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Extraction of the many-body Chern number from a single wave function
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The quantized Hall conductivity of integer and fractional quantum Hall (IQH and FQH) states is directly
related to a topological invariant, the many-body Chern number. The conventional calculation of this invariant
in interacting systems requires a family of many-body wave functions parameterized by twist angles to calculate
the Berry curvature. In this paper, we demonstrate how to extract the Chern number given a single many-body
wave function, without knowledge of the Hamiltonian. For FQH states, our method requires one additional
integer invariant as input: the number of 2π flux quanta, s, that must be inserted to obtain a topologically trivial
excitation. As we discuss, s can be obtained in principle from the degenerate set of ground state wave functions
on the torus, without knowledge of the Hamiltonian. We perform extensive numerical simulations involving IQH
and FQH states to validate these methods.
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I. INTRODUCTION

The integer and fractional quantized Hall conductivities of
quantum Hall states provide some of the most well-known
and striking experimental examples of topological quanti-
zation in physics. The existence of such quantized Hall
conductivities is directly related to a U (1) symmetry pro-
tected topological invariant of gapped many-body quantum
states in two spatial dimensions, referred to as the many-body
Chern number. Integer and fractional quantum Hall (IQH
and FQH) states both possess a well-defined integer-valued
Chern number.

The conventional methods for defining the Chern number
require a family of many-body ground states with twisted
boundary conditions [1,2]. For example, the Chern number
is often defined in terms of the Berry curvature in the space of
twisted boundary conditions of the many-body ground state
on a torus. To calculate the Chern number with these meth-
ods thus requires access to a family of many-body ground
states parameterized by the twist angle either in the entire
twist angle parameter space or in a small region of it [3,4].
This raises a fundamental conceptual question of whether it
is possible to obtain the Chern number from a single ground
state wave function—or even simply a reduced density ma-
trix on an open disk-like patch of the system—and without
knowledge of the Hamiltonian. Stated differently, is the Chern
number even a well-defined property of a single ground-state
wave function?

Moreover, this issue is of practical interest for both numer-
ical and experimental studies of topological states of matter,
as the conventional methods include transport or magnetic
fluxes piercing a hole of the system, to obtain a family of

*Corresponding author: hdehghan@umd.edu

many-body ground states as a function of a continuous pa-
rameter. In recent years there has been substantial interest in
engineering topological states of matter in various designer
quantum systems, such as neutral atoms in optical lattices
[5], superconducting qubits [6,7], photons [8], and potentially
Rydberg arrays [9]. The development of these platforms for
realizing many-body topological states bring with it a ne-
cessity to find alternative methods to measure topological
invariants such as the many-body Chern number, as these
systems may not be amenable to standard transport measure-
ments[10]. Alternative approaches to measuring topological
invariants require an ancilla to be coupled to the entire system
and involve many-body Ramsey interferometry to measure the
fractional charge [11], entanglement entropy [12], or modular
matrices [13].

In this paper, we show how to compute the Chern number
given a single ground state wave function. In particular, we
demonstrate that the wave function on a cylindrical geom-
etry or an open disk-like patch is sufficient to obtain the
Chern number. For cylindrical geometries we provide both a
topological quantum field theory explanation and numerical
simulations to prove the validity of our formulas. In the case
of disk-like geometries our analytical understanding is less
complete although we provide extensive empirical numerical
evidence that the same method is applicable. For both of these
geometries, we present two families of formulas for com-
puting the many-body Chern number given a single ground
state wave function. While one family uses a single copy
of the state, the other family uses two copies of the given
state. We refer to these two families of formulas as the single
layer and bilayer formulas, respectively. To use our results for
experimentally detecting the many-body Chern number, the
single layer formulas require many-body phase measurement
techniques such as Ramsey interferometry, which is a costly
measurement and requires introducing ancilla qubits to the
system. In contrast, the two-copy formula can be combined
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with random local unitary measurements, as we have demon-
strated in Ref. [14], to measure the Chern number without
requiring many-body interferometry techniques.

For FQH states, our method requires one additional invari-
ant, s, to obtain the integer Chern number C. s is defined
to be the number of flux quanta that must be adiabatically
inserted into a region of the system before a topologically
trivial excitation is obtained. For a state with Hall conductivity
σH = p

q
e2

h , with p and q coprime, s = rq, for some integer
r. The Chern number C that we calculate then corresponds
to C = rp. Thus, given s and a single ground state wave
function on a disk, we can obtain the fractional quantized Hall
conductivity σH = C

s
e2

h . We discuss how s can be obtained
given the degenerate set of ground state wave functions of the
system defined on a torus (without requiring their dependence
on additional parameters such as twist angles).

We emphasize that our results hold for strongly interacting
many-body states. For disordered free fermion Hamiltonians,
there are known methods to obtain the Chern number without
twisting boundary conditions given the single-particle eigen-
states [15,16], for example by computing a certain topological
obstruction for almost commuting matrices [15].

From a broader perspective, topologically ordered phases
of matter with symmetry, referred to as symmetry-enriched
topologically ordered states (SETs), possess a host of topo-
logical invariants [17]. Some of these topological invariants
only depend on the intrinsic topological order, irrespective of
the symmetry of the system, and are related to the properties
of fusion and braiding of topologically nontrivial excitations.
Other topological invariants, such as the many-body Chern
number, require symmetry to define and are determined by
the patterns of symmetry fractionalization and the fusion and
braiding properties of symmetry defects. Recently a general
algebraic theory has been presented in terms of a G-crossed
braided tensor category to completely characterize symmetry-
enriched topological phases for arbitrary symmetry groups by
characterizing the fusion and braiding properties of anyons
and symmetry defects [17]. It is a fundamental open question
to understand how and to what extent, given a single ground
state wave function or reduced density matrix on a local patch
of space, the many-body topological invariants predicted by
this theory can be extracted.

A more trivial class of states, referred to as symmetry-
protected topological (SPT) states [18], have no intrinsic
topological order and are adiabatically connected to trivial
product states if the symmetry is broken. For SPTs, there
have been a series of works demonstrating how to extract
certain symmetry-protected many-body topological invariants
in various special cases [19–23], and how to measure them
using random unitary operations [24]. So far, these works
have focused mainly on the case where the symmetry group
is finite, where one can relate matrix elements of certain oper-
ators to certain finite group cohomology invariants. However,
for SET states, which have intrinsic topological order, the
question of extracting symmetry-protected many-body topo-
logical invariants from a single many-body wave function has
received little, if any, attention.

We note that our approach is particularly inspired by results
of Ref. [23]. In particular, one of the formulas we present is

closely related to, but distinct from, a formula of Ref. [23]
for extracting the Chern number for integer Chern insulators
using the ground state on a cylinder. To obtain correct results,
the formula of Ref. [23] needs to be modified, as we discuss
below.

A. Summary of results

Let us consider a gapped many-body ground state |0〉
in (2 + 1)D with U (1) symmetry. The system possesses an
integer-valued invariant, the many-body Chern number C,
which determines the Hall conductivity through the formula

σH = C
1

s

e2

h
= p

q

e2

h
, (1)

where p and q are coprime. Here s is another integer invariant
that can be understood as follows. We consider the flux inser-
tion operator �̂x for adiabatic insertion of 2π flux through the
x cycle of the torus. s is then the minimal integer such that,
given any ground state |ψ〉 on a torus,

�̂s
x|ψ〉 = |ψ〉. (2)

Alternatively, adiabatically inserting flux at some point in the
system gives a Laughlin quasihole, v, which we refer to as
the vison. v is in general a topologically nontrivial excitation
with fractional charge Qv = p/q, and statistics θv = π p/q. s
is defined as the minimal integer such that vs is a topologically
trivial excitation. Furthermore, all fractional electric charges
of the quasiparticles are integer multiples of 1/s.1 For an
IQH state which does not host any topologically nontrivial
excitations, s = q = 1. However, for a general FQH state, it
follows that s = rq for some integer r.

The state |0〉 that we consider can be defined on any
space. For concreteness we take it to be defined on either
a cylindrical geometry or an open region with coordinates
(x, y) ∈ [0,Lx] × [0,Ly]. In the cylindrical case, we take the
y direction to be compactified.

We present the following formulas for the many-body
Chern number:

C = d

dφ
arg T (φ; s). (3)

Here, arg T (φ; s) = Im ln T (φ; s), and T (φ; s) is defined
below. Note that arg T (φ; s) is linear in φ (in the thermody-
namic limit), so that the slope can be calculated at any value
of φ. This equation is reminiscent of formulas for measuring
Chern number using polarization as a function of the twist
angle on a cylinder. However T (φ; s) defined here depends
only on a single wave function, independent of any underlying
Hamiltonian.

We note that for finite-size systems, it is more robust to
compute the average Chern number from the winding number,

C = 1

2π

∮
dφ

d

dφ
arg T (φ; s), (4)

1See Supplemental Material [25] for a detailed derivation and the
proof of the theorems.
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FIG. 1. Spatial geometries corresponding to the one-layer and bilayer Eqs. (5) and (6) on a cylinder or rectangle. (a) We impose periodic
boundary conditions along the y direction corresponding to a cylinder in the x-y space, and have the Ri regions wrap all along the y cycle so that
�y = Ly. (b) We impose open boundary condition along the y-direction corresponding to a rectangle in the x-y space, and have the Ri regions
to be rectangular. In (a) and (b) to evaluate Eq. (5) regions R1 and R3 in the bra and ket states are swapped, therefore, �3 = �1. (c) Given a copy
A and B of the wave function on the same rectangular geometry, to evaluate Eq. (6), the swap operator is applied to regions RA

1 and RB
1 and to

RA
3 and RB

3 of the two wave functions. Similarly, one can impose periodic boundary conditions on the two copies of the wave function.

where φ winds from 0 to 2π . For T (φ; s), we can consider
two classes of formulas, based on using either a single copy
of the state or two copies of the state:

T (φ; s) = 〈0|W †
R1
(φ)S1,3WR1 (φ)V

s
R1∪R2

|0〉, (5)

T (φ; s) = 〈0A0B|W †
RA
1
(φ)V s†

RB
2
S1A,1BS3A,3BWRA

1
(φ)V s

RA
2
|0A0B〉.

(6)

Let us first consider Eq. (5), which requires a single copy
of the state. We have picked three subregions of the space, R1,
R2, and R3, which can be either cylindrical or rectangular, as
shown in Figs. 1(a) and 1(b), respectively:

Ri = {(x, y)|xi � x < xi+1, y1 � y � y2}. (7)

In the case where the regions are cylindrical as in Fig. 1(a), we
take y1 = 0 and y2 = Ly ∼ 0.We require R1 and R3 to have the
same lengths along the x direction:

�i ≡ |xi+1 − xi|, i = 1, 2, 3,

�y ≡ |y2 − y1|. (8)

When the regions are cylindrical, �y = Ly.
S1,3 is a SWAP operator that swaps every particle in R1 to

its corresponding point in R3 and vice versa. It can be written
as

SR1,R3 =
∏

(x,y)∈R1

SWAP[(x, y), (x′, y)], (9)

where x′ = x + (x3 − x1). Here SWAP(	r, 	r′) moves any par-
ticle at 	r to 	r′ and vice versa. Note that if we consider the

Hilbert space HR of the system restricted to a region R, we
need HR1 and HR3 to be isomorphic so that we can define the
above SWAP operator.

The operators VR andWR(φ), which have support in region
R, take the form

WR(φ) =
∏

(x,y)∈R
ein̂(x,y)φ,

VR =
∏

(x,y)∈R
ei

2πy
�y

n̂(x,y)
, (10)

where n̂(x, y) is the number density operator.
Equation (6) is defined by considering two identical copies

of the given state, |0A0B〉 ≡ |0〉A ⊗ |0〉B, where A and B label
the two copies as in Fig. 1(c). Here, RI

i for I = A,B and
i = 1, 2, 3 now label two identical sets of three regions for
the two copies of the system. In this case as well we can
consider both cylindrical and rectangular geometries; Fig. 1(c)
shows the rectangular case. Equation (6) is written entirely
in terms of local operators, at the expense of requiring two
copies of the system. This is reminiscent of the approach
in Ref. [13] to extract fractional statistics through a product
of purely on-site unitary operations by considering multiple
copies of a topologically ordered state. It is also analogous to
the proposal of Ref. [21] for extracting SPT invariants using
two-copies of the state.

Equations (5) and (6) are special cases of a more general
set of formulas for T (φ; s):

T (φ; s) =
{

〈0|(Wa
R1
(φ)V sc

R1

)†
S1,3

(
Wa

R1
(φ)V sc

R1

)
Wb

R1∪R2
(φ)V sd

R1∪R2
|0〉

〈0|(Wa
R1
(φ)

)†
S1,3Wa

R1
(φ)Wb

R1∪R2
(φ)|0〉

}1/ detU

, (11)

T (φ; s) =
⎧⎨
⎩

〈0A0B|
[
Wa

RA
1
(φ)V sc

RA
1
V sd
RB
2
Wb

RB
2
(φ)

]†
S1A,1BS3A,3B

[
Wa

RA
1
(φ)V sc

RA
1
V sd
RA
2
Wb

RA
2
(φ)

]|0A0B〉
〈0A0B|

[
Wa

RA
1
(φ)Wb

RB
2
(φ)

]†
S1A,1BS3A,3B

[
Wa

RA
1
(φ)Wb

RA
2
(φ)

]|0A0B〉
⎫⎬
⎭

1/ detU

, (12)

where U = (
a b
c d

) is a GL(2,Z) matrix (i.e. a, b, c, d ∈ Z and ad − bc �= 0). Note that any choice of U ∈ GL(2,Z) can be

used to obtain the Chern number. Equations (11)–(13) therefore yield an infinite number of different formulas which in principle
can be used to obtain the Chern number.

If b = 0, then the denominator in Eqs. (11) and (12) is real, and therefore does not contribute to the Chern number. Equations
(5) and (6) correspond to the case whereU = (1 0

0 1

)
is the identity matrix, and we have ignored the denominator.
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We note that the numerator of Eq. (11) for U = ( 0 1
−1 1

)
and s = 1 was proposed in Ref. [23] for extracting the many-body

Chern number for integer Chern insulators from the ground state defined on a cylinder. However, we find that the denominator
is also crucial to obtain correct results.

We find that we can also remove the swap in region R3 above, to instead use the following formula:

T (φ; s) =
⎧⎨
⎩

〈0A0B|
[
Wa

RA
1
(φ)V sc

RA
1
V sd
RB
2
Wb

RB
2
(φ)

]†
S1A,1B

[
Wa

RA
1
(φ)V sc

RA
1
V sd
RA
2
Wb

RA
2
(φ)

]|0A0B〉
〈0A0B|

[
Wa

RA
1
(φ)Wb

RB
2
(φ)

]†
S1A,1B

[
Wa

RA
1
(φ)Wb

RA
2
(φ)

]|0A0B〉
⎫⎬
⎭

1/ detU

. (13)

However, we find from our numerical simulations that
Eq. (13) is not as robust as Eq. (12) for finite size systems.

In the case where the regions Ri are cylindrical, we have an
analytical understanding of these formulas in terms of topo-
logical quantum field theory (TQFT), which is backed up by
extensive numerical simulations. However in the case where
the regions Ri are rectangular, we do not have an analytical
understanding in terms of TQFT. Nevertheless, our numerical
results indicate that the formulas continue to reproduce the
Chern number.

This paper is organized as follows. In Sec. II, we review the
conventional definition of the many-body Chern number using
wave functions with twisted boundary conditions. We then
review how the Chern number and integer s can be extracted
from the many-body polarization operator. In reviewing the
generalization of these concepts to FQH systems, we also
present some results which to the best of our knowledge have
not been addressed before. In Sec. III, we explain our TQFT
approach for the derivation of the many-body Chern number
when the regions Ri are cylindrical. After reviewing theU (1)
Chern-Simons response theory, we reinterpret the many-body
polarization of the Chern number from a topological field
theory viewpoint. Next, we demonstrate how the expectation
value of the SWAP operator for a wave function defined on
a torus can be interpreted in the TQFT in terms of the path
integral on a space-time 3-torus. This allows the introduction
of two noncontractible cycles that are both orthogonal to
the real time direction. The introduction of symmetry defect
operators V and W using just the density operator can then
be used to introduce the appropriate nontrivial background
gauge field configurations that allow extraction of the Chern
number. In Sec. IV, we provide extensive numerical evidence
establishing that the Chern number can indeed be extracted
from a single wave function. Our numerical studies include a
number of bosonic and fermionic FQH states, with Abelian
and non-Abelian topological orders, and for different system
sizes. We also demonstrate that our formulas can detect the
occurrence of topological phase transitions. Next, we study
the effect of changing the support of the symmetry defect
operators WR(φ) and VR for the case where the regions Ri

are cylindrical. We end this section with a numerical study
of the system-size dependence of the magnitude of our SWAP
formulas. We conclude with a discussion in Sec. V and give
additional details of our proofs in four appendices.

II. CHERN NUMBER FROM BERRY PHASE

In this section, we discuss the conventional definition of
the many-body Chern number and its relation to polarization

in one dimension. While some of this section is review, the
discussion in the context of the FQH states is more general
than other treatments and contains some results that are not,
to our knowledge, discussed elsewhere in the literature.

A. Chern number from twisted boundary conditions on torus

Consider a many-body system defined on a torus, with
spatial periodicity Lx and Ly in the x and y directions, re-
spectively. We consider the ground state of the system in the
presence of flux θx and θy (in units where flux 2π is equal
to the flux quantum) through the two noncontractible cycles
of the torus. Equivalently, upon performing a singular gauge
transformation, we consider the ground state |	(θx, θy)〉 with
twisted boundary conditions:

t̂ ( j)i (Li )|	(θx, θy)〉 = eiθi |	(θx, θy)〉, (14)

where i = x, y and t̂ ( j)i denotes the single-particle magnetic
translation operator for the jth particle with a displacement Li
along the ith direction.

1. Integer quantum Hall states

When there is an energy gap above a nondegenerate ground
state, gauge invariance requires that adiabatically varying each
flux from 0 to 2π takes the state back to itself. The Berry
connection is defined as

Ai(θx, θy) = −i〈	| ∂

∂θi
|	〉. (15)

The Chern number is then defined to be

C = 1

2π

∫
d2θF (θx, θy), (16)

where the integration is over 0 � θi � 2π , and the Berry
curvature is

F (θx, θy) = ∂θxAy − ∂θyAx. (17)

The Chern number defined above is quantized to be an integer.
Abstractly, the integral in Eq. (16) evaluates the first Chern
class of a principal bundle with aU (1) structure group over a
two-torus T 2, which must be an integer.

It can be shown that the Hall conductivity is given by

σH = e2

h
2πF (θx, θy). (18)

The fact that F (θx, θy) is itself quantized up to exponentially
small corrections in ξ/Li, where ξ is the correlation length,
without the need to average over the space of boundary con-
ditions, follows from the spectral gap of the Hamiltonian and
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exponentially decaying correlations, as rigorously proven in
Ref. [3], and numerically verified in Ref. [4].

For noninteracting, translationally invariant systems, the
above definition of the Chern number reduces to the TKNN
invariant [26], which assigns an invariant to each band by
averaging the Berry curvature of single-particle Bloch wave
functions in momentum space.

2. Fractional quantum Hall states

Topologically ordered states of matter, such as fractional
quantum Hall states, possess topologically degenerate ground
states on a torus [27], and a fractionally quantized Hall con-
ductivity

σH = p

q

e2

h
, (19)

for p and q coprime. Thus, the above discussion must be
modified [28]. Instead of a single state, we consider the full
multiplet of M topologically degenerate ground states on a
torus, and we define an integer Chern number C̃ as follows.
The non-Abelian Berry connection is given

Aab = −i〈a; (θx, θy)|∂θ |b; (θx, θy)〉, (20)

where a, b = 0, · · · ,M − 1 label theM states on a torus in an
arbitrary choice of basis. This defines a gauge field for aU (M )
bundle on the torus with field strengthF = dA + A ∧ A. The
trace gives an integer Chern number

C̃ = 1

2π

∫
d2θTr F . (21)

The Hall conductivity corresponds to the Berry curvature
averaged over the M degenerate states. Including the average
over the space of boundary conditions then gives

σH = C̃

M

e2

h
= p

q

e2

h
. (22)

As in the IQH case, one uses the fact that the Hall conductivity
is independent of boundary conditions due to the exponen-
tially decaying correlations of the system, and thus one can
average over the space of boundary conditions to relate the
Hall conductivity directly to the Chern number [3].

Note that the above calculation requires the entire multiplet
of the ground states on a torus, and also how they evolve as
the flux θx and θy change from 0 to 2π . A natural question is
thus whether the Hall conductivity can be computed with less
information.

In fact, one does not need to use all of the M states. In
particular, the structure of FQH states on a torus is such
that the M degenerate ground states break up into k sectors.
Within each sector i, there are degenerate states |α, i〉, for
i = 1, · · · , k, and α = 0, · · · ,mi − 1. Here mi is the number
of ground states within the ith sector.

The key defining property of these sectors is that the states
in a given sector are related to each other under the operation
of flux insertion. Concretely, if we define operators �̂x and �̂y

that adiabatically insert 2π flux through the x and y cycles of
the torus respectively (followed by a large gauge transforma-
tion to remove the flux), we can pick a basis of states such

that

�̂x|α, i〉 = |(α + 1) mod mi, i〉,
�̂y|α, i〉 = eiγi ei2παp/q|α, i〉, (23)

for some α-independent phase γi. Note that the algebra of
the flux insertion operators in Eq. (23) requires that mi is an
integer multiple of q:

mi = riq, (24)

where ri is a positive integer.
As an example, consider a bilayer state consisting of a

bosonic 1/2 Laughlin state in each layer. Such a FQH state
has 4 topologically degenerate ground states on a torus, which
can be labeled |ab〉, for a, b = 0, 1. Under flux insertion,
|a, b〉 → |(a + 1) mod 2, (b+ 1) mod 2〉, so that in this ex-
ample M = 4, k = 2, and m1 = m2 = 2. Alternatively, the
bosonic Moore-Read Pfaffian state at ν = 1 has M = 3, k =
2, m1 = 2, m2 = 1.

Thus, we can define a Chern number for each sector
by defining the states as a function of the twist angle,
|α, i; (θx, θy)〉, and considering the Berry connection and cur-
vature:

A( j)
αβ = −i 〈α, j; (θx, θy)|∂θ |β, j; (θx, θy)〉,

F ( j) = dA( j) + A( j) ∧ A( j). (25)

We then have

Ci = 1

2π

∫ 2π

0
dθx

∫ 2π

0
dθyTr F (i), (26)

where the trace is taken within the ith sector. Since the Hall
conductivity is a local observable [3] and the different degen-
erate ground states are indistinguishable by local operators,
we thus expect averaging over all of the degenerate topologi-
cal ground states should give the same result as just averaging
over a particular sector. Therefore,

Ci

mi
= C̃

M
, (27)

which means that Ci/mi is independent of i.
Instead of following mi states as both twist angles θx, θy are

varied from 0 to 2π , an alternative way of obtaining Ci is to
follow a single state, as a single twist angle θx is varied from
0 to 2πmi [1].2 Adiabatic insertion of flux only returns a state
in the ith sector back to itself after mi units of flux have been
inserted. Therefore, we can consider the states as a function of

2Note that in the thermodynamic limit all states are degenerate,
so there is a subtlety in adiabatically following a single state. This
can be achieved in the thermodynamic limit since the eigenvalues
of the flux operator [Eq. (23)] evolve continuously with the twist
angle, which allows continuously following a single state as the twist
angle is varied. Alternatively, one could consider a large finite size
system, in which case the degenerate states have an exponentially
small splitting in the absence of any additional symmetry beyond
charge conservation. To track a state through the level crossings, we
can then use Eq. (28).
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the twist angle through the two holes, |α, i; (θx, θy)〉, and we
can pick a basis such that

|α, i; (θx + 2π, θy)〉 = |(α + 1) mod mi, i; (θx, θy)〉. (28)

Thus, we can define

Ci = 1

2π

∫ 2miπ

0
dθx

∫ 2π

0
dθyFα,i(θx, θy), (29)

where Fα,i(θx, θy) is the U (1) Berry curvature in the space
of fluxes (θx, θy) for the given state |α, i; (θx, θy)〉. Since flux
insertion from 0 to 2πmi cycles the state through every choice
of α, it is clear that Ci is independent of the choice of α.

At this stage it is useful to note that in general,

s = maxi mi = lcm({mi}) = rq, (30)

for some integer r.3 Here lcm refers to the least common
multiple. Thus, we can define

C ≡ s
Ci

mi
= sp/q = rp, (31)

in terms of which the Hall conductivity is

σH = C

s

e2

h
. (32)

The usefulness of C can be seen by observing that the
calculations sketched above require either (a) knowledge of
how all M ground states evolve as the twist angles (θx, θy)
are varied, or (b) knowledge of a specific basis that satisfies
Eq. (23) for a given sector. Suppose instead that we have ac-
cess to a single state on a torus |	(θx, θy)〉 as a function of the
twist angles, which corresponds to an arbitrary superposition:

|	(θx, θy)〉 =
k∑

i=1

mi−1∑
α=0

	α,i|α, i; (θx, θy)〉. (33)

This state is guaranteed to be periodic for (θx, θy) → (θx +
2πs, θy) and (θx, θy) → (θx, θy + 2πs). Thus, we can define
an integer Chern number by defining aU (1) Berry connection
and curvature:

Aψ = −i〈	(θx, θy)|∂θ |	(θx, θy)〉,
Fψ = ∂θxA

ψ
y − ∂θyA

ψ
x ,

Cψ = 1

2πs

∫ 2πs

0
dθx

∫ 2πs

0
dθyFψ. (34)

Again, because the Hall conductivity is a local observable
[3], we expect to obtain the same result regardless of which
state on the torus we pick to compute the Hall conductivity.
Consequently, we expect Cψ/s = Ci/mi, or equivalently,

Cψ = C, (35)

where C is defined in Eq. (31).
To numerically calculate or physically measure the above

quantities, one needs, at the very least, to have access to a
continuous family of wave functions in the neighborhood of

3The proof is given in the Supplemental Material [25].

any given point (θx, θy), which, depending on the resources in-
volved, may be experimentally or computationally intensive.
The main result of this paper is to show how to compute C
given s and a single wave function on a disk. To understand
these results, it is important to review the known method to
extract the Chern number from the polarization of a state as a
function of a single parameter θx.

B. Chern number from many-body polarization

In this section, we briefly review the Resta formula [29–31]
on the relation between the many-body polarization operator
and the Chern number and generalize it to the case where the
ground state subspace is degenerate.

1. IQH states

We first consider an IQH state on a torus. We take the
coordinates to be (x, y) ∈ [0,Lx] × [0,Ly], where the x and y
directions are compactified. Let |	(θx )〉 be the ground state
wave function for an IQH state in the presence of a flux
through the x direction,∮

dxAx = θx. (36)

Without loss of generality, we take the flux in the y direction to
be zero,

∮
dyAy = 0. We note that for the following argument,

one can also consider a cylinder instead of a torus, although
the torus is slightly more convenient in discussing the FQH
case below. Following Resta, we define the exponentiated
polarization operator

Ry =
∏
x,y

ei
2πy
Ly

n̂(x,y)
, (37)

where the product is taken over the whole system. We then
compute

T (θx ) = 〈	(θx )|Ry|	(θx )〉
〈	(θx )|	(θx )〉 . (38)

Adiabatically changing θx is equivalent to applying an elec-
tric field Ex, which induces a current in the ŷ direction due to
the Hall conductivity, which corresponds to a changing polar-
ization along the ŷ direction. The Chern number therefore can
be obtained as

C = d

dθx
arg T (θx ). (39)

A more robust quantity for finite size systems is the wind-
ing number

C = 1

2π

∮
dθx

d

dθx
arg T (θx ). (40)

2. FQH states

The discussion in the case of the FQH states is again
complicated by the existence ofM independent, topologically
distinct states on a torus.

Let us consider a state |	(θx )〉 on the torus as before,
which now can correspond to any possible superposition of
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the different topological sectors:

|	(θx )〉 =
∑

α

∑
i

	α,i|α, i; θx〉, (41)

where the flux corresponds to the holonomy of A along the x
direction.

The complication now is that in general Ry has a nontrivial
action in the degenerate ground state subspace, and therefore
Ry|	(θx )〉 may be orthogonal to |	(θx )〉 [32,33]. Neverthless,
in the thermodynamic limit,

Rs
y|	(θx )〉 ∝ |	(θx )〉, (42)

where s was defined in the previous section.4

Consequently, we consider

T (θx; s) = 〈	(θx )|Rs
y|	(θx )〉

〈	(θx )|	(θx )〉 , (43)

and then define

C = d

dθx
arg T (θx; s). (44)

The Hall conductivity then corresponds to

σH = C

s

e2

h
. (45)

C. Extracting s from ground-state wave functions

In general our formulas require knowledge of an additional
topological invariant, s, to obtain the many-body Chern num-
ber. Here we briefly discuss how s can be obtained given the
degenerate set of ground state wave functions on a torus, with-
out knowledge of the Hamiltonian and without considering
the wave functions in the space of twist angles.

Recall that s is the minimal integer that satisfies, in the
thermodynamic limit,

Rs
y|	〉 = eiλ|	〉, (46)

for any state on the torus, where λ is a global phase factor.
It follows that given the degenerate set of ground state wave
functions on a torus, one can systematically search for s by
applying increasing powers of Ry to the ground states.

We note that one could replace the torus with the cylinder,
in which case we would require a representative ground state
from each of theM topological sectors on the cylinder.

We have verified the above statement numerically in a
number of examples, including the non-Abelian bosonic
Moore-Read Pfaffian state at ν = 1, for which s = 2.5

III. TOPOLOGICAL QUANTUM FIELD
THEORY APPROACH

We now wish to derive Eqs. (5), (6), (11), (12), and (13)
using insights from topological quantum field theory (TQFT),
which describes the low energy, long wavelength universal
properties of topological phases of matter [34–37]. The re-
sults of this section will lead to a TQFT-based derivation of

4See Supplemental Material [25] for derivation.
5See Supplemental Material [25] for derivation.

Eqs. (5), (6), (11), (12), and (13) for the case where the regions
Ri are cylindrical.

In Sec. III A we first briefly review some of the main
tools from TQFT that we use. In Sec. III B, we interpret and
generalize the polarization formula for the many-body Chern
number through the lens of TQFT and the Chern-Simons
response theory and discuss a number of related issues. We
show that calculating the Chern number via the many-body
polarization can be understood in terms of the path integral of
the TQFT on S1 × S2 decorated with two symmetry defects
corresponding to the nontrivial background gauge field con-
figurations.

In Sec. III C, we show how to construct the TQFT path inte-
gral on topologically nontrivial space-time manifolds with the
aid of SWAP operations. For example, for (1 + 1)D TQFTs,
we show how the path integral on a space-time torus T 2 can
be obtained by starting with the wave function on a circle S1.
In Sec. III D, we explicitly present the form of the inserted
symmetry defect operators that effectively induce the appro-
priate nontrivial background gauge field configurations. By
combining this with the results of Secs. III B and III C, we
then arrive at our formulas for the case where the regions Ri

are cylindrical.
Note that in this section we pick units e = h̄ = 1, such that

the Hall conductivity is σH = 1
2π

p
q .

A. Review of TQFT essentials

1. Path integrals and surgery

Given any closed space-time manifold M, the TQFT de-
fines a topologically invariant path integral Z (M ). In the
presence of a U (1) symmetry, the theory can also be coupled
to a background U (1) gauge field A, and the TQFT thus de-
fines a topologically invariant path integralZ (M;A). A simple
example is the TQFT obtained by quantizing a CS theory with
a dynamical (emergent)U (1) gauge field a, for which the path
integral is formally written as

Z (M;A) =
∫

Daei
∫
M (− m

4π ada+ 1
2π Ada), (47)

where in a local coordinate patch ada ≡ εμνλaμ∂νaλd3x.6 The
above TQFT describes the 1/m Laughlin state.

On a manifold M with boundary, the TQFT defines a state
on the boundary ∂M, |	∂M〉, which can also be thought of as
the value of the path integral on M. In the above example, we
can formally obtain a wave function

	∂M (ã,A) =
∫
a|∂M=ã

Daei
∫
M (− m

4π ada+ 1
2π Ada) (48)

in terms of the path integral with fixed boundary conditions on
∂M. For example, the path integral on the solid torus, Z (S1 ×
D2), determines a state on the torus, a state on a torus, |	T 2〉,
as shown in Fig. 2(a).

6To be precise, when nontrivialU (1) bundles are involved, theU (1)
CS theory is most properly defined by viewing M as the boundary
of a 4-manifold W , extending the U (1) gauge fields onto W , and
defining the action in terms of topological θ terms using only the
field strengths [38].

075102-7



DEHGHANI, CIAN, HAFEZI, AND BARKESHLI PHYSICAL REVIEW B 103, 075102 (2021)

FIG. 2. (a) The wave functions of 〈	T 2 (θx )| and |	T 2 (θx )〉, on a
torus in the TQFT corresponds to the path integral on the solid torus,
Z (S1 × D2;A). The inner product 〈	T 2 (θx )|	T 2 (θx )〉 corresponds to
evaluating the path integral on S1 × S2. (b) The space-time manifold
is decorated with two planar symmetry defects along the x direction,
described by Ax = θxδ(x). The magnetic flux θx creates a symmetry
defect described by Ax . (c) The electric field is generated with an ad-
ditional symmetry defect along the x direction as At = 2πsy/Lyδ(t ).
The coloring along At symmetry defect illustrates its nonzero gra-
dient. The crossing of the two symmetry defects generates a finite
result for the Chern-Simons action.

The TQFT also possesses a gluing formula. Suppose that
a closed manifold M is obtained by gluing together two
manifolds M1 and M2 along their boundary according to the
homeomorphism f : ∂M1 → ∂M2, such that M = M1 ∪ f M2.
Then, the path integral on Z (M ) corresponds to

Z (M ) = 〈	∂M1 |�̂ f |	∂M2〉, (49)

where �̂ f is the representation of the gluing map f on the
quantum Hilbert space. For example, using the identity map
on the solid torus restricted to the boundary, we have

Z (S2 × S1) = 〈	T 2 |	T 2〉, (50)

as illustrated in Fig. 2(a).

2. Chern-Simons response theory

The low frequency, long wavelength electromagnetic re-
sponse of the system at low temperatures can be encoded in
an effective action for the electromagnetic gauge field, such
that the path integral of the TQFT Z (M;A) as a function of
the background gauge field A is given by

Z (M;A) = Z (M; 0)ei
p
q SCS[A], (51)

where the Chern-Simons response action is given by

SCS[A] = 1

4π

∫
M
AdA, (52)

where recall that in a local coordinate patch AdA ≡
εμνλAμ∂νAλd3x.

Note that in the above discussion, Z is the path integral
of the TQFT which describes the long wavelength universal
properties of the system. In the path integral of the full mi-
croscopic theory, SCS appears as the leading order term in
an expansion in gauge-invariant combinations of A and its
gradients. The subleading terms consist of increasing powers
and derivatives of the field strength Fμν = ∂μAν − ∂νAμ, such
as the Maxwell term.

The CS response theory thus tells us how to obtain
Z (M;A) in terms of Z (M; 0). The full TQFT thus includes
additional prescriptions for how to compute Z (M; 0), for ex-
ample, from quantizing CS gauge theories with appropriate
dynamical (emergent) gauge fields as in Eq. (47).

Note that Eq. (51) is only well-defined for certain classes
ofU (1) bundles [this is related to the necessity of including s
in Eq. (59) below]. Furthermore, Eq. (52) is strictly speaking
well-defined only for trivialU (1) bundles; for nontrivialU (1)
bundles, a proper definition of the CS term often requires
defining the theory as the boundary of a (3 + 1)D theory [38].
Properly evaluating the CS response term therefore requires
some care, as we will see through our calculations.

3. Symmetry defects

To extract the Chern number, we need to not only create a
nontrivial topology for the space-time manifold, but we also
need to obtain the path integral of the TQFT for certain non-
trivialU (1) bundles; that is, for certain families of background
U (1) gauge field configurations A.

Such a path integral can be obtained by inserting symmetry
defect operators into the correlation functions in the TQFT.
The symmetry defect operators are codimension-1 operators
in space-time that effectively impart phase jumps in the local
trivializations that define the U (1) bundle. Equivalently, they
effectively change the gauge field configuration in the follow-
ing way. Suppose that a symmetry defect operator induces a
phase jump by φ as it is crossed. Let û be the unit vector
normal to the region of support of the operator. Then, the
gauge field configuration is effectively changed by

δA = φδ(u)û, (53)

where u here is the coordinate along the û direction and the
symmetry defect is located at u = 0.

Symmetry defects are essential for understanding how to
couple TQFTs to background G bundles for any symmetry
group G, and have recently played an important role in under-
standing how to fully characterize symmetry in topological
phases of matter. Reference [17], for example, developed an
algebraic theory of symmetry defects for (2 + 1)D topological
orders.

075102-8



EXTRACTION OF THE MANY-BODY CHERN NUMBER FROM … PHYSICAL REVIEW B 103, 075102 (2021)

B. Chern number from TQFT path integrals

1. Chern number from polarization and M = S2 × S1

Here we reinterpret the calculation of the Chern number
in terms of the many-body polarization in Sec. II B from the
point of view of the path integral of the TQFT. This follows
arguments sketched in Ref. [23]; however, here we provide a
more detailed calculation that considers a concrete topology
of a space-time manifold and the associated gauge field con-
figurations. Moreover, we also take into account the nontrivial
normalization factor that was missed previously.

As discussed above, the state |	T 2 (θx )〉 on a torus in the
TQFT corresponds to the path integral on the corresponding
solid torus, Z (S1 × D2;A). Note that the precise state |	T 2〉
that is obtained on the torus is determined in the path integral
calculation by inserting the appropriate quasiparticle Wilson
loop (or superposition of Wilson loops) along the topologi-
cally nontrivial cycle of S1 × D2.

As shown in Fig. 2(a), let us fix coordinates on the S1 × D2

as (x, y, t ), where x ∈ [−Lx/2,Lx/2] lies along the first S1 and
(y, t ) label the coordinates on the D2. t and y are chosen to lie
along the radial and angular directions on theD2, respectively.

The state |	T 2 (θx )〉 is defined for a system with nontrivial
flux,

∮
x Ax = θx. Without loss of generality we can consider

this to arise from a gauge field configuration Ax = θxδ(x),
Ay = 0. Thus, the state |	T 2 (θx )〉 corresponds to evaluating
the path integral on Z (S1 × D2;A) with the gauge field con-
figuration (At ,Ax,Ay) = (0, θxδ(x), 0), as shown in Fig. 2(b).

The inner product 〈	T 2 (θx )|	T 2 (θx )〉 therefore corre-
sponds to evaluating the path integral on (S1 × D2) ∪ (S1 ×
D2) = S1 × S2, where the two factors of S1 × D2 are glued to
each other by the trivial boundary map.

We therefore conclude that in the TQFT,

〈	T 2 (θx )|	T 2 (θx )〉 = Z (S2 × S1;A(0) ), (54)

with the background gauge field configuration

A(0) = [0, θxδ(x), 0]. (55)

Here we have picked coordinates as follows. The x direction
corresponds to the S1, as above. The S2 corresponds to two
disks glued together; y is taken to lie along the angular di-
rection on each disk, while t ∈ [−T, 0] lies along the radial
direction of the first disk, and t ∈ [0,T ] lies along the negative
of the radial direction of the second disk.

Since only the x component of A(0) is nonzero, we have

SCS[A
(0)] = 0. (56)

Therefore, using Eq. (51), we conclude

Z (S2 × S1;A(0) ) = Z (S2 × S1; 0). (57)

Let us now consider the numerator of the expectation value
T (θx; s) in Eq. (43), and interpret the polarization operator
Eq. (37), as an additional symmetry defect operator in Chern-
Simons theory. Specifically, the numerator corresponds to the
path integral with an inserted operator

ei
2πs
Ly

∫
dydxyn̂(x,y) = ei

∫
M jt At , (58)

where we identified it as a source term with jt ≡ n̂ as the
microscopic density operator, and At = 2πsy

Ly
δ(t ) as the t-

component of the gauge field. We have chosen the t coordinate

so that the insertion occurs at t = 0. In other words, we can
interpret the numerator of T (θx; s) in Eq. (43) as computing
the path integral of the full many-body system with the gauge
field configuration

(
A(1)
t ,A(1)

x ,A(1)
y

) =
[
2πys

Ly
δ(t ), θxδ(x), 0

]
, (59)

as shown in Fig. 2(c). Therefore, the inner product in the
numerator of Eq. (43) can be written in the TQFT as

〈	T 2 (θx )|ei
∫
T 2 At jt |	T 2 (θx )〉 = Z (S2 × S1;A(1) ). (60)

Note that for this expectation value not to vanish, the factor of
s is required in Eq. (59). While we argued this in Sec. II B, it is
also possible to derive it in the TQFT description, for example
for the CS gauge theory of Eq. (47), although we will not do
so here.

We can equivalently interpret the path integral in the pres-
ence of this gauge field configuration as containing symmetry
defects, which correspond to codimesion-1 surfaces in space-
time across which the phase associated with the U (1) bundle
jumps. This is illustrated in Fig. 2(b). In the present case,
we have a phase jump of θx across a plane normal to the x̂
direction, and a phase jump of 2πys/Ly across a plane normal
to the t̂ direction. Figure 2(b) illustrates the corresponding
diagram for the gauge field configuration A(0).

The gauge field configuration of Eq. (59) corresponds to an
electric field,

Ey = ∂yAt − ∂tAy = 2πs

Ly
δ(t ). (61)

To evaluate the CS term, we observe that when Ay = 0 we can
write the CS term as

SCS = 1

2π

∫
M
AxEy. (62)

Thus, we get

SCS[A
(1)] = sθx. (63)

Note that if we directly substitute Eq. (59) into Eq. (52), we
would naively get SCS = 1

4π

∫
M Ax∂yAt , which differs from

Eq. (62) by a factor of 2. The correct result is Eq. (62), as can
be verified by considering the fact that the Hall conductivity
gives jx = δS

δAx
= σHEy = 1

2π
p
qEy. The discrepancy arises as

there are subtleties in defining U (1) CS theory for nontrivial
U (1) bundles [38]. The gauge field configuration we consider
has a nonzero electric flux

∫
dtdyFty through the S2 param-

eterized by the (y, t ) coordinates. We have circumvented this
in the usual way by using a gauge field configuration which is
not single-valued [Eq. (59) is explicitly not periodic in the y
direction], but which must be used carefully.

We thus conclude that in the TQFT,

Z (S2 × S1;A(1) ) = eiθxsp/qZ (S2 × S1; 0). (64)

We therefore conclude that

T (θx, s) � Z (S2 × S1;A(1) )

Z (S2 × S1;A(0) )
= ei

p
q sθx , (65)

where A(1), A(0) are the gauge field configurations of Eqs. (59)
and (55).
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Note that since the electric field is not smooth, one will
in general expect contributions to the full many-body path
integral beyond simply the CS response term, i.e., beyond the
contribution of the TQFT. However, these additional contribu-
tions arise from local contributions to the action involving the
field strength and are thus independent of

∮
Ax = θx. There-

fore the proportionality factor in Eq. (65) is independent of θx.
Equation (65) thus implies that the phase of T (θx; s) is linear
in θx, with a slope given by the many-body Chern number
C = sp/q.

We also note that while the last equality in Eq. (65) is
rigorous in the mathematical formulation of TQFT, the pro-
portionality between the microscopic calculation of T (θx; s)
and the TQFT path integrals relies on the approximation that
the TQFT captures the relevant physics.

Above we considered the case where M = S2 × S1. For
the purposes of the discussion in the subsequent sections, we
note that one can also consider the path integral on M = T 3

by treating (x, y, t ) as independent periodic coordinates, and
the computation of the CS action associated with the gauge
field configurations of Eqs. (59) and (55) would proceed iden-
tically.

2. Gauge field configurations related by GL(2,Z)

It will be useful for our later discussion to also consider
other gauge field configurations that are related to the current
one by changing the cycles along which the symmetry de-
fects have support. Specifically, if we consider the case where
the space-time manifold M = T 3, we can consider SL(3,Z)
coordinate transformations 	x′ = U 	x, where 	x is the 3-vector
	xT = (x, y, t ) and U ∈ SL(3,Z). Under this transformation,
the gauge fields transform as derivatives: 	A = UTA′. The CS
action is invariant under such a transformation. In the subse-
quent discussion, we will focus specifically on the case where
y is left invariant, but (x, t ) transform under an element of
SL(2,Z).

More generally, we consider a new gauge field configura-
tion A′ such that (∮

x A
′∮

t A
′

)
= U

(∮
x A∮
t A

)
, (66)

where U ∈ GL(2,Z). Note that any such U can be de-
composed as U = U1U2, where U2 ∈ SL(2,Z) and U1 =
(
detU 0
0 1). We consider theU2 transformation to be obtained

by an SL(2,Z) coordinate transformation in the (x, t ) space as
mentioned above, which keeps the CS action unchanged. We
consider the U1 transformation to be obtained by rescaling θx
by detU , which has the effect of changing the CS action by a
factor of detU .

C. Space-time surgery and virtual torus through SWAP

Here we use the surgery method in TQFT to construct
the TQFT path integral on topologically nontrivial space-time
manifolds by starting with the state on simple space mani-
folds. In particular, we employ the SWAP operation which
has been introduced to detect the order parameter of one-
dimensional SPT phases [21], and more recently has been

reinterpreted via TQFT as a simple tool for creating a genus
in the space-time manifold [22,23].

1. Warmup: (1 + 1)D TQFT

For the purpose of our subsequent discussion, we first re-
view how to obtain the path integral of a (1 + 1)D TQFT on a
torus, T 2, in terms of the wave function on a circle S1 = ∂D2,
as illustrated in Fig. 3. Let us parametrize space by x, from
0 to Lx. We pick three regions, R1 = (x1, x2], R2 = (x2, x3],
R3 = (x3, x4], such that �1 = (x2 − x1) = (x4 − x3) = �3 and
(x3 − x2) = �2. We then consider the map

f (x) =
⎧⎨
⎩
x + �1 + �2 x ∈ R1,

x − |�1 + �2| x ∈ R3,

x x /∈ R1 ∪ R3.

(67)

The resulting manifold (∂D2) ∪ f (∂D2) is topologically
equivalent to a torus, as illustrated in Fig. 3. Note that f in
this case is piece-wise continuous, so to obtain the torus we
consider smoothing out the singularities at the boundaries of
R1 and R3. We therefore conclude that one can obtain the
TQFT path integral on a torus through the inner product

Z (T 2) = 〈	S1 |S1,3|	S1〉, (68)

where S1,3 is the SWAP operation that implements the map f
above.

2. Cylindrical regions Ri in (2 + 1)D

Extending the above arguments to (2 + 1)D, we see that
the path integral on the 3-torus, Z (T 3), can be similarly ob-
tained in terms of the state |	T 2〉:

Z (T 3) = 〈	T 2 |S1,3|	T 2〉, (69)

where now S1,3 corresponds to the map (x, y) → ( f (x), y).
Note that since T 2 = S1 × S1, the surgery creates a torus from
one of the S1 circles, according to Eq. (68) and the other
circle simply factors through independently. Therefore, the
path integral will be on T 3 = T 2 × S1.

We note that an alternate way of creating the space-time
manifold T 3 is to use two copies of the state on T 2, as shown
in Fig. 4, which corresponds to the following inner product in
the TQFT:

Z (T 3) = 〈
	B

T 2

∣∣〈	A
T 2

∣∣S1A,1BS3A,3B

∣∣	A
T 2

〉∣∣	B
T 2

〉
. (70)

Here we take the regions RA
1 , R

A
3 (and RB

1 , R
B
3 ) to be defined as

in the single layer case.
We will also note the fact that a single SWAP between two

copies of the state on T 2 creates a space-time manifold that is
topologically equivalent to S1 × S2:

Z (S1 × S2) = 〈
	B

T 2

∣∣〈	A
T 2

∣∣S1A,1B

∣∣	A
T 2

〉∣∣	B
T 2

〉
(71)

The above results are summarized in Table I.

D. Symmetry defect operators and nontrivial background
gauge field configurations

At this point, we are ready to combine the results of the
previous Secs. III B and III C to obtain our formulas Eqs. (5),
(6), (11), (12), and (13).
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FIG. 3. (a) Disk, D2. The state |	∂D2 〉 defined on S1 = ∂D2 in the TQFT can be obtained by evaluating the path integral on a disk. Regions
R1, R2, R3 along with the time direction are depicted. (b) Gluing together two disks according to the map f in Eq. (67). The gluing scheme
is depicted both with the arrow and color scheme. (c) Result of gluing. In the first step one applies a π -rotation to the right empty region
(white) on the sphere. In the second step, identification of the arrows creates a handle. The final object is topologically equivalent to a torus.
� are homeomorphisms that continuously deform the manifold. Two noncontractible cycles of the torus (α, β) are depicted in blue and red. In
Sec. III D 1, the symmetry defect operators V andW will have support on the two noncontractible cycles.

So far we have seen how to construct the path integral
on various nontrivial space-time manifolds using nontrivial
gluing operations corresponding to SWAP between various
cylindrical subregions of space. Now we consider obtaining
the path integral on these manifolds in the presence of nontriv-
ial gauge field configurations,Z (M;A) by inserting symmetry
defect operators into the expectation values.

1. Single layer formula for cylindrical regions Ri

We start with the case where we obtain the path integral
Z (T 3) from the wave function on a torus T 2 by applying
a SWAP between two cylindrical subregions R1 and R3, as
described in Sec. III C 2.

We wish to consider a configuration of symmetry defects in
the virtual space-time torus which corresponds to the symme-
try defects in Figs. 2(b) and 2(c). To obtain this configuration,
from Fig. 3 we see that we should insert symmetry defect
operators with support along the α and β loops in the (x, t )
space and for all y. Here the symmetry defect with support
along α induces the gauge field configuration of Ax in the
notation of Sec. III B. Similarly the symmetry defect with
support along β induces the gauge field configuration of At

in the notation of Sec. III B. This configuration of symmetry
defects is explicitly illustrated in Fig. 5.

We are therefore led to the expectation value:

Z (T 3;A) = 〈	T 2 |W †
R1
(φ)S1,3WR1 (φ)V

s
R1∪R2

|	T 2〉. (72)

Here, WR1 (φ) creates a phase jump of φ in the t̂ direction
(which is normal to R1), while V s

R1∪R2
creates a phase jump of

2πys/Ly in the t̂ direction (which is also normal to R1 ∪ R2),
where Ly is the length of the compactified y direction.

From this, we conclude that we can obtain the many-body
Chern number C from a single state in the TQFT

eiCφ = Z (T 3;A(1) )

Z (T 3;A(0) )

= 〈	T 2 |W †
R1
(φ)S1,3WR1 (φ)V

s
R1∪R2

|	T 2〉
〈	T 2 |W †

R1
(φ)S1,3WR1 (φ)|	T 2〉 . (73)

Note that the denominator is real and thus can be ignored
when extractingC in terms of the phase of the right-hand side.

Furthermore, note that to extract the Chern number, it is
sufficient to replace the state on a torus |	T 2〉 in the above
formula with the state (or reduced density matrix) on any

TABLE I. Space-time surgery with SWAP.

Number of copies Spatial manifold of |	〉 Space-time manifold M for Z (M ) = 〈	|	〉 Space-time manifoldM for Z (M ) = 〈	|S|	〉
(1+1)D

1 S1 S2 T 2 [Fig. 3(c), Eq. (68)]
2 S1 S2 S2 (1-SWAP)
2 S1 S2 T 2 (2-SWAP) (Fig. 4)

(2+1)D, Cylindrical regions Ri

1 T 2 =S1×S1 S2 × S1 [Fig. 2, Eq. (50)] T 3 = S1 × T 2 [Fig. 3(d), Eq. (69)]
2 T 2 S2 × S1 S1×S2 (1-SWAP) [Eq. (71)]
2 T 2 S2 × S1 T 3 (2-SWAP) [Eq. (70)]
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FIG. 4. Applying two SWAPs using two copies of the system. (a) Schematics of of the SWAP operation between two copies, when
the wave functions are given on a torus. Gluing scheme is illustrated by gluing like colors together. (b) Since the y direction is an
S1, we take a cross-section at a fixed S1. The cross-section consists of two disks A and B, which under the SWAPs and inner product
get glued to another pair of disks using the gluing map. The result is that the cross-section becomes a torus T 2, corresponding to:
Z (T 2) = 〈	B

S1
|〈	A

S1
|SRA1R

B
1
SRA3R

B
3
|	A

S1
〉|	B

S1
〉. (c) Another equivalent illustration of the gluing process by focusing on a patch of the cross-section

corresponding to a fixed choice of y.

FIG. 5. Illustration of symmetry defects for the single copy case.
(a) Cross-section of the gluing and symmetry defect configurations,
applicable to both the case of cylindrical and rectangular Ri. The
gluing scheme is depicted with the color scheme. The support of
the W (φ) and V operators becomes topologically equivalent, after
gluing, to the α and β loops, respectively, shown in Fig. 3. (b) Il-
lustration of symmetry defect sheets for the case of cylindrical Ri

regions, assuming that the y direction is compactified.

region that contains the regions Ri. Since all of the operators
in the matrix element above have support in region R1, R2,
and R3, the properties of the wave function away from R1,R2,
R3 are unimportant for extracting the Chern number. It is thus
unnecessary to require the x direction to be compactified, so
it is sufficient to use the state (or reduced density matrix) on a
cylinder, |	S1×I〉.

To obtain the explicit form of the symmetry defect op-
erators, we must make contact with the microscopic theory
from which the TQFT emerges as a long wavelength descrip-
tion. (Strictly speaking, the TQFT does not possess any local
operators out of which the symmetry defect operators can
be constructed). Since the support of the symmetry defects
is orthogonal to the real time direction, these operators can
simply be written in terms of the density operator n̂(x, y) in
the microscopic theory. The main observation is that inserting
ei

∫
λ(x,y)n̂(x,y) into a correlation function at time t = 0 has the

effect of changing A → A + λ(x, y)δ(t )t̂ . We thus conclude
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that we can write

WR(φ) =
∏

(x,y)∈R
eiφn̂(x,y),

VR =
∏

(x,y)∈R
ei2πy/�yn̂(x,y), (74)

where �y is the length of R along the y direction. In the case
considered in Eq. (73), �y = Ly. We find, therefore, that the
Chern number can be obtained from Eqs. (3)–(5), for the case
where the wave function is defined on a torus or cylinder.

In the above discussion, we chose two specific noncon-
tractible cycles, α and β which intersect once to arrive at the
formula of Eqs. (73) and (5). In general we could consider any
two noncontractible cycles on the torus, related to (α, β ) by a
GL(2,Z) transformation. Specifically, let us consider(

α′
β ′

)
= U

(
α

β

)
, (75)

with U = (
a b
c d

), a, b, c, d ∈ Z. This then leads to the

formula

ei(detU )Cφ =
{

〈	T 2 |(Wa
R1
(φ)V sc

R1

)†
S1,3

(
Wa

R1
(φ)V sc

R1

)
Wb

R1∪R2
(φ)V sd

R1∪R2
|	T 2〉

〈	T 2 |(Wa
R1
(φ)

)†
S1,3Wa

R1
(φ)Wb

R1∪R2
(φ)|	T 2〉

}
, (76)

which thus yields Eq. (11). The appearance of detU is due to
the fact that the CS action changes by a factor of detU under
such a transformation.

We note that while the denominator Z (T 3;A(0) ) = 1 in
the TQFT, we find that when evaluating the correspond-
ing expectation values in the full microscopic theory, the
denominator is indeed required to obtain correct results.
In other words, the correspondence between the expecta-
tion values in the microscopic theory and the expectation
values in the TQFT holds only for the ratios in the
above equations, which is also natural from the form of
Eq. (43).

2. Bilayer formulas for cylindrical regions Ri

Following the discussion in Sec. III C, we see that we can
also obtain the appropriate gauge field configurations on the
space-time manifold T 3 by considering two copies of the
state. We can read off the support of the symmetry defect
operators from Fig. 4. The two symmetry defects, W (φ) and
V , are inserted in the space-time manifold such that after
applying the SWAP operator and forming the virtual torus in
the x-t plane, the two symmetry defects will wrap around the
noncontractible cycles of the torus. This is explicitly shown in
Fig. 6 which leads to the following formula:

eiCφ =
〈
	B

T 2

∣∣〈	A
T 2

∣∣W †
RA
1
(φ)V s†

RB
2
S1A,1BS3A,3BWRA

1
(φ)V s

RA
2

∣∣	A
T 2

〉∣∣	B
T 2

〉
〈
	B

T 2

∣∣〈	A
T 2

∣∣W †
RA
1
(φ)S1A,1BS3A,3BWRA

1
(φ)

∣∣	A
T 2

〉∣∣	B
T 2

〉 . (77)

Again considering a different set of noncontractible cycles related byU ∈ GL(2,Z), we arrive at Eq. (12).
As discussed in Sec. III B, the nonzero contribution to the CS action arises because of the crossing between the two distinct

symmetry defects, which here are associated with theW and V operators. Since this crossing occurs away from regions RA
3 , R

B
3 ,

we can remove SRA
3R

B
3
from the above formula, to obtain the following:

eiCφ =
〈
	B

T 2

∣∣〈	A
T 2 |W †

RA
1
(φ)V s†

RB
2
S1A,1BWRA

1
(φ)V s

RA
2

∣∣	A
T 2

〉∣∣	B
T 2

〉
〈
	B

T 2

∣∣〈	A
T 2 |W †

RA
1
(φ)S1A,1BWRA

1
(φ)

∣∣	A
T 2

〉∣∣	B
T 2

〉 . (78)

IV. NUMERICAL RESULTS

In this section we present extensive numerical simulations
of the formulas of Eqs. (5), (6), (11), (12), and (13) for
IQH and FQH states. In Sec. IVA we present our results
demonstrating how the Chern number can be extracted using
Eqs. (5), (6), (11), (12), and (13) for both cylindrical and
rectangular geometries. In Sec. IVB we study in detail how
the results change when the supports of V and W change to
better understand the formula and the relation to the TQFT
derivation of Sec. III in terms of crossing of symmetry de-
fects. Finally, in Sec. IVC we study the dependence of the
magnitude of the expressions in Eqs. (5), (6), (11), (12), and
(13) with size of the regions.

A. Chern number

Here we provide numerical evidence for the formulas ob-
tained in the previous sections. We consider several integer
and fractional quantized Hall bosonic and fermionic states and
also a free-fermion Chern insulator state. Using both the sin-
gle and bilayer formulas for both rectangular and cylindrical
geometries, we show that our numerical results are consistent
with the analytical expectations.

For quantum Hall states, we use matrix product state
(MPS) simulations on both cylindrical and rectangular ge-
ometries. For bosonic states, we consider the Laughlin state
with filling fraction ν = 1/2 [39], the bosonic Jain state at
ν = 2/3, the bosonic integer quantum Hall state at ν = 2
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FIG. 6. Illustration of symmetry defects for the bilayer case. The
SWAP operator and identification is applied to the bra and ket wave
functions in the A and B copies of the system. To create a virtual
genus in the x-t plane, two SWAP operations should be applied
locally between the A and B copies of the wave function in regions
R1 and R3. After applying the SWAP operation, the symmetry de-
fects W (φ) and V , will only cross each other in the intersection of
region R1 and R2. Consequently, for large system sizes, the SWAP
operator in region R3, drawn with dashed lines, is optional and can
be removed.

[40] and the Moore-Read state with ν = 1. For fermions,
we consider the integer quantum Hall state with ν = 1,
and a free-fermion Chern insulator. For these noninteracting
fermionic models, we use the Slater determinant represen-
tation of the many-body wave function of the system. This
allows us to access larger system sizes compared to the
interacting bosonic/fermionic cases. In particular, we use
the free-fermion model to investigate the effect of chang-
ing the support of the symmetry defect operators on the
Chern number in Sec. IVB, and to study the scaling of var-
ious expectation values with respect to the subregion size in
Sec. IVC.

We start with the interacting Hofstadter model on a square
lattice, which can realize a variety of fractional quantum Hall
states at different values of the filling and flux per plaquette
[40,41]. The Hamiltonian is of the form

H = −J
∑
x,y

ei2παxa†x,y+1ax,y + a†x+1,yax,y + H.c., (79)

where α is magnetic flux per plaquette, the sum is taken
over x = 1, · · · ,Lx and y = 1, · · · ,Ly, where Lx and Ly are
the number of lattice sites along the x and y directions, re-
spectively. For the bosonic quantum Hall system, with ν =
1/2, 2/3 and 2, the operator a(x, y) obeys the commutation
relation [a(x, y), a†(x′, y′)] = δx,x′δy,y′ and the hardcore con-
dition [a†(x, y)]2 = 0. For the Pfaffian MR-state with ν = 1,
we impose the three body interaction [a†(x, y)]3 = 0. For
the fermionic quantum Hall system, with ν = 1, the opera-
tors obey the anti-commutation relation {a(x, y), a†(x′, y′)} =
δx,x′δy,y′ . For low flux density α � 1, the lattice model is
known to produce many-body states similar to the continuum
model [39]. The ground state is obtained by performing den-
sity matrix renormalization group (DMRG) simulation [42].

We first consider a cylindrical geometry, where we impose
periodic boundary conditions along the y axis of Fig. 1(a)
and choose the regions Ri to wrap the y direction, such that
�y = Ly. The numerical results for arg[T (φ; s)] as defined in
Eqs. (11) and (12), along with the choice of parameters in the
simulation, are shown in Fig. 7. As we can see in this figure,

(a) (b)

(c) (d)

FIG. 7. The simulation results for single and bilayer formulas
[Eqs. (11) and (12)] with cylindrical geometry for quantum Hall
states. For the bosonic Laughlin state with filling fraction ν = 1/2,
we choose α = 1/6, Ly = �1 = �2 = �3 = 6, Lx = 30 and s = 2. For
the Jain sequence state with ν = 2/3, α = 1/9, Ly = �1 = �2 = �3 =
9, Lx = 45 and s = 3. For the bosonic integer quantum Hall state
with ν = 2, α = 1/6, Ly = �1 = �2 = �3 = 6, Lx = 40 and s = 1.
For the fermionic integer quantum Hall state with ν = 1, α = 1/6,
Lx = 40, Ly = �1 = �2 = �3 = 6 and s = 1. For the bosonic Pfaffian
MR-state with ν = 1, α = 1/6, Lx = 60, Ly = 6, �1 = �2 = �3 = 12
and s = 2. CorrespondingU ’s are shown in each panel.

if the system size is sufficiently large, the slopes of the curves
are nearly constant and thus can be used to obtain the Chern
number.

We also consider systems in the rectangular geometry as
shown in Figs. 1(b) and 1(c). The length of the swapped
regions Ri along the y direction is denoted by �y while the
total length along the y direction is denoted by Ly as before.
Since the Landau level of the Hofstadter model is not flat for
small system sizes in the rectangular geometry, we do not
find robust FQH states at ν = 2/3 and ν = 2 at the system
sizes that we access. The winding number of arg[T (φ; s)] is
an integer by definition, however it jumps to different values
and is not converged with system size for ν = 2/3 and ν = 2.
This is also the case even when we flatten the bands using the
Kapit-Mueller tunneling terms [43]. We thus present in Fig. 8
the result of the Chern number calculation for the ν = 1/2
Laughlin state and the fermionic integer quantum Hall state
with ν = 1, which are robust to boundary effects in our sim-
ulations. As expected the winding number of the phase of the
twist operator generates the correct Chern number. However,
unlike in Fig. 7, where we observe a linear behavior in φ,
the finite size effects are significantly larger; nevertheless the
winding number still correctly reproduces the Chern number
in the system sizes that we have accessed.

In Fig. 9, we present the results for the bilayer formula
where the SWAP in region R3 is removed, as in Eq. (13).
Although both the single and two SWAP bilayer formulas of
Eqs. (12) and (13) can be used to obtain the Chern number,
the single SWAP formula Eq. (13) is significantly easier to im-
plement in an experiment, and therefore, this formula is used
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(a) (b)

(c) (d)

FIG. 8. The simulation results for single and bilayer formulas
[Eqs. (11) and (12)] with rectangular geometry for quantum Hall
states. For the bosonic Laughlin state with ν = 1/2, we choose α =
1/6, Lx = 40, Ly = 9, and �1 = �2 = 9, �y = 7 and s = 2. For the
fermionic integer quantum Hall state with ν = 1, α = 1/4, Lx = 30,
Ly = 8, �1 = �2 = �y = 8 and s = 1. Corresponding U ’s are shown
in each panel.

in Ref. [14]. The results are consistent with the theoretical
prediction. We summarize the simulation results for Figs. 7,
8, and 10 in Table II.

To provide more evidence for the formulas of Eqs. (5), (6),
(11), (12), and (13) in the rectangular geometry, we perform
finite size scaling for Eq. (13), as shown in Fig. 10(a). We
observe that when the areas of the regions R1 and R2 are
large enough, the resulting Chern number converges to one. In
addition, we also consider a fractional quantum Hall to Mott
insulator phase transition by adding an extra potential term
V = M

∑
(−1)px+yn̂(x, y), where px = �αx� in Eq. (79). The

system undergoes a phase transition from a FQH phase to a
Mott insulator when M is increased [39]. In Fig. 10, we plot
the correlation length ξ and the Chern number computed by
Eq. (13) as functions of M. Although the correlation length
peaks around the critical point (M ∼ 0.2), it remains finite
due to the finite bond dimension of the MPS which is chosen
to be χ = 200. We can see that the value of M at which the
phase transition in the Chern number occurs and the the value
of M at which the extremum of the correlation length oc-

(a) (b)

FIG. 9. The simulation result of single SWAP for bilayer
[Eq. (13)]. (a) Cylindrical geometry, with layer parameters identical
to Fig. 7. (b) Rectangular geometry, with layer parameters identical
to Fig. 8.

(a) (b)

FIG. 10. (a) The simulation result for bilayer formula Eq. (13)
with various region size. We consider the Laughlin state with ν =
1/2, we choose α = 1/6, Lx = 40, Ly = 12 and �1 = �2 = �x and

U = (
0 1

−1 0
). (b) Phase transition of a Laughlin state to a Mott

insulator. The correlation length ξ (red) and the Chern number C
(blue) are shown as functions ofM.M is defined in the main text. We

choose Lx = 25, Ly = 12, α = 1/6 andU = (
0 1

−1 0
). The correla-

tion length remains finite around the critical point due the truncation
of the bond dimension.

curs, are approximately coincident. This coincidence, which
by increasing the bond dimension becomes more accurate,
indicates that the SWAP formula in Eq. (13) can still detect
the Chern number correctly, even in rectangular geometries.

We have also numerically evaluated with our DMRG
simulations both the single layer and bilayer formulas
with cylindrical and rectangular geometry, Eqs. (11) and
(12), with all possible choices of U ∈ SL±(2,Z) that have
|a|, |b|, |c|, |d| � 1. While cases with |a| > 1 and b = 0
trivially correspond to rescaling φ, in general choosing
|a|, |b|, |c|, |d| > 1 does not typically give stable results at the
system sizes that are accessible to us.

As the last example, we apply our swap formulas to IQH
systems in the continuum limit. Specifically, for integer filling
factors ν = 1, 2, we verify Eq. (11) using Landau level wave
functions on a torus [44]. To form a torus, we consider a
rectangle with perpendicular sides Lx and Ly along the x and

TABLE II. Summary of the numerical simulations. B/F stands
for bosonic/fermionic states, respectively. MR stands for Moore-
Read state.

Model s C Formula Geometry Figure

QH ν = 1/2 B 2 1 Eqs. (11) and (12) Cylinder Fig. 7
QH ν = 2/3 B 3 2
QH ν = 2 B 1 2
QH ν = 1 F 1 2
QH ν = 1 B MR 2 2
QH ν = 1/2 B 2 1 Eqs. (11) and (12) Rectangle Fig. 8
QH ν = 1 F 1 1
QH ν = 1/2 B 2 1 Eq. (13) Cylinder Fig. 9
QH ν = 2/3 B 3 2
QH ν = 2 B 1 2
QH ν = 1 F 1 1
QH ν = 1 B MR 2 2
QH ν = 1/2 B 2 1 Rectangle
QH ν = 1 F 1 1
IQH ν = 1 F 1 1 Eq. (11) Torus Fig. 11
Chern insulator 1 1 Eq. (11) Cylinder Fig. 12
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FIG. 11. (a) The simulation result for single-layer formula
Eq. (11). We consider the lowest and first excited Landau levels
with ν = 1 and 2, respectively. We choose Lx = 8π , Ly = 6 so that
Nφ = 24. We discretize the torus by choosing Nx = Ny = 100 and
n1 = n2 = 15.

y axes, respectively, and impose periodic boundary conditions
along these two axes. We pierce the torus with a perpendicular
magnetic field B and define the number of magnetic flux
as Nφ = LxLy/(2π�2B), where �B = √

h̄e/B is the magnetic
length. We employ the Landau gauge to write the gauge po-
tential as A = Byx̂ so that the single-particle Hamiltonian of
the system becomes,

H = 1

2m

[(
px − eB

c
y

)2

+ p2y

]
. (80)

Using the complex plane coordinate z = x + iy, we construct
the ladder operators as, a† = 1

2 (y − 2i∂z ), and a = 1√
2
(y −

2i∂z̄ ) [45]. Furthermore, to simplify our notation, we work
in the units where the magnetic length and the cyclotron fre-
quency ωc = eB/m, are set to unity. Using this convention, we
can form an orthogonal basis using the Nφ degenerate states in
the lowest Landa level. After normalization, these eigenstates
read,

ψn(x, y) = e− 1
2 (y−yn )2√
Lx

√
π

e−iynxϑ3

(
πNφ

Lx
(z − τxn)

∣∣∣∣Nφτ

)
, (81)

where we have defined xn = nLx/Nφ , yn = nLy/Nφ , and τ =
iLy/Lx, and used the Jacobi theta function which are given by
the following series,

ϑ (z|τ ) =
∞∑

m=−∞
e2imzeiπτm2

. (82)

We also note that the excited states can be obtained from the
above wave function by applying the positive integer powers
of the creation operator. Next, to use these wave functions in
our simulation, we need to discretize the Euclidean coordi-
nates on the torus by selecting Nx and Ny uniformly distributed
points along the x and y cycles of the torus, respectively.
Correspondingly, the support of the region R1 and R2 along the
x axis is determined by the number of points along this axis
which is denoted by n1 and n2. The result of our simulation
based on this discretization is depicted in Fig. 11 which shows

straight lines with the twist angle φ. We note that to see a
smooth linear behavior as shown here, the number of magnetic
flux Nφ should be relatively large Nφ � 10.

Finally, we remark that since in our derivation of the for-
mulas we do not make any assumptions about the discreteness
or continuity of the wave functions, based on the above nu-
merical evidence we expect that our should be applicable to
variational FQH wave functions such as the Laughling wave
functions, too.

B. Stability under variation of the support
of the symmetry defects

In this subsection, we study the stability of the SWAP
formulas obtained for the Chern number under the variation
of the support of the V andW (φ) symmetry defect operators
with respect to each other. To numerically study this problem,
we need to consider larger systems compared to the cases
considered in Figs. 7, 8, and 9.

Thus, instead of studying FQH systems, we consider a
half-filled spinless free-fermion Chern insulator, which can
be studied on larger lattices compared to FQH systems. As
before, we can consider both cylindrical and rectangular ge-
ometries in the x-y plane. The momentum space Hamiltonian
of this system on a square lattice is described by

H = sin kxσx + sin kyσy + (Mc + 2 − cos kx − cos ky)σz,

(83)

where σi’s denote the Pauli matrices on a Hilbert space with
two orbitals per site, and (kx, ky ) belong to a square lattice
Brillouin zone (BZ), ki ∈ (−π, π ). For −2 < Mc < 0 and
−4 < Mc < −2, this Hamiltonian has a Chern number C =
−1,+1, respectively.

For concreteness, we use the above model to implement
Eq. (5) on a cylinder with cylindrical regions Ri. We fix the
support of the operatorW (φ) to be equal to the region R1, and
let the support of the operator V to be varied,

T (φ; s) = 〈0|W †
R1
(φ)S1,3WR1 (φ)V

s
RV

|0〉, (84)

where RV denotes the support of the operator V , which is
supposed to be cylindrical as well. We introduce xV 1 and xV 2

to determine the support of the RV region along the x direction
according to

RV = {(x, y)|xV 1 � x < xV 2, 0 � y � Ly}, (85)

where now �y = Ly, the length of the cylinder along the y
direction. To study the stability of the winding number in
Eq. (84), we change xV 1 and xV 2 separately. Thus, we consider
two different schemes where we first fix xV 2 and vary xV 1,
and then fix xV 1 and vary xV 2. The corresponding numerical
results are depicted in Figs. 12(a), and 12(b), respectively. In
Fig. 12(a), the two curves correspond to two different values
of xV 2. In the red curve by keeping xV 2 constant at x2, we are
allowed to only cover the region R1, while in the blue curve
by fixing xV 2 = x3, we can cover both regions of R1 and R2.
Here, we notice that when the support of theV operator is only
limited to the region R1, we cannot detect the Chern number
correctly. This implies that the support of V in region R1 is
not as crucial as its support in region R2. This observation is
further supported by considering Fig. 12(b) where we vary xV 2
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FIG. 12. Chern number extracted from Eq. (84) as a function of
the limits of the support of the V operator along the longitude of a
cylinder which are denoted by xV 1 and xV 2. We consider the Chern in-
sulator model introduced in Eq. (83) withMc = −3, on a cylindrical
geometry with Lx = 100, Ly = 10, and �1 = �2 = 30, �y = 10. Here,
we choose x1 = 5, x2 = 35, x3 = 65. The longitudinal limits of the
regions R1,R2 and R3, are determined by 5 � x < 35, 35 � x < 65,
and 65 � x < 95, respectively. (a) The blue and red curves corre-
spond to xV 2 = x2 and xV 2 = x3, respectively. By increasing xV 1, in
the red curve, RV can cover regions R1 and R2, while in the blue
curve, RV is only allowed to cover the region R1. (b) The blue and
red curves correspond to xV 1 = x1 and xV 1 = x2, respectively. By
increasing xV 2, in the blue curve, RV can cover regions R1 and R2,
while in the blue curve, RV is only allowed to cover the region R2.

and hold xV 1 constant at x1 and x2. In the former case which
corresponds to the blue curve, RV can include both regions of
R1 and R2, while in the latter case which corresponds to the
red curve, RV can only cover the region R2. Here, we observe
that when xV 2 is sufficiently increased to allow RV have a
substantial overlap with the region R2, the winding becomes
nonzero. Since the two curves almost overlap, we can again
infer that to detect the Chern number from Eq. (84), we only
need to cover the region R2 in the support of V , and including
the region R1 only plays a minor role in stabilizing the results.

This observation can be explained from a TQFT perspec-
tive. To do this, we investigate the crossing of the symmetry
defects when RV is allowed to change along the longitude
of the cylinder. In particular, we study the crossing of the
symmetry defects after applying the SWAP operator. This is
demonstrated in Fig. 13, where in the left panel RV encom-
passes the region R2, while in the right panel RV encloses the
region R1. Note that in both cases the support of V does not
form a closed loop. To aid visualization, in the second row we
apply a π -rotation to the circles on the left-hand side. After
identification of the regions R1 and R2 in the forth row, we
see that while in (a) the two symmetry defects can still cross
each other, in (b) the two symmetry defects become parallel
to each other. Note that this observation is in accordance with
our previous Chern-Simons description. This is because from
the Chern-Simons theory to extract the Chern number we
only need to ensure that the two symmetry defects in the x-t
plane cross each other. Therefore, enforcing the two symme-
try defects to wrap around the two noncontractible cycles of
the space-time torus should be only considered as an extra
measure to guarantee that the crossing occurs and the results
are stable. Before ending, we also point out that due to the

FIG. 13. Configuration of the symmetry defects, V andW (φ) in
the x-t plane, when the support of V is varied. For ease of visual-
ization, we choose the support of W (φ) to be slightly larger than
the region R1. After applying a π -rotation to the left circle in the
second row, the support of V is changed accordingly. In the third
row the corresponding torus formed by identification of the arrows
is depicted. The symmetry defects associated with V and W (φ) are
shown with a red and blue curve, respectively. (a) The support of
V encompasses the region R2. After swapping and identifying the
regions with the same number of arrows, the symmetry defects can
still cross each other. (b) The support of V encompasses the region
R1. After swapping and identifying the regions with the same number
of arrows, the symmetry defects no longer cross each other.

finite correlation lengths of the systems in our simulations, in
Fig. 12 even before encompassing the region R2 fully, we are
able to acquire a nonvanishing winding number for T (φ; s).

C. Magnitude of the SWAP Expressions

An important aspect of the expressions in Eqs. (5), (6),
(11), and (13) is that while the phase can be used to obtain the
Chern number, the magnitude of each individual expectation
value in either the numerator or the denominator is exponen-
tially small in the size of the subregions involved in the SWAP
operator. For example, in the absence of any symmetry, the
reduced density matrices ρR1 and ρR3 may be different; thus an
expectation value involving the SWAP operator S1,3 will gen-
erally be exponentially small in the area of R1 and R3. While
the phase is still well-defined and the Chern number can be
extracted in principle for arbitrarily large Ri, the exponential
decay of the amplitude means that in practice for large enough
Ri the phase cannot be reliably distinguished from numerical
or experimental error. Therefore, in practice for numerical or
experimental studies, we need to consider sizes of Ri that are
larger than the correlation length but small enough that the
phase can be reliably extracted.

We empirically find that the ratio of the numerator and
denominator in the expressions of Eqs. (11) and (13) has mag-
nitude of order one. However, it is not clear whether there is a
useful method to directly calculate the ratio without calculat-
ing the expectation values in the numerator and denominators
individually.
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If the system has translation symmetry so that the reduced
density matrices in the two regions are equal, ρR1 = ρR3 , then
the magnitude of the expectation values will no longer decay
exponentially with the area of Ri, but rather with the perimeter
of Ri. This follows from the area law of the entanglement
entropy, since the SWAP operator effectively changes the
entanglement structure along the perimeter of R1 and R3.

In this section, we study in more detail the magnitude of
the expectation values in the translationally invariant case to
better understand how it varies with the size of Ri. We expect
that for the rectangular geometry this exponential suppression
is proportional to �y + �1 while for cylindrical geometries
where the y dimension is compactified, it will be proportional
to Ly = �y. The cylindrical geometry is the case that we will
study for our numerical studies in this subsection.

We first report based on our numerical studies that the
flux angle φ does not significantly change the system size
dependence of the magnitude of the expectation values in
T (φ; s). Thus, we focus on the case φ = 0.

Next, we note that in our single layer formula, Eq. (11),
V generally has support both in region R1 and R2, for most
choices of the matrix U . Therefore, as a generic example
of these formulas, we consider the single-copy formula as
presented in Eq. (73) where V has support in both regions R1

and R2. Notice that when φ = 0, the numerator is 〈S1,3V s
R1∪R2

〉
and the denominator is 〈S1,3〉. Studying the numerator and
denominator separately thus also allows us to distinguish the
effects of the SWAP operator from VR1∪R2 in our formulas.

To study the scaling behavior of the formulas for a wide
range of system sizes, instead of using a FQH system, we con-
sider the half-filled free-fermion Chern insulator introduced in
Eq. (83), which we study in the cylindrical geometry.

Let us first consider |〈	|S1,3|	〉|. As discussed
above, we expect on general grounds that on a cylinder
log |〈	|S1,3|	〉| ∝ �y. Our numerical results are depicted in
Fig. 14(a) as a function of �1 when �2 is a constant. A similar
behavior is observed in the reverse situation when �2 varies
and �1 is a constant. The asymptotic behavior of log |〈S1,3〉| is
independent of �1. In our simulations the asymptotic regime
sets in when �1 becomes comparable to �2. Furthermore,
we verify that this asymptotic value decreases exponentially
as �y increases. This change of behavior is more carefully
studied in Fig. 14(b) where in addition to an exponential
decay in �y we also observe an oscillating behavior with a
periodicity of 2 lattice constants. While the exponential decay
in �y as explained before comes from the disruption of the
entanglement at the boundaries of the swapped regions, this
extra oscillating behavior is analogous to Friedel oscillations
of the Renyi entropy due to the Fermi surface [46,47].

Next we study the length dependence of the amplitude
|〈S1,3VR1∪R2〉|, which has been illustrated on a logarithmic
scale in Figs. 14(c) and 14(d). In the main panel of Fig. 14(c)
we have plotted the amplitude as a function of �1 for a fixed
�2 and four different choices of �y. These different choices
of �y are labeled with the same labels as those in Fig. 14(a).
A similar behavior is observed when �2 is varied and �1 is
held constant. For all �y we observe an exponential decay with
�1 and �2. However, we notice that the slope of these lines
decreases when �y is increased. In the inset of this subplot, we
have plotted the product γ �y, where γ ≡ ∂

∂�y
log |〈S1,3VR1∪R2〉|.

FIG. 14. System size dependence of the magnitude of the numer-
ator and denominator of Eq. (73) for a half-filled Chern insulator with
Mc = −2.5. In all the subplots we fix Lx = 120. In the top panel
the logarithm of the SWAP operator’s amplitude, log |〈S1,3〉|, which
corresponds to the denominator of Eq. (73) at φ = 0, is plotted as a
function of �1, and �2 in (a) and (b), respectively. (a) Different curves
belong to different �y’s. (b) The behavior of the SWAP operator is
displayed as a function of �y. In the bottom panels the amplitude of
the product of the SWAP, S1,3, and the exponentiated polarization
operators, VR1∪R2 , is plotted as a function of �1, and �y in panels
(c) and (d), respectively. (c) Different curves correspond to different
�y’s. The same marker symbols as in panel (a), are used in panel (c).
(d) The behavior of the numerator is displayed as a function of �y.
The black solid line depicts the results of the simulations, and the red
dashed line is a minimal polynomial fit based on Resta’s polarization
argument using only �my , with m = {−1, 0, 1}.

From here, we notice that the variation in �yγ compared to its
mean value is less than 2% and therefore negligible. Conse-
quently, the leading order dependence of log |〈S1,3VR1∪R2〉| on
�1 and �2 can be described by log |〈S1,3VR1∪R2〉| � −c1(�1 +
�2)/�y, where c1 is a positive constant.

In Fig. 14(d), we have investigated the dependence of
log |〈S1,3VR1∪R2〉| on �y, holding �1 and �2 fixed. While
the asymptotic exponential decay of log |〈S1,3VR1∪R2〉| with
�y resembles the same exponential decay we observed in
Fig. 14(b), the initial increasing behavior is due to V and the
fact that increasing �y suppresses the exponential decay of
log |〈S1,3VR1∪R2〉| in terms of �1 and �2. Hence, we see that
the behavior of log |〈S1,3VR1∪R2〉|, in the leading orders can be
described as the interplay of the SWAP and the exponentiated
polarization operator V .

To verify this hypothesis, we have fitted a polynomial to
Fig. 14(d) by only considering the inverse �y dependence
observed in Fig. 14(c), a constant term, and a linear expo-
nential decay as observed in Fig. 14(c). More specifically, we
consider the following fit:

log |〈S1,3VR1∪R2〉| = −c1(�1 + �2)/�y − c2 − c3�y, (86)

where ci’s are some positive constants which provide an op-
timal fit for the original curve. The term linear in �y can
be understood from the exponential suppression due to the
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SWAP operator, as discussed above. The first term propor-
tional to (�1 + �2)/�y can heuristically be associated with
the contribution of the excited states when the exponentiated
polarization operator VR1∪R2 is applied to the ground state. As
demonstrated by Resta [31], these contributions in the leading
order scale with �−1

y when the operator
∏

x,y e
i2πyn̂/�y is applied

to the ground state. Furthermore, since the corresponding
Wilson operator VR1∪R2 only has support in regions R1 and R2,
we expect the �−1

y correction to also be extensive, scaling as
(�1 + �2). The optimal fit based on this polynomial is plotted
with a red dashed line in Fig. 14(d).

V. DISCUSSION

We have shown how a single wave function can be used
to extract the many-body Chern number for both integer and
fractional quantum Hall states. Remarkably, the numerical
results indicate that a single wave function (or reduced density
matrix) on a disklike open patch of the system is sufficient to
obtain the Chern number.

In the FQH case, our formulas require knowledge of an
additional topological invariant, s, which corresponds to the
minimal number of flux quanta that must be inserted into
the system to get a topologically trivial excitation. We have
discussed how s can be obtained given access to the degen-
erate ground states on a torus (without twisting the boundary
conditions). It remains a fundamental question whether s, and
other aspects of the intrinsic topological order, can be obtained
from a single wave function.

The key point that makes the approach work is twofold:
(1) the swap operation gives us access to the space-time
path integral where there is nontrivial topology involving
the time direction as well, and (2) the two new intersecting
noncontractible cycles that are introduced in the space-time
manifold due to the swap operation are both normal to the
real time direction; therefore, the symmetry defects can be
implemented by operators at a fixed real time slice and only
require knowledge of the density operator.

We have provided derivations using TQFT for the case
of a wave function defined on a cylinder, however it is an
assumption that the expectation values of the full microscopic
theory map to their counterparts in the TQFT. It is clearly an
important open direction then to obtain a completely rigorous
derivation of the formulas presented here, without relying on
such an assumption.

Surprisingly, we observe that when symmetry defects are
open sheets, e.g., rectangles, our numerical results produce the
correct MBCN, while the TQFT prediction is ill-defined and

requires regularization, and therefore, it is not a straightfor-
ward generalization. Furthermore, there are subtleties related
to changing support of the symmetry defect sheets for V and
W separately, which could be the subject of further studies.

While our formulas do not require knowledge of the
Hamiltonian, they do require knowledge of the time-
independent U (1) conserved density operator, n̂(x, y). One
could consider instead obtaining the Chern number given the
current density operator ĵi for i = x, y. However there is a
fundamental difference between n̂ and ĵi. n̂(x, y) is distin-
guished as it generates the symmetry operators on the Hilbert
space. Therefore in principle n̂(x, y) can be extracted given the
wave function, without any knowledge of the Hamiltonian.
For a wave function with U (1) symmetry |	〉, we can in
principle search for n̂(x, y) by considering operators of the
formU = ∏

(x,y) e
iαÔ(x,y). The choice of Ô(x, y) that keeps the

wave function invariant for any α then gives the conserved
number density n̂(x, y). The current density ĵi, on the other
hand, necessarily requires knowledge of the kinetic term in the
Hamiltonian, but not the interaction term. It is an interesting
question to study how to extract the Chern number given
knowledge only of the current density ĵi(x, y) and a single
ground state, but not the full Hamiltonian.

In this paper we have studied ground state wave functions
of gapped Hamiltonians, yet there are also situations in which
systems with gapped charged excitations and a quantized
many-body Chern number can possess gapless neutral modes,
such as in the exciton condensate at total filling νT = 1 [48]
and the proposed topological exciton metal states in quantum
Hall bilayers [49]. It would be interesting to study whether the
approach presented here can also be used to extract the Chern
numbers in such gapless states.
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