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Absolute anomalies in (2+1)D symmetry-enriched topological states and exact (3+1)D constructions
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Certain patterns of symmetry fractionalization in (2+1)-dimensional [(2+1)D] topologically ordered phases
of matter can be anomalous, which means that they possess an obstruction to being realized in purely (2+1)D.
In this paper we demonstrate how to compute the anomaly for symmetry-enriched topological states of bosons
in complete generality. We demonstrate how, given any unitary modular tensor category (UMTC) and sym-
metry fractionalization class for a global symmetry group G, one can define a (3+1)-dimensional [(3+1)D]
topologically invariant path integral in terms of a state sum for a G-symmetry-protected topological (SPT) state.
We present an exactly solvable Hamiltonian for the system and demonstrate explicitly a (2+1)D G-symmetric
surface termination that hosts deconfined anyon excitations described by the given UMTC and symmetry frac-
tionalization class. We present concrete algorithms that can be used to compute anomaly indicators in general.
Our approach applies to general symmetry groups, including anyon-permuting and antiunitary symmetries. In
addition to providing a general way to compute the anomaly, our result also shows, by explicit construction,
that every symmetry fractionalization class for any UMTC can be realized at the surface of a (3+1)D SPT
state. As a by-product, this construction also provides a way of explicitly seeing how the algebraic data that
defines symmetry fractionalization in general arises in the context of exactly solvable models. In the case of
unitary orientation-preserving symmetries, our results can also be viewed as providing a method to compute the
H4(G,U (1)) obstruction that arises in the theory of G-crossed braided tensor categories, for which no general
method has been presented to date.
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I. INTRODUCTION

In the absence of any symmetries, gapped quantum many-
body states of matter in 2+1 space-time dimensions can still
form distinct, topologically ordered phases of matter [1–3].
Topologically ordered states are characterized by the fusion
and braiding properties of topologically nontrivial quasiparti-
cle excitations (anyons), which are described mathematically
by an algebraic theory of anyons known as a unitary modular
tensor category (UMTC) C [2,4,5]. It is believed that the pair
(C, c), where c is the chiral central charge characterizing
the possible gapless degrees of freedom on the boundary,
completely characterizes gapped phases of matter in 2+1
dimensions [(2+1)D] in the absence of symmetry.

In the presence of a symmetry group G, the classifica-
tion of gapped phases is further refined. Symmetry-enriched
topological states (SETs) are characterized by a host of addi-
tional properties [6]. These include (1) the way that symmetry
actions can permute quasiparticle types, (2) the pattern of
symmetry fractionalization, which determines the ways in
which quasiparticles carry fractional symmetry quantum num-
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bers, and (3) the fusion and braiding properties of symmetry
defects. Recently, it has been shown how these data can be
described in general through the mathematical framework of
G-crossed braided tensor categories [6].

The theory of SETs also includes a set of possible anoma-
lies, or obstructions [6,7]. For example, once it is specified
how symmetries permute anyon types in a way that is con-
sistent with the symmetries of the fusion and braiding data,
there is an obstruction to defining the notion of symmetry
fractionalization. This obstruction, sometimes referred to as
a symmetry localization anomaly, takes values in the third
cohomology group H3(G,A), where A is the Abelian group
formed by fusion of Abelian anyons, and there is an implicit
action of G on A defined by how the symmetry permutes the
anyons. Reference [6] presented a formula for how to com-
pute this obstruction given any possible permutation action
of the symmetries. One interpretation of this obstruction is
that the associated topological quantum field theory is only
compatible with a 2-group symmetry, where G is the ordi-
nary, 0-form, symmetry, A is the 1-form symmetry [8], and
[O] ∈ H3(G,A) characterizes the 2-group [6,7,9].

When the H3 symmetry localization anomaly vanishes,
there are different possible patterns of symmetry fraction-
alization. Depending on the precise pattern of symmetry
fractionalization, there can be a further anomaly, which we
refer to as a symmetry fractionalization anomaly, valued in
the fourth group cohomology H4(G,U (1)). In the langauge
of high-energy physics, this is an example of a ’t Hooft
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anomaly associated with the global symmetry G [10]. This
is an obstruction to defining a consistent set of braiding and
fusion data of symmetry defects; that is, it is an obstruction to
defining a full G-crossed braided tensor category to describe
a consistent set of braiding and fusion of symmetry defects
in addition to braiding and fusion of anyons. Stated differ-
ently in the context of quantum field theory, this anomaly is
an obstruction to consistency of the theory in the presence
of background fields associated with G. To date, a general
method to compute this H4 anomaly given the data that char-
acterizes symmetry fractionalization has not been presented,
aside from some special cases that we review in the following
subsection.

In a variety of examples, it is known that such anomalous
symmetry fractionalization classes, while they cannot exist
purely in 2+1 space-time dimensions,1 can exist at the sur-
face of a (3+1)-dimensional [(3+1)D] symmetry-protected
topological (SPT) state [11–13]. SPT states are gapped phases
of matter that, if we allow the symmetry to be broken, are
adiabatically connected to a trivial direct product state, but
are otherwise nontrivial [14]. In terms of topological quantum
field theory (TQFT), SPT states are described by invertible
TQFTs with G symmetry, implying that the path integral on
all closed manifolds has unit magnitude [15–17]. A large
class of (3+1)D SPT states can be classified by H4(G,U (1))
[18,19]. The appearance ofH4(G,U (1)) in two different con-
texts has led to the expectation that all anomalous symmetry
fractionalization classes can be realized at the (2+1)D surface
of (3+1)D SPT states, although this has not been explicitly
demonstrated in general.

In this paper, we resolve the outstanding issues mentioned
above by demonstrating an explicit way to compute the H4

anomaly in general, and demonstrating by explicit construc-
tion how any anomalous symmetry fractionalization class for
any UMTC can be realized at the surface of a (3+1)D SPT.
Specifically, we show how any UMTC C and possibly anoma-
lous symmetry fractionalization class can be used to define a
(3+1)D topologically invariant path integral. The path integral
takes the form of a discrete state sum on a triangulation of
the space-time manifold and choice of background G bundle.
Topological invariance follows from invariance of the state
sum under retriangulation and various other choices made in
the construction. We demonstrate that the resulting (3+1)D
TQFT describes a bulk (3+1)D SPT state. (3+1)D SPTs can
be distinguished by the value of their topological path integral
on various G bundles. Our path integral may be computed
explicitly on such G bundles, thus allowing us to completely
characterize the (3+1)D SPT. In particular, this allows us to

1Implicit in this statement is that the symmetry acts in an onsite
manner, that is, that the symmetry action in a lattice model decom-
poses as a tensor product of unitaries acting on each lattice site
independently. It is possible to realize anomalous boundary theories
in the dimension of the boundary by considering a nononsite action
of the symmetry [18]. The precise extension of the “onsite” require-
ment for space-time symmetries has not yet been formulated, but
presumably the requirement is that the symmetry must correspond
to an onsite transformation combined with a classical permutation of
coordinates and possibly complex conjugation.

extract an element ofH4(G,U (1)) given any UMTC and sym-
metry fractionalization class for arbitrary symmetry groupsG.

The path integral on a (3+1)D manifoldM4 defines a wave
function |�(∂M4)〉 on ∂M4. We further derive a Hamiltonian,
which is explicitly G symmetric and acts on a local tensor
product Hilbert space, for which the wave function |�(∂M4)〉
is the exact ground state. We then define the Hamiltonian
on a three-dimensional space with boundary in a way which
preserves the G symmetry, and show that the surface theory is
a (2+1)D symmetry-enriched topological state whose quasi-
particle excitations are described by the same UMTC and
symmetry fractionalization data that was used as input into the
(3+1)D state sum. This then proves by explicit construction
that any symmetry fractionalization class can appear at the
surface of a (3+1)D SPT. Since (2+1)D surfaces of nontrivial
(3+1)D SPTs are understood to be anomalous, characterizing
the bulk (3+1)D SPT that hosts a given (2+1)D symmetry
fractionalization pattern at its surface is equivalent to charac-
terizing the anomaly of the (2+1)D surface.

We also discuss a method which allows the H4 anomalies
to be computed in an algorithmic way in general. We describe
an algorithm that constructs invariants Ii of H4(G,U (1)),
for i = 1, . . . , dim H4(G,U (1)), in terms of a U (1) valued
combination of representativeU (1) 4-cochains. We then show
how this combination can be mapped to a state sum and then
be used to compute the H4 invariants by taking as input the
UMTC and symmetry fractionalization data. Our procedure
thus allows a brute force computation of the H4 obstruction
in complete generality. The complexity of the calculation is
exponential in the number of 4-cochains that appear in Ii and
polynomial in the number of distinct anyons in the UMTC.

Our results apply for arbitrary symmetry groups G, whose
elements may have either unitary or antiunitary symmetry
action, and may permute the anyons. In particular, to treat
antiunitary symmetries, we generalize the mathematical struc-
tures involved in describing symmetry fractionalization for
unitary symmetries, making contact with notions in higher
category theory.

It is expected that the classification of topological phases
with spatial symmetry (in Euclidean space Rd ) is equivalent
to those with onsite symmetry, and this expectation has been
demonstrated explicitly for a wide variety of SPT and SET
states [20–23]. Consequently, we expect our methods will
apply for computing symmetry fractionalization anomalies
associated with spatial symmetries as well. However, not all
of our constructions, in particular our exactly solvable Hamil-
tonians, are directly compatible with spatial symmetries.

A. Relation to prior work

The fact that a braided tensor category (BTC) can be used
to define a (3+1)D topologically invariant path-integral state
sum was first pointed out by Crane and Yetter [24] (see also
Ref. [25]). More recently, Walker and Wang [26] provided
a Hamiltonian realization of these theories. Our work can
be viewed as a general symmetry-enriched version of these
constructions, which takes as input an arbitrary BTC to-
gether with any symmetry fractionalization class, and outputs
a topological path integral and a corresponding Hamiltonian
realization. If the input BTC is a UMTC, our construction
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realizes a (3+1)D SPT. Prior to our work, Ref. [13] studied
an example of decorated Walker-Wang models that give SPTs
with surface SETs when G = Z2 × Z2 and the UMTC is the
semion theory [denoted U (1)2]; a generalization to Abelian
anyons not permuted by symmetries and carrying projective
representations of G was also sketched. However, our general
construction is quite different from that of Ref. [13].

In (2+1)D, the Turaev-Viro-Barrett-Westbury state sum is
well known to give a topologically invariant path integral for
closed 3-manifolds given a spherical fusion category [27,28].
The Levin-Wen model provides a Hamiltonian realization of
the Turaev-Viro theories associated to unitary fusion cate-
gories with a certain tetrahedral symmetry [29]. Recently,
these (2+1)D theories have been extended to include onsite
(internal) G symmetry, so that a G-graded fusion category can
be used to define a (2+1)D state sum [30] and also exactly
solvable Hamiltonian [31,32]. The work in this paper can be
viewed as a (3+1)D generalization of these ideas.

Recently, Cui presented a state sum construction for a
(3+1)D topological quantum field theory that takes as input
a G-crossed braided tensor category [33]. Its corresponding
Hamiltonian realization was studied in Ref. [34]. Our con-
struction is closely related to these constructions, but differs
in two fundamental ways. First, since Cui’s construction takes
as input a G-crossed braided tensor category, the H4 obstruc-
tion necessarily vanishes; therefore, anomalous symmetry
fractionalization classes are not included in this construc-
tion. Second, our construction is capable of taking as input
symmetry fractionalization classes associated with antiunitary
symmetries. However, G-crossed braided tensor categories
require that G correspond to a unitary orientation-preserving
symmetry, and therefore such antiunitary symmetries are not
incorporated in the constructions of Ref. [33]. In particu-
lar, the antiunitary symmetry actions allow us to define our
path integrals on nonorientable manifolds, generalizing the
construction in Ref. [30]. The extension to nonorientable
manifolds is beyond the most general mathematical con-
structions for (3+1)D TQFTs in terms of spherical fusion
2-categories defined recently in Ref. [35], which assign
topological invariants to oriented 4-manifolds. We comment
more on the technical similarities and differences between
our construction and those of Refs. [33,34] in subsequent
sections.

While many prior works have studied symmetry fraction-
alization anomalies, none of them have so far fully solved the
problem of computing the H4 obstruction under completely
general circumstances. When the symmetry is finite, uni-
tary, space-time orientation preserving, and does not permute
anyon types, Ref. [7] presented a formula for the H4 obstruc-
tion for bosonic topological phases (where the microscopic
constituents are bosons as opposed to fermions; mathemati-
cally, this corresponds to nonspin TQFTs). This formula was
later summarized in Ref. [13], and rederived using a more
detailed mathematical framework for the data and consistency
conditions of G-crossed braided tensor categories in Ref. [6]
(which is also expected to apply in the cases of continuous
and infinite G). In the particular case of Abelian symmetry
groups (which are unitary, space-time orientation preserving)
and Abelian topological orders where the symmetry does not
permute the anyon types, Ref. [36] explicitly studied the bulk-

boundary correspondence and a notion of “anomaly inflow”
to understand the anomaly in more detail.

On the other hand, for space-time reflection symmetries
that square to the identity, denoted ZT

2 or Zr
2, Ref. [30] de-

rived a general formula for the anomaly. Note that, in this
case, the anomaly is mathematically not an obstruction to
defining a G-crossed braided tensor category, but rather an
obstruction to defining a generalized version of a G-crossed
braided tensor category where the defects can be space-time
orientation reversing. Such a mathematical construction was
briefly outlined in Ref. [37], but has not yet been fully devel-
oped. We note that Ref. [38] also independently conjectured
the same formula for the ZT

2 anomaly for both bosonic and
fermionic topological orders. The formula for theZT

2 anomaly
for fermionic topological orders was subsequently derived
in Ref. [39]. A number of subsequent works further studied
and rederived these anomaly formulas through various other
methods [40–43].

For symmetries of the form U (1) � G′ that do not per-
mute anyons and for the specific case of Z2 topological
orders, Ref. [44] provided a method to diagnose symmetry
fractionalization anomalies. Subsequently, forU (1) × ZT

2 and
U (1) � ZT

2 symmetry, Ref. [45] recently presented formulas
for anomaly indicators that apply to general topological orders
and allow anyon permutations.

Aside from these special cases, completely general results
have so far been presented for relative anomalies, for bosonic
topological phases [37,46]. Specifically, given a UMTC and
choice of how symmetry permutes the anyons, the difference
between symmetry fractionalization patterns is classified by
the second group cohomology H2

ρ (G,A) [6]. Here, ρ defines
the action of G on A as specified by how the symmetries per-
mute the anyon types. Given two symmetry fractionalization
classes that differ by [t] ∈ H2

ρ (G,A), the relative anomaly is
the difference in theH4 anomalies for the two symmetry frac-
tionalization classes. It was shown how these relative anomaly
formulas are consistent with all previously derived results.

A main goal of this paper, then, is to complete the story
by demonstrating how to compute the absolute anomaly in
complete generality for bosonic topological phases of matter.

II. SYMMETRY FRACTIONALIZATION REVIEW

A. Review of UMTC notation

Here, we briefly review the notation that we use to describe
UMTCs. For a more comprehensive review of the notation
that we use, see, e.g., Ref. [6]. The topologically nontrivial
quasiparticles of a (2+1)D topologically ordered state are
equivalently referred to as anyons, topological charges, and
quasiparticles. In the category theory terminology, they corre-
spond to isomorphism classes of simple objects of the UMTC.

A UMTC C contains splitting spaces V ab
c and their dual

fusion spaces V c
ab, where a, b, c ∈ C are the anyons. These

spaces have dimension dim V ab
c = dim V c

ab = Nc
ab, where the

fusion coefficients Nc
ab determine the fusion rules. They are

depicted graphically as

(dc/dadb)
1/4

c

ba

μ = a, b; c, μ| ∈ V c
ab, (1)
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(dc/dadb)
1/4

c

ba

μ = |a, b; c, μ V ab
c , (2)

where μ = 1, . . . ,Nc
ab, da is the quantum dimension of a, and

the factors ( dc
dadb

)
1/4

are a normalization convention for the
diagrams.

We denote ā as the topological charge conjugate of a, for
which N1

aā = 1, i.e.,

a × ā = 1 + · · · . (3)

Here, 1 refers to the identity particle, i.e., the vacuum topolog-
ical sector, which physically describes all local, topologically
trivial excitations.

The F symbols are defined as the following basis transfor-
mation between the splitting spaces of 4 anyons:

a b c

e

d

α

β

=
f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

a b c

f

d

μ

ν

.

(4)

To describe topological phases, these are required to be uni-
tary transformations, i.e.,[(

Fabc
d

)−1]
( f ,μ,ν )(e,α,β ) = [(Fabc

d

)†]
( f ,μ,ν )(e,α,β )

= [Fabc
d

]∗
(e,α,β )( f ,μ,ν ). (5)

Anyon lines may be “bent” using the A and B symbols,
given diagrammatically by

c

ba

ā
μ

=
ν

Aab
c μν

b

cā

ν , (6)

c

ba

b̄
μ

=
ν

Bab
c μν

a

b̄c

ν . (7)

They can be expressed in terms of F symbols by

[
Aab
c

]
μν

=
√
dadb
dc

κa
[
Fāab
b

]∗
1,(c,μ,ν), (8)

[
Bab
c

]
μν

=
√
dadb
dc

[
Fabb̄
a

]
(c,μ,ν),1, (9)

where the phase κa is the Frobenius-Schur indicator

κa = daF
aāa
a11 . (10)

The R symbols define the braiding properties of the anyons,
and are defined via the the following diagram:

c

ba

μ
=

ν

Rab
c μν

c

ba

ν
. (11)

Under a basis transformation �ab
c : V ab

c → V ab
c , the F and R

symbols change:

Fabc
de f → F̃ abc

d = �ab
e �ec

d Fabc
de f

[
�bc

f

]†[
�
a f
d

]†
,

Rab
c → R̃ab

c = �ba
c Rab

c

[
�ab
c

]†
, (12)

where we have suppressed splitting space indices and dropped
brackets on the F symbol for shorthand. These basis transfor-
mations are referred to as vertex basis gauge transformations.
Physical quantities correspond to gauge-invariant combina-
tions of the data.

The topological twist θa is defined via the diagram

θa = θā =
c,μ

dc

da
[Raa

c ]μμ =
1
da

a

. (13)

Finally, the modular, or topological, S matrix is defined as

Sab = D−1

c

N c
āb

θc

θaθb
dc =

1
D a b

, (14)

where D = √∑a d
2
a .

A particularly useful quantity for the present discussion is
the double braid, which is a phase if either a or b is an Abelian
anyon:

a b

= Mab

ba

. (15)

B. Topological symmetry and braided autoequivalence

An important property of a UMTC C is the group of
“topological symmetries,” which are related to “braided au-
toequivalences” in the mathematical literature. They are
associated with the symmetries of the emergent UMTC
description, irrespective of any global symmetries of the mi-
croscopic model from which C emerges as the description of
the universal properties of the anyons.

The topological symmetries consist of the invertible maps

ϕ : C → C. (16)

The different ϕ, modulo equivalences known as natural iso-
morphisms, form a group, which we denote as Aut(C) [6].

The symmetry maps can be classified according to a Z2

grading corresponding to whether ϕ has a unitary or antiuni-
tary action on the category:

q(ϕ) =
{
0 if ϕ is unitary,

1 if ϕ is antiunitary.
(17)

We note that one can consider a more general Z2 × Z2

grading by considering separately transformations that cor-
respond to time-reversal and spatial reflection symmetries
[6,37]. Here, we will not consider spatial parity reversing
transformations and thus do not consider this generalization.
Thus, the topological symmetry group can be decomposed as

Aut(C) =
⊔

σ=0,1

Autσ (C). (18)
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Aut0(C) is therefore the subgroup corresponding to topolog-
ical symmetries that are unitary (this is referred to in the
mathematical literature as the group of “braided autoequiv-
alences”).

It is also convenient to define

σ (ϕ) =
{
1 if ϕ is unitary,

∗ if ϕ is antiunitary.
(19)

The maps ϕ may permute the topological charges:

ϕ(a) = a′ ∈ C, (20)

subject to the constraint that

Nc′
a′b′ = Nc

ab, Sa′b′ = Sσ (ϕ)
ab , θa′ = θσ (ϕ)

a . (21)

The maps ϕ have a corresponding action on the F and R
symbols of the theory, as well as on the fusion and splitting
spaces, which we will discuss in the subsequent section.

C. Global symmetry

We now consider a system which has a global symmetry
group G. The global symmetry acts on the anyons and the
topological state space through the action of a group homo-
morphism

[ρ] : G → Aut(C). (22)

We use the notation [ρg] ∈ Aut(C) for a specific element
g ∈ G. The square brackets indicate the equivalence class of
symmetry maps related by natural isomorphisms, which we
define below. ρg is thus a representative symmetry map of the
equivalence class [ρg]. We use the notation

ga ≡ ρg(a). (23)

We associate a Z2 grading q(g) [and related σ (g)] by defining

q(g) ≡ q(ρg), σ (g) ≡ σ (ρg). (24)

ρg has an action on the fusion/splitting spaces:

ρg : V c
ab → V

gc
ga gb. (25)

This map is unitary if q(g) = 0 and antiunitary if q(g) = 1.
We write this as

ρg|a, b; c, μ〉 =
∑

ν

[Ug(
ga, gb; gc)]μνK

q(g)| ga, gb; gc, ν〉,
(26)

where Ug( ga, gb; gc) is a Nc
ab × Nc

ab matrix, and K denotes
complex conjugation.

Under the map ρg, the F and R symbols transform as well:

ρg
[
Fabc
de f

] = Ug(
ga, gb; ge)Ug(

ge, gc; gd )

× F
ga gb gc

gd ge g f U
−1
g ( gb, gc; g f )U−1

g ( ga, g f ; gd )

= Kq(g)Fabc
de f K

q(g),

ρg
[
Rab
c

] = Ug(
gb, ga; gc)R

ga gb
gc Ug(

ga, gb; gc)−1

= Kq(g)Rab
c Kq(g), (27)

where we have suppressed the additional indices that appear
when Nc

ab > 1.

We demand that composition of ρg obey the group multi-
plication law up to a natural isomorphism κg,h:

κg,h ◦ ρg ◦ ρh = ρgh, (28)

where the action of κg,h on the fusion/splitting spaces is de-
fined as

κg,h(|a, b; c, μ〉) =
∑

ν

[κg,h(a, b; c)]μν |a, b; c, ν〉 (29)

and, being a natural isomorphism, obeys by definition

[κg,h(a, b; c)]μν = δμν

βa(g, h)βb(g, h)
βc(g, h)

, (30)

where βa(g, h) are U (1) phases. The above definitions imply
that

κg,h(a, b; c)

= Ug(a, b; c)
−1Kq(g)Uh(

ḡa, ḡb; ḡc)−1Kq(q)Ugh(a, b; c),
(31)

where ḡ ≡ g−1.

D. Symmetry localization and fractionalization

Now, let us consider the action of a symmetry g ∈ G on the
full quantum many-body state of the system, which may cor-
respond, for example, to a lattice model defined on a Hilbert
space that decomposes as a local tensor product. We consider
systems that are described by a TQFT in the long-wavelength
limit and thus contain many more “microscopic” degrees of
freedom.

Let Rg be the representation of g acting on the full Hilbert
space of the theory. We consider a state |�a1,...,an〉 in the
full Hilbert space of the system, which consists of n anyons,
a1, . . . an, at well-separated locations, which collectively fuse
to the identity topological sector. Since the ground state is G
symmetric, we expect that the symmetry action Rg on this state
possesses a property that we refer to as symmetry localization.
This is the property that the symmetry action Rg decomposes
as

Rg
∣∣�a1,...,an

〉 ≈ n∏
j=1

U ( j)
g Ug
( ga1, . . . , gan; 1

)∣∣� ga1,..., gan

〉
.

(32)

Here, U ( j)
g are unitary matrices that have support in a region

(of length scale set by the correlation length) localized to the
anyon aj . The map Ug( ga1, . . . , gan; 1) is the generalization
of Ug( ga, gb; gc), defined above, to the case with n anyons
fusing to vacuum. Ug( ga1, . . . , gan; 1) only depends on the
global topological sector of the system, that is, on the precise
fusion tree that defines the topological state, and not on any
other details of the state, in contrast to the local operatorsU ( j)

g .
The ≈ means that the equation is true up to corrections that
are exponentially small in the size of U ( j) and the distance
between the anyons, in units of the correlation length.

The choice of action ρ defined above defines an element
[O] ∈ H3

[ρ](G,A) [6]. If [O] is nontrivial, then there is an
obstruction to Eq. (32) being consistent when considering
the associativity of three group elements. We refer to this as
a symmetry localization anomaly, or symmetry localization
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obstruction. See Refs. [6,47,48] for examples.2 If [O] is trivial,
so that symmetry localization as described by Eq. (32) is well
defined, then it is possible to define a notion of symmetry
fractionalization [6].

In general, symmetry fractionalization is characterized by
a consistent set of data {η} and {U }, where {U } was defined
above. ηa(g, h) is defined as

ηa j (g, h)U ( j)
gh

∣∣�a1,...,an

〉 = U ( j)
g ρgU

( j)
h ρ−1

g

∣∣�a1,...,an

〉
. (33)

The data ηa(g, h) characterize the difference in phase obtained
when acting “locally” on an anyon a by g and h separately, as
compared with acting on a by the product gh.

This can be captured through a physical process involving
symmetry defects, as explained in the next subsection. There
are two important consistency conditions for U and η, which
we will use repeatedly later in this paper [6]. The first one is

ηa(g, h)ηb(g, h)
ηc(g, h)

= κg,h(a, b; c), (34)

with κ defined in terms ofU as in Eq. (31). The other one is

ηa(g, h)ηa(gh, k) = ηa(g, hk)ησ (g)
ρg−1 (a)

(h, k). (35)

These data are subject to an additional class of gauge trans-
formations, referred to as symmetry action gauge transforma-
tions, which arise by changing ρ by a natural isomorphism
[6]:

Ug(a, b; c) → γa(g)γb(g)
γc(g)

Ug(a, b; c),

ηa(g, h) → γa(gh)

(γ ga(g))σ (g)γa(h)
ηa(g, h). (36)

We note that U also changes under a vertex basis gauge
transformation according to

Ũg(a, b, c)μν =
∑
μ′,ν ′

[
�

ḡaḡb
ḡc

]
μ,μ′Ug(a, b, c)μ′ν ′

[(
�ab
c

)−1]σ (g)
ν ′ν ,

(37)

with the shorthand ḡ = g−1. Different gauge-inequivalent
choices of {η} and {U } characterize distinct symmetry frac-
tionalization classes [6]. In this paper we will always fix the
gauge

η1(g, h) = ηa(1, g) = ηa(g, 1) = 1,

Ug(1, b; c) = Ug(a, 1; c) = 1. (38)

One can show that symmetry fractionalization forms a
torsor over H2

ρ (G,A). That is, different possible patterns of
symmetry fractionalization can be related to each other by
elements of H2

ρ (G,A). In particular, given an element [t] ∈
H2

ρ (G,A), we can change the symmetry fractionalization
class as

ηa(g, h) → ηa(g, h)Mat(g,h), (39)

2A nontrivial obstruction [O] ∈ H3
[ρ](G,A) can be alternatively

interpreted as the associated TQFT possessing a nontrivial 2-group
symmetry, consisting of the 0-form symmetry group G and the 1-
form symmetry groupA, with [O] characterizing the 2-group [6,7,9].

FIG. 1. Diagrammatic representations of the actions of the η and
U symbols. Anyon lines are black and branch sheets are orange.

where t(g, h) ∈ A is a representative 2-cocyle for the coho-
mology class [t] and Mab is the double braid [see Eq. (15)].

In the case where the permutation ρ is trivial, there is al-
ways a canonical notion of a trivial symmetry fractionalization
class, where ηa(g, h) = 1 for all g, h ∈ G. In this case, an
element of H2(G,A) is sufficient to completely characterize
the symmetry fractionalization pattern, as was discussed for
the case where the UMTC C only contains Abelian anyons
in Ref. [49]. More abstractly, the data ρ, {Ug(a, b; c)} and
{ηa(g, h)} define a categorical G action on C [6].

E. Symmetry fractionalization and symmetry defects

A convenient way to understand symmetry fractional-
ization is through a graphical calculus that incorporates
symmetry defects. In 2D space, we can consider a linelike
symmetry defect labeled by a group element g, which we will
sometimes refer to as a branch cut. In the (2+1)D space-time,
this corresponds to a branch sheet. When an anyon x crosses
the g defect sheet in space-time, it is permuted to a different
anyon gx. ηx(g, h) and Ug(a, b; c) can then be understood
through the diagrams shown in Fig. 1.

Note that here we take the symmetry-group element to be
unitary and orientation preserving. In Sec. IV we will discuss
the generalization to antiunitary symmetries.

Although we will not do so in the rest of this paper,
we may also consider the branch cuts to end at a point in
space. In this case, we can have topologically distinct end
points, labeled as ag. If the symmetry fractionalization class
is nonanomalous, the symmetry defects ag form a consistent
G-crossed braided tensor category [6]. It is known for finite G
that there is a cohomological obstruction [O] ∈ H4(G,U (1))
to defining a consistent G-crossed braided tensor category,
which provides a mathematically precise definition of symme-
try fractionalization anomalies, at least for the case of unitary,
orientation-preserving symmetries.
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FIG. 2. Turning state-sum data into graphical calculus for a 3-simplex with (a)–(d) positive orientation and (e)–(h) negative orientation.
(a) Data associated to 0-, 2-, and 3-simplices in the state sum. Group elements gi (blue spheres) are associated to 0-simplices, anyons ai jk
(green spheres) are associated to 2-simplices, and an anyon b0123 (purple sphere) is associated to the 3-simplex. (b) Upon dualizing in three
dimensions, the dual to the 1-simplex i j is a domain wall (orange sheet) acting by the group element gi j = gig−1

j . The four a anyons fuse into
the b anyon, and all the anyons live on domain wall junctions. (c) Our choice of resolution of the fusion channels and symmetry action; fusion
is resolved trivalently, and the anyons get pushed toward a 0-simplex (dual 3-simplex). One anyon line, corresponding to a012, passes through
a domain wall before it reaches a fusion vertex. (d) Representation of (c) in graphical calculus; negatively oriented 2-simplex data are on the
bottom of the diagram. Parts (e)–(h) are the same process for a negatively oriented 3-simplex.

III. STATE-SUM CONSTRUCTION

The input data to our construction is a braided tensor
category (BTC) C, a symmetry group G, the group homo-
morphism ρ and associated {Ug(a, b; c)}, and the symmetry
fractionalization data {ηa(g, h)}. The state sum that we define
in this section does not require C to be modular; however,
when C is modular, we will see that the resulting state sum
defines a (3+1)D SPT and allows a calculation of the symme-
try fractionalization anomaly.

We note that in this section G is discrete and finite and
corresponds to an onsite (internal) unitary symmetry. The
extension to antiunitary, spatial, infinite, and/or continuous
symmetries will be discussed in subsequent sections.

To simplify the notation, we always assume that the fusion
multiplicities Nc

ab of simple objects in C are at most 1; this
restriction can be relaxed straightforwardly.

A. Basic data

Given a 4-manifold M4, we pick a triangulation and a
branching structure (i.e., a local ordering of vertices). We
associate to each simplex the following data:

(i) 0-simplex i: a group element gi ∈ G;
(ii) 2-simplex i jk: an anyon ai jk ∈ C;
(iii) 3-simplex i jkl: an anyon bi jkl ∈ C obeying certain

rules.

The 3-simplex data are determined as follows. Consider
a particular 3-simplex i jkl , where i < j < k < l , with group
elements {gi} on its four 0-simplices and anyons {ai jk} on its
four 2-simplices. We choose i, j, k = 0, 1, 2, 3 for concrete-
ness; this is shown in Fig. 2(a). Then we demand that the
anyon b0123 placed on this 3-simplex obeys

Nb0123
a023,g32a012


= 0 and Nb0123
a013,a123 
= 0, (40)

where Nc
a,b are fusion coefficients and we define

gi j ≡ gig−1
j . (41)

In the language of category theory, the 2-simplex data are
a simple object of C, and the data on the 3-simplex are an
element of the space Hom(a013 ⊗ a123, a013 ⊗ g32a012), i.e., an
element of ⊕bV b

013,123 ⊗V 023,32012
b . In other words, if we had

allowed Nc
ab > 1, we would also need to associate elements

of a fusion space and a splitting space to the 3-simplices; this
generalization is straightforward.

We can interpret this graphically as follows. Consider the
3D dual of the 3-simplex, as in Fig. 2(b). Each dual 1-simplex
is now associated to an anyon line, and four anyon lines fuse
at the dual 0-simplex. Ignoring the group elements for the
moment, the choice of data at the dual 0-simplex is a res-
olution of those four anyon lines into two trivalent fusion
vertices, as in Fig. 2(c). These data are then interpreted in
graphical calculus by placing the anyon lines associated to
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FIG. 3. Conventions for placing domain wall lines in diagrams in the path integral. Here i < j so that the 1-simplex i j is oriented from i
to j, shown by the dashed arrows indicating the outward normal to the gi j domain wall.

negatively oriented 2-simplices at the bottom of the diagram,
as in Fig. 2(d).

To see how the symmetry action in Eq. (40) arises, con-
sider how the group elements behave when dualizing, as in
Fig. 2(b). The membranes dual to the 1-simplices separate
regions of space which are labeled by different group ele-
ments (associated to the dual of the 0-simplices). As such,
we can think of these membranes as domain walls which
have a symmetry action on the anyons. For example, the
domain wall between the region associated to g0 and g1
acts on the anyons by g10. However, the anyon lines (dual
to 2-simplices) naturally live on trijunctions between these
domain walls, which leaves the symmetry action ambiguous.
To disambiguate the symmetry action, deform all of the data
associated to a k-simplex toward the highest-numbered 0-
simplex (dual 3-simplex) associated with that k-simplex. That
is, a012 is deformed toward the 0-simplex labeled 2, while
all other data are deformed toward the 0-simplex labeled 3,
as shown in Fig. 2(c). The symmetry action in Eq. (40) then
appears naturally. At this stage, the data can be interpreted in
graphical calculus as in Fig. 2(d). The same process is shown
for a negatively oriented 3-simplex in Figs. 2(e)–2(h).

There are two types of arbitrary choices in this definition
of the data. First, we could have resolved the fourfold fusion
in a different channel, related by an F move to our current
choice. Second, we could have resolved the symmetry action
differently, for example, by pushing anyon lines toward the
lowest-numbered 0-simplex. Once we define our path integral,
we will need to show that it does not depend on these arbitrary
choices.

Placing g23 branch cut lines as shown in the graphical
calculus of Figs. 2(d) and 2(h) is determined as follows. Given
a branching structure, each 1-simplex carries an orientation.
Upon dualizing in three dimensions, this orientation defines a
positive normal vector to the domain wall. Consider a domain
wall between the gi and g j domains where i < j. Given our
branching structure the 1-simplex is oriented from i to j, so
we choose the convention where we associate the domain
wall to the group element gi j (as opposed to g ji). An anyon

a that passes from the gi region to the g j region is converted
to g jg−1

i a. In other words, an anyon a that crosses a domain
wall labeled gi j along the positive normal vector to the domain
wall converts to g ji a, while an anyon crossing in the direction
opposite to the positive normal converts to gi j a.

In the graphical calculus, when projecting the diagrams to
a two-dimensional plane, an oriented domain wall is depicted
as an oriented line (colored orange in the figures), where the
orientation of the line corresponds to the orientation of the
positive normal through the convention depicted in Fig. 3.
Therefore, when an anyon passes an oriented domain wall line
labeled gi j from the right, it transforms to gi j a; when it passes
the domain wall from the left, it transforms to g ji a.

We note that in what follows we will avoid excessive
subscripts by labeling simplices and data the same way. For
example, we generally notate R

g32a012,a023
b0123

by R
32012,023
0123 .

B. Definition of the path integral

We now define our path integral. Given a labeling of all
the simplices, we will compute an anyon diagram for each
4-simplex based on the labeling. We multiply the results,
and then sum over all labelings. Let �4 be a 4-simplex, and
let ε(�4) = ± be its orientation. Then define complex num-
bers Zε(�4 )(�4) in the following diagrammatic way, shown in
Fig. 4. For each 3-simplex in �4, take the diagram obtained
in Fig. 2 given the induced orientation on that 3-simplex. Lay
out these five diagrams in a plane such that anyon lines shared
between two 3-simplices are near each other. Then, connect
up all of the lines and domain walls, sliding domain walls
along anyon lines and bending domain walls far from anyon
lines as necessary to obtain a closed diagram. This process
is shown for positively oriented �4 in Fig. 4, while the end
results are shown for both orientations in Fig. 5. Alternatively,
these anyon diagrams arise from projecting the boundary
3-simplices, which form a triangulation of S3, into the
plane.

These diagrams can be evaluated explicitly, leading to the
following complex number associated to each 4-simplex:

Z+(01234) =N01234

∑
d,a∈C

F 024,234,42012
d,0234,a η−1

012(23, 34)R
42012,234
a

(
F 024,42012,234
d

)−1

a,0124F
014,124,234
d,0124,1234

× (F 014,134,43123
d

)−1

1234,0134F
034,43013,43123
d,0134,430123 U−1

34 (023, 32012, 0123)U34(013, 123, 0123)
(
F 034,43023,42012
d

)−1
430123,0234,

(42)
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FIG. 4. Process for defining the diagram used to define the path-integral amplitude Z+(01234) for a positively oriented 4-simplex 01234.
Each diagram on the left-hand side comes from a 3-simplex in 01234; matching lines are connected to obtain the right-hand side from the
left-hand side. Orange lines are domain walls. Black anyon lines are labeled by the 2-simplex or 3-simplex to which they are associated.
Dashed lines are guides to the eye connecting labels and lines.

Z−(01234) = N01234

∑
d,a∈C

(
F 024,234,42012
d

)−1

a,0234η012(23, 34)
(
R

42012,234
a

)−1
F 024,42012,234
d,0124,a

(
F 014,124,234
d

)−1

1234,0124

× F 014,134,43123
d,0134,1234

(
F 034,43013,43123
d

)−1
430123,0134U34(023,

32012, 0123)U−1
34 (013, 123, 0123)F 034,43023,42012

d,0234,430123 . (43)

The normalization factor N01234 is given by

N01234 =
√∏

�3∈3-simplices db�3∏
�2∈2-simplices da�2

, (44)

where the products are over 3-simplices �3 and 2-simplices �2 of the 4-simplex 01234, and da is the quantum dimension of
anyon a.
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FIG. 5. Diagrams used to define the path-integral amplitudes Z±(01234) for a 4-simplex 01234 up to the normalization factorN01234 given
in Eq. (44). Orange lines are domain walls. Black anyons lines are labeled by the 2-simplex or 3-simplex to which they are associated. Dashed
lines are guides to the eye connecting labels and lines.

We may now define the path integral. On a closed 4-manifoldM4, we define

Z (M4) =
∑

{a,b,g}

D2(N0−N1 )

|G|N0

∏
�2∈T 2 da

�2

∏
�4∈T 4 Z

ε(�4 )
F (�4)∏

�3∈T 3 db
�3

. (45)

Here, T k denotes the set of k-simplices and Nk = |T k| is the
number of k-simplices in the triangulation. The sum is over
all possible labelings of the anyons {a}, {b} on the 2- and 3-
simplices, and group elements on 0-simplices.

Z (M4) defined above can be viewed as a path integral
on a 4-manifold M4 equipped with a trivial G bundle. For
computing anomaly indicators, it will be crucial to compute
path integrals on nontrivial flat G bundles. Therefore, we
wish to define the path integral above in the presence of flat
background G connections, which modifies the construction
as follows. Fix a gauge hi j for the background connection,
where hi j is defined on 1-simplices of the triangulation. Our

convention is such that moving from j to i should pick up
the action of hi j (note that h ji = h−1

i j , as above). Flatness of
the connection requires hi jh jkhki = 1 for any 2-simplex (i jk).
In every location in the above construction that gi j appears,
replace gi j by g̃i j where

g̃i j = gihi jg−1
j . (46)

This modifies the fusion rules used in defining the 3-simplex
data and modifies the various transformations and group el-
ements that appear in the definition of Z±. Otherwise, the
construction is completely unchanged. Note in particular that
g̃i j g̃ jk = g̃ik .
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Recall that flatG bundles are in one-to-one correspondence
with elements of Hom(π1(M4),G), that is, the set of group
homomorphisms from the fundamental group of M4 into
G. Therefore, the above prescription defines a path integral
Z (M4, f ), for f ∈ Hom(π1(M4),G).

For an open 4-manifold, we fix the {a, b, g} labels on the
boundary of the triangulation, and sum over the rest of the
labels. Apart from not summing over surface data, the con-
struction is unmodified. This then defines a wave function on
the boundary triangulation. We note that when G is trivial, the
above path integral reduces to the Crane-Yetter state sum [24].

Our state sum is closely related to that of Cui [33]. The
key difference is that in our construction, the elements of
G live on 0-simplices rather than 1-simplices. In a rough
sense, we have “ungauged” Cui’s model. This has several
consequences. First, and most importantly, this allows us
to generalize the construction to allow as input anomalous
symmetry fractionalization classes. Cui’s construction, on the
other hand, is defined by taking as input a G-crossed BTC,
which necessarily is associated with nonanomalous symmetry
fractionalization classes [i.e., trivial H4(G,U (1)) obstruc-
tion]. The reason for this difference is that when one allows
arbitrary group elements on 1-simplices, there can be a net
flux through each 2-simplex. Cui’s model associates an object
ag of a G-crossed BTC to a 2-simplex whenever the flux
through a 2-simplex is g. This construction therefore requires
the G-crossed BTC to be well defined and thus correspond to
a nonanomalous symmetry fractionalization class. However,
when group elements are placed on vertices, the net flux
through a plaquette is always the identity, so one never has
to require the existence of a consistent G-crossed BTC.

Second, we will see that for modular C our model has trivial
topological order in the bulk, and therefore corresponds to
a G SPT. In contrast, Cui’s model is generally topologically
ordered (that is, it corresponds to a noninvertible TQFT). Cui’s
path integral effectively sums over all possible G bundles.
This is a crucial distinction that will allow us to extend the
construction to include antiunitary symmetry actions, as de-
scribed in Sec. IV.

C. Important properties of the state sum

The path integral defined in the previous section has a
number of important properties. Namely, it

(i) possesses a global internal G symmetry,
(ii) defines a topological invariant for closed M4 and

choice of flat G bundle,
(iii) defines a G SPT (i.e., defines an invertible TQFT)

when C is modular.

1. Global G symmetry

Showing that our model has a global G symmetry is
straightforward. The only way that the group elements label-
ing the 0-simplices {gi} enter the state sum is through {gi j}.
Therefore, the amplitude in the path integral associated with
a given set of {gi} labelings on 0-simplices is exactly equal
to the amplitude for the labelings {gig−1}, with the 2- and 3-
simplex labelings unchanged. Note in particular that the wave
function defined on the boundary of the triangulation is also
symmetric under the operation {gi} → {gig−1}.

2. Topological invariance

When M4 is closed, Z (M4, f ) is a topological invari-
ant of M4 and the choice of G bundle, defined by f ∈
Hom(π1(M4),G). To prove this, we must prove that the
construction is independent of the choice of triangulation,
branching structure, fusion channel defining the 3-simplex
data, and deformation of the anyon labels toward the 0-
simplices.

The retriangularization invariance is proven by using the
fact that any two triangulations can be related by a finite
sequence of Pachner moves. Therefore, to prove retriangu-
larization invariance, we directly compute the product of
diagrams associated with each Pachner move to demonstrate
invariance under the 3 − 3, 2 − 4, and 1 − 5 Pachner moves.
The calculations are essentially the same as those of Ref. [33]
and are reproduced in Appendix A 1.

In Appendix A, we further prove invariance under the
choice of fusion channel for the 3-simplex data and choice of
deformation of the anyon labels toward the 0-simplices. The
proof of independence of the choice of branching structure
follows from the results of Ref. [33] and is not reproduced
here.

Finally, we must prove that the construction is independent
of the particular choice of flat connection hi j used to describe
the flat G bundle. To do so, we must prove gauge invariance
of the path integral under the gauge transformation

hi j → sihi js−1
j . (47)

This follows from the fact that given a set of labelings,
the amplitude in the state sum only depends on g̃i j =
gihi jg−1

j . Therefore, under the gauge transformation, g̃i j →
gisihi js−1

j g−1
j . Then the relabeling gi → gisi gives back the

original path integral due to the sum over all group-element
labels of the 0-simplices.

3. Effect of changing projection

The precise braided fusion diagram that we associate to
a 4-simplex depends on how we project the dual 1-skeleton
of the 3-simplices on the boundary of the 4-simplex onto the
plane. There are a number of different choices we can consider
associated with this projection. We could consider (1) flipping
the fusion diagrams associated to 3-simplices about a vertical
axis, (2) flipping the fusion diagrams associated to 3-simplices
about a horizontal axis, and (3) changing the overcrossing to
an undercrossing. Note that applying (1) and (3) together is
equivalent to rotating the diagram about a vertical axis by π ,
which as we discuss in Appendix A 8 does not change the
value of the path integral on a closed manifold. Therefore,
(1) and (3) are equivalent choices for the path integral on a
closed manifold.

Applying (2) is equivalent to changing the convention for
positive and negative orientation, which complex conjugates
the path integral. This convention can be fixed by comparing
to a known example, which we do by considering the case
with G = Z3 × Z3 and the unique UMTC of rank 3 with
Abelian Z3 fusion rules.

In Appendix A 9 we discuss the effect of applying (3)
alone. In the Crane-Yetter theories with a UMTC taken
as input, one can prove that changing the overcrossing to
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undercrossing simply complex conjugates the path integral.3

We show under a mild assumption that the same holds in
our theory, that is, applying (3) complex conjugates the path
integral on a closed manifold. The proof is rather indirect,
relying on the relationship between the path integral and SET
anomaly in order to use the relative anomaly formula [37]. We
have verified this by computerized computation of the path
integral for the examples in Sec. VI along with the example of
G = Z3 × Z3 and the unique UMTC of rank 3 with Abelian
Z3 fusion rules mentioned above.

We note that in Cui’s construction where a G-crossed BTC
is used to define the path integral, there is a unique choice of
overcrossing or undercrossing that allows the path integral to
be well defined. It is thus natural for us to use this convention
as it is compatible with the natural generalization to Cui’s state
sum.

D. SPT for modular C
It has been shown that every (at least once-extended)

(d + 1)-dimensional TQFT which assigns one-dimensional
vector spaces to both T d and Sd is invertible [50].4 Equiv-
alently, if Z (T 4) = Z (S3 × S1) = 1, the theory does not have
intrinsic bulk topological order. We demonstrate for our model
that if C is modular, then Z (T 4) = Z (S3 × S1) = 1 (for trivial
background G bundle). This then shows that our path integral
defines a G SPT.

Given that our state sum is topologically invariant, we
may compute Z (T 4) using the simplest possible triangula-
tion. In fact, we choose to use a cellulation rather than a
triangulation.5 The simplest cellulation of T 4 consists of 24
4-simplices, but only one 0-simplex which we label 0. See
Fig. 6 for the analogous cellulation of T 3. The details of
the cellulation are described in Appendix C, but given that it
exists, we can use it to compute Z (T 4). Because there is only
a single 0-simplex and we choose the background G bundle
to be trivial, there are no domain walls; all the gi j are the
identity. Therefore, for this particular cellulation, every term
is independent of g0, so we may as well choose the term where
g0 is the identity. It immediately follows that

Z (T 4) = ZCY(T
4) = 1, (48)

3We thank S. Cui for helpful discussions regarding this point.
4Note that a (d + 1)-dimensional TQFT is once extended if it

assigns data to every closed (d + 1)-, d- and (d − 1)-manifold. Our
model assigns a complex number to each closed 4-manifold and a
quantum state to the boundary of every 4-manifold with boundary.
Since every 3-manifold can exist at the boundary of a 4-manifold, it
follows that our construction assigns a vector space to every closed
3-manifold. The Hamiltonian formulation we study later shows how
our formalism also assigns states to the boundaries of 3-manifolds as
well, which determines a UMTC with G-symmetry fractionalization
data.

5A d-dimensional triangulation strictly speaking requires two d-
simplices to share only one d − 1 simplex. A cellulation does not
require this stringent condition and therefore allows more efficient
ways to construct manifolds by gluing together simplices. Our state
sum is still well defined when we relax this condition.

FIG. 6. Cellulation of T 3 analogous to the one used in the main
text for T 4. Opposite faces are identified, which identifies all 0-
simplices and any 1- and 2-simplices with matching markings. This
cellulation contains six 4-simplices.

where ZCY is the Crane-Yetter path integral for C. This is the
desired result because ZCY(T 4) = 1 for modular C (see, e.g.,
Ref. [25]).

The partition function Z (S3 × S1) in the absence of a
background gauge field can also be calculated explicitly.
The simplest cellulation of this manifold involves eight 4-
simplices and is detailed in Appendix C. Once the cellulation
is written, one can explicitly show that the symmetry factors
U and η cancel out in the absence of a background gauge field,
reducing the calculation to the Crane-Yetter path integral for
C on S3 × S1:

Z (S3 × S1) = ZCY(S
3 × S1) = 1. (49)

Since describing the cellulation is rather tedious, this calcula-
tion is relegated to Appendix D.

For reference, we note that it is also straightforward to
check that

Z (S4) = 1. (50)

As a technical aside, in order to use such simple decompo-
sitions of the manifolds in question, we are using the fact
that our path integral is independent of the cellulation of the
manifold in question. That this is the case for the Crane-Yetter
state sum was proven in Ref. [25], and we similarly expect it
to be true for our construction. Alternatively, one can check
whether Pachner moves can convert the cellulations used here
to triangulations, which we also expect to be true (it is a simple
exercise to check the lower-dimensional analog for T 2).

E. Conjecture for removing sum over group elements

The state sum defined above contains a sum over all group
labels on the 0-simplices, 1

|G|N0
∑

{gi}. We conjecture that, at
least for modular C, every term in this sum is equal and
therefore the sum is actually unnecessary. In other words, the
amplitude associated to any given set of labelings is actually
independent of the choice of G-defect networks present in
the (3+1)D space-time. In this case, the symmetry fraction-
alization data only contribute when the G bundle is nontrivial,
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in which case the braided fusion diagrams that define the
4-simplex amplitudes necessarily have domain walls due to
the nontrivial holonomies around noncontractible cycles. This
conjecture is borne out in the examples that we study in
Sec. VI.

We note that the analogous statement is also true for the
SPT state sum based on group cohomology [18]. It is clear
that if such a conjecture is true, then it implies that the state
sum is a (3+1)D G-SPT. The reason is that the computation
of the state sum on trivial G bundles necessarily reduces to
the Crane-Yetter state sum for which it is known that the path
integral is unity on every trivial closed G bundle. We believe
that the converse is also true: the fact that modular C with the
symmetry fractionalization data determines a G-SPT should
imply the aforementioned conjecture.

IV. EXTENSION TO ANTIUNITARY
ONSITE SYMMETRIES

In this section we extend our state-sum construction to
symmetry groups G that contain antiunitary symmetry ac-
tions. This will allow us to extend our results to arbitrary
time-reversing or spatial parity-reversing symmetries. In par-
ticular, theories with such antiunitary actions will allow us
to formulate path integrals on nonorientable manifolds for
theories that have antiunitary symmetry actions.

We note that the symmetry fractionalization formalism dis-
cussed in this section is closely related to previous discussions
in Refs. [6,30] although the discussion here proceeds through
a somewhat different perspective in light of our model.

A. Reformulation of unitary symmetry fractionalization

In order to extend our construction to allow G to contain
antiunitary symmetry actions, we will first consider the uni-
tary case from a different perspective. Formally, this amounts
to packaging the UMTC and symmetry fractionalization data
into the structure of a 3-category where the objects (0-
morphisms) are group elements of G.

The state-sum construction we defined in Sec. III required
us to input a consistent graphical calculus involving the data

{Fabc
de f ,R

ab
c ,G, ρ,Ugi j (a, b; c), ηa(gi j, g jk )}. The domain walls

gi j are essentially a shorthand tracking the group elements
gi associated to regions of space in the graphical calculus
(recall that in passing from simplices to the graphical calculus,
we consider the dual of the triangulation, so group elements
on the 0-simplices are associated to regions of space in the
graphical calculus). We can do this because the state sum does
not explicitly depend on any of the gi, but rather just on the
domain walls.

However, we could have reasonably defined the same type
of state sum by having the fusion spaces explicitly depend on
the group element of the domain in which they sit. That is,
we define the fusion and splitting spaces Ṽ c

ab(g), Ṽ
ab
c (g). Then

the c − ab splitting vertex that has been deformed toward the
0-simplex i is an element of Ṽ ab

c (gi ); diagrammatically, this is
represented as

(dc/dadb)
1/4

c

b a
g μ = |a, b; c, μ〉g ∈ Ṽ ab

c (g). (51)

The data defining the theory can then depend on these
group elements: F̃ abc

de f (gi ), R̃ab
c (gi ), η̃a(gi, g j, gk ), and

Ũ (a, b; c; gi, g j ), where the {gi} label the regions involved in
the graphical calculus operation. For example, the gi in R̃ is
associated to the spatial region in which the abc fusion vertex
being acted on by the R move is contained. Diagrammatic
representations of these generalized data are shown in Fig. 7.

In particular, Ũ is now defined via the unitary maps ρ̃L:

ρ̃L
h : Ṽ c

ab(g) → Ṽ
hc

ha hb(hg), (52)

ρ̃L
h |a, b; c, μ〉g

=
∑

ν

[Ũ ( ha, hb; hc, hg, g)]μν | ha, hb; hc, μ〉hg, (53)

where the L superscript refers to the fact that group elements
are left multiplied under this map.

The consistency of the graphical calculus then leads to con-
sistency conditions analogous to the ones we had previously:

F̃ f cd
egl (g)F̃ abl

e f k (g) =
∑
h

F̃ abc
gf h (g)F̃

ahd
egk (g)F̃ bcd

khl (g), (54)

R̃ca
e (g)F̃ acb

deg (g)R̃
cb
g (g) =

∑
f

F̃ cab
de f (g)R̃

c f
d (g)F̃ abc

df g (g), (55)

(
R̃ac
e (g)

)−1
F̃ acb
deg (g)

(
R̃bc
g (g)

)−1 =
∑
f

F̃ cab
de f (g)

(
R̃ f c
d (g)

)−1
F̃ abc
df g (g), (56)

Ũ (g21a, g21b; g21c, g2, g3)Ũ (a, b; c, g1, g2) = Ũ (a, b; c, g1, g3)
ηc(g1, g2, g3)

ηa(g1, g2, g3)ηb(g1, g2, g3)
, (57)

Ũ (g12a, g12b; g12e, g1, g2)Ũ (g12e, g12c; g12d, g1, g2)F̃
g12a12b12c

12d12e12 f (g1)

× Ũ−1(g12b, g12c; g12 f , g1, g2)Ũ−1(g12a, g12 f ; g12d, g1, g2) = F̃ abc
de f (g2), (58)

Ũ (g12b, g12a; g12c, g1, g2)R̃
12a12b
12c (g1)Ũ−1(g12a, g12b; g12c, g1, g2) = R̃ab

c (g2), (59)

η̃g21a(g2, g3, g4)η̃a(g1, g3, g4) = η̃a(g1, g2, g3)η̃a(g1, g2, g4). (60)
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FIG. 7. Graphical calculus defining F̃ , R̃, Ũ , and η̃ so that they depend on the group elements in the relevant regions of space. Anyon
lines are black, and group elements label regions of space or domain walls (orange). Note that anyon lines do not change the group element
associated to a region of space.

For example, in deriving the analog of Eq. (35), one considers
the equality of the two diagrammatic processes shown in
Fig. 8, producing Eq. (60). Internal indices for the fusion
spaces can be added straightforwardly at the cost of additional
notation.

One can check that the consistency of this graphical cal-
culus yields a topologically invariant path integral that is
independent of the various arbitrary choices made in the

definition. However, it does not yet have a G symmetry, as
everything depends explicitly on the gi. Therefore, it cannot
be consistently coupled to a background G connection and
defined on nontrivial G bundles.

To ensure that the theory is G symmetric, we demand
that the wave function on any closed 3-manifold ∂M4 be G
invariant. That is, we demand invariance under the unitary G
action which right multiplies the G degrees of freedom by

FIG. 8. Consistency condition for η̃, where η̃ is defined graphically in Fig. 7. Domain walls are orange, anyon lines are black.
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ḡ and does not modify any of the other degrees of freedom.
Since the wave function is given by the partition function on
M4 with fixed boundary data, this means that

Z[∂M4; {giḡ}, {ai jk}, {bi jkl}]
= Z[∂M4; {gi}, {ai jk}, {bi jkl}], (61)

where the {gi}, {ai jk}, {bi jkl} are the labels on ∂M4, and
i, j, k, l label boundary vertices. It is important that we have
chosen right multiplication for the G action because it pre-
serves the combinations giḡ j that naturally act on anyons in
the path integral.

Specializing to the case where M4 is a single 4-simplex
01234 (meaning ∂M4 = S3), we thus require

Z+[01234; {giḡ}, {ai jk}, {bi jkl}]
= Z+[01234; {gi}, {ai jk}, {bi jkl}] (62)

which equates two anyon diagrams, with no bulk data to
sum over, for every choice of anyons and group elements. A
sufficient condition to satisfy Eq. (62) is to demand F̃ , R̃, η̃,
and Ũ are individually invariant under this G action:

F̃ abc
de f (gi ) = F̃ abc

de f (giḡ), (63)

R̃ab
c (gi ) = R̃ab

c (giḡ), (64)

η̃a(gi, g j, gk ) = η̃a(giḡ, g j ḡ, gk ḡ), (65)

Ũ (a, b; c; gi, g j ) = Ũ (a, b; c; giḡ, g j ḡ). (66)

Another way to say this is the following. For fixed a, b, c,
all the fusion spaces Ṽ c

ab(gi ) are isomorphic. In order to impose
G symmetry, we should identify all of these fusion spaces
using isomorphisms

αR
g : Ṽ c

ab(gi ) → Ṽ c
ab(giḡ), (67)

and then demand G equivariance. The R superscript refers
to the fact that group elements are right multiplied. That is,
the maps αR

g should be unitary and strictly preserve all of the
UMTC plus symmetry fractionalization data of the theory. In
particular, we demand that

ρ̃L
g ◦ αR

h = αR
h ◦ ρ̃L

g . (68)

It follows that

F̃ abc
de f (gi ) = F̃ abc

de f (1) ≡ Fabc
de f , (69)

R̃ab
c (gi ) = R̃ab

c (1) ≡ Rab
c , (70)

η̃a(gi, g j, gk ) = η̃a(gik, g jk, 1) ≡ ηa(gi j, g jk ), (71)

Ũ (a, b; c; gi, g j ) = Ũ (a, b; c; gi j, 1) ≡ Ugi j (a, b; c). (72)

The last equalities define the data F , R, η, and U (without
tildes), which are what we usually use to define symmetry
fractionalization on a BTC. It is straightforward to check that
the consistency conditions (60) and (59) for the data with
tildes, when recast in terms of the data without tildes, become
the usual consistency conditions (27) and (34) and (35).

Another way to say this is that the data without tildes that
appear in Sec. II C should be identified as the identity sector

of the data with tildes, that is,

V c
ab = Ṽ c

ab(1). (73)

We can then define a map ρg which acts only on the spaces
without tildes and also has the properties given in Sec. II C by

ρg = αR
g ◦ ρ̃L

g

∣∣
V , (74)

where the restriction means that we are restricting ρ̃ to act
only on vector spaces without tildes, i.e., those in the identity
domain.

At this stage, we have simply added a lot of extra notation
for very little gain, as it is clear from Eqs. (63)–(66) that the
data without tildes characterizes the data of the theory with
tildes. However, this machinery will make the extension to
antiunitary symmetries much more natural.

Before proceeding, we make two technical comments.
First, in principle, both the vertex basis and symmetry action
gauge transformations can depend on the domain in ques-
tion, and furthermore one could imagine changing αR and
ρ̃L by natural isomorphisms separately. However, imposing
the equivariance conditions (63)–(66), which arose from de-
manding symmetry of the wave function, Eq. (62), constrains
the gauge transformations so that the transformations must act
the same way on all the domains. For example, if �̃c

ab(gi ) is a
vertex basis gauge transformation on Ṽ c

ab(gi ), then

�̃c
ab(gi ) = �̃c

ab(giḡ), (75)

and similarly for the symmetry action gauge transformations.
Second, in the equivariance condition (68), it is crucial that if
ρ̃ left multiplies the group elements, α must right multiply. If
we instead used a map

αL
g : V c

ab(gi ) → V c
ab(ggi ), (76)

then the equivariance condition would not even make any
sense if G is non-Abelian because the codomains of the two
maps are different spaces:

ρ̃L
g ◦ αL

h : V c
ab(gi ) → V

gc
gagb(ghgi ), (77)

αL
h ◦ ρ̃L

g : V c
ab(gi ) → V

gc
gagb(hggi ). (78)

B. Antiunitary symmetry actions

We now generalize the above discussion to the case where
G contains antiunitary symmetry actions. Then the natural G
action (61) on the wave function involves complex conjuga-
tions:

Z[∂M4;{giḡ}, {ai jk}, {bi jkl}]
= Zσ (g)[∂M4; {gi}, {ai jk}, {bi jkl}], (79)

where σ was defined in Eq. (19). Following the same logic,
the desired symmetry transformation rules change:

F̃ abc
de f (gi ) = [F̃ abc

de f (giḡ)
]σ (g)

, (80)

R̃ab
c (gi ) = [R̃ab

c (giḡ)
]σ (g)

, (81)

η̃a(gi, g j, gk ) = [η̃a(giḡ, g j ḡ, gk ḡ)]σ (g), (82)

Ũ (a, b; c; gi, g j ) = [Ũ (a, b; c; giḡ, g j ḡ)]σ (g). (83)
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In particular, we now take the isomorphisms αR
g [see Eq. (67)]

to be antiunitary maps when g is an antiunitary symmetry
action.

With this in mind, we may now generalize the definitions
of the data F , R, η, andU (without tildes) via

F̃ abc
de f (gi )

σ (g) = F̃ abc
de f (1) ≡ Fabc

de f , (84)

R̃ab
c (gi )σ (g) = R̃ab

c (1) ≡ Rab
c , (85)

ηa(gi, g j, gk )σ (gi ) = η̃σ (gik )
a (gik, g jk, 1) ≡ ηa(gi j, g jk ), (86)

Ũ (a, b; c; gi, g j )
σ (gi ) = Ũ σ (gi j )(a, b; c; gi j, 1)

≡ Ugi j (a, b; c). (87)

Another way to think of Eqs. (84)–(87) is that they allow us
to take symmetry fractionalization data given in the language
of Sec. II C and convert it into data “with tildes” which can be
inserted into our path integral.

Following the above, we can now write the consistency
conditions for the data F,R, η,U in the presence of antiuni-
tary symmetry actions by simply substituting Eqs. (84)–(87)
into Eqs. (54)–(60):

ηa(g, h)ηa(gh, k) = η
σ (g)
ḡa (h, k)ηa(g, hk), (88)

Uk(
ka, kb; ke)Uk(

ke, kc, kd )F
kakbkc

kdkekf U
−1
k (kb, kc; kf )U−1

k (ka, kf ; kd )

= (Fabc
de f

)σ (k)
, (89)

U σ (g)
� (k̄a, k̄b; k̄c)Uk(a, b; c) = Ukl(a, b; c)

η̃c(k, �)

η̃a(k, �)η̃b(k, �)
,

(90)

Ug(
gb, ga; gc)R

gagb
gc U−1

g (ga, gb, gc) = (Rab
c

)σ (g)
. (91)

These exactly reproduce Eqs. (27) and (34) and (35) in the
presence of antiunitary symmetry actions. Because F and R
moves need only involve a single domain, the pentagon and
hexagon equations take their usual forms.

To make contact with Sec. II C, we again note that all
of the data without tildes act on vector spaces Ṽ c

ab(1) in the
identity domain. We claim that the formalism in Sec. II C
arises if we define V c

ab = Ṽ c
ab(1) and define the topological

symmetry operator ρg, without a tilde, again by Eq. (74). The
map ρg is antiunitary if the action of g is antiunitary (since ρ̃

is always unitary and αg is antiunitary when the action of g is
antiunitary). We can check that this ρg behaves in the desired
way:

ρg|a, b; c〉1 = αR
g Ũ (ga, gb; gc, g, 1)|ga, gb; gc〉g (92)

= Ũ σ (g)(ga, gb; gc, g, 1)Kq(g)|ga, gb; gc〉1 (93)

= Ug(
ga, gb; gc)Kq(g)|ga, gb; gc〉1, (94)

where the antiunitarity of αR
g played an important role by

complex conjugating Ũ .
A key point to notice is that the derivations of the consis-

tency equations for the data with tildes, Eqs. (54)–(60), do not
depend on whether the symmetry-group elements have unitary
or antiunitary action.

We comment at this point that, in terms of symmetry
fractionalization data, the maps ρg defined in Sec. II C and
Eq. (74) are either unitary or antiunitary according to the
action of g. Importantly, in our present formalism, ρg does
not describe sweeping a domain wall over a fusion vertex in
the graphical calculus defined in Fig. 7. Instead, the action of
a domain wall in the graphical calculus is related to the map
ρ̃L

g . We take ρ̃L
g to always be unitary. Then, ρg = αR

g ◦ ρ̃L
g and

αR
g are either both unitary or antiunitary.6

We note that the results of this section highlight the fact
that to properly describe antiunitary symmetry actions, it is
helpful to view symmetry fractionalization in terms of the
language of 3-categories. Note that any UMTC can be inter-
preted as a 3-category with trivial 0 and 1 morphisms. The
objects of the UMTC, which are the anyons, then correspond
to 2-morphisms while the 1-morphisms of the UMTC are
promoted to 3-morphisms in the 3-category. Symmetry frac-
tionalization can then be described by a 3-category where
the objects (0-morphisms) correspond to group elements of
G and the 1-morphisms correspond to the domain walls. The
3-category is equipped with G actions, which define the data
ρ̃, Ũ , η̃. Finally, the 3-category has a G-equivariance condi-
tion, where the possible antiunitary action of symmetry-group
elements complex conjugates the data.

C. Defining the state sum on nonorientable manifolds

For unitary spatial parity-preserving symmetries, SPTs are
distinguished by their topological path integrals on nontrivial
G bundles. For antiunitary symmetries such as time-reversal
symmetry, or unitary spatial parity-reversing symmetries, it
is well known that one must also consider the path integral
on nonorientable manifolds. Equivalently, certain anomaly
indicators for (2+1)D SETs involving time-reversal or spa-
tial reflection symmetries are associated with (3+1)D path
integrals on nonorientable manifolds [30]. For example, for
G = ZT

2 time-reversal symmetry, SPTs are distinguished by
their path integrals on RP 4 and CP 2. We therefore should
ensure that our path integral is well defined on nonorientable
manifolds when G contains group elements with antiunitary
symmetry action.

Suppose that we wish to calculate the path integral on
some nonorientable manifold M4. First, let W 3 be a closed
submanifold dual to the first Stieffel-Whitney class w1(M4).
To perform the calculation, we cut open M4 along some
set of 3-simplices that triangulates W 3 in order to form an
open, orientable 4-manifold M̌4, such that ∂M̌4 = W 3 ∪ W̄ 3.
Assign M̌4 a global orientation, and for a 4-simplex �4 let
s(�4) = +1 (respectively −1) if the orientation of �4 given
by the ordering of its vertices matches (respectively fails to
match) the orientation of M̌4. This allows us to compute a

6It is interesting to consider a theory where ρ̃ is taken to be antiu-
nitary, which can presumably lead to a consistent graphical calculus
and may potentially be of mathematical interest. However, the natural
generalization of our Hamiltonian construction in Secs. VII and VIII
to this case is nonlocal and thus we do not consider this possibility
here.
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path integral on M̌4 as a function of the labels on the boundary
simplices.

Next, to construct the path integral on M4, we glue along
the boundary 3-simplices with a twist by an antiunitary
symmetry-group element as follows. Group elements on op-
posite sides of the cut are identified up to an action of an
antiunitary symmetry-group element. The data assigned to 2-
and 3- simplices are, however, unaffected by the twist. The
path integral on M4 is then obtained by summing over the
labels on ∂M̌4, including the appropriate normalization factors
for the boundary data.

The above procedure may alternatively be thought of as
adding a flat background G gauge field to M4. The important
point is that the holonomy of this background gauge field
must agree with the orientation bundle of M4; that is, the
G-holonomy around any cycle corresponds to a symmetry-
group element g with antiunitary action if and only if the
local orientation reverses when traveling around that cycle.
As we show in Appendix A, this requirement, together with
the antiunitary action of the isomorphisms αR

g , ensures that
the path integral is invariant under vertex basis and symmetry
action gauge transformations. Importantly, gauge invariance
cannot be maintained on nonorientable manifolds if αR

g is
unitary.

From this perspective we see why “gauging G” is not
possible for antiunitary symmetries. Gauging G corresponds
to summing over all possible G bundles, which is not possi-
ble when G contains antiunitary symmetries because of the
requirement that antiunitary holonomies must be compatible
with the orientation bundle ofM4, which is fixed.

V. CONSTRUCTING ANOMALY INDICATORS

We have seen in Sec. III that a UMTC C, symmetry group
G, and symmetry fractionalization data specified by {ρ,U, η}
define a path integral for a (3 + 1)D G-SPT. G-SPTs are char-
acterized completely by the values of the TQFT path integral
on an appropriate set of 4-manifolds and nontrivial G bundles.
The specific set of 4-manifolds and G bundles necessary to
fully specify the (3+1)D SPT depends on G and corresponds
to generators of cobordism groups.

G-SPTs in (3+1)D form an Abelian group SG. A given
G-SPT is therefore characterized by a set of roots of unity
{Ii}, for i = 1, . . . , n, where n is the number of generators of
SG, and where

Ii ≡ Z
(
M4

i , fi
)
. (95)

Here, M4
i is a 4-manifold and fi ∈ Hom(π1(M4),G) specifies

a G bundle.
The set {Ii} are referred to as the anomaly indicators asso-

ciated with the data {C,G, ρ,U, η}. The reason is as follows.
As we will show in Sec. VIII, the (3+1)DG-SPT that we have
defined hosts a (2+1)D surface termination that respects theG
symmetry and that is characterized by the data {C,G, ρ,U, η}.
Therefore, {Ii} specifies the bulk (3+1)D SPT that hosts the
given symmetry fractionalization class at its (2 + 1)D surface.

Since (3+1)D G-SPTs are partially classified by
H4(G,U (1)), we have that H4(G,U (1)) ⊂ SG. The
H4(G,U (1)) part is therefore determined by a subset of
the anomaly indicators {Ii}. In this section, we provide

a general algorithm that can determine this subset of
anomaly indicators, which thus specifies an element
[S] ∈ H4(G,U (1)). This converts the problem of computing
the H4(G,U (1)) anomalies from the data of {C,G, ρ,U, η}
into a concrete algorithm that can be run by computer.

To do this, we start with a finite group G and present an
algorithm for finding cohomology invariants, that is, function-
als of a cocycle whose value depends only on the cohomology
class of the cocycle. From a given H4(G,U (1)) invariant, we
construct a cellulation of a 4-manifold with G bundle. Our
path integral, evaluated on that 4-manifold with G bundle, is
an anomaly indicator for a G-SPT. We show that our proce-
dure produces a full set of anomaly indicators; that is, the
anomaly indicators are sufficient to fully extract the element
ofH4(G,U (1)) that characterizes the anomaly. The approach
in this section works both for unitary and antiunitary symme-
try actions.

A. Generating cohomology invariants

We will first show how to find a complete set of coho-
mology invariants given a group G. We do this by recasting
the cocycle condition in a convenient form, after which some
simple manipulations yield the desired invariants.

Consider a representative n-cocycle ω = e2π iφ of a class
[ω] ∈ Hn(G,U (1)). Then, ω is a map from Gn → U (1). We
can choose to think of ω instead as an element of (U (1))|G|n ;
that is, as a vector of U (1) phases associated to each of the
|G|n possible inputs. In a similar fashion, φ is a map from
Gn → R (ignoring for the moment the integer ambiguity) and
can therefore be written as a real-valued vector v(n) of length
|G|n. For example, in the n = 1 case,

v(1) = (φ(g1), φ(g2), . . . , φ(g|G|), (96)

where we have chosen an arbitrary ordering gi of the elements
of G.

From now on, we fix n and suppress the n superscript
on v to make the notation less cumbersome. The cobound-
ary operator d takes n-cochains to (n + 1)-cochains; in the
above language, it maps elements of (U (1))|G|n to elements
of (U (1))|G|n+1

. Crucially, the coboundary operator can be
written as a linear map on v because dω is a product of ω’s.
For example, for n = 1,

dω(g, h) = ω(gh)
ω(g)ω(h)

= e2π i[φ(gh)−φ(g)−φ(h)] (97)

which defines the map d̃φ(g, h) ≡ φ(gh) − φ(g) − φ(h). We
have used the notation d̃φ to indicate that the coboundary op-
erator d has induced an operator d̃ acting on φ. “Vectorizing”
d̃φ into a vector d̃v of length |G|n+1, we see that

d̃v = MG
n v, (98)

where MG
n is a |G|n+1 × |G|n integer matrix which depends

on n and on G. For example, for G=Z2 and n=1,
we have d̃φ(0, 0) = d̃φ(0, 1) = d̃φ(1, 0) = −φ(0) and
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d̃φ(1, 1) = φ(0) − 2φ(1). Hence,

MZ2
1 =

⎛
⎜⎜⎝

−1 0
−1 0
−1 0
1 −2

⎞
⎟⎟⎠. (99)

In this language, the cocycle condition dω = 1 becomes

MG
n v = �, (100)

where � is any integer vector with |G|n+1 components.
Next, we writeMG

n in terms of the Smith normal form:

MG
n = ADB, (101)

where A,D,B are all integer-valued matrices, D is diagonal,
and A,B are invertible over the integers. Multiplying Eq. (100)
on the left by A−1 means∑

j

DiiBi jv j =
∑
k

(A−1)ik�k (102)

for each i. For each nonzero Dii, then,∑
j

Bi jv j = 1

Dii

∑
k

(A−1)ik�k . (103)

Let us recall where each term comes from. The matrices
A,B,D are determined entirely by G and n, while v is a
reparametrization of the cocycle ω. Provided ω is indeed a
cocycle, then � exists and is determined by v. Note that v

is ambiguous up to an integer change of each of its entries,
v → v + X for any integer vector X . Such a change will shift
� by an integer vector: � → � + MG

n X .
Suppose we change the cocycle ω by a coboundary. Then,

v changes to v + MG
n−1e for some element e ofR|G|n−1

. Varying
ω over all representatives of its cohomology class corresponds
to continuously varying e over all its values. In this process,
the left-hand side of Eq. (103) varies continuously. But the
right-hand side of Eq. (103) is rational and thus can only vary
discretely. The only way that this is possible is if the left-hand
side is completely invariant when ω changes by a coboundary,
that is, if

Ii = exp

(
2π i
∑
j

Bi jv j

)
(104)

is a cohomology invariant when Dii 
= 0, where we have reex-
ponentiated to avoid the integer ambiguity in v. Furthermore,
since
∑

k (A
−1)ik�k is an integer, Ii must be a (Dii )th root of

unity.
Of course, many of these invariants are trivial. For ex-

ample, dω evaluated on any set of group elements is 1 and
therefore an invariant. In particular, when Dii = 1, the right-
hand side of Eq. (103) is always an integer, so multiplying
both sides by 2π i and exponentiating tells us that some prod-
uct of ω’s is 1, independent of the cohomology class. While
this is an invariant, it is not useful for distinguishing different
cohomology classes. Therefore, nontrivial invariants only oc-
cur when Dii > 1. Recalling that B has an integer inverse, it is
straightforward to check that choosing

v j =
∑
m

km
(B−1) jm
Dmm

(105)

for km ∈ Z produces an explicit cocycle with anomaly indica-
tor

Im = exp(2π ikm/Dmm). (106)

Note that km must be an integer in order to satisfy the cocy-
cle condition (100). Hence, all such invariants are nontrivial,
and Hn(G,U (1)) contains a subgroup ZDii for each Dii > 1.
We prove in Appendix B that these invariants provide a full
characterization ofHn(G,U (1)).

There is no conceptual change to this procedure in the
presence of antiunitary symmetries; all that happens is that the
cocycle condition changes slightly. For example, for n = 1,
the boundary operator (97) changes to

dω(g, h) = ω(gh)
ω(g)ω(h)σ (g)

= e2π i(φ(gh)−φ(g)−(−1)q(g)φ(h))

(107)
which, for G = ZT

2 , modifies Eq. (99) to

MZT
2

1 =

⎛
⎜⎜⎝

−1 0
−1 0
1 0
1 0

⎞
⎟⎟⎠. (108)

In this case, MZT
2

1 has no Dii > 1, corresponding to the fact
that H1(ZT

2 ,U (1)) is trivial.

B. Generating cellulations

Suppose that we have a cohomology invariant
for Hd (G,U (1)): I = ω(g1, g2, . . . , gd )εgω(h1, h2, . . . ,

hd )εh . . . , where the ε are ±1. We can associate a labeled
d-simplex to each factor as follows. Consider the factor
ω(g1, g2, . . . , gd )εg . We consider a d-simplex with orientation
given by εg and order its vertices. Suppose its vertices are, in
order, 0123 . . . d . For each i, label the 1-simplex connecting
vertices (i − 1) and i by gi. This labels d of the d (d + 1)/2
1-simplices. To label the remaining 1-simplices, we demand
that the net flux through each 2-simplex is trivial. This
uniquely specifies the labels of the remaining 1-simplices.

We claim that there is always a way to glue together all
of the d-simplices associated to a given invariant I such
that the 1-simplex group elements and induced orientations
match to form a closed d-manifold with some nontrivial flatG
bundle.

To see this, suppose that we modify ω by a coboundary dα.
Just as we can interpret ω as a d-simplex, we can also inter-
pret α(k1, . . . , kd−1)ε as corresponding to a (d − 1)-simplex
with orientation ε and a flat G connection, where the group
elements ki are placed on (d − 1) 1-simplices and determine
(via flatness) group elements on the other 1-simplices. Then,
by definition, dα(g1, g2, . . . , gd ) is a product of one factor of
α for each (d − 1)-simplex of ω(g1, g2, . . . , gd ), where the
orientation of the (d − 1)-simplex corresponding to each fac-
tor of α is given by the (d − 1)-simplex’s orientation relative
to ω. In order for I to be a cohomology invariant, every factor
of α must cancel, that is, each factor of α must appear in I
the same number of times with positive relative orientation
as it appears with negative relative orientation. That is, each
(d − 1)-simplex can be paired with an identical simplex, but
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with opposite orientation, which is all that is needed to be able
to glue the d-simplices together to form a closed manifold.

For example, for G = Z2
2, d = 4, our algorithm generates

the cohomology invariants

I1 = ω(1, ZX, X, ZX)ω(1, ZX, Z, ZX)ω(ZX, X, Z, ZX)ω(ZX, ZX, X, ZX)ω(ZX, ZX, Z, ZX)

ω(X, ZX, X, ZX)ω(X, ZX, Z, ZX)ω(ZX, X, ZX, Z)ω(ZX, Z, X, ZX)ω(ZX, Z, ZX, Z)
, (109)

I2 = ω(1, ZX, X, ZX)ω(1, ZX, Z, ZX)ω(Z, Z, Z, ZX)ω(Z, ZX, X, ZX)ω(Z, ZX, Z, Z)ω(Z, ZX, Z, ZX)

ω(X, ZX, X, ZX)2ω(X, ZX, Z, ZX)2ω(Z, Z, ZX, X)ω(Z, ZX, ZX, ZX)ω(ZX, X, ZX, Z)

× ω(ZX, X, X, ZX)ω(ZX, X, Z, ZX)2ω(ZX, Z, ZX, ZX)ω(ZX, ZX, X, ZX)ω(ZX, ZX, ZX, Z)

ω(ZX, Z, X, ZX)2ω(ZX, Z, Z, Z)ω(ZX, Z, Z, ZX)ω(ZX, Z, ZX, Z)
, (110)

where Z and X generate Z2
2 in multiplicative notation and

obey XZ = ZX. We focus on I1 since it has many fewer
factors of ω. For example, the factor of ω(1, ZX, X, ZX)
in Eq. (109) is associated to a 4-simplex 01234 with group
elements associated to the links via 01 = 1, 12 = ZX, 23 =
X, 34 = ZX, and the rest of the group elements determined
by requiring that the 2-simplices all have trivial flux through
them. To determine how to make a closed manifold, from
left to right, denote the five 4-simplices in the numerator
of Eq. (109) 1, 2, 3, 4, 5 and the ones in the denominator
6, 7, 8, 9, 10. Then, for example, the 4-simplices 1 and 2 can
be glued together along two 3-simplices, one with elements
1, ZX, X on three successive edges (+ and − orientation for
1 and 2, respectively) and one with elements 1, ZX, Z on
three successive edges (− and + orientation for 1 and 2,
respectively).

In fact, it can be checked that a closed manifold with a
consistent G connection can be obtained by gluing the 4-
simplices in the way shown in Fig. 9, where a line between
two 4-simplices represents a 3-simplex shared between those
4-simplices.

There are, in general, multiple valid ways to glue together
the 4-simplices to produce a closed manifold. Presumably,
these different gluings correspond to different cellulations of
the same manifold with the same holonomies, although we
have not studied this in detail.

This procedure needs a small modification in the presence
of antiunitary symmetries because of the nontrivial group
action that appears in the coboundary operator. In particu-
lar, let us rerun the argument that the d-simplices can be
glued together. The key difference is that now group actions
can appear: the d-simplex ω(g1, g2, . . . , gd ) now picks up a
(d − 1)-simplex ασ (g1 )(g2, . . . , gd ). That is, if g1 is antiuni-

FIG. 9. Gluing 4-simplices generated by the Z2 × Z2 cohomol-
ogy invariant I1, given in Eq. (109), to create a closed 4-manifold.
Each number represents 4-simplices corresponding to factors in
Eq. (109) as described in the main text, and a line between 4-
simplices i and j represents a 3-simplex on which i and j have been
glued together.

tary, then we should interpret the 3-simplex α(g2, . . . , gd ) as
having a negative orientation relative to ω(g1, g2, . . . , gd ).

As an example, take G = ZT
2 with d = 2. The above pro-

cedure produces the cohomology invariant

I2
ZT

2
= ω(1, T)ω(T, T). (111)

The 2-simplices that arise from this invariant are shown in
Fig. 10(a), along with the relative orientations on the 1-
simplices accounting for the group action of g1. Crucially, the
1-simplex 12′ should be interpreted as having negative relative
orientation thanks to the fact that g0′1 = T has a group action
on 12′. The 1-simplices 02 and 0′2′ with the group element 1
on them can be glued to produce Fig. 10(b), but there are two
valid ways to glue the 1-simplices with T on them to produce
a closed manifold. It is easy to see by inspection that both
produce the real projective plane RP 2. It is well known that
Z (RP 2) is the anomaly indicator for a (1 + 1)D ZT

2 SPT [15].

C. Algorithm for determining anomaly indicators

We can now combine the above results to obtain anomaly
indicators, which fully specify an element of H4(G,U (1))
from the symmetry fractionalization data. Given a group G,
UMTC C, and symmetry fractionalization data {ρ,U, η} we
proceed by the following algorithm:

(1) Compute cohomology invariants {Ii} forH4(G,U (1))
in the way described in Sec. VA.

FIG. 10. Constructing a cellulation of a manifold from the
anomaly indicator (111) for ZT

2 in d = 2. (a) Each factor of ω

in the anomaly indicator corresponds to a 2-simplex. The relative
orientations of the 1-simplices are shown next to them; the 1-simplex
12′ is interpreted as having the “wrong” relative orientation because
of the group action arising from g0′1 = T. (b) The 1-simplices 02
and 0′2′ are glued together. There are two valid ways to glue the
remaining 1-simplices together, either by gluing 01 to 03 or 01 to 12.
By inspection, both produce RP 2.
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(2) Construct a cellulation for a closed 4-manifoldMi with
a background G connection Ai for each such invariant as
described in Sec. VB.

(3) Input C, G, and the given symmetry fractionalization
data to our state-sum construction to compute the path integral
Z (Mi;Ai ) on each Mi equipped with its G connection Ai by
using the cellulation obtained in the previous step.

The above algorithm therefore allows explicit compu-
tation of a set of anomaly indicators {Ii} given the data
{C,G, ρ,U, η}. These anomaly indicators may be used in
Eq. (105) to compute an explicit representative cocycle in the
anomaly’s cohomology class.

For the G = Z2
2 example introduced above, it is already

known that one choice of a full set of SPT invariants consists
of the SPT path integral on the manifold L(2, 1) × S1 with
flux ZX through one cycle and flux Z through the other cy-
cle [51,52]. Here, L(p, q) is Lens space and L(2, 1) = RP 3.
Explicit formulas for these path integrals in terms of represen-
tative cocycles are known [51–53], so given a representative
cocycle, we can evaluate the SPT path integrals and compare
the results to explicitly evaluating I1 and I2 for the same
cocycle. We find that

I1 = ZSPT(L(2, 1) × S1;ZX, Z), (112)

I2 = ZSPT(L(2, 1) × S1;Z, ZX), (113)

where the first and second group elements label the fluxes
through the L(2, 1) and S1 cycles, respectively. As such, we
believe that the cellulations produced by the above algorithm
applied to I1 and I2 actually yield cellulations of L(2, 1) × S1

with the appropriate holonomies, although we have not veri-
fied this directly.

VI. EXAMPLES OF ABSOLUTE ANOMALIES

In this section we compute a number of examples. Where
there is overlap, we find consistency with all previous calcula-
tions for anomalies. In particular, our computation of absolute
anomalies for G = Z2 × Z2 anyon permuting symmetries
for the U(1)4 topological order has not been performed be-
fore through any method and is consistent with the relative
anomaly calculation of Ref. [37].

We note that we are limited in the number of examples that
we can easily calculate due to the large number of terms in
the state sum. In principle, the calculations can be parallelized
on the computer, and the number of terms in the state sum
scales polynomially with the number of anyons in the UMTC.
However, we expect that the complexity of the cellulations in-
volved increases with |G| such that in general the complexity
of the computation would be exponential in |G|.

A. G = Z2 × Z2

Here, we compute symmetry fractionalization anomalies
for a series of topological orders: U (1)2 and U (1)4 with
G = Z2 × Z2 symmetry, with both permuting and nonper-
muting symmetry actions. The casesU (1)2 andU (1)4 with no
anyon permutations reproduce previous known results, while
the case U (1)4 includes anyon-permuting symmetries and is
consistent with the relative anomaly calculation of Ref. [37].

1. (3+1)D SPTs

For G = Z2 × Z2, we have

H4(G,U (1)) = Z2 × Z2. (114)

In principle we could use the computer-generated invariants in
Eqs. (109) and (110) to construct cellulations. However, they
contain a large number of 4-simplices. It will be simpler to use
the known result that for aG = Z2 × Z2 SPT, the path integral
on M4 = L(2, 1) × S1 provides a set of anomaly indicators
for certain choices of background G connections [51]. Recall
that here L(p, q) is a Lens space, and L(2, 1) = RP 3 is real
projective space. This manifold has two nontrivial cycles: one
which appears in the Lens space and one around the S1. We
call the flux threading those cycles g and h, respectively. More
precisely, the fundamental group π1(L(2, 1) × S1) = Z2 × Z;
the g (respectively h) flux is the one through the loop generat-
ing the factor of Z2 (respectively Z). We can then define the
anomaly indicators

Ig,h ≡ Z (M4; g, h). (115)

Of course, only two such indicators are independent. We
take as a generating set IX,Z and IZ,X, where X and Z generate
Z2 × Z2. That is, the values of IX,Z, IZ,X characterize the four
distinct possible SPTs in this case. Note that this is a slightly
different set of generators than we found algorithmically in
Sec. V; one can check that, as defined in Eqs. (112) and (113),
we have

IX,Z = I1I2, (116)

IZ,X = I2. (117)

We can make contact with previous parametrizations
[51,52] of the (3+1)D path integrals as follows. We use
the following set of representative cocycles for H4(Z2 ×
Z2,U (1)) = Z2 × Z2:

ωq(g, h, k, l) = ei
π
2

∑2
I,J=1 qIJgIhJ (kJ+lJ−[kJ+lJ ]), (118)

where group elements g = (g1, g2) with (1, 0) = X and
(0, 1) = Z, and where [kJ + lJ ] = (kJ + lJ ) mod 2. Here,
qIJ is an off-diagonal matrix with entries in Z2 which labels
the cohomology class in question. If, on M4, there is a flux g
through the nontrivial Lens space cycle and a flux h through
S1, then the SPT partition function is

Z (M4; g, h) = eπ i
∑

IJ qIJgJ (hIgJ−gIhJ ). (119)

This results in the path integrals

IX,Z = (−1)q21 , IZ,X = (−1)q12 . (120)

We then numerically explicitly evaluate the path integral
on L(2, 1) × S1 using a cellulation given in Appendix C. The
aforementioned cellulation contains eight 4-simplices, which
is much simpler than the 10 and 24 4-simplices produced
by Eqs. (109) and (110), respectively. Even so, our imple-
mentation of the numerical computation has a runtime which
scales as N9

a for Abelian C, where Na is the number of anyons
in C, which is computationally expensive. As such, we only
examined topological orders with at most four anyon types.
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TABLE I. Absolute anomalies IX,Z and IZ,X for semion topolog-
ical order with Z2 × Z2 symmetries.

(λX
s , λZ

s λZX
s ) IX,Z IZ,X

(1, 1, 1) 1 1
(1, 1, −1) −1 −1
(1, −1, 1) −1 1
(1, −1, −1) 1 1
(−1, 1, 1) 1 −1
(−1, 1, −1) 1 1
(−1, −1, 1) 1 1
(−1, −1, −1) 1 1

2. Gauge-invariant characterization of Z2 × Z2 symmetry
fractionalization

For a given symmetry action, one can solve the consis-
tency conditions to determine all possible fractionalization
patterns up to gauge equivalence. In the tables that follow,
we specify symmetry fractionalization patterns by a set of
gauge-invariant quantities λ

g
c , λ̃

g
c , and τc where g ∈ G and

c ∈ C.
The λ

g
c and λ̃

g
c invariants are defined following Ref. [37]:

First suppose that c = gc for some fixed g, and cn = 1 for
some even n. Further suppose that there exists a sequence
of g-invariant anyons c0 = c, c1, c2, . . . , cn−2, cn−1 = 1 such
that c × ck can fuse to ck+1, that is, Nc,ck

ck+1
> 0. Then we can

define

λg
c = ηc(g, g)n/2

n−2∏
k=0

Ug(c, ck ; ck+1). (121)

If instead c̄ = gc for some fixed g, then define

λ̃g
c = ηc(g, g)Ug(c, c̄; 1)R

c̄,c
1 θc. (122)

Finally, if c is G invariant, that is, gc = c for all g ∈ Z2 ×
Z2, then the quantity

τc ≡ ηc(X, Z)

ηc(Z, X)
= ηc(X, ZX)

ηc(ZX, X)
= ηc(Z, ZX)

ηc(ZX, Z)
(123)

is also gauge invariant. The equalities follow from the cocy-
clelike condition on η.

3. U (1)2 (semion) topological order

Semion topological order has anyon types {1, s} with one
nontrivial F symbol Fsss = −1 and one nontrivial R symbol
Rss = i. Any symmetry action is nonpermuting, so we can
gauge fix all the U ’s to be 1. In this gauge, λ

g
s = ηs(g, g),

which is invariant under any additional gauge transformations.
One can check that these quantities can be independently cho-
sen to be ±1 for each g 
= 1, and that this is an exhaustive list
of symmetry fractionalization classes. Our numerics produce
the absolute anomalies shown in Table I.

4. U (1)4 topological order with permutations

We label anyons inU (1)4 by elements [k] ∈ Z4 with fusion
given by addition modulo 4. The F symbols are given by

Fabc = e
iπ
4 a(b+c−[b+c]), (124)

TABLE II. Absolute anomalies IX,Z, IZ,X for U (1)4 topological
order with anyon-permuting Z2 × Z2 symmetry, where the element
X of Z2 × Z2 acts as charge conjugation and Z does not permute
anyons.

(λ̃X
[1], λ

Z
[1], λ̃

ZX
[1] ) IX,Z IZ,X

(1, 1, 1) 1 1
(1, −1, 1) 1 1
(1, 1, −1) 1 1
(1, −1, −1) 1 −1
(−1, 1, 1) 1 1
(−1, 1, −1) 1 1
(−1, −1, 1) −1 −1
(−1, −1, −1) −1 1

where [b+ c] = (b+ c) mod 4, and the R symbols are

Rab = e
iπ
4 ab. (125)

We choose X to act by charge conjugation [k] → [4 − k]
and Z to not permute the anyons. Then, we can gauge fix

UX([c], [d]; [c + d]) = UZX([c], [d]; [c + d])

=
{
(−1)c, [d] > 0
1, [d] = 0

(126)

and UZ = 1. After solving the consistency conditions and
accounting for gauge redundancy, one finds that λ̃X

[1], λ̃ZX
[1] ,

and λZ
[1] are sufficient to distinguish the eight fractionalization

classes. Our numerics lead to Table II.

5. U (1)4 topological order with no permutations

Since the symmetry is nonpermuting in this case, we can
gauge fix U = 1. In this gauge λ

g
[1],[3] = η[1],[3](g, g)2 and

λ
g
[2] = η[2](g, g). One finds that there are eight solutions to the

consistency equations. One can check straightforwardly from
Eq. (34) that only η[1](g, g) is independent, and further that
λZ
[1]λ

X
[1] = λZX

[1] . However, τ[1] is well defined and independent
of the λ

g
[1]. Our numerics lead to the absolute anomalies in

Table III.

B. G = ZT
2

It is known thatH4(ZT
2 ,U (1)) = Z2, with the anomaly in-

dicator given by the path integral of the (3+1)D SPT on RP 4.

TABLE III. Absolute anomalies IX,Z, IZ,X forU (1)4 topological
order with nonpermuting Z2 × Z2 symmetry.

(λX
[1], λ

Z
[1], τ[1] ) IX,Z IZ,X

(1, 1, 1) 1 1
(1, 1, −1) 1 1
(1, −1, 1) 1 1
(1, −1, −1) 1 −1
(−1, 1, 1) 1 1
(−1, 1, −1) −1 1
(−1, −1, 1) 1 1
(−1, −1, −1) −1 −1
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FIG. 11. Gluing together the 4-simplices generated by the ZT
2

cohomology invariant I, given in Eq. (128), to create a closed
4-manifold. The 4-simplices correspond to factors in Eq. (128) as
described in the main text, and a line between two 4-simplices i and
j represents a 3-simplex on which i and j have been glued together.

There is also a beyond cohomology SPT, with the anomaly
indicator given by the (3+1)D path integral evaluated onCP 2,
but this is not expected to be related to the SET anomaly.
Hence here we study only Z (RP 4).

An explicit formula for the anomaly indicator correspond-
ing to Z (RP 4) is already known [30]:

Z (RP 4) = 1

D
∑
a|a=Ta

ηa(T, T)θada. (127)

This indicator is easy to compute and serves as a convenient
crosscheck for our results.

The procedure in Sec. V produces one invariant

I = ω(1, T, 1, T)ω(1, T, T, T)ω(T, T, 1, T)ω(T, T, T, T)
(128)

which can be turned into a cellulation with four 4-simplices.
Let the 4-simplices corresponding to the four factors in
Eq. (128) be labeled 1,2,3,4 in the order in which they appear.
Then, accounting for the matching of the background connec-
tions, these 4-simplices can be glued together in the manner
shown in Fig. 11, where each number represents a 4-simplex
and each line represents a 3-simplex on which two 4-simplices
have been glued together.

One can check that for Abelian C, the number of terms in
the sum scales as N4

a , where Na is the total number of anyons
in C.

1. Results: ZN toric code

Let the excitations of the ZN toric code be labeled by
(a1, a2) where a1, a2 ∈ ZN represent the charge and flux,
respectively, and fusion is given by addition mod N . The F
symbols can be chosen to all be 1 and the R symbols are

Rab = e2π ia2b1/N . (129)

We take the ZT
2 action on the anyons to be T(a1, a2) =

(a1,−a2), taken mod N ; this symmetry action leaves (m, 0)
and (n,N/2) invariant for any m, n ∈ ZN .

Since all the F symbols are 1, we can take all the U = 1.
The only nontrivial ηs are ηT

x ≡ ηx(T, T), for Tx = x. The
consistency conditions require

ηT
Tx = (ηT

x

)∗
, (130)

ηT
x ηT

y = ηT
x×y. (131)

One can check straightforwardly that if Tx = x, then ηT
x is

gauge invariant and real. In our gauge ηT
(0,0) = 1, which can

be used to show that ηT
(1,0) = ±1 and ηT

(0,N/2) = ±1, and that
up to gauge transformations, these specify all fractionalization
classes. Physically, ηT

x (for a T-invariant anyon x) specifies
whether x carries a local Kramers degeneracy, that is, roughly
speaking, locally “T2 = ηT

x ” for the anyon x.
We numerically evaluated the path integral for N = 2, 4, 6

and obtained

Z (M ) =
{−1, ηT

(1,0) = ηT
(0,N/2) = −1

1, else.
(132)

This says that of the four distinct ZT
2 symmetry fractionaliza-

tion patterns, only the state with (ηT
(1,0), η

T
(0,N/2)) = (−1,−1)

is anomalous, which matches the results from Eq. (127) and
obtained previously [30]. For the case of theZ2 toric code, the
anomalous symmetry fractionalization pattern is referred to as
eTmT and was found to be anomalous in Ref. [11].

VII. HAMILTONIAN FORMULATION

Here we present a Hamiltonian formulation of the sys-
tem described by the path-integral state sum of the previous
sections. In particular, we provide an exactly solvable Hamil-
tonian whose exact ground state on a closed 3-manifold
corresponds to the wave function obtained by evaluating the
path integral of Sec. III on a 4-manifold with boundary.
The relation between the Hamiltonian and the path-integral
state sum here is similar to the approach of previous works:
the Levin-Wen model gives an exactly solvable Hamilto-
nian formulation of the (2+1)D Turaev-Viro state sum,
while the Walker-Wang model provides an exactly solvable
Hamiltonian for the Crane-Yetter state sum. In particular,
our formulation is a generalization of the Walker-Wang and
Williamson-Wang models [26,34] to allow G-domain walls
and anomalous G-symmetry actions.

Our primary motivation for studying the Hamiltonian for-
mulation is to be able to study the model on a 3D space with
boundary. This allows us to demonstrate explicitly that there
exists a (2+1)D surface termination for the Hamiltonian that
preserves theG symmetry, and that the surface hosts a (2+1)D
SET described by the same UMTC C and symmetry fraction-
alization data {ρ,U, η} that was used to define the model. In
particular, this therefore allows us to demonstrate explicitly
that (1) every symmetry fractionalization class for any UMTC
can be realized at the surface of a (3+1)D SPT, and (2)
to see the data describing symmetry fractionalization at the
surface {ρ,U, η} emerge explicitly via an exactly solvable
model.

Schematically, the ground state of our 3D Hamiltonian will
consist of a superposition of all braided fusion diagrams in
C and all possible networks of G-domain walls. The relative
weights of the different terms in the superposition are obtained
by evaluating the corresponding braided fusion diagrams with
G actions, which are obtained using the data of the UMTC C
and the symmetry fractionalization data. With open boundary
conditions we will see how the G-symmetric (2+1)D surface
possesses anyonic excitations described by C and symmetry
fractionalization described by {ρ,U, η}.

We note one technicality in relating the Hamiltonian
formulation to the path-integral formulation. Our Hamilto-
nian will be defined on a certain 3D trivalent lattice and a
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FIG. 12. (a) Trivalently resolved cubic lattice. Domain walls (or-
ange) live on the faces, which are deformed from their shape on the
cubic lattice. All edges have anyon degrees of freedom on them and
are oriented upward (not explicitly illustrated), but also overlap with
domain wall junctions. G degrees of freedom live at the cube centers
and are not shown here, so a G domain consists of the deformed
cube bounded by the domain walls shown here and a domain wall at
the top. (b) Domain walls in (a) are shifted left, back, and down in
order to move domain wall junctions away from anyon lines. After
this resolution, the green anyon lines and the purple vertices now
live inside the domain bounded by the given domain walls, while
other lines and vertices live outside said domain. The lattice lives in
three-dimensional space, while the “arrow of time” indicated in the
figure is used exclusively for interpreting states as anyon diagrams
in C.

preferred direction in space: here for concreteness we will take
a trivalently resolved cubic lattice, as described below. On the
other hand, the wave function obtained from the path-integral
construction is defined on a 3D triangulation. We assert that
the ground-state wave function obtained from our Hamilto-
nian can be related to the wave function obtained from the
path-integral construction by a local constant depth circuit,
and therefore realizes the same phase of matter. This assertion
is on a firm footing given our understanding of the relation
between Levin-Wen models and Turaev-Viro path integrals,
and between Walker-Wang models and Crane-Yetter path in-
tegrals, for which the analogous statements have also not been
proven rigorously in general. In this spirit, we therefore leave
a rigorous proof of this assertion to future work.

A. Setup

We start with a trivalently resolved cubic lattice. As usual,
we choose a particular projection of this lattice to 2D (similar
to how braided fusion diagrams are evaluated according to a
choice of projection from 3D to 2D). This trivalent resolution
breaks the rotational and reflection symmetries of the cubic
lattice.

Next, we choose one direction of the space that will be in-
terpreted as a “time” direction in the braided fusion diagrams
that will appear in the calculations. Importantly, the “time”
direction must be picked in such a way that all edges of the
lattice have some nonzero projection in the “time” direction.
The edges are then all oriented along the positive “time”
direction, as in Fig. 12(b). These choices are made to obtain a
well-defined graphical calculus for completely general BTCs
in order to define the terms in the Hamiltonian. Choosing
different “time” directions will produce a slightly different
Hamiltonian with the same general properties.

We note that the above choice of “time” direction is
also required to obtain a Hamiltonian realization for general
Crane-Yetter models. The Walker-Wang models [26] also re-
quire these choices unless additional restrictions are made on
the type of anyon theories that can be used as input into the
construction (although Ref. [26] did not explicitly describe
these choices). Models that do not actually depend on this
choice of “time” direction presumably possess some notion of
“hypertetrahedral” symmetry, which means that the evaluation
of braided fusion diagrams obtained from a labeled 4-simplex
should be, in an appropriate sense, independent of the branch-
ing structure on the 4-simplex. This notion of hypertetrahedral
symmetry does not appear to have been formally defined for
BTCs. This restriction is analogous to how Levin-Wen models
were originally defined [29] to take as input fusion categories
with a tetrahedral symmetry, even though the path-integral
construction can be extended to any spherical fusion category
[28].

The Hilbert space of the model consists of the following.
On each cube center, we place a qudit where a basis of or-
thonormal states is labeled |g〉, for g ∈ G. At the center of
each link of the trivalently resolved lattice, we place a qudit
with an orthonormal basis labeled by anyons in C.

On the cubic lattice, cubes are naturally G domains with
domain walls naturally living on the faces of the lattice; on
the trivalently resolved cubic lattice, the domain (cube) and
domain walls (faces) are deformed as shown in Fig. 12(a). If
an anyon line extends from a cube with g0 in its center to a
cube with g1 in its center, the anyon should be acted on by
g1g−1

0 ≡ g10. Note that

gi jg jk = gik . (133)

Furthermore, in the trivalently resolved cubic lattice, some
of the domain wall junctions lie along edges of the lattice.
Just as in the path-integral construction, we will not want
anyon lines to be coincident with domain wall junctions. Thus,
we choose to resolve this ambiguity by shifting the domain
walls slightly, as shown in Fig. 12(b); different choices of
this shift will not change the topological properties, although
the model will be slightly different (just as it would change
if we changed the projection to 2D). This deformation natu-
rally associates, in a translation-invariant way, six links and
four vertices [shown in green and purple, respectively, in
Fig. 12(b)] to a domain (deformed cube). One can further
choose a trivalent resolution of the domain wall junctions, but
this will have no effect on the model.

As a technical comment, since we will be demanding that
the anyon degrees of freedom satisfy the fusion rules at the
vertices, we would need to add degrees of freedom on the
vertices to track elements of the fusion spaces V c

ab if we al-
lowed Nc

ab > 1. Because dimV c
ab depends in general on a, b, c,

additional care must be taken to ensure that the Hilbert space
remains a tensor product of local Hilbert spaces. While this
is possible, such a generalization has not been described in
the literature for the Levin-Wen or Walker-Wang models. For
the models described in this paper, we also restrict to the
cases with Nc

ab � 1 and leave the generalization for future
consideration.
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FIG. 13. Labeling scheme for the vertex terms and setup for calculating the plaquette term for our Hamiltonian model. (a) Domain walls
and anyon lines for the plaquette at the bottom of domain g0. Black lines are anyon lines, oriented upward in the plane of the page and labeled
by the nearest letter. Orange sheets are domain walls corresponding to the group element labeling them (dashed blue lines are guides for
labeling). The operator Bs

p creates the loop s and fuses it into the anyon lines. (b) Numbering scheme for the domains surrounding g0. Primes
denote domains below g0, double primes denote domains above g0.

B. Constructing the Hamiltonian

In order to have the desired ground state, the Hamiltonian
has the form

H = −
∑

v

Av −
∑
p

Bp −
∑
c

Dc, (134)

where v, p, c are vertices, plaquettes, and cubes of the triva-
lently resolved cubic lattice, respectively. The vertex term Av

enforces the fusion rules at each vertex, paying attention to
any domain walls that are crossed. The plaquette term has the
form

Bp =
∑
s∈C

Bs
p, (135)

where Bs
p creates a closed anyon loop on plaquette p and

fuses it into the edges of p. For comparison, Av and Bp are
analogous to the terms of the Walker-Wang model but are
modified in the presence of the domain walls. The cube term
Dc has the form

Dc = 1

|G|
∑
g∈G

Dg
c , (136)

where Dg
c creates a closed domain wall of type g at the center

of cube c, then fuses that domain wall into the domain walls
on the plaquettes. The factor of |G|−1 is for later convenience.

In the rest of this section, we explain how we construct
each of these terms. Before doing so, we make some nota-
tional comments. Because Bs

p and Dg
c have very complicated

formulas, we will use compact notation where no confusion
results: we use the notation i ja to mean gi j a, and use bars to
refer to inverses of matrices (e.g., F̄ = F−1), inverses of group
elements (ḡ = g−1), and antiparticles. We will also slightly
overload the variable v, which will refer either to a vertex or
to an anyon on a specific link. The usage should be clear from
context.

1. Vertex term

The term Av enforcing the fusion rules is straightforward.
It acts as the identity on the G degrees of freedom and can be
written

Av = δ07u′,d;u|u′, d, u, {gi}〉〈u′, d, u, {gi}| (137)

for, e.g., the vertex where u′, u, d meet in Fig. 13(a). The
domains are numbered using the scheme in Fig. 13(b). The
delta function here means

δ07u′,d;u =
{
1, Nu

07u′,d > 0

0, else
(138)

where Nc
ab is a fusion coefficient. The symmetry action on

u′ comes from the fact that u′ lives on a link associated to
the g7 domain, while the fusion vertex is associated to the g0
domain. Hence, the anyon line passes through the domain wall
g70 and is thus acted on by the symmetry. The terms for the
other vertices are straightforward generalizations.

2. Plaquette term

The matrix elements of the plaquette term are obtained
by evaluating the amplitude obtained in the braided fusion
diagram associated with starting with a closed loop labeled
by an anyon s at the center of the plaquette p and fusing it
into the edges. This must be done carefully to ensure that we
capture all of the group actions correctly.

The setup is as in Fig. 13(a). The procedure is similar to
that for the Walker-Wang models [26], where we take that
diagram and fuse the anyon line s into the lattice anyon lines.
This is done by first doing an R move on the q − q′ − 23b and
r − 00′

c′ − c vertices, then fusing s into a, then working our
way around counterclockwise, then undoing the R moves, all
while tracking the domain walls. In the end, all unprimed lines
(e.g., a) will be replaced with their double-primed counter-
parts (e.g., a′′).
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The final result is a product of 4 R, 12 F , 2 η, 5U , 2 bending moves, and some factors of quantum dimension:

Bs
p =
∑
anyons

RFEUD|a′′, p′′, q′′, b′′, c′′, r′′, u′′, d ′′, v′′,w′′〉〈a, p, q, b, c, r, u, d, v,w|, (139)

where Bs
p acts diagonally on all other degrees of freedom and the various factors are

R = R
23bq′
q R̄

23b′′q′
q′′ R̄

00′c′r
c R

00′cr′′
c′′ , (140)

E = η−1
s (g01, g12)ηs(g03, g32), (141)

U = U−1
01 (s̄, s; 1)U−1

12 (10s, a; a′′)U32(
30s, b; b′′)U03(s̄, s; 1)U03(c, s̄, c

′′)U01(d, s̄; d ′′), (142)

D =
√
dp′′drdu′′dddv′′dwda′′

dpdr′′dudd ′′dvdw′′da
A

30sb
b′′ B̄v′′10s

v , (143)

F = F
20s21aa′
p′′21a′′p

(
F

20sqp′
p′′
)−1

pq′′
(
F

20s23bq′
q′′
)−1

q23b′′F
30c30s̄b′′
b′30c′′b

(
F

00′c′rs̄
c′′
)−1

r′′cF
r′rs̄
u′′ur′′
(
F

07u′ds̄
u′′
)−1

d ′′uF
d ′10d10s̄
v′′v10d ′′ F v′′10sw

v′vw′′ F
10sw11′w′
a′′w′′a . (144)

The sum over anyons is over all of the anyons that appear in the bra and ket in Eq. (139). Note that Abc
a and Bbc

a are the bending
moves defined in Eqs. (6) and (7) (not to be confused with the vertex and plaquette terms Av and Bp). One can check at this stage
that when G is trivial, our model reduces precisely to the Walker-Wang model (in a slightly more general form than the usual
presentation).

We have assumed in the above that the symmetry actions are unitary. To include both unitary and antiunitary symmetries, the
above calculation can be repeated using the graphical calculus involving the data {F̃ , R̃, Ũ , η̃} defined in Sec. IV. In this case the
group elements (not just the domain walls) need to be carefully tracked. For example, in the graphical calculus derivation, the F
move producing the term Fr′rs̄

u′′ur′′ in F occurs in the g0 domain. More generally, this term should thus be replaced by F̃ r′rs̄
u′′ur′′ (g0).

The relation between the data with tildes and the data without tildes [Eqs. (84)–(87)] determines whether the model will be
symmetric under unitary or antiunitary symmetry actions.

3. Cube term

The cube term Dg
c fluctuates the domain wall configuration by changing gi → ggi for g ∈ G. Schematically, this creates a

domain wall of type g at cube c and fuses it into the domain wall configuration, as in Fig. 14. Using the notation of Fig. 14, we
obtain

Dg
c =
∑

g0,anyons

eiφg (anyons,{gi j})
∏
v∈c

Pv|gg0〉〈g0| ⊗ |gc, gr, gr′, g�′, gu, gd〉〈c, r, r′, �′, u, d|, (145)

where eiφg is a phase factor which depends on nearby anyons and group elements in a way which we will determine shortly.
Here, Pv projects onto the Av = +1 subspace of vertex v, ensuring that the fusion rules are satisfied. Although φ depends on
more anyons and group elements, Dg

c acts diagonally on all anyons apart from c, r, r′, �′, u, d and group elements apart from g0.
The result is obtained similarly to the plaquette term using diagrammatics. Since there are no anyon lines in the way, the g

domain wall may be immediately fused into the front right corner of Fig. 14, where the g01, g03, and g00′ branch sheets meet. We
then slide the domain wall around, crossing it over various anyon lines in the process.

The final result is

eiφg = η−1
c (ḡ, gg03)Uḡ(r,

00′
c′; c)η00′c′ (ḡ, gg00′ )η−1

� (g50, ḡ)U−1
ḡ (�′, 05�; r′)η−1

0′′0�′ (g0′′0, ḡ)

×U−1
ḡ (r′, r; u)Uḡ(

07u′, d; u)ηu′ (g70, ḡ)ηd (ḡ, gg01). (146)

One can check by a tedious computation that the Dg
c obey

G multiplication rules, that is,

Dg
cD

h
c = Dgh

c . (147)

Equation (146) assumes that the symmetry actions are uni-
tary. Just as for the plaquette operator, antiunitary symmetry
actions may be taken into account using the graphical calculus
of {Ũ , η̃} defined in Sec. IV, tracking the group elements
carefully. It follows that, physically speaking, Dg

c implements
the map ρ̃g defined in Sec. IV on all of the fusion and splitting
spaces contained inside the domain c.

Recall that in Sec. IV we defined ρ̃L
g to always be a unitary

map. If we instead considered a theory with an antiunitary
ρ̃L

g , the operator Dg
c would need to be antiunitary, leading

to a nonlocal Hamiltonian. Therefore, to allow for a local
Hamiltonian, we require ρ̃L

g to be unitary. We account for the
possibility of antiunitary symmetry actions by allowing the
map αR

g defined in Sec. IV to be antiunitary.

C. Bulk properties

The graphical interpretation of the Hamiltonian terms
make it clear that the (unnormalized) ground-state wave
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FIG. 14. Setup for determining the cube term Dg
c by graphical

calculus. A domain wall of type g (dark purple) is nucleated at the
center of the g0 domain, expanded, and fused into the preexisting
domain walls (orange). Green anyon lines are transformed by g,
while all anyons shown participate in factors ofU or η resulting from
this process.

function is

|�0〉 =
∑
{gi}

∑
D

V (D)|D, {g}〉, (148)

where {gi} is a group element configuration on the cube cen-
ters, D is a braided fusion diagram in the presence of the
domain walls for the configuration {gi}, and V (D) is the value
of the diagram D evaluated by the usual graphical calculus.

Since this ground state corresponds to the state sum con-
structed in Sec. III, the model is gapped and there is a unique
ground state on a closed 3-manifold when C is modular. We
do not know a general proof of this fact directly from the
Hamiltonian formalism.

The model also has a global G symmetry

Rg =
∏

c∈cubes
R(c)

g , (149)

where R(c)
g is the right multiplication operator on cube c:

R(c)
g =
∑

gc

|gcḡ〉〈gc|. (150)

It is immediately obvious that RgRh = Rgh.
The symmetry action Rg commutes with Av , Bs

p, and Dg
c .

This follows immediately from the fact that Av , Bs
p, and Dg

c

only depend on the domain walls gi j and not on the gi indi-
vidually. Note that the symmetry acts by right multiplication
because the domain walls act on anyons by group elements of
the form gi j = gig−1

j . This action could be changed to make
the symmetry act by left multiplication, but both the domain

wall action on anyons and the interpretation of theDg
c operator

as fusing in a domain wall would be altered to be considerably
less natural.

It is straightforward to check that when Rg has an an-
tiunitary action, then the model is also symmetric when the
modifications described in the preceding section for antiuni-
tary symmetry actions are made.

VIII. (2+1)D SURFACE TOPOLOGICAL ORDER

In this section, we explain how, with appropriate bound-
ary conditions, the (2+1)D surface of our model realizes a
symmetry-enriched topological phase where the topological
order is described by the UMTC C and the symmetry frac-
tionalization by the data {ρ,U, η} that was used to define the
model.

A. G-symmetric boundary Hamiltonian

For concreteness we choose a boundary normal to the
arrow of time direction (which we call ẑ in this section) in
Fig. 12(b) (strictly speaking, the “time” direction is tilted
slightly from the normal of the boundary to ensure that all
links can be oriented in the positive “time” direction with no
ambiguity). For the links in the trivalently resolved cubic lat-
tice, choose smooth boundary conditions, where links which
protrude above the surface are not included. In addition, we
include the G degrees of freedom in the plane above the sur-
face as well. This surface termination is shown in Fig. 15(a),
and the domain walls on the surface are shown in Fig. 15(b).

The reason that we include the G degrees of freedom in the
plane above the surface is so that the model possesses domain
walls lying along the ẑ direction at the surface. The anyon
lines at the surface (which are orthogonal to the ẑ direction)
will then pierce these domain walls and then be acted on by
the corresponding symmetry-group elements. Note that, as
discussed in the previous section, we have defined the model
by deforming the domain walls downward so that the domain
wall junctions are not coincident with the links of the lattice.
If we had instead chosen to deform the domain walls upward,
then we would not need the dangling G degrees of freedom at
the surface, as domain walls that affect the anyon lines at the
surface would already exist.

The surface Hamiltonian terms are obtained straightfor-
wardly from the bulk terms by accounting for the erased links.
Using the labelings of Fig. 15(b), this amounts to remov-
ing any terms involving d ′ and q′ from Bp, setting v = 10d ,
q = 32b, and r′ = 05� (since those links are identified on the
surface), and removing terms involving �′ from Dc. Explicitly,
on the surface, we modify Eqs. (140), (143), (144), and (146)
to

Rsurface = R̄
00′c′r
c R

00′cr′′
c′′ , (151)

Dsurface =
√
dp′′drdu′′dwda′′

dpdr′′dudw′′da
A

30sb
b′′ B̄

01d ′′10s
01d , (152)

Fsurface = F
20s21aa′
p′′21a′′p

(
F

20s32bp′
p′′
)−1

p32b′′F
30c30s̄b′′
b′30c′′b

(
F

00′c′rs̄
c′′
)−1

r′′cF
05�rs̄
u′′ur′′
(
F

07u′ds̄
u′′
)−1

d ′′uF
10d ′′′′10sw
v′10dw′′ F

10sw11′w′
a′′w′′a , (153)

(eiφg )surface = η−1
c (ḡ, gg03)Uḡ(r,

00′
c′; c)η−1

� (g50, ḡ)U−1
ḡ (05�, r; u)Uḡ(

07u′, d; u)ηu′ (g70, ḡ)ηd (ḡ, gg01) (154)
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FIG. 15. Surface termination for a system occupying z < 0. (a) Degrees of freedom near the surface (gray); each black link carries an
anyon degree of freedom, and each blue sphere is a G degree of freedom. Note that the surface is smooth for the anyon degrees of freedom but
in some sense rough for the G degrees of freedom. (b) Domain wall configurations and labelings of degrees of freedom near a single surface
plaquette. The gi j = gig−1

j label domain walls (orange) and are determined by the G degrees of freedom, with the same numbering scheme for
nearby cubes as in the bulk [see Fig. 13(b), though the double-primed domains do not exist at the surface]. Black lines are anyon lines and are
oriented upward. The blue sheet is a fictitious domain wall between g0 and the vacuum; it plays no role in the Hamiltonian but is useful for
defining string operators.

with E and U unmodified. The labelings are given in
Fig. 15(b). It is not hard to check that the global G symmetry
with generators Rg given in Eq. (149) is still present with this
choice of boundary conditions.

The ground-state wave function is still a superposition
of domain walls and closed braided fusion diagrams, as in
the bulk. Although it plays no role in the Hamiltonian or
the ground-state wave function, it will be useful to think of
the domains as “closed” on top as if the vacuum is assigned
to an identity domain; this is indicated by the blue sheet in
Fig. 15(b).

B. Surface topological order

Here we will see how the surface possesses deconfined
anyon excitations, whose algebraic properties are described
by the same UMTC C that was used to define the model. In
the case that G is trivial, the model reduces to the Walker-
Wang model and the boundary conditions we consider are the
standard smooth boundary conditions. It has been found [54]
in that case that such a boundary has surface topological order
described by the UMTC C that was used to define the theory.

1. Definition of string operators

We now generalize the techniques from the Walker-Wang
model to describe the string operator Sk,�

a for our model,

which creates a pair of topologically nontrivial excitations at
the surface corresponding to the anyon pair ā and a. Ignoring
the group elements k and � for the moment, the action of the
string operators Sk,�

a away from the string end points can be
determined by following the graphical calculus for evaluating
braided fusion diagrams. Consider an open string of type a far
above the surface. Then, for a given configuration of domain
walls and fusion diagrams, fuse that string into the braided
fusion diagram, acting on it with any domain walls it passes
through [and in particular acting with the blue domain wall in
Fig. 15(b)]. This process is shown in Fig. 16. The amplitude
that relates the original configuration to the final configuration
then gives the matrix elements of Sk,�

a .
This schematic is in principle sufficient to determine, using

the graphical calculus, the action of the string operators Sk,�
a

everywhere except at the string end points, which is where the
k and � labels come in. To further fix the action at the end
points, recall that, after the domain walls are resolved away
from the anyon degrees of freedom, each vertex is contained
in a cubical domain c [see Fig. 12(b)]. Suppose that the string
ends at the vertices v1 and v2 inside cubes c1 and c2, respec-
tively. Then we fix the local action of Sk,�

a on the G degrees of
freedom in c1 and c2 by declaring

Sk,�
a ∝ Pk

c1P
�
c2 , (155)

FIG. 16. Schematic process for the action of the operator Sk,�
a which creates a pair of anyons ā, a on the surface. Anyon lines of type a or

ā are created far above the surface, passed through the domain walls on the surface (light gray, orange are junctions of domain walls including
those in the bulk), and fused into the bulk braided fusion diagram.
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FIG. 17. Wave function of the state |ā, a; 1; 1, 1〉. Black are anyon lines, orange are domain walls, G labels label domains. The first term is
the “reference” state with an a-type string running from v1 to v2. The Hamiltonian term Bp causes fluctuations from the first and third terms to
the second and fourth, while Dc causes fluctuations between the first two terms and the last two.

where Pg
c projects the G degree of freedom in cube c to the

state |g〉. We will fix this local action a little bit more precisely
in what follows but will not describe in more detail the string
operators along the length of the string.

We claim that the Sk,�
a commute with every term in the

Hamiltonian that does not involve v1 or v2, which implies that
they create deconfined pointlike excitations at their end points.
This is obviously true for the vertex term Av . To see this for
the Bp operators, note that Bs

p is obtained by fusing in a loop
labeled s into a plaquette, while the string operator is defined
by fusing a string labeled by a from “above” the surface. Since
the a and s strings are unlinked, the graphical calculus makes
it clear that the order in which these are done does not affect
the final result, which implies that the string operator must
commute with Bs

p. Finally, the consistency of the graphical
calculus ensures that the string operator commutes with the
cube operators Dc away from the end points since both Dc

and Sk,�
a only involve sliding domain walls over anyon lines.

Consider now the state

|ā, a; 1; 1, 1〉 = S1,1
a |�0〉, (156)

where the a-type string operator S1,1
a stretching from vertex

v1 to vertex v2 has been applied to the ground state |�0〉.
(The reason for the notation will be clear in the subsequent
section.) Clearly, this state has Avi = 0 where v1, v2 are the
string end points. Any plaquette p involving a vi and the
cubes ci containing vi [recall that each vertex is contained in a
single cube after the domain walls are shifted, see Fig. 12(b)]
automatically obey

Bp|ā, a; 1; 1, 1〉 = Dci |ā, a; 1; 1, 1〉 = 0 (157)

because the F symbols are zero if the fusion rules are not
obeyed and because Dc projects onto states which obey the
fusion rules inside cube c. Hence, we have constructed an
eigenstate of H , even though S1,1

a contains projectors onto
certain group elements in c1, c2.

2. Excited-state wave function

We now describe the wave function of |ā, a; 1; 1, 1〉. We
begin by applying S1,1

a to the particular term in the ground-

state superposition where all of the group element degrees of
freedom gi and all the respective anyon labels are the identity.
This creates a string of anyon labels a from v1 to v2, as
shown in the first term in Fig. 17. This state will be referred
to as a reference state from which we build the rest of the
terms in the superposition that defines |ā, a; 1; 1, 1〉. We fix
a gauge where the reference state has amplitude 1, ignoring
overall normalization. Obviously, the reference state is not
an eigenstate of the Hamiltonian; demanding that we are in
an eigenstate of all the Bp means that the wave function has
nonzero amplitude for configurations which represent braided
fusion diagrams with net anyon charge ā at v1 and a at v2,
and no other net anyon charge. The ratio of the amplitudes of
any two such states is equal to the amplitude obtained when
turning the first state into the second state by applying F and
R moves to the braided fusion diagram. An example is given
in the second term of Fig. 17.

We also want to demand that Dc = 1 away from the end
points of the string. We therefore must superpose over domain
wall configurations, and the relative amplitude between the
state with and without a given domain wall is related by
nucleating and expanding the domain wall in the graphical
calculus. Some examples are given in the last two terms of
Fig. 17. Importantly, since S1,1

a projects onto g1,2 = 1, where
gi is the G degree of freedom on cube ci, |ā, a; 1; 1, 1〉 only
contains states where the cubes c1 and c2 contain identity
group elements.

3. The surface realizes C
Next, we want to check that the F and R symbols describ-

ing the algebraic properties of the deconfined surface anyons
coincide with those of the UMTC C that was used to define
the model. Here, we discuss F explicitly; the argument for R
is essentially identical.

We begin by defining an operator Ue graphically: it creates
a particular braided fusion diagram far above the surface,
slides it through the surface domain walls, and fuses it into
the bulk braided fusion diagram.We choose the braided fusion
diagram where a, b fuse to e, e and c fuse to d , and finally d
fuses with d̄ to vacuum. This process is shown in Fig. 18(a).
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FIG. 18. Graphical processes which determine the matrix elements of the operator (a) Ue and (b) V f . The appropriate fusion tree is created
above the surface, then slid through the domain walls and fused into the bulk braided fusion category according to graphical calculus. Blue
are anyon lines (implicitly oriented upward), light orange are domain walls on the surface, purple are junctions between domain walls. Primes
mean the anyon type after being acted on by whatever domain walls the anyons pass through.

The matrix elements between an initial configuration |ψ〉
and Ue|ψ〉 is given by performing the appropriate graphical
calculus in C with symmetry fractionalization. We may then
suggestively name a state

|(((a, b; e), c; d ), d̄; 1)〉 = Ue|�0〉, (158)

where we are ignoring all of the local degrees of freedom
near the end points of the strings involved. Similarly, we
can graphically define a different operator V f by fusing in
a different braided fusion diagram; this diagram has b and
c fusing to f , a and f fusing to d , then d and d̄ fusing to
vacuum. This is shown in Fig. 18(b). We can then define a
state

|((a, (b, c; f ); d ), d̄ ; 1)〉 = V f |�0〉. (159)

Consistency of the graphical calculus demands that

Ue =
∑
f

F abc
de f V f (160)

because we may always evaluate the fusion diagrams involved
in calculating matrix elements of Ue by performing an F move
first. Therefore, the states obey

|(((a, b; e), c; d ), d̄; 1)〉 =
∑
f

F abc
de f |((a, (b, c; f ); d ), d̄; 1)〉

(161)
which justifies the names we have given the states; the point-
like excitations which we have called a, b, c, d̄ indeed obey
the F moves given by C. A precisely analogous argument
holds for R symbols; therefore, the surface topological order
is indeed given by C.

We also note that projectors Pωa onto fixed anyon sectors
a inside a loop ω can be defined graphically. In C, such a
projector is given by

�ωa =
∑
x∈C

S0aS
∗
xaW

(ω)
x , (162)

where W (ω)
x is a Wilson loop operator (specifically a closed

string operator) for x on the loop ω. We define Pωa graphically
by taking this same superposition of Wilson loops and fusing
them onto the surface (again passing through domain walls
as necessary). It is clear from consistency of the graphical
calculus that this definition will also justify our labelings of
states; by choosing different ω, we can measure the fusion
channels associated with different sets of anyons to be as we
have claimed.

C. Surface symmetry fractionalization

Here, we analyze the symmetry action on the surface topo-
logical order. Remarkably, we will see that the symmetry
localization ansatz of Eq. (32) is realized exactly, along with
the symmetry fractionalization relation of Eq. (33). More-
over, we also demonstrate how the symmetry fractionalization
pattern on the surface is described by the same choice of
{ρ,U, η} that was used to define the model.

1. Local degeneracy at anyons

First, we note that each anyon at the surface carries a local
degeneracy of |G| states. As we will see, this degeneracy is
local in the sense that local operators in the vicinity of the
anyon can distinguish the different states.
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The origin of this degeneracy lies in the fact that the cube
operators Dc are by definition zero whenever the vertices
contained in the cube have violations of the vertex operator
Av . The string operator Sk,�

a described in the previous section
breaks the fusion rules at v1,2, that is, acting on the ground
state it makes a state with Av1,2 = 0. If ci contains the vertex
vi, then we have

Dc1Sk,�
a |�0〉 = Dc2Sk,�

a |�0〉 = 0. (163)

This is why the state |ā, a; 1; 1, 1〉 only contains states where
the group label in the cubes c1 and c2, at the end points of the
string, is the identity.

Next, let us define an operator D̃g
c,v , which is given by Dg

c ,
but with the phase factors of U involving the vertex v re-
moved. For example, if there was an anyon at the vertex where
w, w′, and a meet in Fig. 13(a), then D̃g

c would be defined by
Eq. (146) with the factorU−1

g (gw, gg00′ w′; ga) removed.
It is clear by inspection that D̃g

c,v commutes with all
Av′ ,Bp,Dc′ for any vertex v′, cube c′ 
= c, and plaquette p
which does not contain v. Recalling that, for p containing v,
Bp = 0 on any state with Av = 0, this means that

D̃g
c,vH |ā, a, 1; 1, 1〉 = HD̃g

c,v|ā, a, 1; 1, 1〉 (164)

because Av|ā, a, 1; 1, 1〉 = 0.
The model therefore has some degeneracy, but since D̃g

c,v is
local, the degeneracy is nontopological. Of course, D̃g

c,v can-
not change the net anyon type in cube c. Therefore, there are
many eigenstates, related by local operators, which have the
same anyon types at v1, v2. We label these states |ā, a; 1;k, �〉.
The labeling scheme is as follows: ā, a means that the (physi-
cal) anyons ā and a are present on the surface, the 1 means that
ā and a are in the 1 fusion channel, and the labels k, � mean
that g1 = k and g2 = �, where g1,2 are the group elements on
c1,2. We fix a gauge by defining

|ā, a; 1;k, �〉 = D̃k
c1,v1D̃

�
c2,v2 |ā, a; 1; 1, 1〉, (165)

where |ā, a; 1; 1, 1〉 was gauge fixed earlier. The state
|ā, a; 1;k, �〉 is illustrated pictorially in Fig. 20(a).

Accordingly, we can define the string operators Sk,�
a by

Sk,�
a = D̃k

c1,v1D̃
�
c2,v2S

1,1
a , (166)

where S1,1
a is specified by Eq. (156). This implies that

Sk,�
a |�0〉 = |ā, a; 1;k, �〉. (167)

It is straightforward to check that the wave function
of |ā, a; 1;k, �〉 is obtained in the same way as that of
|ā, a; 1; 1, 1〉 in Fig. 17, but starting from a reference state
where the anyons are surrounded by domain walls, as in
Fig. 19(a). There is a subtlety here that the reference state
should not have phase 1; instead, as shown in Fig. 19(b) and
more schematically in Fig. 19(c), moving a string through the
domain walls picks up a phase of ηā(k̄, k). This changes the
wave function by a global phase and thus is simply a basis
choice, but it does arise from our definitions of the string
operators in Eq. (166).

Importantly, the physical anyon type a cannot be changed
by a local operator such as D̃�

c,v . However, since D̃
�
c,v still acts

on the anyon labels on the links in c, the anyon label along the

string that ends at v2 changes to �a. Therefore, if in the wave
function a string type labeled b ends at v2, then the physical
anyon type at v2 is a = ḡ2b, where g2 is the state of the G
degree of freedom in cube c2.

Note that the local degenerate state space at each anyon
excitation on the surface forms a regular representation of G.
In general, such a representation is reducible, which means
that the Hamiltonian should admit G-symmetry-preserving
perturbations that lifts this degeneracy. The understanding of
the ground and excited states, and in particular the symmetry
fractionalization analysis below, would then have to be modi-
fied, but the data that characterize symmetry fractionalization
should remain unchanged, up to possible gauge transforma-
tions.

2. Symmetry localization

For simplicity, we consider only simple states with two
anyons a and ā fusing to the identity; the generalization is
straightforward. We define the topological symmetry transfor-
mation

ρg|ā, a; 1;k, �〉 = Ug(
gā, ga; 1)|gā, ga; 1;k, �〉. (168)

Obviously this map by definition obeys Eq. (26) with the
original U that we input into the Hamiltonian. To show that
we have the correct symmetry fractionalization pattern at the
surface, we first need to show that the global symmetry action
Rg acts in a way according to Eq. (32), which we refer to
as symmetry localization. Subsequently, we must show that
Eq. (33) is obeyed with ρ defined in Eq. (168) and with η

given by the η that we input into the Hamiltonian.
We compute Rg|ā, a; 1;k, �〉 by examining the wave func-

tion. Consider in particular the terms |ā, a; 1;k, �〉 shown in
Fig. 20(a), where all of the group elements except for g1,2 are
either 1 or g. By our normalization and gauge fixing, the first
term has amplitude ηā(k̄, k). By nucleating a domain wall of
type g, as in the second term in Fig. 20(a), and expanding it,
we eventually reach the third term, picking up variousU ’s and
η’s as the domain wall expands.

Now, apply the symmetry operator Rg to |ā, a; 1;k, �〉,
which right multiplies all group elements by ḡ but does not
change any link labels. The result is shown in Fig. 20(b).
Separately, we may compute the wave function for the state
|gā, ga; 1;kḡ, �ḡ〉; this is shown in Fig. 20(c). Comparing
Figs. 20(b) and 20(c) term by term and using the consistency
conditions forU and η, we find that

Rg|ā, a; 1;k, �〉 = ηg ā(g, k̄)ηga(g, �̄)

×Ug(
gā, ga; 1)|gā, ga; 1;kḡ, �ḡ〉 (169)

= U (v1 )
g U (v2 )

g ρg|ā, a; 1;k, �〉, (170)

where we have defined the local operatorsU (vi )
g as they act on

a state with anyon ai at vi by

U (vi )
g =
∑

h

ηai (g, h̄)|hḡ〉〈h|, (171)

where h labels the degree of freedom on the cube ci containing
the vertex vi.
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FIG. 19. (a) Wave function of the state |ā, a; 1;k, �〉. Blue are anyon lines, orange are domain walls, G labels domains. The first term is
the “reference” state with an a-type string running from v1 to v2. The Hamiltonian term Bp causes fluctuations from the first and third terms
to the second and fourth, while Dc causes fluctuations between the first two terms and the last two. The anyon labels label the string type as
it intersects the surface, not the physical anyon labels; the physical anyons are ā and a at v1 and v2, respectively. (b) Side view of the surface
showing that moving a string (black) through the domain walls generates the phase ηā(k̄, k) appearing in the reference configuration (first
term) in Fig. 19(a). There is also a factor of ηa(1, �) which we have gauge fixed to 1. View is similar to Fig. 15(a). Blue spheres are group
elements, all of which (in this configuration) are in the state |1〉 except for the labeled ones inside the domain walls (orange). Green spheres
are anyons on the end of the string. (c) Same as (b), but projected into the plane of the page. Floating group elements label the domains.

The topological part of the symmetry action ρg that was
previously defined has indeed appeared in the actual global
symmetry action of the model, and the remaining factors
decompose into local factorsU (vi )

g , as expected.

3. Symmetry fractionalization

Verifying Eq. (32) is now a matter of straightforward com-
putation. Using Eq. (35),

U (v2 )
g ρgU

(v2 )
h ρ−1

g |ā, a; 1;k, �〉 = ηḡa(h, �̄)ηa(g, h�̄)|ā, a; 1;k, �h̄ḡ〉 (172)

= ηa(g, h)ηa(gh, �̄)|ā, a; 1;k, �h̄ḡ〉 (173)

= ηa(g, h)U (v2 )
gh |ā, a; 1;k, �〉. (174)

This demonstrates that the symmetry fractionalization at
the surface is, as we have claimed, given by the η andU which
were put into the theory.

As a technical aside, our definition of ρg is not invariant
under independent basis rotations of the local degrees of free-
dom in different anyon sectors. For a simple example, we
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FIG. 20. Some terms in the wave functions for symmetry-related excited states on the surface of our construction. The view is from the
side in the same schematic picture as Fig. 19(c). Gray indicates the bulk. Colors indicate G domains labeled by the “floating” group labels;
unlike in Fig. 19(c), we have used different colors for different domains. The anyon labels kā and �a label the string type which terminates at
that point; the black string changes type when it passes through a domain wall.

could modify the states |ā, a; 1, k, �〉 with a k- or �-dependent
phase. Such basis changes yield surface fractionalization with
data that is gauge equivalent but not identical to a given choice
of η andU that defines the model.

4. Antiunitary symmetries

All of the prior analysis can be repeated for antiunitary
symmetries. We define the analog of Eq. (168):

ρg|ā, a; 1;k, �〉 = Ug(
gā, ga; 1)Kq(g)|gā, ga; 1;k, �〉. (175)

Following the same argument, the antiunitary operator

Rg =
∏

c∈cubes
R(c)

g Kq(g) (176)

localizes according to Eq. (170), with the local operatorsU (vi )
g

still defined by Eq. (171). Note that the physical surface anyon
states do not involve any domain data since the microscopic G
domains fluctuate. However, the Hilbert space configurations
naturally carry domain information. This means that when
repeating the calculation, the graphical calculus involves the
data {F̃ , R̃, Ũ , η̃} defined in Sec. IV, and the domain labels
must be carefully tracked. The amplitudes in the antiunitary
version of Fig. 20 are thus expressed in terms of the data with
tildes, but using G equivariance, they can be converted to the
physicalU and η data via Eqs. (84)–(87).

IX. GENERALIZATIONS: SPATIAL SYMMETRIES,
CONTINUOUS, INFINITE G

So far we have defined models that possess an internal,
onsite symmetry action, which may be unitary or antiuni-
tary. Furthermore, the state sums defined in the previous
sections require finite, discrete groups. Here we briefly discuss
the generalizations of the construction to spatial (crystalline)
symmetries, and to continuous and/or infinite symmetry
groups.

A. Infinite and/or continuous G

When G is compact and continuous (and for simplicity of
this discussion connected), there is a natural generalization of
our state sum obtained by replacing the sum over group ele-
ment labels by integrals 1

|G|N0
∑

{gi} → ( 1
vol(G) )

N0∏
i∈T 0

∫
dgi,

where vol(G) = ∫ dgi is the volume of G and N0 is the
number of 0-simplices. The integration measure is then taken
to be the Haar measure on G. We note that such a construction
necessarily still defines a G-SPT due to the G translation
invariance of the measure. Therefore, our construction yields
topologically invariant path integrals on nontrivial flat G bun-
dles for continuous G as well. Our Hamiltonian construction
furthermore also goes through straightforwardly as well.
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For infinite discrete G we can define the state sum as a
limit of a sequence of finite discrete groups that approach G
in the limit. However, if our conjecture in Sec. III is true, then
the above modifications are actually all unnecessary, and our
construction naturally gives a concrete way to compute the
path integral on any flat G bundle regardless of whether G is
infinite, continuous, or compact.

We note that our discussion of obtaining cohomology in-
variants in Sec. VA applies only to finite groups; therefore,
some other method would be required to find cohomology
invariants for the case of infinite or continuous G.

B. Spatial symmetries

Given a symmetry group G, it is possible that certain ele-
ments of G are spatial symmetries, meaning that they act on
the quantum system by some combination of translations, ro-
tations, and reflections in space. Here, we briefly discuss some
issues in incorporating such symmetries into our discussion.
There are three aspects to the discussion, which we will briefly
address:

(1) classification of spatial symmetry fractionalization and
anomaly computations;

(2) path-integral construction;
(3) Hamiltonian construction: boundary and bulk symme-

tries.

1. Classification of spatial symmetry fractionalization
and anomaly computations

First, let us consider classification of symmetry fraction-
alization and anomaly computations. It is expected that the
classification of symmetry-enriched topological phases with
spatial symmetries is identical to the case with internal sym-
metries, where spatial parity-reversing symmetries are treated
as antiunitary symmetries. This expectation has already re-
ceived strong direct supporting evidence from studies of SPT
states [20–22] and from the understanding of the relation
between Lieb-Schulz-Mattis theorems and mixed anomalies
between translation and onsite symmetries [23]. Therefore,
the same data that characterize symmetry fractionalization
and the same anomaly calculations are expected to hold even
in the case of spatial symmetries.

The general reason for this expectation is as follows. The
low-energy universal properties of these SET states is de-
scribed by a TQFT enriched with a G symmetry. The TQFT
always has a diffeomorphism symmetry, which in particular
includes the isometries of space. Any spatial symmetry of
the microscopic Hamiltonian can then be taken to correspond
to a combination of an internal symmetry in the field theory
together with an isometry of the space. Stated differently, one
can consider a combination of the spatial symmetry of the
microscopic Hamiltonian, followed by an isometry of space
in the field theory, which then leads to an internal symmetry
acting in the field theory. Examples where the above logic is
borne out are prevalent throughout the literature regarding ef-
fective quantum field theories describing quantum many-body
systems. Thus, classifying different ways of incorporating in-
ternal symmetry in a TQFT should also give the classification
of spatial symmetry-enriched topological phases of matter.

2. Path-integral construction

The state sum for the path integral proceeds by choos-
ing a triangulation and a branching structure. Therefore, we
can consider triangulations and branching structures that are
invariant under a space-time symmetry Gs of interest. For
example, one can consider a space-time manifoldM4 = W 3 ×
S1, and one can consider a triangulation and branching struc-
ture that reduces on W 3 to a particular (finite) space-group
symmetry of interest. In this case, the amplitudes that are
summed over in the path integral possess a G × Gs symmetry.
If we pick G such that Gs ⊆ G, then we can consider the
diagonal group elements of the form (g, g) ∈ G × Gs, where
g ∈ Gs ⊆ G. Then, we can consider any type of space-group-
symmetry fractionalization, and the path integral will possess
the space-group symmetry.

Alternatively, one can consider a 4-manifold with bound-
ary such that W 3 = ∂M4 has a triangulation and branching
structure associated with the space-group symmetry of inter-
est. We can take the triangulation of M4 to correspond to just
adding a single “bulk” 0-simplex to which all 0-simplices in
the triangulation of W 3 are connected. The resulting wave
function will be symmetric under G × Gs, and again as in
the previous paragraph we can consider the diagonal action
(g, g) ∈ G × Gs for g ∈ Gs ⊆ G.

Therefore, the path-integral construction can be easily
extended to space-group symmetries for which there is a
triangulation and branching structure that preserves the space-
group symmetry. It is an interesting question whether a
symmetric triangulation and branching structure exists for any
given space-group symmetry.

3. Hamiltonian construction

Our Hamiltonian construction in general picks a preferred
direction to correspond to an “arrow of time” in evaluating
the braided fusion diagrams. As such, our Hamiltonian con-
struction, while it preserves lattice translational symmetries,
in general breaks point-group symmetries. It is a nontrivial
question whether our general construction can be modified to
allow space-group symmetries in general.

It may be possible to consider certain classes of UMTCs
that are invariant under changing the “time” direction. This
seems to be a generalization of the “tetrahedral” symmetry
of fusion categories to a higher-dimensional version, which
we may term “hypertetrahedral” symmetry. UMTCs that pos-
sess such a symmetry and which have self-dual anyons will
then give Hamiltonians that are independent of the chosen
“time” direction and any orientations on the edges. While
the trivalently resolved cubic lattice is still incompatible with
point-group symmetries, we expect it is possible to consider
Hamiltonians on other trivalent lattices, or to use certain gad-
gets that allow for sites with more than three edges, that would
be compatible with any given space-group symmetry.

4. Spatial reflection symmetries mapping to antiunitary
internal symmetries

Here, we consider spatial reflection symmetries in the
path-integral construction and demonstrate how they can
be captured using the antiunitary onsite action. We leave
for future work to study spatial reflection symmetry in the
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Hamiltonian formalism, and in particular to understand spatial
reflection symmetry fractionalization in the (2+1)D surface
SET in the Hamiltonian construction.

Accordingly, suppose that G contains symmetries that re-
verse spatial parity. For simplicity, we choose to examine a
pure reflection r, but the following discussion holds for any
unitary parity-reversing element of G. Since r acts unitarily
on the wave function but changes the locations of vertices,
the desired G action on the wave function is a modification of
Eq. (61):

Z[∂M4; {gr(i)r}, {ar(i jk)}, {br(i jkl )}]
= Z[∂M4; {gi}, {ai jk}, {bi jkl}], (177)

where, as a reminder, the {gi}, {ai jk}, {bi jkl} are the degrees
of freedom on ∂M4, and i, j, k, l label boundary vertices. The
notation r(i) means the image under spatial reflection of the
vertex i.

This is not enough to determine the consistency equations
for the objects that appear in the state sum. In order to do so,
we need to understand the way that group multiplication by r
acts onsite. We claim that

Z[∂M4; {gr(i)}, {ar(i jk)}, {br(i jkl )}]∗

= Z[∂M4; {gi}, {ai jk}, {bi jkl}], (178)

where there is no group multiplication. To see this, note that
under the action of reflection, every 4-simplex �4 changes its
orientation. If the data associated to the 4-simplex remains
unchanged, this orientation reversal simply complex conju-
gates the corresponding amplitude Z±(�4). Equation (178)
therefore follows. Combining Eqs. (178) and (177), we find

Z[∂M4; {gir}, {ai jk}, {bi jkl}]∗

= Z[∂M4; {gi}, {ai jk}, {bi jkl}]. (179)

This is exactly the same as Eq. (79); that is, the onsite action
of a parity-reversing symmetry should be antiunitary, despite
the fact that the global action is unitary. The rest of the deriva-
tion following Eq. (79) therefore holds for parity-reversing
symmetries as well, provided the definition (19) of σ (g) is
reinterpreted to refer to the (anti)unitarity of the onsite action
of g. In particular, we should be choosing antiunitary αh
despite the unitarity of the overall symmetry action.

Repeating the above argument for g ∈ G, which is both
antiunitary and spatial parity reversing, we find that g should
have a unitary onsite action as in Eq. (61).

X. DISCUSSION

We have shown how the symmetry fractionalization data
determine a (3+1)D SPT, and thus determines an element
[S] ∈ H4(G,U (1)). As we have discussed, it is also known
that there is an obstruction [O] ∈ H4(G,U (1)) in defining
a G-crossed braided tensor category from a given symmetry
fractionalization class. In mathematical terms, there is an ob-
struction [O] ∈ H4(G,U (1)) in lifting a categorical G action
to a G-crossed braided tensor category. It is clear on physical
grounds that [S] = [O] since we physically understand the
presence of a nontrivial bulk (3+1)D SPT as an obstruction to
defining a consistent theory of symmetry defects purely at the

(2+1)D surface. On mathematical grounds, we expect that the
categorical G action defines a single element ofH4(G,U (1)),
not two distinct elements. Nevertheless, to have a complete
mathematically rigorous theory, we must prove that [S] =
[O], which we leave for future work.

While we have given a concrete general method to compute
the anomaly, there are still many interesting and important
directions left for further study. For example, it would be
interesting to understand “anomaly in flow” in these models.
That is, to understand precisely how processes on the surface
give rise to inconsistencies that are canceled by the bulk SPT.
Along these same lines, it would be interesting to understand
how to extract a 4-cocyle through consideration of certain
processes in the (2+1)D surface theory in a way which would
not require a complete computation of the path integral on
closed 4-manifolds with nontrivial G bundles.

A related issue is to make contact between the results here
and the relative anomaly formula derived in Ref. [37]. It was
conjectured in Ref. [37] that the relative anomaly obtained
there could be canceled by a bulk (3+1)D SPT. The bulk
construction provided here should in principle provide a way
of demonstrating this explicitly, however, we have not pursued
this direction here.

As noted in the main text, while our state sum requires a
sum over group elements, we conjecture that every term in
the sum over group elements is identical, and therefore that
the sum over group elements is actually not required. The
G action would therefore enter only through the presence of
nontrivial G holonomies along noncontractible cycles of the
space-time manifold. It would be useful for practical compu-
tations to prove this rigorously.

While we have presented our construction in terms of an
explicit state sum associated with a triangulation of the space-
time manifold, we expect that there should be an alternative
formulation where the path integral on arbitrary space-time
manifolds and G bundles can be obtained by gluing together
path integrals on simpler manifolds via a handle decomposi-
tion. Such a formulation was developed for the Crane-Yetter
state sum (i.e., the case where G is trivial) in Ref. [25]. The
extension to nontrivial G would require, for example, defining
a vector space for 3-manifolds equipped with G bundles via
skein modules on G bundles. A simple version of such a
formulation for the case of Z2 space-time reflection sym-
metry was used in Ref. [30] for computing path integrals
on nonorientable manifolds. Such constructions could lead to
more efficient ways of computing anomaly indicators, and we
leave them for future work.

It is clear that similar ideas should hold in all dimensions.
Symmetry fractionalization in general d-dimensional TQFTs
withG symmetry should define a d category where the objects
(0-morphisms) correspond to group elements of G, and there
is a G action on the d category. This d category should
then define a (d + 1)-dimensional state sum for a G-SPT,
which then can be used to compute the anomaly. We note that
initial steps for computing anomalies in (3+1)D by defining a
(4+1)D path integral have already been taken in some simple
cases [42].

Finally, we note that our Hamiltonian constructions explic-
itly break most spatial symmetries. It would be interesting
to develop constructions that preserve any given spatial
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FIG. 21. “Merging lemmas,” with proof. Each lemma is the equality of the far-left- and far right-hand sides of the graphical equation, and
F and G are arbitrary diagrams. Dangling anyon lines at the bottom are implied to be connected to their corresponding line at the top. The last
equality in (b) follows from applying the result in (a).

symmetry. However, we note that even the simpler Levin-Wen
models for (2+1)D topological orders [and Walker-Wang
models for (3+1)D topological orders] have not been gen-
eralized to take as input arbitrary unitary (braided) fusion
categories in a way that is compatible with point-group sym-
metries on the lattice.
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APPENDIX A: INVARIANCE PROPERTIES OF STATE SUM

1. Invariance under Pachner moves

In this Appendix, we demonstrate that our path integral is
invariant under the 3-3 Pachner move. Other Pachner moves
are treated similarly, but the diagrammatics are considerably

more involved. Our treatment is essentially identical to that of
Ref. [33]; we reproduce the calculation here to (a) convert the
calculation to our conventions and (b) make our paper self-
contained.

Before doing this, we prove two “merging lemmas” stated
in Ref. [33]. The first is the equality of the far-left- and
far-right-hand sides of Fig. 21(a), where the intermediate
equalities are the proof of the merging lemma. The first two
equalities follow from the usual UMTC diagrammatic equa-
tion

a b =
c

dc

dadb

c

ba

a b

, (A1)

where we have been implicitly assuming Nc
ab � 1 for all

a, b, c. Conservation of total anyon charge means that in the
third diagram, the only nonzero term occurs when z is the
identity, producing the last equality. We then use this first
merging lemma to prove a second, shown in Fig. 21(b).
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With these lemmas in hand, we can prove invari-
ance under the 3-3 Pachner move. Given five vertices
0, 1, 2, 3, 4, 5, a 3-3 Pachner move takes the 4-simplices
01234, 01245, 02345, all positively oriented, to the 4-

simplices 01235, 01345, 12345, also all positively oriented.
In doing so, the 2-simplex 024 is replaced by the 2-simplex
135 and the 3-simplices 0124, 0234, 0245 are replaced by
the 3-simplices 0135, 1235, 1345. Our aim is to show that

∑
024,0124,0234,0245

d024
d0124d0234d0245

Z+(01234)Z+(01245)Z+(02345)

=
∑

135,0135,1235,1345

d135
d0135d1235d1345

Z+(01235)Z+(01345)Z+(12345) (A2)

with fixed labels on all other simplices involved.
We first contract all of the domain walls in the diagrams and examine the symmetry fractionalization factors that arise. These

are given by the factors ofU and η in Eq. (42). On the left-hand side (LHS) of Eq. (A2), we obtain

LHS ∝ U34(013, 123, 0123)

U34(023, 32012, 0123)η012(23, 34)

U45(014, 124, 0124)

U45(024, 42012, 0124)η012(24, 45)

U45(024, 234, 0234)

U45(034, 43023, 0234)η023(34, 45)
. (A3)

Our aim will be to use the merging lemmas in Fig. 21 to perform the sums on 024, 0124, 0234, and 0245 in Eq. (A2). In
order to do so, both diagrams should involve, say, 540124, but as naturally written, the diagram for 01234 involves 0124 and the
diagram for 01245 involves 540124. Hence, we sweep a g54 domain wall through the diagram for 01234 as shown in Fig. 22. By
the consistency of the graphical calculus, we may evaluate the diagram either before or after this sweeping process; as long as
we account for all of the factors of U54 or U−1

54 which arise in the sweeping process, the value of the diagram is unchanged. At
the algebraic level, this process simply transforms all of the F and R symbols in the explicit formula (42) for Z+(01234) by g54
using the consistency condition (27). The proportionality factor x in Fig. 22 is given by

x = U54(54024, 54234, 540234)

U54(54034, 53023, 540234)

U54(54014, 54124, 540124)

U54(54024, 53012, 540124)

U54(53023, 52012, 530123)

U54(53013, 53123, 530123)

× U54(54034, 53013, 540134)

U54(54014, 53134, 540134)

U54(54134, 53123, 541234)

U54(54124, 54234, 541234)
. (A4)

After this transformation, the symmetry factors for the LHS of Eq. (A2) are x times the factors in Eq. (A3).
The symmetry factors for the right-hand side (RHS) of Eq. (A2) are

RHS ∝ U34(013, 123, 0123)

U34(023, 32012, 0123)η012(23, 34)

U45(014, 124, 0124)

U45(024, 42012, 0124)η012(24, 45)

U45(024, 234, 0234)

U45(034, 43023, 0234)η023(34, 45)
. (A5)

Laborious but straightforward use of the consistency condi-
tions (34) and (35) demonstrates that the symmetry factors on
the LHS and the RHS are now equal.

Canceling these symmetry factors reduces each side of
Eq. (A2) to of a product of three diagrams with no domain
walls or symmetry factors. We define

d024
d0124d0234d0245

N01234N01245N02345 = NL
1√
d024

, (A6)

d135
d0135d1235d1345

N01235N01345N12345 = NR
1√
d135

, (A7)

where NL,R do not involve quantum dimensions of any of the
summands in Eq. (A2). We can now do graphical calculus to
demonstrate the equality of those products of diagrams, as
shown in Figs. 23 and 24. Careful examination of the final
diagrams shows that both the diagrams and normalization
factors are indeed equal, proving Eq. (A2).

2. Independence of fusion channel on 3-simplices

In defining our path integral, we made an arbitrary choice
of fusion channel for the data on the 3-simplices. Suppose
we change the fusion channel; we wish to show that the
path integral is unchanged. On a closed manifold, each 3-
simplex appears in exactly two 4-simplices with opposite
induced orientation. For concreteness we focus on the 3-
simplex 0123 which, again for concreteness, we suppose is
in the 4-simplices 01234 (+ orientation) and 01235 (− orien-
tation). We define the unitary basis transformation

e

ba

c d

=
f

F ab
cd ef

f

ba

c d

(A8)

One can check that

(
Fab
cd

)
e f =
√
ded f

dadd

(
Fceb
f

)∗
ad

, (A9)
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FIG. 22. Sweeping a g54 domain wall through the diagram for the
4-simplex 01234. This is a graphical calculus version of replacing all
of the F and R symbols in the evaluation of the diagram in Eq. (42)
with their g54-transformed versions using consistency conditions. A
trace is implied, i.e., open lines at the top are implied to be connected
to their corresponding lines at the bottom.

where Fceb
f is the usual F symbol, although this form does not

make the unitarity of Fab
cd manifest. It can also be checked that

e

dc

a b

=
f

F ab
cd

∗
ef

f

d

.
c

a b

(A10)

We can relate amplitudes Z in the original fusion channel
to amplitudes Z ′ in the new fusion channel by an F move:∑

b0123

Z+(01234; b0123)Z−(01235; b0123)

=
∑
b0123

∑
e

(
F 023,32012
013,123

)
0123,e

Z ′+(01234; e)

×
∑
f

(
F 023,32012
013,123

)∗
0123, f

Z ′−(01235; f ) (A11)

=
∑
e, f

δe, f Z
′+(01234; e)Z ′−(01235; f ) (A12)

=
∑
b′
0123

Z ′+(01234; b′
0123)Z

′−(01235; b′
0123), (A13)

where the second line follows from the unitarity of the F
symbols and in the third line we relabeled e → b′

0123. We
have explicitly labeled the relevant 3-cell as it appears in each
amplitude Z±. This equation is shown graphically in Fig. 25.

The right-hand side is precisely the amplitude which would
appear if we had chosen to construct the path integral using

the new fusion basis for the 3-simplex 0123. Therefore, the
choice of fusion channel does not affect the partition function
for a closed manifold. The same is true for an open manifold
if the 3-simplex is not on the surface. If the 3-simplex is on the
surface, then there is no cancellation; instead, the amplitude in
the wave function of the initial configuration is related to the
amplitude of the final configuration by an F symbol, which is
as expected.

3. Independence of deformation of 3-simplex data

We also chose a particular deformation of the data on
the 3-simplices toward 0-simplices, as in Fig. 2(c). Suppose
that instead of deforming a 3-simplex, call it 2345, toward
g5, we deformed it toward gi instead, where i = 2, 3, or 4.
Our claim is that the term in the state sum with data b2345
on 2345 in the original deformation is equal to the term in
the state sum with i5b2345 on 2345 in the new deformation.
The reason is as follows. For each 4-simplex �4 containing
2345 the amplitude Z ′(�4; i5b2345) corresponding to �4 in the
new deformation can be related to the amplitude Z (�4; b2345)
in the original deformation by sliding anyon lines through
domain walls as shown in Fig. 26. The labeling of �4 could
be m2345 for m < 2, or 2m345 for 2 < m < 3, etc. Doing the
graphical calculus, shown in Fig. 26 for the case σ = 23456
with positive orientation and checked similarly for the other
cases, leads to (for all possible �4)

Z ′(�4; i5b2345)

Z (�4; b2345)

=
(
Ui5(i5235, i5345; i52345)

Ui5(i5245, i5234; i52345)
× ηi4234(i4, 45)

)ε(2345;�4 )

.

(A14)

Here, ε(2345;�4) = ± is the relative orientation of 2345
to the 4-simplex �4. If the 3-simplex is in the bulk of the
space-time manifold, then 2345 appears in exactly two 4-
simplices �4

1 and �4
2, one with each relative orientation.

Hence, for every term in the state sum, the above factors
coming from �4

1 and �4
2 cancel out, and the state sum is

unchanged. If 2345 is on the surface, then the aforementioned
phase factor is the relative amplitude in the wave function
between two states where the braided fusion diagrams label-
ing the state differ by sliding the appropriate domain walls
over anyon lines, which is as we expect.

4. Independence of deformation of 2-simplex data

Another choice was a deformation of the 2-simplex data
toward a 0-simplex. Consider a 2-simplex 234. For simplicity
of presentation, we assume there are no vertices m such that
the branching structure orders 2 < m < 3 or 3 < m < 4; this
assumption may be relaxed at the cost of checking a few
extra cases in what follows. Suppose that we deformed 234
toward g j for j = 2 or 3 instead of toward g4. We relate
the term in the newly deformed state sum with i4a234 on
the simplex in question to the term in the old deformation
with a234.

Let us examine each 4-simplex �4
n which contains 234,

where n enumerates all such 4-simplices. There are three
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FIG. 23. Graphical calculus for the left-hand side of Eq. (A2) after sweeping g54 domain through the diagram for 01234 (see Fig. 22),
excluding symmetry factors. The factor of NL is defined in Eq. (A6) and does not involve quantum dimensions of any summands. Traces are
implied on all of the diagrams.

possibilities for �4
n; without loss of generality, �4

n can be
labeled 01234, 12345, or 23456, where all that matters is
whether the additional vertices are smaller than 2 or larger
than 4. For each of these three cases one can determine

the ratio of the amplitudes Z (�4
n; a234) and Z

′(�4
n;

i4a234) with
the old and new deformations, respectively. The portions of
the diagrams which differ for each of these cases are shown in
Fig. 27. Graphical calculus shows

Z ′(�4
n;

i2a012)

Z (�4
n; a012)

=

⎧⎪⎨
⎪⎩
1, �4

n = 01234

η
−ε(�4

n )
234 (4i, i5)ηε(�4

n )
234 (4i, i4), �4

n = 12345

η
−ε(�4

n )
234 (4i, i5)ηε(�4

n )
234 (4i, i6), �4

n = 23456.

(A15)

043033-38



ABSOLUTE ANOMALIES IN (2+1)D SYMMETRY- … PHYSICAL REVIEW RESEARCH 2, 043033 (2020)

FIG. 24. Graphical calculus for the right-hand side of Eq. (A2), excluding symmetry factors. The factor of NR is defined in Eq. (A7) and
does not involve quantum dimensions of any summands. Traces are implied on all of the diagrams.

Of course, the 4-simplex �4
n always contains exactly two

3-simplices �3
n;m which involve 234, where m enumerates

the two 3-simplices. Each 3-simplex is labeled either �3
n;m =

m234 or 234m for some m. Define

ζ (�3
n;m) =
{
η234(4i, i4), m < 2

η−1
234(4i, im), m > 4.

(A16)

Then, we see that Eq. (A15) can be rewritten

Z ′(�4
n;

i4a234
)

Z
(
�4

n; a234
) =
∏

�3
n;m∈�4

n

ζ
(
�3

n;m

)ε(�3
n;m;�

4
n ), (A17)

where the product is over all 3-simplices in �4
n containing 234

and ε(�3
n;m;�

4
n) is the orientation of�

3
n;m induced by�4

n. But,
every bulk 3-simplex appears in exactly two 4-simplices with
opposite induced orientations. Since ζ depends only on the
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FIG. 25. Graphical form of Eqs. (A11)–(A13) for the product of amplitudes for the 4-simplices 01234 and 01235, focusing on the portions
of the diagrams involving the 3-simplex 0123. We have assumed for simplicity that 01234 and 01235 have positive and negative orientations,
respectively. A pair of F moves changes the basis for the fusion data associated to 0123, but the F symbols cancel out.

3-simplex labels, it is now clear that the bulk factors of ζ all
cancel pairwise, that is, for a closed manifold,

∏
n

Z ′(�4
n;

i4a234
)

Z
(
�4

n; a234
) = 1. (A18)

Therefore, the two terms in question in the state sum are equal,
as desired.

5. Independence of branching structure

In Ref. [33], Cui proves the invariance of a closely re-
lated TQFT under changes of branching structure. The proof
constructs, for each configuration in the state sum with the
original branching structure, a corresponding configuration in
the state sum with the new branching structure, then shows
that the amplitude associated to that configuration is the same
with both branching structures. The construction and proof are

rather involved, but apply mutatis mutandis to our state sum.
We therefore do not reproduce the proof here.

6. Gauge invariance under vertex basis gauge transformations

Consider a basis transformation on the fusion or splitting
spaces given by a unitary map �ab

c : V ab
c → V ab

c . Our claim
is that on a closed manifold M, the path integral is invariant
under this basis transformation. On a closed manifold, each
3-simplex appears twice, once with positive orientation and
once with negative orientation. Hence, for a fixed term in the
state sum, each fusion vertex (say, the fusion vertex associated
to a positively oriented 3-simplex) will appear exactly once
and its dual splitting vertex (say, the splitting vertex associated
to the same 3-simplex with opposite orientation) will also
appear exactly once. Let Z (M; {a, b, g}, μ, ν) be the path-
integral amplitude with fixed anyon and group data, but we
place the splitting vertex in the state μ and the fusion vertex

FIG. 26. Graphical calculus illustrating Eq. (A14), that is, relating the amplitude Z ′+(23456; i5b2345) (left) with the 3-simplex 2345
deformed toward vertex i = 2, 3, 4 to the amplitude Z+(23456; b2345) (right) with 2345 deformed toward vertex 5. We only show the portion
of the diagram that involves the 3-simplex 2345. The consistency condition for η has been used in the last equality.
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FIG. 27. Graphical calculus illustrating Eq. (A15), that is, comparing the amplitude Z ′(�4
n;

i4234) associated to the 4-simplex �4
n with the

2-simplex 234 deformed toward vertex i = 2 or 3 (left-hand diagram for each case) to the amplitude Z (�4
n; 234) with 234 deformed toward

vertex 4 (right-hand diagram for each case). We only show the portion of the diagram involving 234.

in the state ν. The gauge-transformed path integral involves
sums over the terms with μ = ν, so we compute that sum:∑

μ

Z ′(M; {a, b, g}, μ, μ)

=
∑
μ,ν,ν ′

(
�ab
c

)
μν
Z (M; {a, b, g}, ν, ν ′)

(
�ab
c

)†
ν ′,μ (A19)

=
∑
ν,ν ′

δν,ν ′Z (M; {a, b, g}, ν, ν ′) (A20)

=
∑

ν

Z (M; {a, b, g}, ν, ν), (A21)

where the prime indicates the gauge-transformed amplitude.
The final expression is exactly the same amplitude in the
original gauge, which demonstrates the desired equality.

On an open manifold, these gauge transformations on
bulk 3-simplices cancel in the same way. The gauge trans-
formations do not cancel on surface 3-simplices, but instead
transform the wave function in the expected way.

In the presence of antiunitary symmetries, the gauge trans-
formation rule needs to account for the group elements; the

gauge transformation takes the form

̂|a, b; c; g〉 = �̃ab
c (g)|a, b; c; g〉, (A22)

where the hat refers to the gauge-transformed state and the
abc fusion vertex is in domain g. Demanding G equivariance
of the gauge transformations, we find

�̃ab
c (g) = (�̃ab

c

)σ (g)
(1) ≡ (�ab

c

)σ (g)
, (A23)

where the last equality defines the shorthand �ab
c . Using this

object, the above argument for gauge invariance of the path
integral goes through exactly on an orientable manifold.

On an unorientable manifold, in order to define the path
integral, as described in Sec. IV, we should cut open the man-
ifold to obtain an orientable open manifold. For any 3-simplex
which does not lie entirely on the cut, the argument goes
through as above. However, on the cut, we identify the data
on two 3-simplices with the same relative orientation. The key
difference is that the group elements on the vertices of those
two 3-simplices are twisted by an antiunitary group element h.
That is, if 0123 is a 3-simplex lying on the cut and has positive
induced orientation, then 0123 appears in two diagrams in the
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FIG. 28. Data associated to a 3-simplex 0123 as it appears on
the left and right sides of a cut-open, unorientable manifold. Both
appearances of 0123 have the same relative orientation, but the group
elements gi associated to it are twisted by an antiunitary group
element h. Solid orange lines are domain walls and dashed orange
lines indicate some way of connecting the domain wall to others
that depends on the details of the 4-simplex in which the 3-simplex
appears.

path integral shown in Fig. 28. These two diagrams pick up
the gauge transformation

�̃ab
c (g3)�̃ab

c (g3h) = �̃ab
c (g3)
(
�̃ab
c (g3)
)∗ = 1, (A24)

where we have used the fact that σ (h) = ∗. Hence, the path
integral remains gauge invariant. The fact that the boundary
conditions for the group elements are twisted by a group
element h with an antiunitary action is what ensures that the
path integral is gauge invariant on an unorientable manifold.

7. Gauge invariance under symmetry action
gauge transformations

Gauge transforming the symmetry action changes the way
that the global symmetry action factorizes into its topological
and local parts according to Eq. (32). Given an anyon diagram
with domain walls, the gauge transformation changes the dia-
gram by a phase γa(g) for every crossing of a domain wall of
type g with an anyon a as shown in Fig. 29(a), where checks
over diagrams represent the gauge-transformed diagram. We
presently check that our state sum is invariant under this
transformation.

It is straightforward to check by inspecting Fig. 4 that the
amplitudes Z± for a 4-simplex, each crossing of a domain wall
over an anyon line in the full diagram can be associated to a 3-
simplex, i.e., the set of crossings on the left-hand side of Fig. 4
is in correspondence with the crossings on the right-hand side.
Using the diagrammatic rules in Fig. 29(a), we see that the
crossing in a 3-simplex i jk� (here i, j, k, � label vertices) ap-
pearing in a 4-simplex �4 picks up a factor of γ

ε(i jk�;�4 )
i jk (gk�)

under gauge transformations, where ε(i jk�;�4) is the orien-
tation of i jk� induced by the 4-simplex �4. Since, on a closed
manifold M, each 3-simplex appears in two 4-simplices, each
leading to opposite induced orientation, the factors of γ all
cancel out in computing a single term of the path integral on
M. Hence, the path integral on a closed manifold is gauge
invariant.

On a manifold M with boundary, the gauge transforma-
tions of crossings associated to bulk 3-simplices still cancel

FIG. 29. Gauge transformation rules for changing the factoriza-
tion of the symmetry action into its topological and local parts.
Anyon line is black, domain wall is orange. Checks indicate
gauge-transformed diagrams. (a) Unitary case. (b) Antiunitary case,
tracking the group elements on the 0-simplices explicitly.

out. However, gauge transformations of crossings involved in
surface 3-simplices do not cancel. Instead, they modify the
wave function by changing the value of the wave function
to match the gauge-transformed value of the closed anyon
diagram on the boundary of M, as expected.

In the presence of antiunitary symmetries, we should mod-
ify the gauge transformation rules in Fig. 29(a) to those in
Fig. 29(b), which allows us to define the shorthand objects
γa(gi j ) by the equation

γ̃a(gi, g j ) = (γ̃a(1, g ji ))σ (g) ≡ (γa(gi j ))σ (g). (A25)

With this definition, the only difference is that the cross-
ings in a 3-simplex pick up the gauge transformation factor
γ

(ε(i jk�;�4 ))×σ (c)
i jk (k�). On an orientable manifold, the above

argument carries through straightforwardly.
On an unorientable manifold, we consider the same setup

discussed in the previous section on vertex gauge transforma-
tions. For 3-simplices which do not lie entirely on the cut, the
argument for the unitary case goes through, mutatis mutandis.
For a 3-simplex 0123 on the cut, its two appearances are, as
before, shown in the diagrams in Fig. 28. These two diagrams
pick up the gauge transformation factors γ̃012(gi, g j ) and
γ̃012(gih, g jh) = γ̃012(gi, g j ), respectively, where h is some
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FIG. 30. Different possible diagrams used to define Z+(01234). On a closed manifold, (a) and (b) produce the same path integral, as do
(c) and (d). Panels (a) and (c) are related by changing the overcrossing to an undercrossing, which we conjecture complex conjugates the path
integral on closed manifolds. (a) Diagram used in the main text. (b) The 3-simplex data in (a) have been mirrored about the vertical axis and the
overcrossing in (a) is switched to an undercrossing. (c) The overcrossing in (a) is switched to an undercrossing without changing the 3-simplex
data. (d) The 3-simplex data in (a) have been mirrored about the vertical axis without changing the crossing.

antiunitary group element. But σ (h) = ∗, hence,

γ̃012(gi, g j )γ̃012(gih, g jh) = γ̃012(gi, g j )γ̃012(gi, g j )
∗ = 1.

(A26)

Hence, the path integral is gauge invariant, even on an un-
orientable manifold. As for the vertex transformations, this
gauge invariance fundamentally requires that the boundary
conditions for the group elements are twisted by a group
element h with an antiunitary action.

8. Mirroring 3-simplices about the vertical axis

Our path integral is built by assigning a fusion diagram
to the 3-simplex 0123, corresponding to the process 013 ⊗
123 → 023 ⊗ 32012. Mathematically this corresponds to an
element of

⊕
b V

b
013,123 ⊗V 023,32012

b [or, in the category theory
terminology, this corresponds to an element of the Hom space
Hom(013 ⊗ 123, 023 ⊗ 32012)]. Given an orientation of the
3-simplex, the 2-simplices 013 and 123 have the same induced
orientation, which is why 013 and 123 both appear in the
domain (or codomain, for the opposite orientation of the 3-
simplex) of this process. However, it is not a priori clear why
we should not mirror the entire diagram about the vertical axis
when constructing the amplitudes associated to 4-simplices,
that is, use Hom(123 ⊗ 013, 32012 ⊗ 023) instead.

We claim that on a closed manifold, the path integral is
invariant under this mirroring, provided that the overcross-
ing/undercrossing in the diagram is also changed. That is,
constructing Z+ using the diagram in Fig. 30(a) yields the
same path integral as in Fig. 30(b), and likewise Figs. 30(c)
and 30(d) would yield the same path integral on a closed
manifold.

Note that mirroring the diagram about the vertical axis
and changing the overcrossing to undercrossing is equiva-
lent to rotating the entire diagram about the vertical axis
by π . Thus, another way of stating the result is that the
path integral is invariant under rotating the diagrams as-
sociated with all 4-simplices by π around the vertical
axis.

The idea of the proof is the following. Start with Fig. 30(a)
and shrink the domain walls, evaluating the symmetry factors
as appropriate. Next, slide all of the 3-simplex lines into their
positions in Fig. 30(b). This introduces many twists into the
diagram. Then, remove those twists with R moves. Finally,
reintroduce the domain walls as appropriate; this produces,
after some isotopy, Fig. 30(b). The whole process introduces
a factor of Rab

c for each fusion space and a factor of (Rab
c )

−1

for each splitting space in the diagram (use of the consistency
of U and R moves is required for the 0123 vertex inside the
domain walls). Since each 3-simplex appears once with each
orientation in a closed manifold, each vertex appears once as
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a fusion vertex and once as a splitting vertex. Hence, the R
moves cancel.

On a nonorientable manifold, we consider, as usual, cutting
the manifold to produce an orientable one. For all 3-simplices
away from the cut, the above argument works identically. The
only difference is for 3-simplices on the cut, which appear
once on each side of the cut with the same induced orientation.
However, there is a twist of the group elements on both sides
of the cut; the 3-simplex lives in domain g on one side and
gh̄ on the other side, where σ (h) = ∗. Hence, we pick up
R̃ab
c (g)R̃ab

c (gh̄), which still cancels out by the G equivariance
of the R symbols.

9. Changing overcrossing to undercrossing

In this section, we discuss changing the crossing in the
diagrams defining our state sum (Fig. 4) from an overcrossing
to an undercrossing.

This crossing is the source of the factor of R in the explicit
formulas (42) and (43), and it is easy to check that changing
the crossing replaces Rab

c by [Rba
c ]

−1
. By inspection of the

consistency conditions for BTCs and symmetry fractionaliza-
tion, if the data {F,Rab

c ,U, η} define a consistent BTC C1 with
symmetry fractionalization, then the data {F, [Rba

c ]
−1

,U, η}
also define a consistent BTC C2 with symmetry fractionaliza-
tion. Therefore, changing the crossing interchanges the path
integrals for these two theories.

The modular S and T matrices, where T is a diagonal
matrix with

Taa = θa, (A27)

clearly obey T2 = T ∗
1 , S2 = S∗

1 , where Si,Ti belong to the
BTC Ci.

It immediately follows that, on a closed manifold, the
Crane-Yetter invariants for C1 and C2 are complex conjugates.
This is because for a UMTC C,

ZCY(M
4) = e2π icσ (M

4 )/8 (A28)

for the Crane-Yetter invariant. Here, σ (M4) is the signature
of the closed 4-manifold M4 and c is the chiral central charge

given by

e2π ic/8 = 1

D
∑
a

d2
a θa. (A29)

For our state sum with the G-symmetry action, it is less
clear to see directly from the path integral what happens when
we replace Rab

c with [Rba
c ]−1 and thus effectively interchange

C1 with C2. We will prove (subject to a mild additional as-
sumption) that when the input to our state sum is a UMTC,
this interchange complex conjugates our path integral. The
technique is indirect, using the relative anomaly formalism of
Ref. [37], but the result is borne out in the examples that we
study in Sec. VI and also the example of G = Z3 × Z3 with
the unique rank-3 Abelian UMTC with Z3 fusion rules.

The method of proof is to show that, given two frac-
tionalization classes given by data {F,Rab

c ,U, η(1)} and
{F,Rab

c ,U, η(2)}, the path integral on any closed 4-manifold
M (with a general background G gauge field) obeys

Z
[
M;F,Rab

c ,U, η(2)
]

Z
[
M;F,Rab

c ,U, η(1)
] = Z
[
M;F,
[
Rba
c

]−1
,U, η(1)

]
Z
[
M;F,
[
Rba
c

]−1
,U, η(2)

] . (A30)

Rephrased in terms of anomalies, we wish to show that the
anomaly of {F,Rab

c ,U, η(2)} relative to {F,Rab
c ,U, η(1)} is

the inverse of the anomaly of {F, [Rba
c ]

−1
,U, η(2)} relative

to {F, [Rba
c ]

−1
,U, η(1)}. Under the additional assumption that

some nonanomalous class exists for any U , setting η(1) to the
nonanomalous class proves the desired equality, since on any
manifold a nonanomalous SPT has Z = 1.

In general, different fractionalization classes form an
H2(G,A) torsor [6], where A is the set of Abelian anyons
in the theory. That is, given any two fractionalization classes
{F,Rab

c ,U, η(i)} for i = 1, 2, there exists t(g, h) ∈ H2(G,A)
such that

η(2)
x (g, h) = Mx,t(g,h)η

(1)
x (g, h), (A31)

where Mab is the double braid defined in Eq. (15). The
anomaly [O] ∈ H4(G,U (1)) of {F,Rab

c ,U, η(2)} relative to
{F,Rab

c ,U, η(1)} is [37]

O(g, h, k, l) = R
ght(k,l),t(g,h)η

(1)
ght(k,l)

(g, h)[Ug(gt(hk, l), gt(h, k))]∗Ug(gt(h, kl), ght(k, l))

× F t(ghk,l),t(gh,k),t(g,h)F t(g,hkl),gt(hk,l),gt(h,k)F t(gh,kl),t(g,h),ght(k,l)

× [F t(ghk,l),t(g,hk),gt(h,k)F t(g,hkl),gt(h,kl),ght(k,l)F t(gh,kl),ght(k,l),t(g,h)]∗. (A32)

In what follows, the factors of U and F will be unchanged
throughout, so we suppress all of their arguments.

We now reinterpret O as a relative anomaly between theo-
ries with the R symbol [Rba

c ]
−1
. Since t(g, h) is Abelian, we

have

Mx,t(g,h) = Rx,t(g,h)Rt(g,h),x. (A33)

Therefore, according to Eq. (A31),

Rx,t(g,h)η(1)
x (g, h) = [Rt(g,h),x]−1η(2)

x (g, h). (A34)

Setting x = ght(g, h) and substituting into Eq. (A32), we ob-
tain

O = [Rt(g,h),ght(k,l)]−1η
(2)
ght(k,l)

(g, h)U ∗UFFF (FFF )∗. (A35)

Comparing this expression to Eq. (A32), we directly see that
we can interpret O as the anomaly of {F, [Rba

c ]
−1

,U, η′} rel-
ative to {F, [Rba

c ]
−1

,U, η(2)}, where η′ is obtained from η(2)

using t in Eq. (A31) with the double braid computed with the
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R symbol [Rba
c ]

−1
. Explicitly,

η′
x(g, h) = η(2)

x (g, h)[Rt(g,h),x]−1[Rx,t(g,h)]−1 (A36)

= η(1)
x (g, h), (A37)

where the last equality follows from Eq. (A34). Hence,
η′ = η(1). Furthermore, since relative anomalies form an
Abelian group, the anomaly of {F, [Rba

c ]
−1

,U, η(1)} rela-

tive to {F, [Rba
c ]

−1
,U, η(2)} is the inverse of the anomaly of

{F, [Rba
c ]

−1
,U, η(2)} relative to {F, [Rba

c ]
−1

,U, η(1)}. Thus, we
have proven thatO, defined as the anomaly of {F,Rab

c ,U, η(2)}
relative to {F,Rab

c ,U, η(1)}, is also the inverse of the anomaly

of {F, [Rba
c ]

−1
,U, η(2)} relative to {F, [Rba

c ]
−1

,U, η(1)}, as
claimed.

APPENDIX B: EXHAUSTIVENESS OF COHOMOLOGY
INVARIANTS

In Sec. V, we constructed sets of cohomology invariants for
Hn(G,U (1)) using the Smith normal form of a matrix version
of the coboundary operator. In this Appendix, we demonstrate
that those invariants fully characterize the cohomology group.
That is, following the notation in Sec. V

Hn(G,U (1)) =
⊕
i|Dii>1

ZDii . (B1)

In the following, when no ambiguity results we will abuse
terminology slightly by using “cochain” (and “cocycle,” etc.)
to interchangeably mean either a function ω : Gn → U (1) or
its “vectorized” form v, where v is a real-valued vector of
length |G|n defined modulo integers.

Recall first that n-cocycles are vectors which satisfy
Eq. (100). Treating Mn as a map between vector spaces over
R, it follows that all elements of kerMn are cocycles, but not
all cocycles are in kerMn. However, all n-coboundaries are in
imMn−1 (modulo the integer ambiguity).

Next, we claim that

kerMn = imMn−1. (B2)

To see this, note that by construction, Mn is the matrix of the
coboundary map forHn(G,R). [Note thatMn is an unambigu-
ously defined integer matrix, while vectors which represent
cocycles overU (1) are only defined modulo integers.] Hence,
generators of kerMn/imMn−1 correspond to generators of
Hn(G,R). The latter, however, is known to be trivial for any
finite group G for n > 0, that is, kerMn/imMn−1 is trivial,
which proves Eq. (B2). One way to prove this latter fact is
to use the universal coefficient theorem, which, for present
purposes,7 states that [55]

Hn(G,R) = Hom(Hn(G,Z),R) ⊕ Ext(Hn−1(G,Z),R),

(B3)

whereHk (G,Z) are the homology groups of G, Hom(H1,H2)
is the group of homomorphisms from H1 to H2, and Ext is

7The universal coefficient theorem is usually stated as the existence
of a split exact sequence, but the fact that all the groups involved are
known to be Abelian means we can rewrite it in the form (B3).

the Ext functor, whose detailed definition we do not need
here. The important properties of Ext are that, for any finitely
generated groups G1,G2, and Abelian group H [55],

Ext(G1 ⊕ G2,H ) = Ext(G1,H ) ⊕ Ext(G2,H ), (B4)

Ext(R,H ) = 0, (B5)

Ext(Zk,H ) = H/kH. (B6)

Using the fact that R/kR = 0, it follows that
Ext(Hn−1(G,Z),R) = 0. Further, homology groups
for n > 0 over Z are finite [56], so by inspection
Hom(Hn(G,Z),R) is trivial. Thus, Hn(G,R) = 0, as
claimed.

We now claim that if two cocycles have the same invariants
Ii as defined in Eq. (104), then they differ by an element of
im dn−1, that is, they are in the same cohomology class. This
is enough to prove equality in Eq. (B1).

Let v and w be two cocycles [over U (1)] with identical Ii
for all i. Then, for each i with Dii > 0,

ni ≡
∑
j

Bi j (v j − w j ) ∈ Z, (B7)

where this equation defines ni. Since B has an integer inverse,

�vi ≡
∑

j;Dj j>0

(B−1)i jn j ∈ Z. (B8)

Recalling that v is ambiguous up to an integer vector, we can
freely replace v → v − �v without changing the cocycle. We
now claim that, as a strict equality (over the reals),

Mn(v − �v − w) = 0. (B9)

This is readily verified by computation of

(Mn�v)i =
∑

j,k,�|D��>0

Ai jDj jB jkB
−1
k� n� (B10)

=
∑

�|D��>0

Ai�D��n� (B11)

=
∑
�,m

Ai�D��B�m(vm − wm) (B12)

= (Mn(v − w))i. (B13)

In the third line, we were free to extend the sum over �

because the summand is zero when D�� = 0 anyway, and we
substituted the definition of ni.

Hence, (v − �v) − w ∈ kerMn. But we showed earlier
that kerMn = imMn−1 Hence, the cocycles represented by v

and w are in the same cohomology class. This means that our
invariants Ii distinguish all cohomology classes, that is,

Hd (G,U (1)) ⊆
⊕
i|Dii>1

ZDii . (B14)

Furthermore, as we demonstrated in Sec. V, for each possible
set of values of the invariants Ii in Eq. (104) [each of which
is a (Dii )th root of unity], there exists a cocycle defined in
Eq. (105) which realizes that set of values. Hence,⊕

i|Dii>1

ZDii ⊆ Hd (G,U (1)) (B15)

which, with Eq. (B14), proves Eq. (B1).
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FIG. 31. (a) Generating a cellulation of D0 × S1 from a cellula-
tion of D0. (b) Generating a cellulation of D1 × S1 from a cellulation
of D1.

APPENDIX C: CELLULATIONS OF MANIFOLDS M × S1

In this Appendix, we give a general procedure for cellulat-
ing M × S1, where M is a manifold of arbitrary dimension
with a known cellulation. We then apply this procedure to
some particular cases of M to obtain cellulations used else-
where in the paper.

We start with the case where M consists of disjoint d-
simplices. Start with a 0-simplex, i.e., a single vertex 0.
Obviously, a point times S1 is just S1, which can be cellulated
with a single 0-simplex 0 and a single 1-simplex. For later
purposes, imagine first adding a 0-simplex 0′ and a 1-simplex
00′, then identifying 0 ∼ 0′, as shown in Fig. 31(a).

Now, cross a 1-simplex, labeled 01, with S1. As shown in
Fig. 31(b), for each of the original 0-simplices 0 and 1, we
repeat the procedure for crossing a 0-simplex with S1; add
“primed” vertices 0′ and 1′ and 1-simplices 00′ and 11′. Next,
for the 1-simplex 01, add a new 1-simplex 0′1′ and two new 2-
simplices 011′, 00′1′. Finally, identify the “top” and “bottom”
to make the S1, that is, identify 0 ∼ 0, 1 ∼ 1′, and 01 ∼ 0′1′.
Even after identification, it is convenient to keep tracking 0
and 0′ separately (and 1 and 1′, etc.) in order to define the
2-simplices.

By looking at the 2-simplex 012 crossed with S1, we see
how this process continues. Start by repeating the 0-simplex
process for each 0-simplex in the original 2-simplex. This

adds the primed vertices 0′, 1′, and 2′, along with the 1-
simplices 00′, 11′, 22′. Next repeat the 1-simplex process
for each 1-simplex in the original 2-simplex. This adds the
1-simplices 01′, 12′, and 02′. Then, for the 2-simplex, add
two new 2-simplices 012′ and 01′2′, and three 3-simplices
0122′, 011′2′, and 00′1′2′. Finally, identify everything that
consists entirely of primes with its unprimed version, e.g.,
0′1′2′ ∼ 012.

In general, then, given an original k-simplex 012 . . . n,
crossing it with S1 should be done as follows. First, for each
k-simplex in the original object, we add k + 1 new k-simplices
and k + 1 new (k + 1)-simplices to the cellulation. As above,
the k-simplices are constructed by “priming” some vertices
starting from the highest-numbered ones, and the (k + 1)-
simplices are constructed in the same way but including both
the unprimed and primed vertices for the lowest-numbered
primed vertex. This crosses the original simplex with the
interval. Then, compactify the interval into S1 by identify-
ing simplices with all primed vertices with their unprimed
counterparts; this means that, in total, for each k-simplex
in the original object, only k new k-simplices appear after
compactification.

It is now straightforward to see that given a cellulation of
a general n-dimensional manifold M, one obtains a cellula-
tion of M × S1 by performing the above process on every
individual simplex in the cellulation. That is, for each k =
0, 1, . . . , n, we find all of the k-simplices in the original
cellulation of M and add k new k-simplices and (k + 1) new
(k + 1)-simplices in the manner described above.

1. Dealing with identifications

We start with a very simple example of the above proce-
dure: cellulating D2 × S1 given a cellulation of S1. From this,
we will see how to cellulate T 3 = T 2 × S1 and in the pro-
cess understand how to pass from a cellulation of a manifold
M × S1 to one of M ′ × S1, where simplices of M are identi-
fied with each other to produce M ′. This will be particularly
helpful for generating a cellulation of L(2, 1) × S1.

We start with the cellulation of D2 shown in Fig. 32(a),
which consists of four 0-simplices 0, 1, 2, 3, five 1-simplices

FIG. 32. Cellulations of manifolds M used to generate cel-
lulations of M × S1. (a) Cellulation of D2. (b) Cellulation of
three-dimensional Lens space L(2, 1). The front top face 013 is
identified with the back bottom face 102 and the front bottom face
012 is identified with the back top face 103. The simplices for this
cellulation are listed explicitly in Table VI.
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FIG. 33. Cellulation of D2 × S1 produced by our procedure.
Marked simplices are identified with correspondingly marked sim-
plices, and unmarked edges are oriented from unprimed vertices to
primed vertices.

01, 02, 03, 13, 23, and two 2-simplices 013 and 023. Ac-
cording to our procedure, we start with k = 0 and add one
new 1-simplex for each original 0-simplex. These are the
1-simplices 00′, 11′, 22′, 33′. For k = 1, we add a 1-simplex
for each of the original 1-simplices, i.e., 01′, 02′, 03′, 13′, 23′.
We then add 2-simplices 011′, 00′1′, 022′, 00′2′, . . . . Finally,
for k = 2 we add the 2-simplices 013′, 01′3′, 023′, 02′3′ and
the 3-simplices 0133′, 011′3′, 00′1′3′, 0233′, 022′3′, 00′2′3′.
Identifying primed and unprimed vertices as usual yields a
cellulation of D2 × S1 shown in Fig. 33.

One can, of course, obtain a cellulation of T 3 by identifying
various objects on the boundary of the cellulation of D2 × S1.
To take a more systematic approach we start by compacting
D2 into T 2, that is, identifying 0 ∼ 1 ∼ 2 ∼ 3, 01 ∼ 23, and
02 ∼ 13 and ask how this affects the prior procedure.

The key point is that when two simplices in D2 are iden-
tified, we should also identify their corresponding “child”
simplices. For example, 01 generated one new 1-simplex 01′
and two new 2-simplices 011′ and 00′1′, while 23 generated
the 1-simplex 23′ and the 2-simplices 233′ and 22′3′. Thus,
identifying 01 ∼ 23 in D2 means that we should identify
01′ ∼ 23′, 011′ ∼ 233′, and 00′1′ ∼ 22′3′ in D2 × S1. It is
easy to check that, for each identification of the “parent”
simplices in D2 to produce T 2, identifying “child” simplices
inD2 × S1 in this manner is exactly how one produces the nat-
ural cellulation of T 3 from the given cellulation of D2 × S1.

To summarize, suppose we start with a manifold M such
that a list of simplices of M can be pairwise identified to
produce M ′. To obtain a cellulation of M ′ × S1, first obtain
a cellulation of M × S1 in the normal way. In this process,
a “parent” k-simplex of M produces “child” k- and (k + 1)-
simplices in the cellulation of M × S1. Given two parent
k-simplices which are identified in passing fromM toM ′, then
identify their corresponding child simplices as well. After this
identification process, we have a cellulation ofM ′ × S1.

2. T 4

We start from the cellulation of T 3 given in Fig. 6. A list of
all the simplices contained in it, with identifications, is given
in Table IV.

Let Tn be the n-simplices in the above cellulation of T 3.
Then, by following the above procedure we obtain a cellula-
tion of T 4 consisting of the data given in Table V.

3. L(2, 1) × S1

We start with the cellulation of L(2, 1) shown in Fig. 32(b).
It consists of the simplices given in Table VI.

Note that we distinguish the “front” and “back” 2- and
3-simplices by the order in which the vertices appear, i.e.,
0123 and 1023 contain the same vertices but are distinct 3-
simplices. Letting Lk be the set of k-simplices in the above
cellulation and applying the above procedure, we obtain a
cellulation of L(2, 1) × S1 with the data given in Table VII.

4. S3 × S1

A simple cellulation of S3 consists of two 3-simplices of
opposite orientation glued together on their boundaries. See
Table VIII.

Following the above procedure, we obtain a cellulation of
S3 × S1 with the simplices given in Table IX.

APPENDIX D: PARTITION FUNCTION ON S3 × S1

In this Appendix, we explicitly compute our partition func-
tion on S3 × S1 and show that it is always 1 in the absence
of a background flux using the cellulation of S3 × S1 con-
taining eight 4-simplices that was constructed in the previous
Appendix.

We first decompose the state sum in the following way:

Z (S3 × S1) =
∑
g

1

|G|4D24

∑
a,b

′ ∑
033′,133′,233′,

0133′,1233′,0233′

Z+(01233′(+) )Z−(01233′(−) )
∑

022′,122′,22′3′,
0122′,022′3′,122′3′

Z+(0122′3′(+) )Z−(0122′3′(−) )

×
∑

011′,11′2′,11′3′,
011′2′,011′3′,11′2′3′

Z+(011′2′3′(+) )Z−(011′2′3′(−) )
∑

00′1′,00′2′,00′3′,
00′1′2′,00′1′3′,00′2′3′

Z+(00′1′2′3′(+) )Z−(00′1′2′3′(−) )

∏
α∈T 2 daα∏
τ∈T 3 dbτ

.

(D1)
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TABLE IV. List of simplices in a cellulation of T 3, with identifications.

0-simplices 1-simplices 2-simplices 3-simplices

0 ∼ 1 ∼ 2 ∼ · · · ∼ 7 01 ∼ 23 ∼ 45 ∼ 67 013 ∼ 457 0137
02 ∼ 13 ∼ 46 ∼ 57 023 ∼ 467 0157
04 ∼ 15 ∼ 26 ∼ 37 015 ∼ 237 0457
03 ∼ 47 045 ∼ 267 0237
05 ∼ 27 026 ∼ 137 0267
06 ∼ 17 046 ∼ 157 0467
07 037

047

TABLE V. List of simplices in a cellulation of T 4. All simplices with all vertices primed are identified with their unprimed counterparts,
i.e., p′q′ ∼ pq. Numbers in parentheses indicate howmany simplices are in the relevant set Tk , which are the set of k-simplices in the cellulation
of T 3 in Table IV.

0-simplices 1-simplices 2-simplices 3-simplices 4-simplices

0 ∼ 0′ ∼ 1 ∼ · · · ∼ 7′ 00′ ∼ 11′ ∼ · · · ∼ 77′ pqq′ for pq ∈ T1 (7) pqrr′ for pqr ∈ T2 (8) pqrss′ for pqrs ∈ T3 (6)
pq for pq ∈ T1 (7) pp′q′ for pq ∈ T1 (7) pqq′r′ for pqr ∈ T2 (8) pqrr′s′ for pqrs ∈ T3 (6)
pq′ for pq ∈ T1 (7) pqr for pqr ∈ T2 (8) pp′q′r′ for pqr ∈ T2 (8) pqq′r′s′ for pqrs ∈ T3 (6)

pqr′ for pqr ∈ T2 (8) pqrs for pqrs ∈ T3 (6) pp′q′r′s′ for pqrs ∈ T3 (6)
pq′r′ for pqr ∈ T2 (8) pqrs′ for pqrs ∈ T3 (6)

pqr′s′ for pqrs ∈ T3 (6)
pq′r′s′ for pqrs ∈ T3 (6)

TABLE VI. List of simplices in a cellulation of Lens space L(2, 1), with identifications.

0-simplices 1-simplices 2-simplices 3-simplices

0 ∼ 1 01 ∼ 10 012 ∼ 103 0123
2 ∼ 3 02 ∼ 13 013 ∼ 102 1023

03 ∼ 12 023
23 123

TABLE VII. List of simplices in a cellulation of L(2, 1) × S1. All simplices with all vertices primed are identified with their unprimed
counterparts, i.e., p′q′ ∼ pq. Numbers in parentheses indicate how many simplices are in the relevant set Lk , which are the set of k-simplices
in the cellulation of L(2, 1) in Table VI.

0-simplices 1-simplices 2-simplices 3-simplices 4-simplices

0 ∼ 0′ ∼ 1 ∼ 1′ 00′ ∼ 11′ pqq′ for pq ∈ L1 (4) pqrr′ for pqr ∈ L2 (4) pqrss′ for pqrs ∈ L3 (2)
2 ∼ 2′ ∼ 3 ∼ 3′ 22′ ∼ 33′ pp′q′ for pq ∈ L1 (4) pqq′r′ for pqr ∈ L2 (4) pqrr′s′ for pqrs ∈ L3 (2)

pq for pq ∈ L1 (4) pqr for pqr ∈ L2 (4) pp′q′r′ for pqr ∈ L2 (4) pqq′r′s′ for pqrs ∈ L3 (2)
pq′ for pq ∈ L1 (4) pqr′ for pqr ∈ L2 (4) pqrs for pqrs ∈ L3 (2) pp′q′r′s′ for pqrs ∈ L3 (2)

pq′r′ for pqr ∈ L2 (4) pqrs′ for pqrs ∈ L3 (2)
pqr′s′ for pqrs ∈ L3 (2)
pq′r′s′ for pqrs ∈ L3 (2)

TABLE VIII. List of simplices in a cellulation of S3. The ± superscripts refer to the orientation of the two 3-simplices with identified
boundaries; this notation is needed since these two 3-simplices share the same vertices.

0-simplices 1-simplices 2-simplices 3-simplices

0 01 012 0123(+)

1 02 013 0123(−)

2 03 023
3 12 123

13
23
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TABLE IX. List of simplices in a cellulation of S3 × S1. All simplices with all vertices primed are identified with their unprimed
counterparts, i.e., p′q′ ∼ pq. Numbers in parentheses indicate how many simplices the number of simplices which take that form. The labels
p, q, r run over 0, 1, 2, 3.

0-simplices 1-simplices 2-simplices 3-simplices 4-simplices

0 ∼ 0′ pp′ (4) pqq′ for p < q (6) pqrr′ for p < q < r (4) 01233′(±) (2)
1 ∼ 1′ pq for p < q (6) pp′q′ for p < q (6) pqq′r′ for p < q < r (4) 0122′3′(±) (2)
2 ∼ 2′ pq′ for p < q (6) pqr for p < q < r (4) pp′q′r′ for p < q < r (4) 011′2′3′(±) (2)
1 ∼ 1′ pqr′ for p < q < r (4) 0123(±) (2) 00′1′2′3′(±) (2)

pq′r′ for p < q < r (4) 0123′(±) (2)
012′3′(±) (2)
01′2′3′(±) (2)

Here,
∑′

a,b means the sum on all 2-simplices and 3-simplices not appearing explicitly in Eq. (D1). We have chosen to group
the diagrams so that the sums over certain 2- and 3-simplices can be separated, i.e., the 2-simplex 133′ appears only in the
4-simplices 01233′(±), so the other diagrams factor out of that sum.

Consider first the sum involving 0122′3′(±). The symmetry factors (factors ofU and η) in each diagram are

Z+(0122′3′(+) ) ∝ η−1
012(g22′ , g2′3′ )U−1

2′3′ (022′, 2
′2012; 0122′)U2′3′ (012′, 122′; 0122′), (D2)

Z−(0122′3′(−) ) ∝ η012(g22′ , g2′3′ )U2′3′ (022′, 2
′2012; 0122′)U−1

2′3′ (012′, 122′; 0122′). (D3)

Clearly these factors cancel. In fact, since for any ± pair, the two diagrams involve exactly the same 2-simplices, the only way
that the symmetry factors could fail to cancel is if U involves different 3-simplices. In the 4-simplices 0122′3′(±), 011′2′3′(±),

and 00′1′2′3′(±), the factor ofU acts on 0122′, 011′2′, and 00′1′2′, respectively in both the + and the − diagrams. Therefore, all
of these symmetry factors cancel out. The only pair that we need to check is the 01233′(±) pair, which has

Z+(01233′(+) ) ∝ η−1
012(g23, g33′ )U−1

33′ (023, 32012; 0123(+) )U33′ (013, 123; 0123(+) ), (D4)

Z−(01233′(−) ) ∝ η012(g23, g33′ )U33′ (023, 32012; 0123(−) )U−1
33′ (013, 123; 0123(−) ). (D5)

Because these two 4-simplices involve b0123(±) , which are not a priori equal, there is not obviously a cancellation. However,
because of the absence of background flux, g33′ = 1. Therefore, all of these symmetry factors are 1.

What we have shown is that, for any given term in the state sum, the factors ofU and η either cancel out or are equal to 1. At
this stage, one can now check straightforwardly that each anyon always appears with the same symmetry action on it, that is, for
example, 012 always appears as 42012. Reindexing the sum (e.g., 42012 → 012) and performing the (now-trivial) sum on gi, we
obtain precisely the Crane-Yetter state sum for C on S3 × S1, which is known to be 1, that is,

Z (S3 × S1) = ZCY(S
3 × S1) = 1 (D6)

as desired. One can explicitly compute the Crane-Yetter state sum on S3 × S1; this is most conveniently done using the
decomposition in Eq. (D1) and the merging lemma in Fig. 21(b), but since the result is known, we do not reproduce the
calculation here.
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