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Clean isotropic quantum Hall fluids in the continuum possess a host of symmetry-protected quantized invari-
ants, such as the Hall conductivity, shift, and Hall viscosity. Here we develop a theory of symmetry-protected
quantized invariants for topological phases defined on a lattice, where quantized invariants with no continuum
analog can arise. We develop topological field theories using discrete crystalline gauge fields to fully characterize
quantized invariants of (2 + 1)D Abelian topological orders with symmetry group G = U (1) × Gspace, where
Gspace consists of orientation-preserving space group symmetries on the lattice. We show how discrete rotational
and translational symmetry fractionalization can be characterized by a discrete spin vector, a discrete torsion
vector which has no analog in the continuum or in the absence of lattice rotation symmetry, and an area vector,
which also has no analog in the continuum. The discrete torsion vector implies a type of crystal momentum
fractionalization that is only nontrivial for two, three, and fourfold rotation symmetry. The quantized topological
response theory includes a discrete version of the shift, which binds fractional charge to disclinations and
corners, a fractionally quantized angular momentum of disclinations, rotationally symmetric fractional charge
polarization and its angular momentum counterpart, constraints on charge and angular momentum per unit cell,
and quantized momentum bound to dislocations and units of area. The fractionally quantized charge polarization,
which is nontrivial only on a lattice with two, three, and fourfold rotation symmetry, implies a fractional charge
bound to lattice dislocations and a fractional charge per unit length along the boundary. An important role is
played by a finite group grading on Burgers vectors, which depends on the point group symmetry of the lattice.
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I. INTRODUCTION

One of the most striking discoveries in physics is the
quantized Hall conductivity of integer and fractional quantum
Hall (FQH) systems [1,2]. The quantized Hall conductivity
[3], which requires U (1) charge conservation to define, is
however only one of many symmetry-protected topological
invariants of FQH systems. In the continuum, clean isotropic
quantum Hall systems possess additional symmetry-protected
invariants, such as a quantized Hall viscosity [4–9], the shift,
and fractional orbital spin of quasiparticles [10]. These invari-
ants define quantized responses to deformations of the spatial
geometry [8,10–13].

The problem of interacting particles in the continuum is
in many cases an approximation to interacting particles on a
lattice. This approximation is typically only valid in a dilute
limit where the lattice effects can be ignored. However topo-
logically ordered phases can also occur when lattice effects
are strong, such as in fractional Chern insulators or quantum
spin liquids [14,15]. The crystalline symmetry can in principle
allow for new topological invariants that are not possible
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in continuum systems, while also modifying the known in-
variants of continuum systems. It is therefore important to
understand the possible topological invariants that are pro-
tected by the crystalline symmetry of the lattice, together with
the on-site symmetry.

In this paper we develop such an understanding in the
case of (2 + 1)D Abelian topological phases with symme-
try group G = U (1) × Gspace, where Gspace = Z2

� ZM , for
M = 1, 2, 3, 4, 6, is a discrete orientation-preserving space
group symmetry of a lattice. To do this, we develop a the-
ory of discrete “crystalline gauge fields” coupled to the
emergent dynamicalU (1) gauge fields that describe the topo-
logical order. The crystalline gauge fields include gauge
fields associated with the discrete translation and rotation
symmetries, which keep track of certain geometric prop-
erties of the lattice, such as the presence of dislocations
and disclinations, and areas and lengths of closed cycles in
lattice units. As such, they form a discrete analog of the
coframe field and spin connection used in continuum ge-
ometry. While crystalline gauge fields have been discussed
before in the theory of elasticity [16], previous treatments in
elasticity theory have not fully taken into account the non-
Abelian nature of the space groups involved. We note that
recently crystalline gauge fields have also been used in the
study of quantum phases of matter, see, e.g., Refs. [17,18],
although effective actions involving both translation and ro-
tation gauge fields have not to our knowledge been discussed
previously.
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TABLE I. Summary of the parameters defining topologically nontrivial terms in the effective action [Eq. (31)] for G = U (1) × Gspace,
and their classification. �q, �s, �t, �m characterize symmetry fractionalization, while ki parametrize additional SPT (Dijkgraaf-Witten) terms in
effective action. The topological order is characterized by a D × D K matrix, and the vectors ��i, ��i are arbitrary D × 1 integer vectors. A is
the Abelian group arising from fusion of the anyons. KM = Z1,Z2

2,Z3,Z2,Z1, for M = 1, 2, 3, 4, 6 respectively. Relabeling the dynamical
gauge fields can give redundancies among different choices of the above parameters.

Characterizing symmetry fractionalization SPT terms: integer contributions to response theory

Parameter �q �s �t �m k1 k2 k3 �k4 �k5 k6 k7

Allowed values ZD ZD ZD × ZD ZD Z Z Z Z2 Z2 Z Z

Trivial values K �� K ��1 + M ��2

(K ��1
K ��2

) + [1 −U ( 2πM )]
(��1

��2

)
K �� 0 MZ MZ [1 −U ( 2πM )]Z2 [1 −U ( 2πM )]Z2 0 MZ

Classification A A/MA KM ⊗ A A Z ZM ZM KM KM Z ZM

Recently a powerful algebraic theory using G-crossed
braided tensor categories has been developed to compre-
hensively characterize and classify (2 + 1)D topologically
ordered phases of matter with symmetry [19]. In the case
of Abelian topological orders with symmetries whose action
does not permute distinct quasiparticle types, an alternate
approach using topological effective actions, which we de-
velop here, is significantly simpler and yields insight into the
physical response.

Our results may be of particular relevance in a number of
physical systems. These include the experimentally realized
fractional Chern insulators in van der Waals heterostructures
[14,20] and synthetic quantum Hall systems in photonics
[21,22] or ultracold atoms [23,24]. These platforms may in
particular be able to directly measure the (fractionally) quan-
tized charges bound to lattice dislocations and disclinations.
Our results are also of relevance for the study of quantum Hall
systems with crystalline symmetries on orbifolds [12,25,26],
polygons, and two-dimensional surfaces of polyhedra.

Our results are summarized in Tables I and II. We find that
in general symmetry fractionalization for G = U (1) × Gspace

is determined by four invariants, which are specified by a
charge vector �q, a discrete spin vector �s, a discrete torsion
vector (�tx, �ty), and an area vector �m. The discrete spin vector
�s is a discrete version of the well-known spin vector used
in continuum FQH states [10], which specifies a fractional
orbital angular momentum for the anyons [25]. The discrete
torsion vector �t has no analog in the continuum and can only
be nontrivial forM = 2, 3, 4-fold lattice rotational symmetry;
it specifies a fractional linear momentum for the anyons that
does not appear to have been discussed in previous studies
of topological phases of matter. Finally, the area vector �m,
which also has no analog in the continuum, specifies the anyon
per unit cell [27] and determines how the anyons effectively
fractionalize the translation algebra [27–32]. The discrete spin
and torsion vectors �s and �t furthermore can only be nontrivial
when there is some appropriate commensuration between M,
the order of the point group symmetry, and the group structure
of the fusion rules of the anyons.

The quantized response theory, obtained by integrating out
the dynamical U (1) gauge fields, provides the response of
the system to background gauge fields describing background
electromagnetic fields and geometrical defects of the lattice
[see Eq. (45)]. We find, for example,

(1) A discrete analog of the shift of FQH states. This
binds a quantized fractional charge (modulo the charge of the

anyons) to disclinations and angular momentum to magnetic
flux.

(2) Fractional quantized angular momentum for disclina-
tions.

(3) Fractional quantized charge polarization for M =
2, 3, 4-fold rotational symmetry. This implies a fractional
charge bound to lattice dislocations (modulo the charge of the
anyons), fractional charge per unit length along boundaries
(modulo the charge of the anyons), and associates a quantized
momentum toU (1) flux.

(4) An angular momentum analog of the fractional charge
polarization, which associates a fractional angular momen-
tum with dislocations (modulo the angular momentum of the
anyons).

(5) Fractional quantized charge νc, angular momentum νs,
and linear momentum �νp per unit cell. The charge filling νc
gives a generalized Lieb-Schulz-Mattis constraint that im-
poses constraints on the topological order �m, and �q given the
charge per unit cell [27].

(6) Fractional quantized torsional response which as-
sociates momentum with dislocations. In particular, this
addresses a long-standing issue raised by Refs. [33,34], where
the coupling to continuum geometry gave an unquantized
torsional Hall response; our work predicts that properly taking
into account the discrete crystalline space group symmetry
gives rise to a fractional quantized torsional response, but only
for M = 2, 3, 4.

Our effective field theory allows us to explicitly classify
all distinct symmetry-enriched topological phases for a given
Abelian topological order (for the case where symmetries do
not permute the anyons). We find, for example, that there are
2304 distinct symmetry-enriched topological states with the
intrinsic topological order of the 1/2 Laughlin state on the
square lattice, once the integer part of the filling and Hall
conductivity are fixed.

The outline of this paper is as follows. In Sec. II we define
the background crystalline gauge field for G = U (1) × Gspace

on a manifold M with a triangulation, and in Sec. III we
study their gauge transformations and the symmetry fluxes
associated with them. The effective action for SET phases
with G symmetry is discussed in Sec. IV by coupling the
crystalline gauge field and backgroundU (1) gauge field to the
dynamical gauge fields that specify the intrinsic topological
order. In this section we also study the effective response
theory obtained by integrating out the internal gauge fields.
Specific examples involving the 1/2 Laughlin topological
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TABLE II. Summary of the quantized topological terms that arise in the effective action for a topological order coupled to a background
crystalline gauge field B = (A, �R,C) for the symmetry G = U (1) × Gspace. A, �R, and C refer to the U (1), translation (Z2), and point group
rotation (ZM ) components of the gauge field, while AXY denotes the area element and can be written in terms of ( �R,C). d�R is defined in
Eq. (15). Symmetry quantum numbers are associated with the coupling terms between B and the Abelian topological order, specified by a K
matrix of internal gauge fields.U ( 2πM ) is the elementary point group rotation matrix. The response coefficients are obtained by integrating out
the internal gauge fields. The classification of the parameters in the effective action is summarized in Table I.

Fractional symmetry quantum numbers

Generalized charge vector Associated quantum number

qI
2π a

I ∪ dA Q�l = �lT K−1 �q, fractional charge of �l
sI
2π a

I ∪ dA L�l = �lT K−1�s, fractional angular momentum of �l
�tI
2π a

I ∪ d ��R �P�l = [1 −UT ( 2πM )]−1(�lT K−1�tx, �lT K−1�ty )T , fractional linear momentum of �l
mI
2π a

I ∪ AXY τ�l = �lK−1 �m, fractionalization of translation algebra: Tx,�lTy,�l = Ty,�lTx,�l e
iτ�l

Quantized fractional response terms

Response theory term Associated response property

σH
2 A ∪ dA σH = Hall conductivity
S
2π A ∪ dC Defines discrete analog of shift. Charge of 2π/M disclination is S/M, angular

momentum of φ flux given by Sφ/2π
	s
4πC ∪ dC Angular momentum of elementary disclination equals 	s/M (up to framing

anomaly)
�Pc
2π · A ∪ d �R Fractional quantized charge polarization: (i) Charge of dislocation with Burgers

vector �b equals �Pc · �b; (ii) charge per unit length on a boundary along ê equals
�Pc · ê; (iii) aU (1) flux of φ has linear momentum equal to �Pcφ/2π

�Ps
2π ·C ∪ d �R Fractional quantized angular momentum polarization: Angular momentum of

dislocation with Burgers vector �b equals �Ps · �b

i j

4π Ri ∪ dRj Fractional quantized torsional response: Momentum of dislocation with Burgers
vector �b is �Pdisloc,�b = 
�b

νc
2π A ∪ AXY νc = charge per unit cell (filling)
νs
2πC ∪ AXY νs = angular momentum per unit cell
�νp
2π · �R ∪ AXY �νp = �P�m linear momentum per unit cell

order and the Z2 gauge theory are discussed in Sec. V. In
Sec. VI we obtain the SET classification from the effective
action and discuss with examples how this classification is re-
duced when we account for relabelings of the gauge fields. In
Sec. VII we compare our formulation of crystalline gauge the-
ory on a discrete triangulation to the more standard continuum
field theory approach and compare the crystalline gauge fields
to the coframe fields and spin connection used in continuum
geometry. We conclude with a discussion in Sec. VIII.

II. CRYSTALLINE GAUGE FIELDS

At a formal mathematical level, our theory of crystalline
gauge fields is equivalent to treating the discrete space group
symmetry Gspace as an internal symmetry of the topological
effective field theory. The main difference with usual internal
symmetries, which arise from on-site symmetries of a mi-
croscopic lattice model, is the physical interpretation of the
crystalline gauge fields, which in turn requires certain gauge-
invariant quantities to be determined by geometric properties
of the underlying lattice, as we describe below.

Ultimately, the topological field theory that we develop in
terms of the quantum Chern-Simons theory possesses an im-
plicit dependence on a space-time metric, which is the framing
anomaly associated with the chiral central charge [13,35].

To be physically meaningful, this space-time metric must be
determined by the crystalline gauge fields (see Sec. IVB 7).
Further discussion regarding the relation between the space
group symmetry in lattice systems and internal symmetries of
the topological effective field theory is presented in Sec. VIII.

We consider a (2 + 1)D space-time manifold M = �2 ×
R, where �2 is the space on which the clean lattice system
is defined. We fix an arbitrary triangulation of M and we
define on the links a gauge field valued in the symmetry
group G = U (1) × Gspace. Gspace = Z2

� ZM contains trans-
lation symmetry and a discrete M-fold rotation symmetry
for M = 1, 2, 3, 4, 6. Physical results will be independent of
triangulation. We define a U (1) gauge field Ai j on the link
i j of the triangulation, with the link directed towards j (with
Ai j = −Aji and Ai j ∼ Ai j + 2π ). Next, we define the crys-
talline gauge field

Bi j = ( �Ri j,Ci j ). (1)

Here

�RT
i j = (Xi j,Yi j ) = [(Ri j )x, (Ri j )y] ∈ 2πZ2 (2)

is an integer gauge field corresponding to Z2 translations. The
field C corresponds to point group rotations, where we take

Ci j ∈ 2π

M
Z, (3)
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with Ci j ∼ Ci j + 2π . Group multiplication is given by
( �R1,C1)( �R2,C2) = [ �R1 +U (C1) �R2,C1 +C2], where we use
addition in place of multiplication when the group is Abelian.
U (C1) is the 2 × 2 rotation matrix corresponding to C1. For-
mally 1

2π B is a lift of an element of Gspace to Z2
�

1
MZ, while

A is a lift fromU (1) to R.
The gauge freedom in �R corresponds to the freedom to

relabel lattice coordinates. It arises from the well-known am-
biguity in elasticity theory that the displacement vector is
only meaningful up to an integer lattice vector [16], which
we discuss further in Appendix B. The gauge freedom in C
corresponds to the freedom in locally orienting the x and y
axes at every point in space and time. For example, if for
M = 4 we have Ci j = π/2 on some link i j, this means the
local coordinate axes at i and j will be rotated relative to each
other by an angle π/2.

Under a gauge transformation which places the gauge vari-
able (�ri, hi ) at the vertex i, we have

Bi j → (�ri, hi )−1Bi j (�r j, h j )

= {U (−hi )[ �Ri j +U (Ci j )�r j − �ri],−hi +Ci j + hj}. (4)

The underlying lattice of the physical system specifies the
gauge invariant quantities of the crystalline gauge field. Flux
of C corresponds to disclinations:

∮
γ
C gives the total angle

of disclinations within the cycle γ . If C vanishes everywhere,
then

∮
γ

�R gives the total Burgers vector of dislocations con-
tained in γ . If space is a torus and C vanishes everywhere,
then

∮
x X ,

∮
y Y give the lengths of the torus in the x and y

directions, while
∮
y X gives the shear in the x direction upon

traversing the y cycle, and similarly for
∮
x Y .

WhenC is nonzero, one needs to take into account the local
change of coordinate frame along γ . Consider the product
B01B12, . . . ,Bn−1,n, where Bi j ∈ Gspace. The translation com-
ponent of this product is given by

∫
�R(0) :=

n−1∑
k=0

U (C01 +C12 + · · · +Ck−1,k )Rk,k+1. (5)

Motivated by this, we define a Burgers vector
∮
γ

�R(0), where

�R(0)
k,k+1 = U (C01 +C12 + · · · +Ck−1,k ) �Rk,k+1 (6)

for some arbitrary choice of origin 0 and path from 0 to k.
The extra C factors play a role analogous to the covariant
derivative allowing parallel transport of �R on the lattice. Under
a gauge transformation,∮

γ

�R(0) → U (−h0)
∮

γ

�R(0), (7)

corresponding to the fact that the Burgers vector rotates under
rotation of the local coordinate system at the origin 0.

The value of this Burgers vector is invariant under the
�r-dependent part of the gauge transformation (i.e., the trans-
lation gauge transformations), but is only well defined up
to an overall rotation. In general, the value of this integral
around a closed loop γ defines the total Burgers vector for any

dislocations located inside γ . In the special case of a closed
loop in a flat configuration,

∮
C

�R(0) = 0.
To compare Burgers vectors in different regions, it is im-

portant that a common origin 0 is chosen.
( �R,C) thus play a role similar to the coframe field and spin

connection used in continuum geometry (see Sec. VII B for
further discussion); it is useful to distinguish them because
( �R,C) have discrete gauge transformations, which plays a
crucial role in the classification of topological terms. Note
that we do not consider the continuous elastic response of the
crystal due to stresses and strains, which does not receive any
topological, quantized contributions [36,37].

III. SYMMETRY FLUXES

In order to construct the effective topological field theory,
we need to understand how to construct symmetry fluxes that
can be used in the effective action. While symmetry fluxes for
A andC are relatively straightforward, the symmetry fluxes for
the translation gauge field are more complicated, particularly
in the presence of the rotation gauge field C. Mathematically,
when the gauge fields are flat the symmetry fluxes define
representative 2-cocycles associated with the second group
cohomology H2(G,Z).

TheU (1) gauge flux

dA[012] = A01 + A12 − A02 (8)

defined on a 2-simplex [012] of the triangulation is gauge
invariant, with dA ∼ dA + 2π . Note that mathematically d
corresponds to the coboundary operation on the triangulation.

C behaves mathematically like a discrete version of A; the
flux

∫
D dC for any region D is gauge invariant and gives the

total angle of disclinations within D. Below we will discuss
the fluxes associated with translation symmetry, which are less
familiar.

A. The flux d�R and its relation to dislocation density

Naively one may think that d �R(0) should be the gauge-
invariant physical quantity corresponding to the dislocation
density. However, d �R(0) depends on a choice of origin to-
gether with a choice of local coordinate frame at that origin.
Therefore d �R(0) is both nonlocal in general and also not gauge
invariant. Moreover, in the presence of a disclination, the
value of �R(0)

i j depends on the precise path chosen between the
origin and i, and is therefore ambiguous up to a rotation by the
disclination angle.

The solution is to instead use the �R fields themselves,
which are local. But there is considerable ambiguity in �R
under gauge transformations. In particular, we now show that
gauge transformations preserve the value of d �R only up to
terms of the form [1 −U ( 2πM )]d �� where 1

2π
�� ∈ Z2.

We argue as follows. From the definition of �R(0) we have

�Ri j = �R(0)
i j + [1 −U (C0→i )] �Ri j . (9)

Here we have defined C0→i = ∫
γ
C for some given path γ

from the origin 0 to the point i. The last term is of the
form [1 −U ( 2πkM )] �Ri j , for some integer k. Let C0→i = 2πk0,i

M .
Using the fact that 1 −Uk = (1 −U )(1 +U + · · · +Uk−1),
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we conclude that

�Ri j = �R(0)
i j + [1 −U (2π/M )][1 +U (2π/M ) + . . .

+U (k0,i−1)(2π/M )] �Ri j (10)

:= �R(0)
i j + [1 −U (2π/M )]��i j . (11)

The last line defines the vector field �� in terms of �R, with
1
2π

�� ∈ Z2.
A general gauge transformation sends �Ri j →

U (−hi )[ �Ri j +U (Ci j )�r j − �ri]. But the above relation will
still hold with �� replaced by some ��′ where 1

2π
��′ ∈ Z2.

Now under gauge transformations, assume that the coordinate
axes at the origin are rotated by the angle 2πm/M. Then d �R
transforms as

d �R = d �R(0) + [1 −U (2π/M )]d �� (12)

→ U (2πm/M )d �R(0) + [1 −U (2π/M )]d ��′ (13)

= d �R(0) + [1 −U (2π/M )](d �� + d ��′), (14)

where �� = [1 +U (2π/M ) + · · · +Um−1(2π/M )] �R(0), and
also satisfies 1

2π
�� ∈ Z2.

Therefore gauge transformations preserve the value of d �R
only up to terms of the form [1 −U ( 2πM )]d ��.

To summarize, the correct definition of a Burgers vector,
given in terms of �R(0), is nonlocal due to the choice of origin
0, and so we are forced to use the field �R instead in the
effective action. d �R is not gauge invariant: it is determined
only up to terms of the form [1 −U ( 2πM )]d ��. However, d �R
and d �R(0) are gauge equivalent up to such terms. Therefore
the fractional part of [1 −U ( 2πM )]−1d �R is (i) local, (ii) gauge
invariant, and (iii) equal to the physically meaningful quantity
1
2π [1 −U ( 2πM )]−1d �R(0) mod 1. This motivates us to define the
local quantity

d ��R =
[
1 −U

(
2π

M

)]−1

d �R, (15)

which captures the local, gauge-invariant part of a Burgers
vector.

The possible holonomies thus fall into different classes
based on the distinct values taken by

1

2π

∮
∂D

��R mod 1. (16)

Eq. (16) defines a finite group grading on Burgers vectors,
where we denote the finite group as KM , and which is formally
defined as

KM = Z2/[1 −U (2π/M )]Z2. (17)

To understand this physically, note that to each region D we
can assign a local Burgers vector with the choice of origin 0 ∈
D. Without picking a common origin, the Burgers vector for a
region containing two subregions D and D′ is thus ambiguous
up to separate local rotations of the coordinate axes for the
origins 0 ∈ D and 0′ ∈ D′. This is explained below in more
detail. The part of the Burgers vector that is gauge invariant
and can be defined locally defines a finite group grading on

TABLE III. Gauge invariant, locally well-defined part of the
Burgers vectors for different rotation point groups, with 1

2π

∮ �R(0) =
(a, b)T ∈ Z2. We use a lattice basis whereU (2π/M ) takes x̂ → ŷ for
M 	= 2 (see Appendix A).

M [1 −U ( 2πM )]−1(a, b)T Gauge invariants mod 1 KM

2 1
2 (a, b)

T 1
2 {(0, 0), (1, 0), (0, 1), (1, 1)} Z2

2

3 1
3 (2a + b, b− a)T {(0, 0), (1/3, 1/3), (2/3, 2/3)} Z3

4 1
2 (a + b, b− a)T {(0, 0), (1/2, 1/2)} Z2

6 (a − b, a)T (0, 0) Z1

Burgers vectors, where we denote KM as the finite group. The
results for various M are given in Table III.

Note that a nontrivial Burgers vector is associated with
dislocation defects as well as disclination defects, which ad-
ditionally have a nonzero holonomy of C. A disclination
dipole is a composite of two defects in which the individual
C holonomies are equal and opposite; however, the net �R
holonomy may still be nonzero. This is the gauge-theoretic
formulation of the well-known fact that a disclination dipole
is physically equivalent to a dislocation.

There are a number of ways to understand KM more
intuitively and physically. Let us consider the most direct
way following the mathematical derivation above. A second
derivation based on rotationally symmetric configurations of
boundary charge is discussed in Sec. IVB.

Let us first consider the caseM = 2, and start by consider-
ing a small region with a locally defined Burgers vector (a, b)
(see Fig. 1). Under a local rotation of the space, this Burgers
vector transforms to (a, b) → (−a,−b). Thus the Burgers
vector (1, 0) ∼ (−1, 0) and (0, 1) ∼ (0,−1). Now consider
two regions, each with a locally defined Burgers vector (a, b)
and (a′, b′). The combined Burgers vector thus would be (a +
a′, b+ b′). Upon a π rotation of the second region however,
(a′, b′) → (−a′,−b′), so (a + a′, b+ b′) → (a − a′, b− b′).
Therefore, when considering the Burgers vector of a large
region containing Burgers vectors in smaller regions, (2, 0) ∼
(0, 0) and similarly (0, 2) ∼ (0, 0). We see that the Burgers
vectors form the group Z2 × Z2, due to the fact that the
Burgers vector of a region, when including these local rota-
tions, is only partially well defined. An equivalent analysis for
M = 3, 4, 6 gives the groupsZ3,Z2, and the trivial group (see
Fig. 1).

In general, dislocations whose Burgers vectors are of the
form [1 −U (2π/M )]�b are equivalent to zero. If we have two
neighboring dislocations with �b and −�b, the total Burgers
vector associated with a loop containing the dislocations is
zero. However, a local rotation of −�b by the angle 2π/M will
give a net holonomy equal to �b−U (2π/M )�b around the same
loop. These values of Burgers vectors are therefore considered
to be in the trivial equivalence class. This is what we mean by
the statement that rotation gauge symmetry induces a finite
group grading on Burgers vectors. They are thus classified
by elements of Z2 modulo [1 −U (2π/M )]Z2, which can be
taken as the mathematical definition of KM .

Mathematically, if we consider a generic group element
in Gspace, we can define the KM grading of the translation
component of the group element. One can show that this
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FIG. 1. Visual representation of how the groups KM classify dislocation Burgers vectors. (a) ForM = 2, the vectors (a, b) and (−a,−b) are
in the same equivalence class. Moreover, the sum of two neighboring Burgers vectors can be viewed as either (a, b) + (a′, b′) or (a, b) − (a′, b′);
this gives the relations (0, 0) ∼ (2, 0) ∼ (0, 2), which reduce the classification to a group Z2 × Z2. (b) For M = 3 we see that (3, 0) ∼
[1 +U (2π/3) +U (4π/3)](1, 0)T = (0, 0); in general (2a + b, b− a) ∼ (0, 0), so the classification is given by K3

∼= Z3. (c) For M = 6 we
can combine the M = 2 and M = 3 results to show that (0, 0) ∼ (2, 0) ∼ (3, 0); thus (0, 0) ∼ (1, 0), and similarly (0, 0) ∼ (0, 1). Therefore
every Burgers vector can be trivialized. Similar reasoning applied to the M = 4 case gives K4

∼= Z2.

KM grading is invariant under conjugation; therefore this KM

grading can be viewed as an invariant of conjugacy classes of
Gspace. The same idea can be expressed intuitively as follows.
Suppose we have two well-separated symmetry defects p and
q which are defined by the holonomies of B as follows:

∮
p B =

Bp = ( �Rp,Cp) and
∮
q B = Bq = ( �Rq,Cq ). Now the holonomy

of B around a loop encircling both p and q can be measured
equally by the group element BpBq = [ �Rp +U (Cp) �Rq,Cp +
Cq] or by the group element BqBp = [ �Rq +U (Cq) �Rp,Cq +
Cp]. These values of the holonomy should therefore be treated
as physically equivalent. They are in fact gauge equivalent: the
difference in the translation component of the two holonomies
equals

�Rp +U (Cp) �Rq − [ �Rq +U (Cq) �Rp]

= [1 −U (Cq)] �Rp − [1 −U (Cp)] �Rq. (18)

In the most general case, the right-hand side is a multiple
of the matrix [1 −U ( 2πM )] by an integer vector. Therefore,
a dislocation Burgers vector which takes such values should
be regarded as trivial. Indeed, we can always find a gauge

transformation which sets these values of Burgers vectors to
zero.

In the same way, we can consider three well-separated
defects p, q, r, whose holonomies are given by the group
elements Bp, Bq, and Br = B−1

q . Now the holonomy of the
gauge field can be written either as BpBqB−1

q = Bp or as
BqBpB−1

q . Therefore two defects in the same conjugacy class
must be regarded as physically equivalent; the corresponding
translation components will be gauge equivalent and thus have
the same KM grading.

The groups KM arise naturally while classifying the
allowed fractional U (1) charges associated with the �R holon-
omy of a disclination. This was shown for topological
crystalline insulators in free fermion systems in Ref. [38]; we
will carry out a similar analysis for bosonic SET phases in
Sec. IVB.

B. Area flux

In terms of the translation gauge fields we can also con-
struct a flux AXY , which is quadratic in �R and corresponds to
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an area element. We will see that AXY is not by itself gauge
invariant, which is analogous to the fact that area elements
are not invariant under general diffeomorphisms in contin-
uum geometry. Nevertheless, we will see that under a gauge
transformation, when B = ( �R,C) is flat, AXY changes by an
integer-valued coboundary, so that it gives a well-defined area
on closed manifolds. Physically this area corresponds to the
number of unit cells of the clean (defect free) lattice. With
some minor modifications, we will see that AXY can also
provide a well-defined area for spaces with boundary.

We define

AXY [i jk] = 1

4π
�Ri j × [U (Ci j ) �Rjk], (19)

where × is the cross product of vectors. When C = 0 every-
where, this gives the usual area element as expected, and it is
easy to verify that on a torus T 2 whose side lengths are Lx and
Ly,

1

2π

∫
T 2

AXY = LxLy. (20)

The factor U (Ci j ) keeps track of the relative orientation of
the coordinate axes at i and j when C 	= 0. In the absence of
dislocations, AXY is gauge invariant up to a boundary term, so
that AXY integrated over a closed surface is gauge invariant.
To obtain a well-defined area on spaces with boundary, we
require the translation gauge transformations to reduce from
Z2 to the subgroup of translations preserved by the boundary.
Here we study the behavior of the area flux AXY under a gauge
transformation and discuss its properties in the presence of
dislocations and boundaries.

The area flux on a 2-simplex [i jk] can be written as

AXY [i jk] = 1

4π
�Ri j ×U (Ci j ) �Rjk (21)

= 1

4π
U (C0→i ) �Ri j ×U (C0→i)U (Ci j ) �Rjk (22)

= 1

4π
�R(0)
i j × �R(0)

jk , (23)

where× refers to the cross product: �v × �u = vxuy − vyux. The
second line uses the fact that the cross product is invariant
under an equal rotation of both arguments; the symbol C0→i

refers to the sum of C’s on any given path from the origin 0
to the point i. The last line uses the definition of �R(0). Note
that the cross product of two �R(0) fields is thus local even
though a single such field is not. Since AXY is independent
of the choice of origin 0, we drop this superscript and simply
write

AXY = 1

4π
�Ri j × �R jk, (24)

with the understanding that �Ri j is defined with respect to an
arbitrary choice of origin 0.

Under a gauge transformation, this equality implies that

4πAXY [i jk] = �Ri j × �R jk (25)

→ ( �Ri j + d �̃ri j ) × ( �R jk + d �̃r jk ). (26)

Here we have defined �̃ri = U (C0→i )�ri (for the same arbitrary
choice of origin 0 used to defineR). The difference δAXY can
be written as

4πδAXY [i jk] = ( �Ri j ) × d �̃r jk + d �̃ri j × ( �R jk + d �̃r jk ). (27)

Defining

fi j = �Ri j × �̃r j + �̃ri × ( �Ri j + d �̃ri j ), (28)

we see that δAXY is a coboundary whenever d �R = 0:

4πδAXY [i jk] = df [i jk]. (29)

Therefore when AXY is integrated over the entire manifold,
this property implies that a gauge transformation will only
contribute boundary terms to the integral (assuming �R is flat).
Therefore 1

2π

∫
�2 AXY over a closed 2-manifold �2 is gauge

invariant (when �R is flat), which we physically interpret as the
area of the space �2. Note that since the cross product gives
the area of a parallelogram, the integration over the whole
space covers the manifold twice, such that AXY is quantized to
be an integer multiple of 2π when integrated over a 2-cycle.

Although we have defined a gauge-invariant area only for
closed manifolds, we can also define a gauge-invariant area
for manifolds with boundary by restricting the gauge trans-
formations on the boundary. Specifically, we require that the
quantity f defined above must vanish for every boundary
1-simplex. For this to occur, it is sufficient that the boundary
fields �Ri j and the boundary gauge transformation variables �̃r j
be parallel to each other. This requirement can also be viewed
as a consequence of the fact that a boundary can be chosen to
break one of the two Z translation symmetries, so that the �R
field essentially reduces to a Z gauge field on the boundary.

For example, suppose the space is a square formed by
the region 0 � x, y � a with origin (0,0). For simplicity let
C = 0 everywhere on the boundary except on links associated
with the corners, which have C = π/2. Let the fields �Ri j on
the y = 0 line have zero Y component. Now as we meet the
corner (a, 0), we meet a 1-simplex with C = π/2. The above
condition on �R nowmeans that on the x = a line, �R has zero X
component. In fact, one component of �R is always constrained
to vanish on the boundary.

The discussion above has so far required that �R be flat.
In particular, when �R is flat, �Ri j × �R jk = �R jk × �Rki, so the
definition of AXY does not depend on the ordering of the
vertices. But if we assume that the simplex [i jk] contains
a dislocation, this equality no longer holds. we instead have
�R(0)
i j + �R(0)

jk + �R(0)
ki = �b(0) (where we have reinstituted the ex-

plicit dependence on the origin 0), so

�R(0)
i j × �R(0)

jk − �R(0)
jk × �R(0)

ki = �b(0) × �R(0)
jk 	= 0. (30)

This means that the area of a simplex with nonvanishing
holonomy of �R is not well defined. This is physically ex-
pected: on a lattice with a dislocation, the number of unit
cells within a region containing a dislocation cannot be ob-
tained purely from the dimensions of the boundary. In fact,
the number of unit cells in a small region containing a dislo-
cation is not well defined. Moreover, as the dislocation moves,
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additional unit cells are added or removed. Therefore ex-
tensive observables such as the total charge or angular
momentum will no longer be gauge invariant. However, in-
tensive quantities such as the filling or angular momentum
per unit cell will still be well defined, because they are a
ratio of two extensive quantities computed with the same
triangulation.

A well-defined area can be defined for a given fixed con-
figuration of dislocations by cutting out the regions containing
the dislocations. Then the system is viewed as a manifold
with boundary, and a gauge-invariant area can be defined as
discussed above by restricting the gauge transformations on
the boundary. Effectively this approach treats the dislocation
as a hole in the simplicial formulation. In principle we can
consider alternatively treating it as a puncture (for example, a
sphere S2 with a puncture would correspond to the plane R2),

but then we cannot describe the open set near the puncture in
terms of a finite triangulation.

IV. EFFECTIVE ACTION AND RESPONSE THEORY

With this understanding of the local gauge-invariant fluxes
of the crystalline gauge fields, we are now ready to study the
effective action.

A. Effective action

To derive the effective action, we rely heavily on group
cohomology, which classifies the distinct, inequivalent topo-
logical terms that can appear. The derivation of these terms
from group cohomology is detailed in Appendix D.

The topological effective Lagrangian is

L = − 1

4π
aI ∪ KIJda

J + Lfrac + LSPT,

Lfrac = 1

2π
aI ∪ (qIdA + sIdC + �tI · d ��R + mIAXY ),

LSPT = k1
2π

A ∪ dA + k2
2π

A ∪ dC + k3
2π

C ∪ dC + 1

2π
A ∪ (�k4 · d ��R) + 1

2π
C ∪ (�k5 · d ��R) +

(
k6
2π

A + k7
2π

C

)
∪ AXY . (31)

We have used the cup product from cohomology: (A ∪
dA)[i jkl] = Ai jdA[ jkl] for a 3-simplex [i jkl].

The nondegenerate D × D symmetric integer matrix K
[39], which couples the dynamical U (1) gauge field aI , char-
acterizes the intrinsic topological order [40]. Topologically
distinct quasiparticles correspond to integer vectors �l ∼ �l +
K ��, where �l, �� ∈ ZD. The quasiparticles form an Abelian
groupA = Zn1 × · · · × ZnD under fusion, where the ni are the
diagonal entries in the Smith normal form of K .

This simplicial formulation of the Abelian CS theory was
recently used in Ref. [41] to develop a local bosonic model for
chiral topological phases.

Lfrac, which contains the coupling between the background
gauge fields and the aI , specifies symmetry fractionalization,
i.e., how the anyons carry fractional symmetry quantum num-
bers. Mathematically this is classified by the second group
cohomology H2(G,A) [19,31,42]. The distinct terms in Lfrac

are consistent with, and in fact can be derived from, the group
cohomology classification (see Appendix D)

H2(G,A) = A × (A/MA) × (KM ⊗ A) × A, (32)

for G = U (1) × [Z2
� ZM]. Here ⊗ denotes the tensor prod-

uct of groups, defined in Appendix D; for example, Zq ⊗
Zp = Zgcd(p,q).

The terms in LSPT correspond to Dijkgraaf-Witten (DW)
terms, classified by H3[G,U (1)] ∼= H4(G,Z) [43]. In our
case we have

H3{U (1) × [Z2
� ZM],U (1)} = Z2 × Z3

M × K2
M . (33)

The terms in LSPT correspond explicitly to representative co-
cycles in H3[G,U (1)], as discussed in detail in Appendix D.

Physically the DW terms can be understood in terms of stack-
ing symmetry-protected topological (SPT) states [19,44].

While we have defined our topological field theory using
the framework of discrete gauge theory, we can equivalently
use integral, real-valued differential forms, as discussed in
Sec. VII A.

The terms we have written above are complete for bosonic
systems. For fermionic systems, a partial understanding can
be achieved by changing the quantization of the integers ki,
to allow them to be half-integer; a complete understanding of
this should be determined by group supercohomology [45,46].
In the fermionic case there may also be symmetry-enriched
topological phases beyond group supercohomology, which
cannot be fully described by the above effective action. We
leave a comprehensive understanding of the fermionic case
for future work.

Note that the above action is only uniquely defined when

the gauge fields are flat: daI , dA, dC, d ��Ri ∈ 2πZ. When the
gauge fields are not flat, the action is not invariant under the
shift of a, A, orC by 2π on a single 1-simplex. More generally,
for nonflat gauge fields, one can add additional terms to the
action which depend on the field strength and which are not

uniquely specified [47]. Nontrivial fluxes of a, A, C, and ��R
can be included by treating them as punctures or holes in the
spatial manifold around which the gauge fields have nontrivial
holonomy, such that the gauge fields remain flat. The above
also implies the action is invariant under changes of lift ai j →
ai j + 2π as long as �q, �s, �t, �m are integer vectors.

In what follows, to read off physical properties, we use the
fact that objects charged under A, C, R correspond to U (1)
charge, angular momentum, and linear momentum. The gen-
eralized charges can be defined physically through the Berry
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phase obtained by adiabatically braiding charges around the
associated fluxes.

1. Charge vector�q

The charge vector �q ∈ ZD assigns fractional electric charge

Q�l = �qTK−1�l (34)

to the anyon �l . Alternatively, this term induces an anyon �q
under insertion of 2π flux. As such, �q is also sometimes
referred to as a vison or fluxon.

Two charge vectors �q, �q′ describe the same anyon if �q′ =
�q + K �� for some �� ∈ ZD. Therefore the group of inequiv-
alent choices for �q is A. Note that for a fixed state, this
equivalence is realized in the effective action by relabeling
�a → �a − ��A. Shifting �q thus also changes the values of
k1, k2, k4 and k6, which couple A. The full equivalence relation
is

(�q; k1, k2, k4,i, k6) ∼ (�q + K ��; k1 − �q · �� − ��T K ��/2,

k2 − �s · ��, k4,i − �ti · ��, k6 − �m · ��).
(35)

2. Discrete spin vector�s

The discrete spin vector �s ∈ ZD is the analog for discrete
rotational symmetry of the spin vector defined previously for
continuum FQH systems [10]. However, as we discuss below,
this term is only nontrivial when there is a compatibility
between the intrinsic topological order and the orderM of the
point group symmetry.

This term induces an anyon �s under the insertion (fusion) of
M elementary disclinations. In particular, this term contributes
a phase ei2π�sT K−1�l to the adiabatic transport of an anyon �l
around M elementary disclinations. Alternatively, this term
associates a fractional orbital angular momentum

L�l = �sT K−1�l (36)

to the quasiparticle �l , which contributes a braiding phase
e2π iL�l/M to an anyon �l encircling a 2π/M disclination.

Consider a continuum FQH state where we adiabatically
transport an anyon �l around a region� of a manifold with cur-
vature. The resulting Aharonov-Bohm phase γAB = γAB,1 +
γAB,2 receives two contributions [25]. The first contribution
γAB,1 is associated with the fractional U (1) charge of �l and
equals

γAB,1 = Qa�(�), (37)

where �(�) is the total magnetic flux through �. The second
contribution is due to coupling to the spatial curvature:

γAB,2 =
( �lT K−1�l

2
+ �lT K−1�s

)
NR(�). (38)

Here NR(�) is the integrated curvature flux through �. The
quantity in parentheses defines the total spin of �l ,

S�l = L�l + �lT K−1�l
2

. (39)

The first contribution is the orbital angular momentum, which
comes from the symmetry fractionalization, and can be un-
derstood as the braiding of �l with the anyon �s associated with
a 2π curvature flux. The second contribution arises because
of self-interaction effects that result in the anyon �l braiding
around itself as it is transported around a closed loop. For
an explicit calculation of the full A-B phase in a continuum
geometry the reader is referred to Refs. [25,48].

In the discrete case that we are considering in this paper,
the same equations are expected to hold, with the modification
that the curvature N (�) arises only due to point sources of
2π/M curvature flux arising from disclinations and corners.

Note that taking �s = M �� for �� ∈ ZD is trivial, since it can
be completely accounted for by binding an anyon �� to an
elementary disclination, which can in turn always be done by
adjusting the local energetics at disclinations. The nontrivial
case cannot be captured simply by associating an anyon to an
elementary disclination. Therefore we have two equivalence
relations:

(�s, {ki}) ∼ (�s + K ��, {k′
i}) (40)

(by relabeling a → a − ��C), and

(�s, k3) ∼ (�s + M ��′, k3). (41)

The choices of �s inequivalent under both relations consti-
tute the group A/MA. For A = Zn1 × · · · × ZnD , A/MA =
Z(n1,M ) × · · · × Z(nD,M ), where (n,M ) = gcd(n,M ). We see,
therefore, that the order of the group A must be compatible
withM to obtain a nontrivial fractionalization class.

The equivalence on �s implies that the theory predicts the
angular momentum of an anyon �l modulo M( ��T K−1�l ).

3. Discrete torsion vector (�tx,�ty)

The integer vector (�tx, �ty), with �ti ∈ ZD, which we refer to
as the discrete torsion vector, does not have an analog in the
continuum because torsion (i.e., the gauge-invariant part of the
dislocation density) is not quantized in continuum geometry.
Furthermore, this term is nontrivial only in the presence of ro-
tational symmetry, with M = 2, 3, 4, because, as summarized
in Table III, the gauge-invariant part of the dislocation density
(defined by the group grading KM) is nontrivial only when
M = 2, 3, 4.

�t associates an anyon (�tx, �ty) · (a, b) to a region with Burg-
ers vector [1 −U (2π/M )] · (a, b). Note that an anyon is
attached only for Burgers vectors in the trivial class in KM .
Values of �t which can be accounted for by attaching an anyon
to an elementary dislocation are topologically trivial, as they
can be accounted for by adjusting the local energetics of a
dislocation. It follows that the topologically distinct values
of (�tx, �ty) are classified by the group KM ⊗ A, which for
M = 2, 3, 4 equals A/2A × A/2A, A/3A, and A/2A, re-
spectively (see Appendix D for a definition of the symbol ⊗).

The term defining the torsion vector can be written in
full as 1

2π a
I ∪ {tI,i[1 −U (2π/M )]−1dRi}. From this we ob-

tain that the discrete torsion vector furthermore associates a
fractional (linear) momentum

�P�l = [1 −U (2π/M )T ]−1 �p�l ,

( �p�l )i = �lT K−1�ti (42)
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to the anyon �l , which is well-defined (i.e., topologically ro-
bust) modulo the equivalence on �t :

�tI ∼ �tI + [1 −U (2π/M )]Z2, for I = 1, . . . ,D,

�ti ∼ �ti + KZD, for i = x, y. (43)

The momentum �P�l of an anyon can be defined by the Berry

phase e2π i �P�l ·�b obtained upon adiabatically braiding the anyon
�l around a dislocation with Burgers vector �b.

Under a 2π/M rotation, the momentum transforms as
�PT
�l → PT

�l U (2π/M ); in other words, under a 2π/M rota-

tion, the change in momentum is [UT (2π/M ) − 1] �P�l = −�p�l .
However this is precisely the first ambiguity in �tI : shifting
�tI → �tI + [1 −U (2π/M )](−�tI ) changes the momentum �P�l by−�p�l . Therefore, the topologically robust part of the fractional
momentum �P�l is consistent with rotational invariance.

We emphasize that this “crystal momentum fractionaliza-
tion,” which is only nontrivial for M = 2, 3, 4, is fundamen-
tally distinct from the more familiar notion usually discussed
in the context of quantum spin liquids (see, e.g., [31,32]).
The latter case is associated with noncommutativity of the
translation operator restricted to a given anyon and arises from
the existence of an anyon per unit cell (discussed below),
which can be nontrivial even in the case M = 1.

4. Area vector �m

Finally, �m ∈ ZD, which we refer to as the area vector, also
has no analog in the continuum. This associates an anyon �m
per unit cell, as has been discussed algebraically in previous
work [27,49] and gives rise to certain notions of crystal mo-
mentum fractionalization discussed previously [28–32]. This
means that if a quasiparticle �l is taken around a region S
containing Num(S) unit cells, the wave function acquires a
braiding phase e2π i�l

T K−1 �mNum(S). Algebraically, this means that
the translation operators satisfy a magnetic translation algebra
when its action is restricted to the anyon �l:

Tx,�lTy,�l = e2π i�l
T K−1 �mTy,�lTx,�l , (44)

where Tx,�l and Ty,�l are the translation operators in the x and y

direction, restricted to the anyon �l . See Ref. [19] for a precise
formulation of symmetry operations restricted to anyons.

B. Response theory

Given the topological effective action, we can integrate out
the dynamical a gauge fields to obtain an effective response
theory:

Leff = σH

2
A ∪ dA + S

2π
A ∪ dC + 	s

4π
C ∪ dC +

�Pc

2π
· (A ∪ d �R) +

�Ps

2π
· (C ∪ d �R) + 1

2π
(νcA + νsC) ∪ AXY

+ �νp

2π
· �R ∪ AXY + 
i j

4π
Ri ∪ dRj + α

4π
AXY ∪ d−1AXY + Lanom, (45)

where

Lanom = − sgn(K )

48π
C ∪ dC. (46)

Note that as usual, the effective response theory is not well
defined on compact manifolds due to the fractional values of
the coefficients; nevertheless, the response theory can be used
to read off the fractionally quantized responses of the system
on an open patch of space.

The first term is the well-known Hall conductivity, which
is given by

σH = (2k1 + �qTK−1 �q)/2π. (47)

The second and third terms are discrete analogs of the
known continuum geometric response of FQH states [4,5,8–
13].

The remaining terms in Leff are intrinsic to the lattice and
have no analog in continuum FQH states. In what follows, we
discuss them individually in detail.

We note that the term formally written as AXY ∪ d−1AXY ,
with α = �mTK−1 �m, corresponds to AXY ∪ c, where dc =
AXY . This term arises from the fact that an anyon is associated
with each unit cell. However it is not clear how or whether
this term can be physically measured as a quantized geometric
response. We thus do not discuss this term further below.

1. Discrete shift S and fractional charge of disclinations

The second term gives a discrete analog of the shift S
[10,50–52], where

S = k2 + �qTK−1�s. (48)

In particular, this term implies that lattice corners and disclina-
tions carry fractionalU (1) charge. Both an elementary 2π/M
disclination and a corner of angle 2π/M carry a fractional
U (1) charge of

Qdisclin,2π/M = S/M = k2 + �qTK−1�s
M

. (49)

For example, ifM = 4 and the system is defined at the surface
of a 3D cube, there are effectively eight disclinations, each
one carrying a fractional charge S/4. If the system is defined
on a square, each corner also has a fractional charge S/4.
This term therefore implies the system is a fractional “higher
order” topological state [53–55]. Note that when the edge of
the system is gapped, the corner charge is clearly well defined;
however when the corner lies along a chiral gapless boundary
of the system, it is not clear whether any remnant of the corner
charge persists.

Since the A ∪ dC term defining the shift can also be written
as C ∪ dA, this term also associates an angular momentum to
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a φ flux given by

LA,φ = φ

2π
S = φ

2π
(k2 + �qTK−1�s). (50)

Note that the fractional part of the angular momentum of a
2π flux equals L�q = �qTK−1�s (mod 1), which is the angular
momentum of the anyon �q associated with a 2π flux.

Note that the response theory only predicts the fractional
charge, angular momentum, and linear momentum of the
dislocations and disclinations up to those of the elementary
anyons, as anyons can always be bound to these defects by
adjusting the local energetics. Therefore in this case, the frac-
tional charge S/M is determined only modulo the charges
Q�l = �qTK−1�l , for any integer vector �l .

2. Disclination angular momentum

The third term contributes to a fractionally quantized con-
tribution L2π/M to the angular momentum of the elementary
2π/M disclination,

L2π/M = 	s

M
− 1

M

c

12
,

	s = (2k3 + �sT K−1�s). (51)

The contribution proportional to the chiral central charge
c = sgn(K ), where sgn(K ) is the signature of K , arises from
the framing anomaly Lanom, which we discuss further in
Sec. IVB 7.

3. Fractional quantized charge polarization �Pc and fractional
charge of dislocations

The term with

�Pc = [1 −UT (2π/M )]−1(�k4 + �p�q )

= �P�q + [1 −UT (2π/M )]−1�k4 (52)

is referred to as a fractionally quantized charge polarization.
As we discuss, this leads to three basic properties that are
predicted by the topological response theory:

(1) Fractionally quantized charge of dislocations (modulo
charge of anyons).

(2) Fractionally quantized momentum ofU (1) flux.
(3) Fractionally quantized charge per unit length along

boundaries (modulo charge of anyons).
The quantization arises due to the rotational symmetry

of the lattice. Without rotational symmetry (M = 1), the
polarization is a nonquantized topological response [18]. Fur-
thermore, Pc, j is only well-defined modulo Z.

This term associates a fractional charge

Qdisloc;�b = �Pc · �b (53)

to a dislocation with Burgers vector �b. Note that, as in the case
of the disclination charge, the topological response theory
only predicts the dislocation charge modulo the charges of the
anyons.

Whether the fractional charge of a dislocation is nontrivial
because of nontrivial values of the discrete torsion vector is
a somewhat subtle issue. In principle, the dislocation charge

can be fractions of the minimal anyon charge even when the
discrete torsion vector is trivial, due to the interplay between
the SPT term �k4 and the minimal anyon charge. Observe that
the fractional charge receives two contributions: one from
the intrinsic topological order and symmetry fractionalization,
which arises from �P�q, and one from the SPT term k4. The SPT
term can contribute a fractional charge in multiples of 1/2 (for
M = 2, 4) or 1/3 (forM = 3). Together with the charge of the
anyons Q�l which can be trivially bound to dislocations due to
local energetics, this implies that in principle one can obtain
fractional charges at dislocations that may be fractions of the
anyon charge, but which arise from a trivial value of �t . For
example, consider the case of the 1/2 Laughlin topological
order on a honeycomb lattice (M = 3) and k4 = 1. There,
all choices of discrete torsion vector �t are trivial, because
Z3 ⊗ Z2 = Z1; nevertheless, even a trivial value of �t can give
rise to a dislocation charge 1/3 − 1/2 = 1/6. On the other
hand, on the square lattice (M = 4), a dislocation charge of
1/4 can only occur for the nontrivial choice of discrete torsion
vector �t ∈ Z2 ⊗ Z2 = Z2, while the trivial choice can only
give multiples of 1/2.

Let us compare the charge of a dislocation with Burgers
vector �b and its rotated counterpartU (2π/M )�b. The difference
is given by

�Q = Qdisloc;�b − Qdisloc;U (2π/M )�b

= �PT
c [1 −U (2π/M )]�b

= (k4;i + �qTK−1�ti )bi
= (k4;i + Q�ti )bi. (54)

In other words, the difference is given in integer multiples
of the fractional charge of �tx and �ty. Thus the contribution to
the dislocation charge from the topological response theory,
which is only well-defined modulo the charges of the anyons,
is rotationally invariant.

The charge polarization term also contributes to the charge
of a disclination, if it has nontrivial �R holonomy. Interest-
ingly, the classification of free fermion SPT phases based
on their disclination charges is shown to equal ZM × KM in
Ref. [38]. This agrees with the bosonic crystalline gauge the-
ory, which predicts that the disclination charge is classified by
the terms 1

2π A ∪ (k2dC + �k4 · d���R), where k2 ∈ ZM and �k4 ∈
KM . (The coefficients in a crystalline gauge theory of fermions
can in principle have different quantization conditions than
in the bosonic case, but we will not discuss the fermionic
case in detail here). The classification approach in Ref. [38]
based on Wannier orbitals centered at high-symmetry points
is an example of a defect network construction. The prob-
lem of establishing a correspondence between the topological
responses in the defect network picture and the group coho-
mology picture is briefly alluded to in Sec. VIII.

If the dislocation described by �b is connected to an edge
of the system, the holonomy at the edge is changed by the
amount −�b. Hence there must be a compensating fractional
charge at the edge. However since the dislocation line is not
by itself well defined, this boundary fractional charge can be
delocalized along the boundary.
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FIG. 2. The KM classification of rotationally symmetric configurations of boundary charge for (a) M = 2, (b) M = 3, (c) M = 4, and
(d) M = 6. We choose our coordinate axes to be normal to the boundaries, and place a charge per unit length equal to (q1, q2)T �n on the
boundary with normal vector �n. Thus in (b), for M = 3 we have the arrangement A = (q1, q2, −q1 − q2) as we proceed anticlockwise around
the boundary segments. Now under a 2π/3 rotation of axes, the charge per unit length at the same three segments gets redefined as A′ =
(−q1 − q2, q1, q2). Since the fractional charge per unit length on each boundary segment remains the same if we only rotate the coordinate
axes, we should have A = A′ mod 1. This implies that q1 = q2 and 3q1 ∈ Z; the three distinct choices of q1 now determine the group K3. We
can follow similar reasoning in (a), (c), and (d).

This term also associates a momentum

�PA,φ = �Pcφ/2π (55)

to a U (1) flux of φ spread uniformly throughout the system.
The momentum of 2π flux has been discussed previously in
the context of Dirac spin liquids in Refs. [56,57]; our results
are consistent with these works for systems with orientation-
preserving symmetries. Note that the contribution to �P from
the intrinsic topological order is equal to the momentum �P�q of
the anyon �q, which is the anyon associated with a 2π flux.

Finally, this term associates a fractional charge per unit
length �P · ê to a boundary along the direction ê. This cor-
responds to a fractional charge polarization �Pc = �P × ẑ for
a system defined on a space with boundary. As above, this
fractional charge per unit length is only topologically robust
modulo the charge of the anyons. Under a rotation, the charge
per unit length along the boundary stays invariant up to the
charge of the elementary anyons. Therefore the contribution
of the topological response theory to the boundary charge per
unit length is rotationally invariant.

We note that because the boundary charge per unit length is
only topologically protected modulo the charge of the anyons,
the system does not necessarily have a nonzero polarization
on a space with boundary; one can arrange the local energet-
ics along the boundary so that the boundary charge per unit
length is the same on all boundaries. Nevertheless, the three
physical effects described above are all intimately related to
the quantum theory of polarization in higher dimensions [18],
which is why we refer to this term as the fractional charge
polarization.

The polarization response can be used to obtain another
simple way to understand the group KM . The group KM cor-
responds to the group of allowed fractional charges per unit

length along the boundary when the bulk has no intrinsic
topological order, as we explain below.

Consider a system with fractional charge per unit length
along its boundary given by �P · n̂, where �P is the polarization
vector and n̂ is the normal to the boundary. An integer value
of �P corresponds to placing an integer charge per unit length
on the boundary, which can always be done locally. This is
shown pictorially in Fig. 2, where we assign fractional charge
per unit length to each boundary segment under one choice
of coordinate axes. For example, if we consider a system
with M = 4, the charge per unit length on the boundaries
normal to x̂, ŷ,−x̂,−ŷ are (q1, q2,−q1,−q2), respectively.
Now we can perform rotations of the axes by 2π/M, which
will relabel the charge on each segment since the normal
vectors �n get redefined. In this case, the coordinate axes are
rotated by an angle π/2, and the charges on the same bound-
ary segments will now be labeled as (−q2, q1, q2,−q1) (see
Fig. 2). However, the fractional charge on each edge should
be the same from either calculation. Therefore we must have
(q1, q2,−q1,−q2) = (−q2, q1, q2,−q1) mod 1. We can see
that the only solutions are (q1, q2) = (0, 0) or (1/2, 1/2).
Therefore the group of distinct assignments of charge at the
boundary is K4

∼= Z2. One can work out the other cases simi-
larly.

We note that in our initial discussion of Sec. III A , the KM

classification arose from general properties of the dislocations
that do not depend on a particular Lagrangian, while in the
second derivation given here, it arose from demanding rota-
tional invariance of a physical response related to the term

�P
2π A ∪ dR in the Lagrangian.

Finally, we look at the case with M = 1, corresponding to
the absence of rotation symmetry. We cannot directly apply
the previous reasoning in this case to obtain a useful classifi-
cation. In a system without rotation symmetry, the Burgers
vector of any dislocation is well defined: the value of d �R
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is gauge invariant. Since there is no gauge transformation
relating them, there is no grading of Burgers vectors. In the ex-
ample of boundary charge, one can now have any assignment
of fractional charges per unit length on the boundary of such
a system. In either case, the group classifying inequivalent
dislocations or fractional boundary charge configurations is
not a finite group. However, if we define K1 so that it classifies
the quantized fractional charges per unit length that can be
assigned to a boundary, the group is trivial. The quantization
was a direct result of discrete rotation symmetry, which is
broken when M = 1.

4. Quantized angular momentum polarization �Ps

The term with �Ps is the rotational analog of �Pc, where

�Ps = [1 −UT (2π/M )]−1(�k5 + �p�s)

= �P�s + [1 −UT (2π/M )]−1�k5. (56)

It associates a fractionally quantized angular momentum

Ldisloc;�b = �Ps · �b (57)

to a dislocation with Burgers vector �b. Note that the contri-
bution to �Ps coming from the symmetry fractionalization is
simply �P�s, the linear momentum of �s.

However it is not clear whether dual response, which is
the analog of attaching momentum to aU (1) flux, which here
would formally correspond to a momentum of a disclination,
is well defined. It is also unclear whether the analog of the
boundary charge per unit length has any meaning in this
context, because the boundary is not fixed by a rotation.

5. Charge, linear momentum, and angular momentum filling: νc,
νs,�νp

The term proportional to A ∪ AXY corresponds to a charge
of

νc = k6 + �qTK−1 �m (58)

per unit area. This gives a generalized Lieb-Schulz-Mattis
constraint [27] which imposes constraints on �q, K , and �m
in terms of the filling νc. Likewise, the term proportional to
C ∪ AXY associates a fractional angular momentum of

νs = (k7 + �sT K−1 �m) (59)

to each unit area.
The term �R ∪ AXY associates a momentum of

(�νp) j =
∑
i

�tTi K−1 �m[1 −U (2π/M )]−1
i j (60)

per unit area of the system. It arises from the fact that there is
an anyon �m per unit cell, which in turn carries a momentum
as specified by the coupling �t . Indeed, observe that

�νp = �P�m. (61)

Remarkably, this implies that the ground state may carry mo-
mentum, depending on the area of the system; only for certain
commensurate areas is the ground state momentum trivial.

Furthermore, this term is also only nontrivial forM = 2, 3, 4-
fold rotational symmetry.

6. Fractionally quantized torsional response

The term with 
i j associates a fractionally quantized mo-
mentum of

�Pdisloc,�b = 
�b (62)

to a dislocation with Burgers vector �b. Here

i j = eTi K

−1e j,

ei = [1 −U (2π/M )]−1
ii′ �ti′ . (63)

This is closely related to the torsional Hall response that has
been discussed for continuumDirac theories [33,34], although
there the corresponding term is not quantized and is sensi-
tive to the ultraviolet cutoff. The nontrivial quantization only
occurs for lattice systems with M = 2, 3, 4-fold rotational
symmetry.

We note that here we read off momentum as being defined
by the charge of the translation gauge field. It is not clear how
to define the momentum of a dislocation microscopically. For
example, naively one would define the charge in terms of the
Aharonov-Bohm phase obtained by braiding with a flux; in
this case this naively corresponds to the phase obtained by
braiding dislocations around each other. However to define
this microscopically, the restricted mobility of the dislocations
on a lattice with a conserved number of atoms must be taken
into account.

7. Framing anomaly

We note that the topological field theory itself does pos-
sess a continuous space-time symmetry corresponding to
diffeomorphism invariance, which corresponds to the retri-
angulation invariance of the path integral for a given fixed
configuration of flat gauge fields. For chiral topological
phases, a gravitational CS term, proportional to the chiral cen-
tral charge c, for the full SO(2,1) spin connection� also arises
upon evaluating the path integral. This arises from the implicit
metric dependence in the path integral measure required for
gauge fixing and quantizing the CS theory, and is referred to
as the framing anomaly [13,35]. In a continuum formulation,
this is written as

Lanom = − c

96π
Tr

(
�d� + 2

3
�3

)
. (64)

This term may also be viewed as the gravitational anomaly
of the (1 + 1)D boundary of the system, which hosts a chiral
CFT with central charge c.

We note that the quantization of the CS theory also gives
rise to another contribution to the effective theory, given by
the Ray-Singer analytic torsion [35]. This term is a topolog-
ical invariant of the underlying space-time manifold, and is
unimportant for our discussion.

Mathematically we may consider � to be a separate quan-
tity depending on an underlying space-time metric, and to be
distinct from C and �R. However to be physically meaningful,
the space-time manifold M should split into space and time
separately as assumed in this work, with the time components
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of � vanishing:

�a
0,μ = �0

b,μ = 0,

ωμ ≡ �1
2,μ. (65)

Furthermore, the spatial component of �, which we have
denoted ωμ, is an SO(2) gauge field whose field strength
corresponds to the curvature of the system. The physical ori-
gin of this curvature in a lattice system arises from lattice
disclinations, so we require that ω should be determined by
the lattice rotation gauge fieldC. We can relate the continuum
definition of ω to the definition of C on the triangulation by
integrating over a 1-simplex [i j] of the triangulation:∫

i j
ωμ = Ci j . (66)

We see therefore that the framing anomaly contributes the
following term to the effective response theory:

Lanom = − c

48π
C ∪ dC. (67)

This term will then contribute an additional angular momen-
tum to disclinations proportional to c [see Eq. (51)].

8. Additional coboundary terms in response theory

When we consider a system with onlyU (1) charge conser-
vation andZ2 translation symmetries (i.e.,M = 1), the charge
polarization corresponds to a nonquantized topological term

[18]. In our notation, this term has the form �P
2π · �R ∪ dA in

2 + 1 dimensions, where �P is a pair of real numbers defined
modulo 1. This nonquantized term is not associated with sym-
metry fractionalization or to SPTs; rather than corresponding
to a nontrivial 3-cocycle, the above term can be understood as
a 3-coboundary of the group U (1) × Z2. Nevertheless, such
a term can be physically meaningful. This means that for a
complete understanding of the topological terms, we should
also study response terms that are not associated with SPT
responses but which correspond to group 3-coboundaries. In
this section we consider these possibilities when G = U (1) ×
Gspace, and the rotation symmetry is nontrivial.

We first note that in the presence of rotation symmetry,
we do not find any nonquantized topological terms (i.e.,
terms that are retriangulation invariant in our simplicial for-
mulation). For example, the nonquantized polarization term
mentioned above becomes quantized as a result of the rotation
symmetry. However, we do find that we can add certain addi-
tional quantized topological terms beyond the SPT terms in
the effective action, Eq. (31). Although we have not explicitly
found a coboundary representation for these cocycles, these
terms correspond to coboundaries because the SPT terms al-
ready present in the effective action form a complete set of
cocycle representatives of H3[G,U (1)] (see Appendix D).

First consider the response term 
i j

4π Ri ∪ dRj , where 
i j =
[1 −UT (2π/M )]−1(tTi K

−1t j )[1 −UT (2π/M )]−1. This coef-
ficient can be modified in a manner that preserves gauge
invariance, as follows: we can define


̃i j ≡ [1 −UT (2π/M )]−1[(�ti )T K−1�t j + ki j]

× [1 −UT (2π/M )]−1, (68)

where ki j ∈ Z. In some cases this shift in the momentum of a
dislocation due to ki j can be considered to be trivial, and part
of the equivalence in the definition of �ti. However, in general
this contribution may not be completely accounted for by the
equivalences on �ti.

Similarly, consider the response term �νp
2π · �R ∪ AXY . We can

modify the coefficient of this term as follows:

(�̃νp) j =
∑
i

(�tTi K−1 �m + ki
)
[1 −U (2π/M )]−1

i j , (69)

where ki ∈ Z.
Finally, in principle we can have terms which are not re-

lated to the response terms already present in Eq. (45). For
example, we can consider terms proportional to R ∪ R ∪ R, or
terms composed of various powers of A, R, andC. Most terms
of this kind will not be topological, i.e., will not satisfy the
requirement of retriangulation invariance. Those terms that
are retriangulation invariant will be coboundaries or equiva-
lent to one of the existing SPT terms, since we already have
a complete set of SPT cocycles. To our knowledge, none
of these terms are associated with nonquantized topological
responses. However, we have not checked all the possibilities
systematically.

V. EXAMPLES

A. 1/2 Laughlin topological order

Consider the 1/2 Laughlin topological order on a square
lattice (M = 4), with symmetry U (1) × [Z2

� Z4]. We have
K = 2 and A = Z2, with the anyons given by I = 0 (mod 2)
and S = 1 (mod 2). The symmetry fractionalization classifi-
cation is H2(G,A) ∼= Z4

2, with A/4A ∼= K4 ⊗ A ∼= Z2. Thus
there are two inequivalent symmetry fractionalization classes
associated with each of q, s, �t , and m. Throughout this
discussion we will define the elementary rotation matrix as

U (π/2) =
( 0 1
−1 0

)
. At various points we will comment on

the differences in the analysis when we consider different
values of M.

The charge, spin, and area vectors are each determined by
choosing q, s,m ∈ {I, S}. The fractional charge and angular
momentum of the anyon a are thus given by

Qa = qa

2
mod 1 (70)

and

La = sa

2
mod 1, (71)

respectively. The charge filling gives a LSM constraint on m
and q:

νc = qm

2
mod 1. (72)

Therefore half-filling (i.e., half-charge per unit cell) necessar-
ily fixes q = m = S, while integer filling requires at least one
of q or m to be trivial.

There are two inequivalent choices of discrete torsion
vector, corresponding to (tx, ty) = (I, I ) and (S, I ), with
(I, I ) ∼ (S, S) and (S, I ) ∼ (I, S). To see this, note that
naively the possible discrete torsion vectors are (tx, ty) ∈
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{(I, I ), (I, S), (S, I ), (S, S)}. The equivalence condition satis-
fied by them is(

tx
ty

)
∼

(
tx
ty

)
+ [1 −U (π/2)]

(
t ′x
t ′y

)
=

(
tx
ty

)
+

(
t ′x − t ′y
t ′x + t ′y

)
.

(73)
This condition implies that the symmetry fractionalization
class is completely determined by the value of (tx + ty)
mod 2. Therefore the assignments (I, S), (S, I ) are equiva-
lent and correspond to nontrivial symmetry fractionalization,
while the assignment (S, S) is in fact trivial. The latter as-
signment is seen to be trivial because we have

(1
1

) = [1 −
U (π/2)]

(1
0

)
, and thus (S, S) corresponds to attaching the

anyon Sbx Iby to a dislocation with Burgers vector (bx, by).
The momentum associated with each anyon a is

�Pa = [1 −U (π/2)]−1�tT 1
2
a = a

4

(
tx + ty
ty − tx

)
. (74)

Recall this momentum is only well defined (i.e., topologically
robust) up to the equivalences on �t (and the representative a of
the anyon). Therefore for trivial choice of (tx, ty) = (I, I ) ∼
(S, S), we have 2Pa,i ∈ Z; that is, we have �PI , �PS = (0

0

) ∼(1/2
0

) ∼ ( 0
1/2

)
. Therefore half-integer momentum components

should be regarded as trivial. Physically this can be under-
stood from the fact that the change in the braiding phase
between a and an elementary dislocation can be compen-
sated for by attaching a semion to the elementary dislocation.
For the nontrivial choice of (tx, ty) = (S, I ) ∼ (I, S), we have
�PS = ( 1/4

−1/4

) ∼ (1/4
1/4

)
. Observe that under a rotation, 2PS is in-

variant modulo 1.
The above analysis shows that for the 1/2 Laughlin state, a

momentumwhose components are integer or half-integer is an
indication of trivial symmetry fractionalization: it corresponds
to attaching the anyon S to an elementary dislocation in some
fixed direction. Thus, while considering some other M, we
will continue to associate the momentum 1/2 with trivial
symmetry fractionalization. For the 1/N Laughlin state withN
even, an analogous argument would imply that a momentum
of 1/N units corresponds to trivial symmetry fractionalization,
and therefore it is enough to check whether NPa,x and NPa,y
are nontrivial.

Let us consider the classification of spin vectors in more
generality. For the 1/2 Laughlin state with M even, the spin
vector is always nontrivial if it equals 1 mod 2. However,
for M = 3, we have s = 3s mod 2. This means that every
spin vector can be thought of as associating the anyon s with
an elementary 2π/3 disclination. Therefore in this case, the
choice s = 1 is in fact trivial. If we generalize to 1/N Laughlin
states withA = ZN , the number of distinct spin vectors equals
ZN/MZN = Z(M,N ).

Next we discuss the fractionally quantized responses. The
Hall conductivity is given by σH = 1

2π (q
2/2 + 2k1), as usual.

The discrete shift is defined as S = qs
2 + k2. Therefore the

fractional charge associated with a π/2 disclination is

Qdisclin,π/2 = S

4
= qs

8
+ k2

4
. (75)

Thus we see that shifting k2 by an integer changes the frac-
tional charge by 1/4; shifting k4 → k4 + 4 adds a trivial

integer charge to the elementary disclination. Furthermore,
when q = s = S, we obtain a 1/8 charge at the elementary
disclination.

The angular momentum of a π/2 disclination is

Lπ/2 = 	s/4 − c/48 = s2

8
+ k3

2
− 1

48
, (76)

where we have included the contribution c/48 from the central
charge c = 1 which arises due to the framing anomaly. Note
that the fractional part of the angular momentum remains the
same when we shift k3 → k3 + 2, even though k3 has a Z4

classification.
The charge of a dislocation with Burgers vector �b is

Qdisloc,�b = �Pc · �b, where
(

Pc,x

Pc,y

)
= 1

2

(
k4,x + k4,y
k4,x − k4,y

)
+ q

4

(
tx + ty
tx − ty

)
. (77)

Observe that the SPT contribution from �k4 can only take
two inequivalent values: (0, 0)T or (1/2, 1/2)T . This follows
from demanding rotational invariance of the polarization up
to integers, i.e., of �Pc modulo integers. The nontrivial sym-
metry fractionalization [q = S and (�tx, �ty) = (S, I ) ∼ (I, S)]
then contributes (1/4, 1/4)T ∼ (1/4,−1/4)T . Therefore dis-
locations can carry charge of ±1/4, even though the minimal
anyon charge is 1/2. A similar calculation can be performed
for the angular momentum polarization.

On a space with boundary, the nontrivial symmetry
fractionalization class [q = S and (�tx, �ty) = (S, I ) ∼ (I, S)]
therefore contributes a charge of 1/4 (mod 1/2) per unit length
along the boundary. The other symmetry fractionalization
classes contribute a 0 charge (mod 1/2) per unit length along
the boundary.

The momentum per unit cell is given by the momentum of

the anyon per unit cell �νp = �P�m = m
4 (
tx + ty
tx − ty

). For trivial frac-

tionalization (eitherm or �t trivial), 2�νp is an integer vector. The
nontrivial fractionalization gives rise to �νp = (1/4, 1/4) ∼
(1/4,−1/4).

Finally, we compute the momentum of a dislocation
with Burgers vector �b. The i component of the momentum
equals 
i jb j , where 
i j = [1 −UT (π/2)]−1tTi K

−1t j[1 −
U (π/2)]−1. Thus we obtain


i j = 1

8

(
(tx + ty)2 t2x − t2y
t2y − t2x (tx − ty)2

)
. (78)

For nontrivial symmetry fractionalization, where tx ± ty is
odd, we see that 
i j has diagonal components equal to 1/8.
On the other hand, if we have trivial symmetry fractionaliza-
tion, the only possible values of the components are 0 and
1/2, which correspond to trivial values of crystal momentum,
as discussed above.

Finally, we note that different choices of the parameters ki
do not necessarily give different SET phases. This is because
of redundancies that arise when we consider gauge field rela-
belings, as we discuss for the 1/2 Laughlin state in Secs. VI
and VIB.
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B. Z2 gauge theory

In this example we consider the case where the intrinsic
topological order is given by Z2 gauge theory (i.e., that of
the Z2 toric code), which has A = Z2 × Z2. This is the case
relevant for gapped Z2 quantum spin liquids.

The system is described by a K-matrix K =
(0 2
2 0

)
. The

anyons are given by I = (0, 0)T , e = (1, 0)T , m = (0, 1)T ,
and ψ = (1, 1)T , and we have �aTK−1�b = a1b2+a2b1

2 .
The symmetry fractionalization classes are specified by

inequivalent choices of { �q, �s, �ti, �m} ∈ A × (A/MA) × (KM ⊗
A) × A. Thus the classification of �q and �m is individually
Z2 × Z2, irrespective of the value of M. Suppose we wish to
determine �q. To do so, we first compute the fractional charge
Q�l = �qTK−1�l = q1l2+q2l1

2 , for each anyon �l . From this data we
can uniquely determine the integers qI mod 2, which fix the
charge fractionalization. A similar method allows us to deter-
mine the anyon �m. Together these determine the charge filling,
which places a LSM-type constraint on the fractionalization
data:

νc mod 1 = �qTK−1 �m = q1m2 + q2m1

2
. (79)

Next we turn to the spin vector. We have A/MA = Z2 ×
Z2 if M is even, and is Z1 otherwise. As in the previous
example, we see that the anyons �s and M�s are equivalent
whenM = 3, so any choice of �s can be understood in terms of
attaching anyons to elementary disclinations in this case. Now
suppose M is even. When �s = e, the fractional angular mo-
mentum of each anyon (modulo 1), given by �sT K−1�l , equals

LI = 0, Le = 0, Lm = 1/2, Lψ = 1/2. (80)

If we choose �s = m, a similar calculation yields

LI = 0, Le = 1/2, Lm = 0, Lψ = 1/2; (81)

and choosing �s = ψ gives

LI = 0, Le = 1/2, Lm = 1/2, Lψ = 0. (82)

Note that measuring the angular momentum for any one anyon
does not uniquely fix the value of �s. This result emphasizes
that in general we need to know the angular momentum of ev-
ery anyon in order to fix the symmetry fractionalization class.
All these calculations could formally be done in the same
manner for M odd; however, each set of angular momentum
values thus calculated would correspond to trivial symmetry
fractionalization.

For M = 2, 3, 4, the distinct torsion vectors are classified
by

K2 ⊗ (Z2 × Z2) = Z4
2, (83)

K3 ⊗ (Z2 × Z2) = Z1, (84)

K4 ⊗ (Z2 × Z2) = Z2 × Z2. (85)

We can understand theZ4
2 classification as follows: whenM =

2, the anyons �tx and �ty are fixed independently, and each can
be equal to I , e, m, or ψ . The equivalence relation on �tx, �ty
does not provide any additional constraint.

For M = 3, the equivalence relation is(�tx
�ty

)
∼

(�tx
�ty

)
+ [1 −U (2π/3)]

(
t ′x
t ′y

)
=

(�tx
�ty

)
+

(
t ′x − t ′y
t ′x + 2t ′y

)
(86)

(see Appendix A for the explicit forms of the rotation point
group matrices). Notice that every anyon can be written in the
form

( t ′x−t ′y
t ′x+2t ′y

)
mod 2. Therefore every assignment is trivial. In

this case, although we can certainly adjust �tx, �ty so as to obtain
nontrivial values of momentum for the anyons, the symmetry
fractionalization class is still trivial.

For M = 4 we find, as in the previous example, that �tx and
�ty are not independent: we can only fix �tx + �ty ∈ {I, e,m, ψ}.
This leads to the Z2 × Z2 classification. Finally, for M = 6,
the torsion vectors are always trivial, irrespective of the struc-
ture of A.

Let us consider below the fractional U (1) charges of the
defects, for the special case of the standard gapped Z2 spin
liquid at half-filling and on the square lattice, where M =
4, �q = m = (0, 1)T , �m = e = (1, 0)T , and all ki = 0. In this
case, the Hall conductivity vanishes, σH = 0, and depending
on the value of �s theU (1) charge of a pure π/2 disclination is
calculated as S/4 = �qTK−1�s/4. To find the U (1) charge of a
dislocation, we compute(

Pc,1

Pc,2

)
= [1 −U (π/2)]−1

(
�qTK−1�tx
�qTK−1�ty

)
(87)

= 1

4

(�tx,1 + �ty,1
�tx,1 − �ty,1

)
. (88)

The four fractionalization classes related to the torsion vec-
tor are specified by choosing �tx + �ty ∼ I , e, m, or ψ . Note
that �ti,1 = 1 if �ti = e, ψ , while �ti,1 = 0 if �ti = I,m. Thus, if
the momentum fractionalization class is specified by I or
m (i.e., it is trivial), the polarization will take values of the
form (0, 0)T , (0, 1/2)T , (1/2, 0)T . The charge of a dislocation
computed using these values will be a multiple of 1/2 and
can be understood as the charge of some anyon associated
with that dislocation. If the momentum fractionalization is
specified by e or ψ , the polarization will take values of the
form (1/4,±1/4). Then the charge of a dislocation can take
the values 1/4 or 3/4, which cannot be understood through the
attachment of anyons to each dislocation. This is a feature of
nontrivial momentum fractionalization. Note that the seeming
asymmetry between e and m in this example is due to our
choice of �q = m.

The rest of the responses are straightforward to compute in
this example given our general theory and we leave them for
more detailed studies of Z2 spin liquids.

VI. CLASSIFICATION OF SETs AND REDUCTION
OF H3[G,U (1)]

A. Recovering theH2(G,A) and H3[G,U (1)] classification

The four generalized charge vectors �q, �s, �t , �m described
above can all be included independently in the effective ac-
tion forG = U (1) × Gspace. Therefore the group classification
of the generalized charge vectors is A × (A/MA) × (KM ⊗
A) × A, which equals H2(G,A) as expected. For M = 1 the
correct A × A classification is produced by taking K1 to be
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trivial. When the magnetic flux per unit cell is not an integer,
the group structure becomes a nontrivial central extension of
Gspace by U (1) due to the magnetic translation algebra. This
case is left for future work.

The full classification of the allowed SPT terms is given
by Z2 × Z3

M × K2
M , which indeed equals H3[G,U (1)], as we

derive in Appendix D. The classification based on H2(G,A)
and H3[G,U (1)] is summarized in Table I. However not
all of these choices give topologically distinct phases of
matter [19,58] as some of them can be trivialized by field
redefinitions. The particular redundancies that appear depend
sensitively on the choice of K matrix and the generalized
charge vectors [58] as we will describe below. For example,
we find that the 1/2 Laughlin topological order on a square
lattice (M = 4) possesses 2304 distinct symmetry-enriched
topological states when the integer part of the charge filling
per unit area (k6) and the Hall conductivity (k1) are fixed.

B. Reduction of H3[G,U (1)] due to relabelings

As discussed above, Lfrac specifies the symmetry fraction-
alization class through the choice of the generalized charge
vectors, which corresponds to the classification H2(G,A).
LSPT contains additional terms depending only on the back-
ground gauge fields, and is classified by H3[G,U (1)]. The
choice of H3[G,U (1)], which corresponds to changing the
coefficients ki inLSPT, can be understood as stacking (2 + 1)D
SPT states. Physically, the effect of changing the action by a
choice of H3[G,U (1)] is to change the braiding and fusion
properties of the symmetry defects [19].

Depending on the choice of symmetry fractionalization
class and the precise topological order involved, it is possible
that changing the action by a nontrivial choice ofH3[G,U (1)]
does not yield a distinct phase of matter. Therefore, keeping

the symmetry fractionalization choice fixed, the true clas-
sification of distinct symmetry-enriched topological states
(SETs) is reduced from H3[G,U (1)] to a subgroup. In the
G-crossed braided tensor category formulation [19], this re-
duction corresponds to cases where changing the algebraic
theory of defects by an element of H3[G,U (1)] can be com-
pletely accounted for by a relabeling of the symmetry defects.

We can also see this reduction from H3[G,U (1)] in the
context of our topological effective action. In this context we
see that field redefinitions can be made to absorb the effect of
changing the couplings in LSPT by certain amounts. Since this
analysis is heavily dependent on the precise topological order
(precise choice of K matrix) involved, here we will focus on
some simple examples.

To illustrate the main idea, let us begin by considering
the case where G = ZM , with the symmetry fractionalization
class specified by the spin vector �s, and the associated defect
class given by k ∈ ZM . The ZM gauge field C couples to a as
follows:

L = − 1

4π
KIJa

I ∪ daJ + sI
2π

aI ∪ dC + k

2π
C ∪ dC. (89)

In this case there are naively M distinct choices of k, k =
0, . . . ,M − 1, corresponding to H3[ZM,U (1)] = ZM . First,
we note that the choice of couplings (�s, k) has the following
redundancies:

(�s + M ��, k) ∼ (�s, k) ∼ (�s, k + M ). (90)

The first equivalence is because M ��
2π · �a ∪ dC is trivial, as

explained in the main text. The second equivalence follows
fromH3[ZM,U (1)] = ZM .

Next, observe that we can rewrite the Lagrangian as

L = − 1

4π
KIJ (a

I + uIC) ∪ d (aJ + uJC) + sI + KIJuJ
2π

(aI + uIC) ∪ dC + 2k − �uTK �u − 2�s · �u
4π

C ∪ dC, (91)

where �u ∈ ZD. Since aI is dynamical, the shift aI → aI + uIC
can be trivially absorbed by redefining the integration vari-
ables. Note that aI + uIC still obeys the flux quantization
condition since dC integrates to 2πZ over any 2-cycle.

Therefore we have the additional equivalence

(�s, k) ∼
(

�s + K �u, k − �uTK �u
2

− �sT �u
)

. (92)

Combining the equivalences in (92) and (90), we see that
whenever K �u = M ��, we get

(�s, k) ∼
(

�s, k − �uTKu
2

− �sT �u
)

. (93)

For a fixed choice of �s, this corresponds in general to a reduc-
tion ofH3[ZM,U (1)].

Now we can work out some specific examples. Consider
the 1/N Laughlin state with N even, for which K = N , and
take M = 2. Since s ∼ s + M, there are two possible spin
vector classes, given by s odd or s even. Suppose we choose

u = 1 and � = N/2. Then we have

(s, k) ∼ [s, (k − N/2 − s) mod 2]. (94)

For s = 1, then this relabeling will take k → (k − 1 −
N/2) mod 2. Hence, if N is a multiple of 4, the SET classes
corresponding to (s, k) = (1, 0) and (1,1) are the same, while
the two classes (s, k) = (0, 0) and (1,1) are distinct. The above
result was previously also obtained using the edge physics of
Chern-Simons theories in Ref. [58]; here we have reproduced
their result with the field theory in the bulk.

One can use similar reasoning to obtain the SET classifica-
tion for general K-matrix states and for general symmetries
G = U (1) × Gspace, as explained in Appendix C. The sum-
mary of the relabeling analysis for 1/N bosonic Laughlin
topological orders and for the case where Gspace = Z2

� Z4

is summarized in Table IV. In Appendix C we further do an
explicit counting of SET states for the 1/2 Laughlin topolog-
ical order, with G = U (1) × Gspace and considering all five
orientation-preserving 2d space group symmetries, Gspace =
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TABLE IV. The effect of relabelings on the SET classification for the 1/N Laughlin state (for N even) with U (1) charge conservation
and p4 = Z2

� Z4 space group symmetry. In the left column, N ′ is an integer. The charge, spin, and area vectors are now integers, while the
torsion vector �ti is valued in Z2, and tx + ty mod 2 specifies the symmetry fractionalization. The internal gauge fields can be relabeled so as
to leave the partition function invariant but transform the SPT parameters (k2, k3, k5, k7) to (k′

2, k
′
3, k

′
5, k

′
7) (shown in the last column). Note that

the precise transformation of these coefficients is different for different symmetry fractionalization classes and for different values of N .

N Generalized charge vectors Relabeled SPT parameters (k′
2, k

′
3, k

′
5,i, k

′
7)

4N ′ (q mod N, s mod 4, �t,m mod N ) (k2 − q, k3 − N
2 − s, k5,i − ti, k7 − m)

4N ′ + 2 (q mod N, s mod 2, �t,m mod N ) (k2 − 2q, k3 − 2s, k5,i, k7 − 2m)

Z2
� ZM for M = 1, 2, 3, 4, 6; these results are shown in

Table V.

VII. CRYSTALLINE GAUGE THEORY: CONTINUUM
APPROACH

In this section we discuss two aspects of crystalline gauge
theory. The first is that our method of defining discrete crys-
talline gauge fields on simplices and using simplicial calculus
to evaluate the action was a practical choice to make direct
the relation with the group cohomology classifications of
symmetry-enriched topological states (SETs) [19]. However
we expect that the same results can also be obtained by work-
ing with real-valued differential forms.

The second aspect is that the discrete translation and rota-
tion gauge fields defined in this work are directly related to the
coframe field and the spin connection that arise in continuum
geometry and are known to be closely related to elasticity
theory. (In Appendix B we provide some background on the
origin of crystalline gauge fields in terms of the gauge theory
of elasticity as discussed in Ref. [16]).

A. Crystalline gauge fields as differential forms

In order to construct actions from discrete gauge fields,
it was convenient to work in terms of simplicial cohomol-
ogy and simplicial calculus (see Appendix A of Ref. [47]
for a review). There our translation gauge fields could be
viewed as Z2-valued 1-cochains defined on the triangulated
space-time manifoldM; that is, X,Y ∈ C1(M,Z). Similarly,
the rotation gauge field can be viewed as a ZM valued 1-
cochain,C ∈ C1(M,ZM ). [Strictly speaking, in the main text
C corresponded to a lift of the ZM gauge field to 2π

M Z. The
action is then invariant under changes of lift, e.g., shifting
Ci j → Ci j + 2π for a single 1-simplex i j.]

We can consider instead a formulation where we take the
gauge fields to be real-valued differential 1-forms. We thus

can define

aI ,A,X,Y,C ∈ �1(M,R), (95)

where �k (M,R) denotes the space of real-valued differential
k forms. aI , A, �R = (X,Y ), andC are the internal,U (1), trans-
lation, and rotation gauge fields, respectively, now defined as
differential 1-forms.

The discreteness of the gauge fields enters through con-
straints on the holonomies of these gauge fields. Given a cycle
γ , we require

∮
γ

�R ∈ 2πZ2,

∮
γ

C ∈ 2π

M
Z, (96)

with the equivalence

∮
γ

C ∼
∮

γ

C + 2π,

∮
γ

A ∼
∮

γ

A + 2π,

∮
γ

aI ∼
∮

γ

aI + 2π. (97)

Dislocations and disclinations must therefore correspond to
singular sources of flux for X , Y , C. Differential forms which
are required to integrate to discrete values along cycles are
referred to as integral differential forms.

The gauge transformations are also real valued. In partic-
ular, large gauge transformations for aI , A, and C must be
quantized in units of 2π .

TABLE V. Count of SETs for the 1/2 Laughlin topological order with G = U (1) × [Z2
� ZM ]. We have fixed k1 and k6, which are the

integer parts of the Hall conductivity and the charge filling. See Appendix C for the derivation.

Count of SETs for 1/2 Laughlin topological order (A = Z2) with G = U (1) × [Z2
� ZM ]

M H2(G,Z2) H3[G,U (1)] Naive SET count (k1, k6 fixed) Reduced SET count (k1, k6 fixed)

2 Z5
2 Z2 × Z7

2 4096 800
3 Z2

2 Z2 × Z5
3 972 972

4 Z4
2 Z2 × Z2

2 × Z3
4 4096 2304

6 Z3
2 Z2 × Z3

6 1728 972
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We then write the effective action using the wedge product:

L = − 1

4π
KIJa

I ∧ daJ + Lfrac + LSPT,

Lfrac = 1

2π
aI ∧ (qIdA + sIdC + �tI · d ��R + mIAXY ),

LSPT = k1
2π

A ∧ dA + k2
2π

A ∧ dC + k3
2π

C ∧ dC + 1

2π
A ∧ (�k4 · d ��R) + 1

2π
C ∧ (�k5 · d ��R) +

(
k6
2π

A + k7
2π

C

)
∧ AXY . (98)

Here AXY is the continuum analog of the area element we de-
fined in the simplicial formulation. For example, whenC = 0,
AXY = 1

4π (X ∧ Y − Y ∧ X ). Note that the terms in L aside

from those involving AXY and d ��R are standard. To ensure

that the terms involving d ��R are invariant under large gauge

transformations of aI , A, and C, we require 1
2π

∫
W d ��R ∈ Z2

over any closed 2-cycleW . WhenW is the space, for example,
this physically corresponds to the fact that the total Burgers
vector of the whole closed space is trivial.

While we do not pursue a formal proof here, we expect that
the effective action defined using this continuum formulation
yields identical physical results as compared with the lattice
gauge theory formulation used in previous sections.

Given a triangulation of the space-time manifold M, we
can understand the relation between the discrete formula-
tion and the continuum formulation as follows. Given a link
(1-simplex) i j with vertices i and j, the discrete gauge fields
Ai j , Ci j , Xi j , and Yi j are taken to be the integral from i to j
along the 1-simplex i j of their continuum counterparts. Note
that only those continuum gauge field configurations can be
used that give rise to the appropriate discrete values of C, X ,
and Y . Since the only gauge invariant quantities for �R and C
are associated with disclinations and dislocations, we expect
that such gauge configurations can always be found.

We can see how to specify the action of C on �R by noting
that in the continuum setting, �R and C correspond exactly
to the continuum coframe fields e and spin connection ω. In
the following section we discuss this correspondence in more
detail.

B. Gauge fields for continuous space-time symmetries: Coframe
field and spin connection

The Euclidean group E2 = R2
� SO(2) is a semidirect

product of the group of continuous rotations in 2D, SO(2) =
U (1) and the group of continuous translations R2. In this case
we can consider background gauge fields associated with the
continuous translation and rotation symmetries.

The translation gauge fields in the continuum setting now
correspond to the 1-form coframe fields eaμ, a = 1, 2 associ-
ated with the space �2. For physically realistic space-time
manifolds of the form M = �2 × R, where �2 is space,
we choose e1, e2 to be of the form eai dx

i = eaxdx + eaydy.
There is also a fixed time component of the coframe field
e0 = dt . Below we will assume the space �2 can be curved,
but time is separate, as is appropriate for directly describing
a condensed matter system. That is, the metric tensor g =
gi jdxidx j + gtt dt2.

The coframe fields diagonalize the metric tensor

gi j = eai e
b
jδab, (99)

where δi j (the Kronecker delta) is the flat space metric. In the
linearized approximation where eai = δai + ẽai , we have

gi j = δi j + ẽij + ẽ ji , (100)

where δai = δai is the Kronecker delta.
A translation gauge transformation can be identified as an

infinitesimal diffeomorphism:

xi → f i(x) = xi + εi(x), (101)

under which

eai → ∂i f
jeaj = (δ j

i + ∂iε
j )eaj

= (δ j
i + ∂iε

j )(δaj + ẽaj ) = δai + ẽai + ∂iε
a + · · ·

= eai + ∂iε
a + · · · , (102)

where the · · · indicate the subleading term which we ignore
in the linearized approximation. We see therefore that in the
linearized approximation, the gauge transformations of eai
are the continuous analog of the discrete translation gauge
transformations �Ri j → �Ri j + �r j − �ri on the lattice. Note that
as in the discrete case, the continuous translation gauge trans-
formations should preserve the gauge-invariant holonomies
associated with ea. In particular, the gauge transformations
therefore correspond to diffeomorphisms that preserve the
lengths along noncontractible cycles.

Physically, the continuous translation gauge fields eai cor-
respond to the plastic distortion tensor discussed in Ref. [16].
The full strain tensor u is the sum of the elastic strain tensor
uel and the plastic strain tensor up: u = uel + up. The gauge-
invariant combination is uel = u − up.

In addition to the translation gauge transformations, there
are also rotation gauge transformations. These correspond to
locally rotating the coordinate axes by an element of SO(2),
at every point. The gauge field associated with these gauge
transformations is the spin connection, which is a 1-form
gauge field ω that corresponds to the continuous spatial ro-
tation symmetry. The spin connection specifies how the frame
fields at nearby points are rotated relative to each other. In
terms of the full 3D space-time spin connection �a

b,μ, the
spin connection associated with spatial rotations corresponds
to ωμ = �1

2,μ. In this language we can explicitly write the
correspondence between the continuum and discrete gauge
fields as �R ∼ (e1, e2) andC ∼ ω. We emphasize that when the
continuous E2 symmetry is broken down to a discrete space
group symmetry, there is no distinction between ( �R,C) and
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(�e, ω). The gauge-invariant properties associated with ( �R,C)
can equally be calculated using ea, ω.

To further clarify the correspondence between the dis-
crete translation and rotation gauge fields and the continuum
coframe fields and spin connection, we calculate the contribu-
tion of ω to the covariant derivative of ea using our discrete
formulation with certain limiting arguments. At a point �r +
δ�r, the coframe field (written here using the translation gauge
field notation of the main text) is

Rj (�r + δ�r) ≈ Rj (�r) + ∂iR j · δri. (103)

As stated in the main text, the vector �R(�r) parallel transported
to �r + δ�r is U (C�r,�r+δ�r ) �R(�r), where we have chosen �r as the
origin. In the continuum we can write U (C�r,�r+δ�r = θ ) as a
rotation matrix eiθσy [this would not be appropriate on a lattice,
where we need to use GL(2,Z) matrices in a lattice basis,
but it is not a problem in the continuum]. The total rotation
applied between �r′ and �r′ + d �r′ is written in terms of ω as

e
−i

�r+δ�r∫
�r

�ω(�r′ )·d�r′σy

. Here we have written the spin connection as a
vector with components ωμ. This representation of C shows
that it directly corresponds to ω in the continuum.

To first order in δ�r, we can approximate

U (C�r,�r+δ�r ) = e
−i

�r+δ�r∫
�r

�ω(�r′ )·d�r′σy

(104)

≈ 1 − iσy �ω(�r) · δ�r. (105)

The covariant derivative of �R in the direction xi can then be
written as

DiRj (�r) = lim
xi→0

1

xi
{Rj (�r + xi ) − [U (C�r,�r+xi ) �R(�r)] j} (106)

= lim
xi→0

1

xi
[∂iR jx

i + ωi(�r)xi × (iσyR) j] (107)

= ∂iR j + ωi(�r)ε jkRk . (108)

This is precisely the formula for the covariant derivative D of
ea in terms of ω, which is written in the usual notation as

T a ≡ Dea = dea + εabωe
b = dea + �a

b ∧ eb. (109)

Here �a
b,μ is the full spin connection. We have proved this

formula using the fact that �a
b = −�b

a is antisymmetric, so
that �1

1 = �2
2 = 0 and �1

2 = −�2
1 = ω.

T a is the torsion 2-form, which characterizes how the
frame field is rotated along the path traced by a curve in space-
time. The torsion as defined above can be directly related to
the dislocation density, i.e., to the holonomy of translation
gauge fields after accounting for parallel transport, similar
to the quantity d �R used in our work. Furthermore, the flux
associated with rotational symmetry alone (dC in the lattice
formulation, or dω in the continuum) gives the curvature of
the manifold, which is directly related to the disclination den-
sity. Therefore couplings involving dC or dω are essentially
coupling the system to curvature. Given that torsion is not
quantized in the continuum, there cannot be any quantized
topological terms formed by coupling anyons or symmetry
charges to the torsion (although nonquantized terms which are
topological in the sense of being independent of changes in the
underlying metric are well known).

The classification of SET phases with U (1) × E2 symme-
try is identical to the classification forU (1) ×U (1) symmetry
(this can be proved, for example, by computing the relevant
cohomology groups) [59]. So while the translation group R2

has associated gauge fields X and Y , the Lagrangian does not
have any contribution from X and Y ; the only relevant terms
for Euclidean group symmetry fractionalization and for the
associated SPT states are given by sI

2π a
I ∧ dω and k

2π ω ∧ dω,
respectively.

VIII. DISCUSSION

A. Spatial vs internal symmetries

As we have discussed, at a formal level our mathematical
treatment of crystalline gauge fields is equivalent to treating
the symmetry as an internal symmetry of the low energy
quantum field theory. The main difference is (1) the physical
interpretation of the fluxes in terms of geometrical properties
of the lattice, with certain holonomies being restricted by the
lattice area and lengths, and (2) the fact that we ultimately tie
the space-time metric of the low energy topological quantum
field theory, which arises from the framing anomaly, to the
crystalline gauge fields. Here we will begin by discussing this
issue in some more detail.

We have two levels of description of the system. The first
is the microscopic lattice model, which has a global symmetry
G = U (1) × Gspace, for some spatial symmetry group Gspace.
The second is the effective field theory description, which in
our case is a topological field theory. The symmetry of the
topological field theory is GIR × Diff(M ), where GIR is the
internal symmetry of the field theory and Diff(M ) is the group
of diffeomorphisms of the space-time manifold M. Here the
internal symmetry GIR allows us to couple the field theory to
background principal GIR bundles. The action of the micro-
scopic G symmetry in the low energy field theory is described
by a group homomorphism:

α : G → GIR × Diff(M ). (110)

When g ∈ G is a purely on-site symmetry of the microscopic
lattice model, then α(g) = [α(g)|GIR , 1], where α(g)|GIR de-
notes the restriction of α to the first factor and 1 refers to
the identity element of Diff(M ). That is, an on-site symmetry
g in the microscopic lattice model is mapped to an internal
symmetry in the field theory. On the other hand, if g ∈ G is a
purely spatial symmetry of the microscopic lattice model, then
α(g) maps g to a combination of an internal symmetry and an
element of Diff(M ). For example, a ZM spatial rotation in the
microscopic lattice model will be mapped in general to a ZM

internal symmetry combined with a ZM rotation of space in
the field theory. The distinct ways that a microscopic lattice
symmetry can act in the field theory is taken into account
by the different ways of coupling the effective field theory to
background GIR gauge fields.

Another way to state the above is that given any spatial
symmetry g, one can always consider the combination α(g)
followed by an appropriate element of Diff(M ), to obtain a
symmetry action in the field theory that has trivial component
in Diff(M ). Therefore, given any spatial symmetry in the mi-
croscopic lattice model, the effective field theory description
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can also in general contain a corresponding internal symmetry.
To fully describe all possible SETs, we thus takeGIR = G, and
we classify all the ways that the effective field theory can be
coupled to G bundles.

Observe that in the above description the symmetry defects
associated with spatial symmetries in the microscopic lattice
model, such as dislocations and disclinations, should therefore
be described in the field theory by symmetry fluxes of the
internal symmetry of the field theory and, simultaneously,
torsion and curvature defects in the space-time metric of the
effective field theory. This reflects the fact that α maps to
both GIR and Diff(M ). This explains why we equate the spin
connection of the space-time metric to the rotation gauge field
in Eq. (66).

The above explanation is not a proof that spatial sym-
metries in lattice models can always be treated as internal
symmetries in the effective field theory description. Nev-
ertheless, all known examples of effective field theories of
quantum many-body systems can be understood via the above
paradigm. As a simple example, consider the action of trans-
lation symmetries in spin chains and their description in the
low energy Luttinger liquid theory [60].

The conjecture that spatial symmetries can always be
treated as internal symmetries in the field theory has recently
been formalized in Ref. [17] as the “crystalline equivalence
principle,” where additional arguments have also been given
in support of it. This principle has also received significant
support from the theory of crystalline SPTs, where the SPT
classifications obtained by treating spatial symmetries as in-
ternal symmetries can be compared with other more direct
methods [61–64], and the results agree with each other.

B. Connection between points on the triangulation and points
on the lattice

In our formulation of the crystalline gauge field, the un-
derlying lattice model does not feature explicitly in the for-
mulation, although one can give an interpretation to the crys-
talline gauge fields in terms of the microscopic lattice sites
as done in the gauge theory of elasticity [16]. The 0 cells
of the triangulation of M need not be assumed to belong
to any microscopic or coarse-grained lattice. The motivation
for the gauge field itself is the assumption that the topologi-
cal response is completely determined by the gauge-invariant
data of the underlying lattice, defined as the lengths around
noncontractible cycles, the area, the Burgers vectors of dis-
locations, and the angle of disclinations in the lattice. Now
these quantities can all be specified by constructing loops
which encircle all the defects, and which span the nontrivial
cycles of the manifold, and then keeping track of the change in
coordinate labels and the local orientation of coordinate axes
as we go around each loop. This can all be achieved using
a triangulation. Therefore it does not matter whether or not
the vertices of the triangulation actually correspond to points
or coarse-grained regions of the original lattice. As such, the
precise locations of the lattice defects is unimportant for the
analysis of the topological, quantized response properties.

Introducing a triangulation moreover has significant addi-
tional value: the condition that the effective action is indeed
topological can be reformulated as a condition that the parti-

tion function is invariant under retriangulations. This in turn
means that the action satisfies a group cocycle condition,
which provides the link to the group cohomology classifica-
tion of SETs, as we discuss in Appendix D.

C. Relation to defect network constructions

Reference [63] gives a general construction of crystalline
SET phases in terms of defect networks; a similar approach
has been studied for invertible phases in Ref. [64]. Here the
manifold M is decomposed by means of a cellulation, and
the defects in the theory, which include anyons as well as
symmetry defects, are assumed to live on the 0 cells (vertices)
of the cellulation.

The authors of Ref. [63] show that the defect network
picture is equivalent to the crystalline equivalence principle.
Our formalism is equivalent to assuming the crystalline equiv-
alence principle and proceeding with the G-crossed braided
tensor category [19] and associated group cohomology clas-
sifications of SET phases. In this sense we expect that our
approach formally yields the same classification results as the
defect network picture.

However, the two approaches differ in details of physical
interpretation. Let us restrict ourselves to the SPT case for
concreteness. In this special case the defect network picture is
mathematically related to an equivariant cohomology theory,
in which one considers the high-symmetry points of a space
group unit cell and places symmetry charges on these high
symmetry points. Two configurations of symmetry charge
are in different SPT phases if they cannot be deformed into
one another by local, symmetry-preserving unitaries. (This
procedure is essentially the “block state” construction of SPT
phases developed in Refs. [61,62]). It is not fully clear how
this approach is equivalent to the topological response theory
that we have described in our work. We can also express this
distinction as follows: the equivariant cohomology approach
has symmetry charges, but in this picture it is not apparent
how these arrangements of charge give rise to different re-
sponses upon introducing symmetry fluxes. Reconciling the
two pictures properly is an interesting direction, but beyond
the scope of the present work.

D. Outlook

We have predicted a type of momentum fractionalization,
characterized by the discrete torsion vector, which can only
be nontrivial for M = 2, 3, 4-fold rotation symmetry together
with translation symmetry. This term leads to a number of
fractionally quantized response properties with no analog in
the continuum. Perhaps most notably this includes a fraction-
ally quantized charge polarization, which can assign nontrivial
fractional charges to dislocations and fractional charges per
unit length to boundaries (modulo the anyon charge). In
addition to this, the theory predicts fractionally quantized
linear and angular momenta for disclinations, dislocations,
and units of area. It is important to verify the predictions of
this crystalline gauge theory through microscopic studies of
model Hamiltonians and wave functions. While the fractional
charges of dislocations and disclinations can in principle
also be probed by experiments on fractional Chern insulators
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with sufficiently weak disorder, it is an interesting theoretical
question to understand the extent to which the fractionally
quantized linear and angular momenta of anyons, lattice de-
fects, and units of area can be experimentally measured.

Our theory is expected to be complete for topological
phases of bosons, where symmetries do not permute anyon
types. For fermionic states, which are most relevant for ex-
perimental studies of fractional Chern insulators in solid state
systems, our theory will still apply, although we expect some
modifications in terms of different quantizations of certain
coupling constants (e.g., some ki can be half-integer). There
may also be additional fermionic SET phases and physical
phenomena that cannot be fully captured with these effective
actions, corresponding to “beyond group supercohomology”
phases.

When the space group symmetries do permute anyon types
[65,66], lattice defects can be non-Abelian and the classifi-
cation of SETs is different. Furthermore, certain values of
the coefficients of the response theory may be constrained by
the symmetry permutation. A detailed study of this is left for
future work.

The crystalline gauge theory we have developed treats
the lattice defects as a fixed background configuration that
is described in terms of a fixed background gauge field.
Such a gauge theory apparently does not take into account
the restricted mobility of dislocations and disclinations in a
crystalline environment. The restricted mobility of these lat-
tice defects can be described using higher rank tensor gauge
fields, which are known to be dual to fracton theories (see,
e.g., Refs. [67–69]). It would be interesting to understand the
relation between the topological field theory developed here
and a formulation including higher rank tensor gauge fields
which explicitly takes into account the restricted mobility of
the lattice defects.

Finally, we note that in general, given a symmetry G of
a condensed matter system, the effective field theory must
include coupling to background gauge fields of the symmetry
in order to be fully specified. It would be interesting to revisit
the large family of effective field theories used throughout
condensed matter physics, including gapless theories, and to
properly understand the coupling to background crystalline
gauge fields.
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APPENDIX A: 2D POINT GROUP ROTATION MATRICES

An important role in the main text was played by the 2 × 2
rotation matrix U ( 2πM ), associated with the generator of point
group rotations. Due to the presence of a lattice, there is a
natural basis in which point group rotation matrices U ( 2πM )
can be defined. We define the x and y axes to be the lattice
vectors, such that for M-fold point group rotations, the x and

TABLE VI. Elementary rotation matricesU ( 2πM ) for different M.

M 2 3 4 6

U ( 2πM )

(−1 0
0 −1

) (
0 1

−1 −1

) (
0 1

−1 0

) (
0 1

−1 1

)

[1 −U ( 2πM )]
−1 1

2

(
1 0
0 1

)
1

3

(
2 1

−1 1

)
1

2

(
1 1

−1 1

) (
0 1

−1 1

)

y axes subtend an angle 2π
M . For M = 2, U ( 2πM ) = −1, where

1 here denotes the 2 × 2 identity matrix. For M = 3, 4, 6 an
elementary 2π

M rotation can always be defined to take x → y.
In turn, the existence of a lattice ensures the rotated position
of y can be expressed as a linear combination of the original
x and y. The result forU ( 2πM ) is given in Table VI, along with
the matrices [1 −U ( 2πM )]−1 that also arise frequently.

In our calculations we have assumed that the lengths Lx,Ly
are defined along these possibly nonorthogonal axes. More-
over, integrals

∫
f (x, y)dxdy should be carried out with x

and y defined by this lattice-specific coordinate system. The
advantage of using these coordinates is that we always work
with integer vectors and matrices, so the coefficients of the
theory are always integers or fractions of integers.

APPENDIX B: CRYSTALLINE GAUGE THEORY AND
RELATION TO GAUGE THEORIES OF ELASTICITY

The discrete translation gauge field �R that we use has
previously been discussed in elasticity theory [16]. Here we
provide a brief review of how the discrete crystalline gauge
fields arise in elasticity theory, following Chap. 9 of Ref. [16].

In elasticity theory, the basic variables are the displace-
ments ui(�r) of a particle on a lattice whose mean position is
�r, along each direction i. The elastic energy is a function of
the strain tensor components ∂iu j and to lowest order has the
form

E = 1

2

∑
�r

λi jkl∂iu j∂kul , (B1)

where the operator ∂ is now interpreted as a discrete gradient.
The corresponding classical partition function is given by

Z =
∏
�r,i

⎛
⎝ ∞∫

−∞

dui(�r)
a

⎞
⎠e−βE . (B2)

Demanding that the energy is invariant under rigid rotations
leads to the conditions λi jkl = λkli j = λ jikl among the elastic
moduli [36]. This is the most general translation-invariant
Lagrangian that can be written at lowest order in derivatives
of ui.

At low temperatures and in a classical theory, the dis-
placements ui(�r) are generally much smaller than the lattice
spacing a. However, it is possible for thermal or quantum
fluctuations to result in particles exchanging their positions
over long times. Indeed, the diffusion of particles within the
lattice means that it is appropriate to think of ui as being
defined only up to a lattice constant; therefore, our partition
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function must be invariant under a transformation

ui(�r) → ui(�r) + aNi(�r), (B3)

where a is the lattice spacing and Ni is an integer vector field
defined at the discrete positions �r. The transformation (B3)
is a gauge transformation which reflects the physical reality
that the coordinates can be relabeled up to integers. To ensure
gauge invariance under this transformation, we introduce new
integer-valued gauge fields 1

2π Ri j ∈ Z and replace

∂iu j (�r) → ∂iu j (�r) − a

2π
Ri j (�r). (B4)

[Here i, j ∈ {x, y} and Ri j (�r) is a function defined on a lattice;
this notation should not be confused with the notation �Ri j

in a simplicial formulation, where i j is a 1-simplex on a
triangulation].

Note that to model the particles precisely, we should make
sure that the gauge transformation induces a permutation of
the location of all lattice sites. This requires that the integers
Ni(�r) must in principle be correlated with each other, so that
we do not allow multiple atoms to occupy the same lattice site,
leaving other lattice sites completely empty. The assumption
of the crystalline gauge theory [16] is that the highly nontrivial
interdependency of Ni(�r) can be ignored, and the Ni(�r) can be
treated as independent integers.

The partition function then includes a sum over all possible
values of Ri j :

Z =
∑

{Ri j (�r)}

∏
�r,i

⎛
⎝ ∞∫

−∞

dui(�r)
a

⎞
⎠e−βẼ , (B5)

Ẽ = 1

2

∑
�r

[
λi jkl

(
∂iu j − a

2π
Ri j

)(
∂kul − a

2π
Rkl

)]
. (B6)

The change of variables and subsequent sum over Ri j encode
the fact that the quantities ∂iu j can change by any integer
values at every lattice point, and that the different particle
configurations are all treated equally. As originally desired,
Z is now invariant under the gauge transformation

ui(�r) → ui(�r) + aNi(�r), (B7)

Ri j (�r) → Ri j (�r) + 2π∂iNj (�r). (B8)

The Ri j are precisely the discrete translation gauge fields
suitably defined on a lattice: Rxi = Xi, Ryi = Yi. Integrating out
the displacements ui will result in a pure gauge theory in terms
of the gauge fields Ri j .

To further understand the fields Ri j , we next look at how
this gauge theory treats dislocations. A lattice dislocation
corresponds to a missing or extra line of atoms such that the
number of nearest neighbors at the dislocation point changes.
The fields Ri j allow for such configurations, which are devia-
tions from an ideal lattice configuration. These configurations
would not be included in the partition function if we restricted
ourselves to a change of variable ui(�r) → ui(�r) + aNi(�r), as
this transformation amounts to a relabeling of coordinates but
keeps the particles in an ideal lattice configuration. Another
way to say this is that the integral

∮
γ

∂iNjdl i, where d�l is
the infinitesimal line element along the loop γ , will always
be zero in an ideal lattice and cannot represent a dislocation.

A dislocation Burgers vector is obtained from the holonomy
1
2π

∮
γ

�R. The symmetrized quantity 1
2 (Ri j + Rji ) is the dis-

continuous part of the symmetrized strain tensor. A similar
procedure can be followed for a continuous elastic medium,
where the analog of 1

2π Ri j is referred to as the plastic strain

tensor u(p)i j and is directly related to the coframe field used in
differential geometry, as discussed in Sec. VII B.

We can also introduce disclinations in elasticity theory via
a rotation symmetry gauge field. Disclinations, the fluxes of
this rotation symmetry field, are related to the antisymmetric
component of the strain tensor, which does not enter the action
at the usual quadratic order. These effects can be included
by adding higher derivative terms to the usual Lagrangian.
Conventional elasticity theory does not, however, include
translation as well as rotation symmetry via a non-Abelian
gauge field, as we have done. Instead, it makes certain ap-
proximations that allow rotations to be incorporated without
dealing with the full space group symmetry. This does not
affect the calculations greatly for thermodynamic purposes,
but in dealing with topological properties we saw that the
non-Abelian gauge field led to a situation where only certain
properties of dislocations are gauge invariant. This feature
cannot be reproduced by an approximate calculation.

APPENDIX C: COUNT OF SETs FOR THE LAUGHLIN
STATEWITH G = U (1) × Gspace

In Sec. VI we discussed a general procedure to account for
redundancies in theH3[G,U (1)] classification of SET phases
using relabelings of the gauge field, when G = ZM . Here we
will generalize that procedure to G = U (1) × Gspace.

We first recall the effective action written in Eq. (31):

L = − 1

4π
aI ∪ KIJda

J + Lfrac + LSPT,

Lfrac = 1

2π
aI ∪ (qIdA + sIdC + �tI · d ��R + mIAXY ),

LSPT = k1
2π

A ∪ dA + k2
2π

A ∪ dC + k3
2π

C ∪ dC

+ 1

2π
A ∪ (�k4 · d ��R) + 1

2π
C ∪ (�k5 · d ��R)

+
(
k6
2π

A + k7
2π

C

)
∪ AXY . (C1)

The integer coefficients k1 through k7 have the following in-
dependent redundancies arising from the group structure of
H3[G,U (1)] (k1 and k6 have no redundancy):

k2 ∼ k2 + Mλ2,

k3 ∼ k3 + Mλ3,

�k4 ∼ �k4 + (1 −U

(
2π

M

)
)�λ4,

�k5 ∼ �k5 + (1 −U

(
2π

M

)
)�λ5,

k7 ∼ k7 + Mλ7, (C2)
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where λi ∈ Z. We also have the following independent equiv-
alence for the anyon �s, introduced in Eq. (90):

sI ∼ sI + M�s,I , (C3)

where �s,I are integers.
Now there is an additional independent equivalence involv-

ing the anyons �ti. Note that the following term is trivial, and
can therefore be added to the effective action with no change
to the partition function:

[1 −U
(
2π
M

)
]

2π
��t,Ida

I ∪ ��R = 1

2π
��t,Ida

I ∪ �R, (C4)

where ��t,I are integer vectors. The second expression is al-
ways a multiple of 2π for a flat gauge field configuration of aI ,
and is therefore trivial. This implies the following equivalence
relation, which we have discussed previously:

�tI ∼ �tI + (1 −U

(
2π

M

)
) ��t,I . (C5)

Now the most general relabeling of the gauge fields aI

which preserves the flux quantization condition
∫
daI ∈ 2πZ,

includes the gauge field ��R as well as the gauge field C:

aI → aI + uIC + �vI · ��R, (C6)

where uI , �vI are all integers. For a flat background gauge

field configuration, both dC and d ��R are multiples of 2π , and
therefore this relabeling does not affect the flux quantization
condition.

We can now repeat the procedure adopted in Sec. VI. First
we relabel the fields aI as indicated above. Then we find the
constraints on uI , �vI such that sI and �tI can be shifted back to
their original values by the addition of trivial terms. Finally,
we compute the change in the coefficients k1 through k7 that
is required in order to leave the effective action invariant after
this relabeling.

The result is the following: sI and �tI can be shifted back to
their original values when

KuI = M�s,I ,

K�vI =
[
1 −U

(
2π

M

)]
��t,I . (C7)

For such relabelings, the SPT coefficients change simultane-
ously, in the following way:

k2 → k2 − qIuI ,

k3 → k3 − uIKIJuJ

2
− sIuI ,

�k4 → �k4 − �vIqI ,

�k5 → �k5 − �vI sI − uI�tI − uIKIJ �vJ ,

k7 → k7 − mIuI . (C8)

Note that all coefficients except k1 and k6 can be transformed
in principle by these relabelings.

We will now use this result to perform some specific com-
putations. Consider an example with the 1/N Laughlin state
(with N even) and U (1) × p4 = U (1) × [Z2

� Z4] symme-
try.

In this case we have M = 4 and K = N . The integer s is
defined modulo gcd(4,N ), which is either 2 or 4, since we
consider N to be even; the integers q,m are defined modulo
N . The equivalence class of the torsion vector �t is given by
the value of tx + ty mod 2. The condition on the relabeling
indices u, �v, Eq. (C7), now becomes

Nu = 4�s, (C9)

N�v =
[
1 −U

(π

2

)]
��t . (C10)

The transformation of SPT coefficients, Eq. (C8), now reads

k2 → k2 − qu,

k3 → k3 − Nu2

2
− su,

�k4 → �k4 − q�v,

�k5 → �k5 − s�v − u�t,
k7 → k7 − mu. (C11)

Note that the SPTs parametrized by �k4, �k5 are nontrivial only
if k4,x + k4,y (respectively k5,x + k5,y) is odd. Since N must be
even, the term −Nu�v in the transformation of �k5 is trivial, and
has been ignored. With N a multiple of 4, we can without loss
of generality take u = 1 to satisfy the constraint; however, we
must choose vi to be even. Hence �v will not be responsible for
any nontrivial relabelings.

When N is of the form 4N ′ + 2 we must choose u = 2,
while �v must be chosen so that vx + vy is even. However, this
means that �v still gives a trivial contribution to the relabelings
of �k4, �k5, and hence we only need to consider transformations
due to u.

The SET equivalences for this example are summarized in

Table IV. Note that in our examples, it is crucial that C, ��R be
discrete, so that we can add trivial terms such as Ms′I

2π aI ∪ dC.
This is not possible for continuous symmetry gauge fields: a
term qI

2π a
I ∪ dA cannot be trivial on its own for any nonzero

integer value of qI . This means that there is no chain of equiv-
alences relating different elements of H3[U (1),U (1)] while
keeping the charge vector �q fixed. This is consistent with the
fact that the differentU (1) SETs with the same charge vector
all have different Hall conductivities, and are thus physically
distinct states of matter.

In our final example below, we will count the number of
distinct SETs associated with the 1/2 Laughlin state with
U (1) × Gspace symmetry. We will only present the results,
which can be derived using the arguments above. In this case,
the parameters q, s, tx, ty, m can correspond to the identity
particle I or to the semion S. The parameters k1 and k6 will not
be affected by relabelings and will always contribute a factor
of Z × Z to the overall SET classification; we assume they
are fixed. The remaining SPT parameters k2, k3, �k4, �k5, k7
are classified by the group ZM × ZM × KM × KM × ZM . The
relabeling equation is now

k2 → k2 − qu,

k3 → k3 − u2 − su,
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�k4 → �k4 − q�v,

�k5 → �k5 − s�v − u�t − 2u�v,

k7 → k7 − mu, (C12)

where

2u = M�s,

2�v =
[
1 −U

(
2π

M

)]
��t . (C13)

We analyze M = 2, 3, 4, 6 separately below:
(1) For M = 2 there are two ways to choose each of

q, s, tx, ty, m. We also have |Z3
2 × K2

2 | = 27. We can choose
u and v arbitrarily. There are now different cases. If q = s = I
there is a factor 2 reduction due to u. If exactly one of q, s
equals S, there is a factor 23 = 8 reduction due to both u and �v.
By varying �v, we see that if q = S, all values of �k4 are trivial,
while if s = S, all values of �k5 are trivial. Finally, if q = s = S,
we have a factor 25 = 32 reduction, and both �k4 and �k5 will be
trivial.

Therefore we obtain

27
(
8

2
+ 16

8
+ 8

32

)
= 800 (C14)

SETs.
(2) For M = 3 there are two choices each for q and m,

but all possible choices for s and �t are trivial. Thus there are
four symmetry fractionalization classes. We also have |Z3

3 ×
K2
3 | = 35. There are no relabelings involving either u or �v,

since we must choose both u and vx − vy to be multiples of
3. Hence we get 35 = 243 distinct SETs for each symmetry
fractionalization class, and 4 × 243 = 972 SETs in total.

(3) ForM = 4 there are two choices each for q, s, m, and
tx + ty, giving 16 choices of charge vectors in total. We also
have |Z3

4 × K2
4 | = 28. First we note that we have to choose

vx + vy even, implying that �v is not responsible for any non-
trivial equivalences. Therefore we only consider equivalences
due to u = 2.

We have 22 × 43 = 256 SETs whenever q = s = m = I
(there are no relabelings); otherwise we have 2 × 43 = 128
SETs. This gives 2 × 256 + 14 × 128 = 2304 SETs in total.

(4) For M = 6 there are two choices each for q, s, m,
while �t is anyway trivial, and so we do not have to consider
relabelings involving �v. We also have |Z3

6| = 63. The only
relabelings come from setting u = 1. Now we have 63 = 216
SETs whenever q = M = I and s = S (there are no relabel-
ings in these cases); otherwise we have 63/2 = 108 SETs.
This gives 1 × 216 + 7 × 108 = 972 SETs in total.

If we specialize to the M = 4 case, we find that there
are 2304 distinct SETs, in contrast to the naive estimate of
|H2(G,A) × H3[G,U (1)]| = 4096. Note that much of the
analysis was simplified by our choice of the 1/2 Laughlin
topological order. If we consider more complicated topologi-
cal orders, the analysis will become much more involved.

APPENDIX D: TOPOLOGICAL TERMS AND GROUP
COHOMOLOGY

The correspondence between the topological effective ac-
tion and the group cohomology formulation runs deeper than
giving the same overall classification. There is a one-to-one
correspondence between topological terms in the action in-
volving flat background G gauge fields and cocycles in group
cohomology. In this Appendix we will explain this relation-
ship through concrete calculations.

Let us first summarize the relationship between
H3[G,U (1)] and the topological terms in LSPT, which
correspond to topological effective actions for (2 + 1)D SPT
states. See Refs. [43,44] for a more detailed discussion. For
an overview of simplicial calculus, see Ref. [47].

(1) A topological Lagrangian for an SPT involving flat
G gauge fields (defined on 1-simplices) can be integrated
over a 3-simplex of a triangulation, which gives an action S
associated with a single 3-simplex. The resulting eiS , which
depends on the values of the flat gauge field defined on the
1-simplices, is thus a 3-cochain of G valued in U (1), i.e., an
element ofC3[G,U (1)].

(2) In fact eiS is a 3-cocycle of G valued in U (1), i.e.,
an element of Z3[G,U (1)]. The 3-cocycle condition arises by
demanding that the theory be independent of the triangulation.

(3) Gauge transformations applied to the G gauge fields
on a triangulation change the value of eiS by an amount ei

∫
df ,

which corresponds to a 3-coboundary of G valued inU (1), or
an element of B3[G,U (1)].

Therefore we see that gauge-inequivalent topological ac-
tions for flat G gauge fields fall into equivalence classes
determined by the quotient H3[G,U (1)] := Z3[G,U (1)]

B3[G,U (1)] . It has
been shown that this fully characterizes topological gauge
theories for gauge group G [43], and also believed to fully
characterize (2 + 1)D SPTs [44,70]. It is also known to clas-
sify the fusion and braiding properties of symmetry defects in
(2 + 1)D SETs once the symmetry fractionalization class has
been fixed [19].

Let us now summarize the relationship between H2(G,A)
and Lfrac. Consider the coupling of flat G gauge fields to flat
internal gauge fields describing the Abelian topological order
(we assume that the symmetry does not permute anyons):

(1) Consider a single internalU (1) gauge field a. Consider
a topological term which is an integer multiple of 1

2π a ∪ B,
where B ∈ 2πZ is obtained in terms of the G gauge field and
is defined on 2-simplices. Note that B ∈ 2πZ in order for this
term to be invariant under large gauge transformations of a.

(2) This action can be thought of as an action for U (1) ×
G symmetry. Demanding retriangulation invariance implies
that 1

2π a ∪ B must be a 3-cocycle: 1
2π d (a ∪ B) = 1

2π (da ∪
B + a ∪ dB) ∈ 2πZ. Since a is flat, da ∈ 2πZ, so we find
dB = 0.

A G gauge transformation which takes B → B + d�,
where 1

2π � ∈ Z, changes the Lagrangian by a 2-coboundary
of G with Z coefficients. Therefore the gauge inequivalent ac-
tions fall into equivalence classes determined by the quotient
H2(G,Z) := Z2(G,Z)

B2(G,Z) .
When there are D independent internal gauge fields, the

coefficient changes from Z to ZD.
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(3) The K-matrix coupling ensures that if B is of the form
K �� where 1

2π
�� is an integer vector, the theory is trivial.

This is because the anyon associated with the “symmetry
flux” B is trivial. Therefore the correct coefficients which
classify physically distinct couplings of the K-matrix theory
to the background G gauge field are ZD/KZD ∼= A. This is
in fact the definition of A, the group of anyons. Therefore the
classification of such actions is given by H2(G,A).

In what follows we describe in more detail the precise
relation between the topological terms in the effective action
and the group cohomology cocycles for the symmetry group
discussed in this paper,G = U (1) × Gspace. Note that the sym-
bol H refers to cohomology with measurable cochains, also
known as Borel cohomology. For n > 0, the groupsHn(G,Z)
and Hn(BG,Z) coincide. Here H (BG,Z) refers to the coho-
mology of the classifying space BG of G.

1. Cocycle representatives for G = U (1) and G = ZM

G = U (1): In this case we have

Lfrac = 1

2π
qIa

I ∪ dA, (D1)

LSPT = k

2π
A ∪ dA, (D2)

where qI , k ∈ Z. Here �q is the charge vector. Define a flat,
real-valued gauge field A such that A12 = a and A23 = b. For-
mally A is the lift of aU (1) gauge field toR. A corresponding
element of U (1) = R/2πZ is written as [a] = a mod 2π ;
therefore a = [a] + 2πna for some na ∈ Z. Now for the 3-
simplex [0123], Lfrac becomes

qI
2π

aI01dA123 = qI
2π

aI01{[a] + [b] − [a + b] + dn(a, b)},
(D3)

where dn(a, b) = na + nb − na+b. The quantity qI
2π {[a] +

[b] − [a + b] + dn(a, b)} defines an anyon, i.e., an element
in A, and thus can be viewed as an A-valued 2-cocycle,
i.e., an element of Z2[U (1),A]. The quantity qI

2π dn(a, b) is
an A-valued 2-coboundary, i.e., an element of B2[U (1),A].
In general, coboundaries correspond to changes of lift. In-
equivalent choices of �q determine inequivalent classes in the
cohomology group H2[U (1),A] ∼= A.

A similar analysis can be made for the SPT term k
2π A ∪ dA.

In this case, choose a 3-simplex [0123] with A01 = a, A12 =
b, A23 = c (the other values are fixed by the flatness of A).
Again, A is formally a lift fromU (1) to R. Then we have

k

2π
A ∪ dA[0123] = k

2π
A01 × dA123,

= k

2π
([a] + na){[b] + [c]

− [b+ c] + dn(b, c)}. (D4)

When evaluated modulo 2π , the right-hand side is a 3-cocycle
which represents a cohomology class inH3[U (1),U (1)] ∼= Z
identified by k; the terms which explicitly depend on n arise
by choosing alternative lifts. For each choice of charge vector
�q, it is possible to add a Z worth of SPT states. This means
that for each symmetry fractionalization class, one can obtain

a set of topological phases related to each other by stacking
G-SPT states, given by elements of H3[G,U (1)].

G = ZM : Effective SPT actions for G = ZM have been
related to ZM group cocycles in previous work [71]. The
action for G = ZM is

Lfrac = sI

2π
aI ∪ dC, (D5)

LSPT = k

2π
C ∪ dC. (D6)

Define a flat gauge field C ∈ 2π
M Z such that C12 = 2πa/M

and C23 = 2πb/M where a, b are integers. Formally C is a
lift from ZM to 2π

M Z. A corresponding element of ZM is
written as 2π [a]M

M = 2πa
M mod 2π , where we define [a]M = a

mod M; therefore a = [a]M + Mna for some na ∈ Z. Now
Lfrac becomes

sI
2π

aI01dC123

= sI
M

aI01{[a]M + [b]M − [a + b]M + Mdn(a, b)}. (D7)

The quantity sI
M {[a]M + [b]M − [a + b]M + Mdn(a, b)} is a

2-cocycle in the group Z2(ZM,A). The quantity sIdn(a, b),
which is the difference between two different choices of lifts,
is a 2-coboundary in the group B2(ZM,A). Note that the most
general coboundary relation implies that shifting sI by a multi-
ple ofM corresponds to changing the lift; therefore sI + M�I

for �I ∈ Z is equivalent to sI . With these conditions we see
that the equivalence classes of �s are in bijection with coho-
mology classes [w] ∈ H2(ZM,A). When A = Zn1 × · · · ×
Znr , we simply haveH2(ZM,A) = Z(M,n1 ) × · · · × Z(M,nr ) =
A/MA (MA is defined as {Ma|a ∈ A}).

Next we analyze LSPT. The Lagrangian integrated on a 3-
simplex with C01 = a, C12 = b, C23 = c gives

k

2π
C ∪ dC[0123] = 2πk

M2
([a]M + Mna){[b]M + [c]M

− [b+ c]M + Mdn(b, c)}. (D8)

Taken modulo 2π , this function is a 3-cocycle in
Z3[ZM,U (1)]. Choosing k to be a multiple of M results in a
3-coboundary; therefore the classification isH3[ZM,U (1)] ∼=
ZM . Since the 3-cocycles ofZM andU (1) have a similar form,
the resulting SPT terms, which are of the form A ∪ dA and
C ∪ dC, also have the same Chern-Simons structure.

2. Calculation of H2(Gspace,Z) and H3[Gspace,U (1)]

The part of the action with terms from the group Gspace is

Lfrac = sI
2π

aI ∪ dC + �tI
2π

aI ∪ d ��R + mI

2π
aI ∪ AXY , (D9)

LSPT = k3
2π

C ∪ dC + �k5
2π

C ∪ d ��R + k7
2π

C ∪ AXY . (D10)

Since the group cocycles for Gspace are less common than
those of U (1) or ZM , we will first derive them abstractly and
then discuss their relationship to the gauge fields �R and C. A
space group Gspace can always be written as a group extension
of a point group H by the group of translations Z2, with some
action θ : H → Aut(Z2), as summarized by the short exact
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sequence

1 → Z2 → Gspace → H → 1. (D11)

When a group G can be expressed in terms of a direct product
extension, we can use the Künneth formula and its associated
decomposition to determine its cohomology groups. When H
is a rotation point group, the above extension is on the other
hand always a semidirect product. If it were possible to apply
the Künneth decomposition to the above semidirect product
extension for the cohomology of Gspace with Z coefficients,
we would obtain

Hn(Gspace,Z) =
n∏

k=0

Hk
θk
[H,Hn−k (Z2,Z)]. (D12)

This equation will be further explained below; however we
first note the following caveats. For a general semidirect
product extension, it is not possible to use the Künneth decom-
position. The more general technique that is applicable in this
case involves what are referred to as spectral sequences (see,
e.g., Refs. [72,73] for an introduction). When G = Gspace,
however, the cohomology groups Hn(Gspace,Z) can be nu-
merically computed using a program such as GAP, as was
done in Ref. [17]. Although we do not show the calculations
here, we can apply spectral sequence techniques (specifically,
we use the Lyndon-Hochschild-Serre spectral sequence) and
compare them to the known numerical results. From this we
can infer that the correct expansion forHn(Gspace,Z) is indeed
given by the Künneth decomposition. Knowing this result, we
can finally use the Künneth decomposition again to obtain the
cohomology of the groupU (1) × Gspace.

In (D12) the action θk is not on Z2 itself, but on the
cohomology group Hn−k (Z2,A); it is induced by the action
θ of H on Z2, and will be discussed further below.

Let us first study the classification of symmetry fraction-
alization. It is easiest to first compute H2(Gspace,Z) and then
shift to A coefficients. Eq. (D12) gives

H2(Gspace,Z) ∼= H2
θ2
[ZM,H0(Z2,Z)]

×H1
θ1
[ZM,H1(Z2,Z)]

×H0
θ0
[ZM,H2(Z2,Z)] (D13)

= H2
θ2
(ZM,Z) × H1

θ1
(ZM,Z × Z)

×H0
θ0
(ZM,Z) (D14)

= ZM × KM × Z. (D15)

The first line is the Künneth decomposition. In the second line
we substituted the known cohomology groups Hk (Z2,Z) =
Z(2k). The result of evaluating these cohomology groups is
shown on the last line; these calculations will be discussed
further below.

Using Eq. (D12) we can next compute

H4(Gspace,Z) ∼= H4
θ4
[ZM,H0(Z2,Z)]

×H3
θ3
[ZM,H1(Z2,Z)]

×H2
θ2
[ZM,H2(Z2,Z)] (D16)

= H4
θ4
(ZM,Z) × H3

θ3
(ZM,Z × Z)

×H2
θ2
(ZM,Z) (D17)

= ZM × KM × ZM . (D18)

For a finite group or a compact Lie group G, it is a general
result that Hn[G,U (1)] ∼= Hn+1(G,Z) when n > 0. Thus we
can compute the cohomology groups of U (1) with both Z
and U (1) coefficients. However, this statement does not hold
for arbitrary G. Verifying this requires additional spectral se-
quence computations, which we will not show here. However,
these computations indeed reveal that

H3[Gspace,U (1)] ∼= H4(Gspace,Z) (D19)

for Gspace = Z2
� ZM (we in fact expect this relation to hold

for a general 2D space group, although we have not done
the more general computation). Finally, we use the Künneth
decomposition for the direct product U (1) × Gspace and use
the above results to obtain [74]

H3[U (1) × Gspace,U (1)] ∼= H3[U (1),U (1)]

× H2(Gspace,Z) × H3[Gspace,U (1)] (D20)

= Z2 × Z3
M × K2

M . (D21)

Note that since U (1) is a continuous group, and we are
working with measurable (Borel) cohomology, it is difficult
to compute its cohomology groups directly, and in doing so
we must rely on technical mathematical results. To provide
some additional intuition about the cohomology ofU (1) using
results on finite groups, Ref. [44] computed the cohomology
groups of Zn and showed how they were related to those
of U (1) upon taking an appropriate limit where n → ∞. In
a similar spirit, we can compute the cohomology of G =
Zn × Gspace for an arbitrary integer n using the Künneth de-
composition, and obtain [74]

H3[Zn × Gspace,U (1)] ∼= H3[Zn,U (1)]

× H2(Gspace,Zn) × H3[Gspace,U (1)] (D22)

= Z2
n × Z2

M × KM × Z(M,n) × (KM ⊗ Zn). (D23)

Thus we obtain a result which bears a significant resem-
blance to the claimed result for U (1) × Gspace: the difference
is that some groups in the above classification depend on the
commensuration between n and M. If we choose n to be a
multiple of M, and take n → ∞, so that the initial factors
of Zn are replaced by Z, we recover the result for the group
U (1) × Gspace.

3. Cocycle representatives for H2(Gspace,Z)

Note that all 2-cocycles must satisfy the following condi-
tion:

f2(g1, g2) + f2(g1g2, g3) = f2(g2, g3) + f2(g1, g2g3),
(D24)

where, if gi = (�ri, hi ), then g1g2 = [�r1 +U (h1)�r2, h1 + h2].
In what follows, we assume that the translation gauge field �R
is valued in 2πZ2, while theZ2 group elements �ri are assumed
to be integer valued. Cocycles in Zd (Gspace,Z) are denoted as
fd .
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a. H2
θ2
[ZM,H0(Z2,Z)]

The cocycles in the coefficient groupH0(Z2,Z) in the first
term of Eq. (D13) are constant functions valued in Z. The ZM

rotations, which act on Z2, therefore do not change the value
of these functions, so that θ2 is the trivial action. The first term
is thus isomorphic to H2(ZM,Z), and the associated cocycle
representatives of Gspace are f2(g1, g2) = s

M ([h1]M + [h2]M −
[h1 + h2]M ) with s ∈ ZM as discussed previously. The corre-
sponding field-theoretic element is s

2π dC.

b. H1
θ1
[ZM,H1(Z2,Z)]

Now we consider the second term of (D13). The coefficient
moduleH1(Z2,Z) has cocycle representatives of the form p�t ,
where p�t (�r) = �t · �r for some �t ∈ Z2. Under a rotation U (h),
p�t gets transformed as �t ·U (h)�r = [UT (h)�t] · �r = pUT (h)�t (�r).
This means that the induced action on the coefficients is
equivalent to the rotation action θ1 = θ on vectors in Z2.

The first observation is that the group H1
θ1
(ZM,Z2) classi-

fies functions f1 taking elements h of ZM to vectors in Z2. We
haveH1

θ (ZM,Z2) ∼= Z2

[I−U ( 2πM )]Z2
∼= KM , using standard results

on the cohomology of cyclic groups (see, e.g., Ref. [44]). A
representative cocycle f1 of this group has the form

f1(h) = 1 −U (h)

1 −U ( 2πM )
f1(2π/M ), (D25)

where f1(2π/M ) = �t for some �t ∈ Z2, and theU matrices act
on �t by rotation.

Next we consider the more detailed decomposition
H1

θ1
[ZM,H1(Z2,Z)]. A cocycle of this group maps an el-

ement h ∈ ZM to a cohomology class [p f1(h)] ∈ H1(Z2,Z)
whose representatives are functions p f1(h).

The desired 2-cocycle of Gspace is completely determined
in terms of p f1(h) as follows:

f2(g1, g2) = p f1(h1 )( �r2) (D26)

=
(
1 −U (h1)

1 −U ( 2πM )
�t
)

· �r2. (D27)

This function, with parameter �t , satisfies the 2-cocycle con-
dition for Gspace. Values of �t which are of the form �t = [1 −
U (2π/M )]�t ′ are trivial, as the resulting cocycles are actually
2-coboundaries db, where b(g) = �t ′ · �r. It is easy to motivate
this function by looking at a 2-simplex [012]. If 1

2π
�R01 =

�r1, C01 = h1, and 1
2π

�R12 = �r2, then from flatness of ( �R,C)
we have 1

2π
�R02 = �r1 +U (h1)�r2. Therefore 1

2π d �R[012] = �r1 +
�r2 − [�r1 +U (h1)�r2] = [1 −U (h1)]�r2. SinceU (h1) is a power
of U ( 2πM ), this function is always a multiple of [1 −U ( 2πM )].
Therefore, f2(g1, g2) = �t · 1−U (h1 )

1−U ( 2πM ) �r2 is integer valued for all

�t ∈ Z2. However, it cannot be generated on a 2-simplex by
a 2-coboundary df (g1, g2) (the only function that would give
df is f (g) = �t · [1 −U ( 2πM )]−1�r, which is not integer valued,
unless �t has the trivial form). The field theory element giving

this value is �t
2π · d ��R = �t

2π · [1 −U ( 2πM )]−1d �R.

c. H0
θ0
[ZM,H2(Z2,Z)]

Finally, we study the third term of (D13). The coeffi-
cient module H2(Z2,Z) has representatives wm for m ∈ Z,
satisfying wm(�r1, �r2) − wm(�r2, �r1) = m�r1 × �r2. Although the
rotation action changes the form of wm, the above cross
product (and hence the value of m) is rotationally invariant,
and in this sense the action θ0 is trivial. Now the group
H0

θ0
(ZM,Z) classifies functions f0 taking each h ∈ ZM to

some fixed integer f0(h) = m ∈ Z. Therefore a cocycle in
the groupH0

θ0
[ZM,H2(Z2,Z)] should take h to the cohomol-

ogy class [w f0(h)] whose representatives w f0(h) are such that
w f0(h)(�r1, �r2) − w f0(h)(�r2, �r1) is rotationally invariant.

It can be verified that the following function is a 2-cocycle
of Gspace with these properties:

f2(g1, g2) = w f0(h1 )[�r1,U (h1)�r2] = mr1,x[U (h1)�r2]y. (D28)

In this case we have w f0(h1 )[�r1,U (h1)�r2] −
w f0(h1 )[U (h1)�r2, �r1] = m�r1 ×U (h1)�r2. The cross product
is invariant under rotations and is a measure of area. If
operations 2 and 1 are performed successively, the rotation h1
changes the relative orientation of axes used to measure the
two translations. The vector �r2 is therefore rotated by U (h1)
so as to meaningfully take a cross product with �r1.

Consider the quantity w′
f0(h1 )

[�r1,U (h1)�r2] = m
2 �r1 ×

U (h1)�r2. Although it is not an integer-valued cocycle,
it satisfies the 2-cocycle condition with 1

2Z coeffi-
cients (hence it can be used to obtain a topologically
invariant action on 3-simplices). This function satisfies
w′

f0(h1 )
[�r1,U (h1)�r2] − w′

f0(h1 )
[U (h1)�r2, �r1] = m�r1 ×U (h1)�r2,

i.e., it has the same gauge-invariant property as f2(g1, g2);
moreover, it is already rotationally invariant. We use this
1
2Z-valued cocycle in the field theory because it is closely
related to the integer-valued space group cocycles, and
furthermore the cross product is an intuitive measure of
area. The corresponding field theory object is m

2π AXY , where
AXY [012] = 1

4π ( �R01) ×U (C01) �R12. The gauge transformation
behavior of AXY and its physical relationship to the area
element were discussed in Sec. III B.

d. Classification

The classification H2(Gspace,Z) is seen from the discus-
sion above to be ZM × KM × Z. To obtain the classification
of symmetry fractionalization, we use the universal coefficient
theorem [75] to write

H2(Gspace,A)

= H2(Gspace,Z) ⊗ A × Tor[H3(Gspace,Z),A] (D29)

= H2(Gspace,Z) ⊗ A (D30)

[we can check that the group H3(Gspace,Z) vanishes when
Gspace is orientation preserving]. The ⊗ (tensor product) sym-
bol defines the tensor productG ⊗ H of Abelian groupsG and
H . The group G ⊗ H is defined as the set of pairs g⊗ h where
g ∈ G, h ∈ H , where ⊗ is a bilinear operation such that g⊗ h
is trivial if either g or h is trivial. For example, if ng = 1G (the
identity element of G), n(g⊗ h) = (ng) ⊗ h = 1G⊗H ; and this
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argument runs similarly for h. The groupG ⊗ H is completely
defined by the following properties:

G ⊗ H ∼= H ⊗ G, (D31)(∏
i

Gi

)
⊗

(∏
j

Hj

)
∼=

∏
i, j

(Gi ⊗ Hj ), (D32)

G ⊗ Z ∼= G, (D33)

Zm ⊗ Zn
∼= Zd , d = gcd(m, n). (D34)

The topological terms classified by H2(Gspace,Z) ⊗ A are
thus consistent with the group structure of symmetry fluxes
[classified byH2(Gspace,Z)] as well as that of anyons (classi-
fied by A). The formal effect of the ⊗ symbol is to replace
the Z coefficients by A coefficients. This means that the
coefficients s, �t, m are replaced by vectors sI , �tI , mI in
ZD. Moreover, if these parameters take the form K ��, they are
trivial. With this change, the above cocycles all become cocy-
cle respresentatives for H2(Gspace,A) ∼= (A/MA) × (KM ⊗
A) × A. (Note that ZM ⊗ A ∼= A/MA). Effective actions
corresponding to these cocycles are recovered by taking a cup
product of the vector aI of internal gauge fields with the field
theory term corresponding to a representative ofH2(G,A).

4. Cocycle representatives for H3[Gspace,U (1)]

With our knowledge of H2(Gspace,Z), it is easy to under-
stand the group H3[Gspace,U (1)]. We can derive its cocycle
representatives in the following direct way. The Gspace charges
are classified by H1[Gspace,U (1)] ∼= ZM (corresponding to
the charges of C), whose generator is represented by the
cocycle f1(h) = 2π [h]M/M mod 2π . The associated field
theory element is just C. The fluxes are classified by the
group H2(Gspace,Z). Therefore SPT cocycles, which asso-

ciate symmetry flux to an elementary symmetry charge, are all
of the form ν(g1, g2, g3) = 2π [h1]

M β(g2, g3) mod 2π , where
[β] ∈ H2(Gspace,Z). These functions satisfy the 3-cocycle
condition for H3[Gspace,U (1)], and correspond to taking the
cup product of a cocycle in H1[ZM,U (1)] with another from
H2(Gspace,Z).

To obtain the relevant SPT cocycle representatives, con-
sider the three subgroups Sk, k = 0, 1, 2, of H2(Gspace,Z),
defined as

Sk := Hk[ZM,H2−k (Z2,Z)]. (D35)

From the definition of the tensor product, the clas-
sification of SPT terms obtained by associating an
elementary ZM charge to a flux represented by a
cocycle of Si is ZM ⊗ Si. The full SPT classification is
therefore

∏2
i=0 ZM ⊗ Si = (ZM ⊗ ZM ) × (ZM ⊗ KM ) ×

(ZM ⊗ Z) = ZM × KM × ZM . This is the same as
the Künneth decomposition result: H3[Gspace,U (1)] ∼=
H3[ZM,U (1)] × H2

θ [ZM,U (1) ×U (1)] ×
H1{ZM,H2[Z2,U (1)]} ∼= Z2

M × KM . Therefore the
flux-charge construction accounts for all the group
cohomology SPTs. The cocycles so obtained are moreover
in one-to-one correspondence with cocycle representatives of
H4(Gspace,Z).

The cocycles for mixed SPTs ofU (1) and Gspace symmetry
are obtained by a cup product of a 1-cocycle representative
of H1[U (1),U (1)] (generated by f1(a) = [a] mod 2π ) and
a 2-cocycle representative of H2(Gspace,Z). Finally, the full
H3[Gspace ×U (1),U (1)] classification can also be obtained
from the Künneth decomposition: it equals Z2 × Z3

M × K2
M .

In this case, the possible charges are classified by the group
Z × ZM , corresponding to charge of A and C, respectively.
These charges couple to fluxes, i.e., representatives of the
group H2(Gspace,Z), to give the full SPT action for the group
Gspace ×U (1).
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