial action. The first term
is thus isomorphic to H2(Zy, Z), and the associated cocycle
representatives of Gspace are fZ(gl’ 82) = ﬁ([hl]M + [hZ]M -
[~ + holy) with s € Zy, as discussed previously. The corre-
sponding field-theoretic element is 5-dC.

b. HY [y, HN(Z2, L)]

Now we consider the second term of (D13). The coefficient
module H'(Z?, 7,) has cocycle representatives of the form p;,
where p;(7) =1 - 7 for some 7 € Z>. Under a rotation U (h),
pr gets transformed as 7 - U (h)F = [UT (W] - 7 = pyr e (F).
This means that the induced action on the coefficients is
equivalent to the rotation action #; = @ on vectors in Z>.

The first observation is that the group Hél (Zy, Z?) classi-
fies functions f; taking elements / of Zy; to vectors in Z>. We

have H}(Zy, Z°) = % = Ky, using standard results
M

on the cohomology of cyclic groups (see, e.g., Ref. [44]). A
representative cocycle f; of this group has the form

1-U(h)

Sfi(h) = J1@m /M),

where fi(2 /M) =1 for some € Z?, and the U matrices act
on by rotation.

Next we consider the more detailed decomposition
Hé] [Zy, H'(Z?, Z)]. A cocycle of this group maps an el-
ement h € Zy to a cohomology class [pra] € HY(Z?, 7)
whose representatives are functions py, ).

The desired 2-cocycle of Ggpace is completely determined
in terms of py, ) as follows:

f2(81, 82) = prwy(72) (D26)
1-Uh) .
Y il AVFA B 2
(1 — U(zﬁ”)t) 0 (D27)

This function, with parameter 7, satisfies the 2-cocycle con-
dition for Ggpace. Values of 7 which are of the form 7 = [1 —
UQrn /M )I” are trivial, as the resulting cocycles are actually
2-coboundaries db, where b(g) =1’ - 7. It is easy to motivate
this function by looking at a 2-simplex [012]. If 5-Ro =
71, Co1 = hy, and %R'lz = 7, then from flatness of (ﬁ, C)
we have %ﬁoz = 71 + U (hy)#,. Therefore %dﬁ[OlZ] =7F+
7y — [ + U] = [1 — U(hy)]7,. Since U (hy) is a power
of U(%), this function is always a multiple of [1 — U(zﬁ”)].

LZU@) 7 s integer valued for all
1=U(5p)

f € Z°. However, it cannot be generated on a 2-simplex by
a 2-coboundary df (g1, g») (the only function that would give
dfis f(g) =1-[1 — U(zﬁ”)]’l?, which is not integer valued,
unless 7 has the trivial form). The field theory element giving
this value is 2 - dR = 5= - [1 — UCZZ)]dR.

Therefore, f>(g1,82) =1 -

¢. HY[Zy, HA (22, 1)]

Finally, we study the third term of (D13). The coeffi-
cient module H2(Z?, Z) has representatives w,, for m € Z,
satisfying w,,(¥1, 7)) — w,, (2, F{) = mF; X 7,. Although the
rotation action changes the form of w,,, the above cross
product (and hence the value of m) is rotationally invariant,
and in this sense the action 6 is trivial. Now the group
"Hgo(ZM, Z) classifies functions fy taking each h € Zy, to
some fixed integer fy(h) = m € Z. Therefore a cocycle in
the group ’Hgo [Zy, H2(Z?, Z)] should take h to the cohomol-
ogy class [wy, )] whose representatives w ) are such that
wfo(h)(71 , ) — U)fo(h)(?z, 71)1s rotationally invariant.

It can be verified that the following function is a 2-cocycle
of Gypace With these properties:

(g1, 82) = wrap i, Uh)ia] = mry 4[U (h)72]y. (D28)

In this case we have w71, U ()] —
wmlU (h)7, 1] = mFy x U(hy)7,. The cross product
is invariant under rotations and is a measure of area. If
operations 2 and 1 are performed successively, the rotation &,
changes the relative orientation of axes used to measure the
two translations. The vector 7, is therefore rotated by U (k)
so as to meaningfully take a cross product with 7.

Consider the quantity w}o(hl)[?l’ U(h)i] = 57 x
U(h)F,. Although it is not an integer-valued cocycle,
it satisfies the 2-cocycle condition with %Z coeffi-
cients (hence it can be used to obtain a topologically
invariant action on 3-simplices). This function satisfies
w}b(hl)[?l’ U(hl);:Z] - w}'o(hl)[U(hl);ZZv 71] = mFI X U(hl);:Z’
i.e., it has the same gauge-invariant property as f>(gi, £2);
moreover, it is already rotationally invariant. We use this
%Z-valued cocycle in the field theory because it is closely
related to the integer-valued space group cocycles, and
furthermore the cross product is an intuitive measure of
area. The corresponding field theory object is 7-Axy, where
Axy[012] = #(ﬁm) X U(Cm)]?]z. The gauge transformation
behavior of Axy and its physical relationship to the area
element were discussed in Sec. III B.

d. Classification

The classification Hz(Gspace, Z) is seen from the discus-
sion above to be Zy; x Ky; x Z. To obtain the classification
of symmetry fractionalization, we use the universal coefficient
theorem [75] to write

H*(Gspaces A)

= Hz(Gspace, 7)® A x TOI[HS(Gspacev 7), -A] (D29)

= H"*(Gypace, Z) ® A (D30)
[we can check that the group Hs(Gspace, 7)) vanishes when
Gipace 18 orientation preserving]. The ® (tensor product) sym-
bol defines the tensor product G @ H of Abelian groups G and
H.The group G ® H is defined as the set of pairs g ® h where
g € G, h € H, where ® is a bilinear operation such that g ® h
is trivial if either g or 4 is trivial. For example, if ng = 14 (the
identity element of G), n(g ® h) = (ng) ® h = 15gy; and this
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argument runs similarly for 4. The group G ® H is completely
defined by the following properties:

G®H=HQ®AQG, (D31)

(]‘[ G,-> ® (]"[ H,-) =[G ®H), (D32)
i J i,j

GRZ=QG, (D33)

Tom @ Ly = Ty, d = ged(m, n). (D34)

The topological terms classified by Hz(Gspace, 7Z)® A are
thus consistent with the group structure of symmetry fluxes
[classified by Hz(Gspace, 7.)] as well as that of anyons (classi-
fied by .A). The formal effect of the ® symbol is to replace
the Z coefficients by A coefficients. This means that the
coefficients s, 7, m are replaced by vectors s;, 7, my in
ZP . Moreover, if these parameters take the form K ]\, they are
trivial. With this change, the above cocycles all become cocy-
cle respresentatives for Hz(Gspace, A= (AMA) x (Ky ®
A) x A. (Note that Zy ® A= A/MA). Effective actions
corresponding to these cocycles are recovered by taking a cup
product of the vector a; of internal gauge fields with the field
theory term corresponding to a representative of H>(G, A).

4. Cocycle representatives for 73 [Gspace, U(D)]

With our knowledge of H2(Gspace, Z), it is easy to under-
stand the group H3[Gspace, U (1)]. We can derive its cocycle
representatives in the following direct way. The Ggpace charges
are classified by ’Hl[Gspace, U(1)] = Zy (corresponding to
the charges of C), whose generator is represented by the
cocycle fi(h) =2n[h]ly/M mod 2m. The associated field
theory element is just C. The fluxes are classified by the
group Hz(Gspace, 7). Therefore SPT cocycles, which asso-

ciate symmetry flux to an elementary symmetry charge, are all
of the form v(gy, g2, 83) = Q”A[,I}“],B(gz,gﬁ mod 2, where
[B] € ”H,Z(Gspace, Z). These functions satisfy the 3-cocycle
condition for ’}—[3[Gspace, U (1)], and correspond to taking the
cup product of a cocycle in H'[Zy, U(1)] with another from
Hz(Gspacev Z)

To obtain the relevant SPT cocycle representatives, con-
sider the three subgroups Si, k =0, 1,2, of Hz(Gspace, 7),
defined as

Sy := HNZy, HZ 5 (Z2, 7). (D35)

From the definition of the tensor product, the clas-
sification of SPT terms obtained by associating an
elementary Zj, charge to a flux represented by a
cocycle of S; is Zy ® S;. The full SPT classification is
therefore ]_[iz:o Iy ®Si = (Zy @ Zy) X (Zyg @ Kyy) %
Zy Q®Z)=17Zpy X Ky X Zp. This is the same as
the Kiinneth decomposition result: 7—[3[Gspace, unl=
H3 N Zp, U] x H2[Zpy, U(1) x U(1)] x

HY Ly, HAZ2, U]} = 73, x Ky Therefore the
flux-charge construction accounts for all the group
cohomology SPTs. The cocycles so obtained are moreover
in one-to-one correspondence with cocycle representatives of
H4(Gspacev Z)

The cocycles for mixed SPTs of U (1) and Gypace Symmetry
are obtained by a cup product of a 1-cocycle representative
of H'[U(1),U(1)] (generated by fi(a) = [a] mod 27) and
a 2-cocycle representative of Hz(Gspace, 7). Finally, the full
H3 [Gspace x U (1), U(1)] classification can also be obtained
from the Kiinneth decomposition: it equals Z* x Z3, x KZ.
In this case, the possible charges are classified by the group
Z x Zy, corresponding to charge of A and C, respectively.
These charges couple to fluxes, i.e., representatives of the
group H*(Gspace, Z), to give the full SPT action for the group
Gspace X U(l)
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