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A fundamental question in the theory of quantum computation is to understand the ultimate space-time
resource costs for performing a universal set of logical quantum gates to arbitrary precision. Here we
demonstrate that non-Abelian anyons in Turaev-Viro quantum error correcting codes can be moved over a
distance of order of the code distance, and thus braided, by a constant depth local unitary quantum circuit
followed by a permutation of qubits. Our gates are protected in the sense that the lengths of error strings do
not grow by more than a constant factor. When applied to the Fibonacci code, our results demonstrate that a
universal logical gate set can be implemented on encoded qubits through a constant depth unitary quantum
circuit, and without increasing the asymptotic scaling of the space overhead. These results also apply
directly to braiding of topological defects in surface codes. Our results reformulate the notion of braiding in
general as an effectively instantaneous process, rather than as an adiabatic, slow process.
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The possibility of a scalable universal quantum computer
rests on quantum error correction and fault tolerance [1,2].
A promising class of quantum error correcting codes
(QECCs) are topological QECCs, where the information
is nonlocally encoded in a topologically ordered quantum
state of matter [1–3]. For a QECC to allow fault-tolerant
quantum computation, it must be possible to perform fault-
tolerant logical gates on the encoded logical qubits, for
example, via braiding of non-Abelian anyons, holes, or
twist defects in topological QECCs [3–7]. Braiding of
Fibonacci anyons in certain non-Abelian topological
QECCs [4,5,8] can form a universal logical gate set [9–11].
Other proposed methods to realize a universal fault-

tolerant gate set involve magic state distillation [12], code
switching, or gauge fixing [13,14]. However, such methods
necessarily carry a large space-time overhead depending on
the code distance d, and all require measurements to
achieve universality. It is an open question whether a
universal logical gate set can be realized with just con-
stant-depth unitary circuits independent of code distance d
and requiring no measurements. In the context of topo-
logical codes, this question is also deeply related to a
quantum complexity problem: the circuit complexity of
unitary transformations between arbitrary states in the
ground-state subspace of topologically ordered systems.
Topologically ordered states are nontrivial phases of
matter, which implies that a unitary circuit composed of
few-qubit gates with depth ofOðlog dÞ is needed to prepare
the ground states from a trivial product state [15,16].
Naively one may expect that the transformation between
two arbitrary ground states will also need at least a
Oðlog dÞ-depth unitary circuit using a path connecting

both states and going through the trivial product state in
the middle.
Quite surprisingly, we find in this paper that braiding of

non-Abelian anyons, and hence universal logical gates on
encoded qubits, can be performed through a constant depth
unitary circuit composed of few-qubit gates acting on the
physical qubits. The circuit depth is independent of the
separation between the anyons, and thus independent of d.
The braiding circuit is composed of a local quantum circuit,
LU, which implements a local geometry deformation,
and a permutation of qubits, Pσ∶ j ↦ σðjÞ, separated by
distance of OðdÞ and which can be implemented by a
depth-2 circuit.
Because of the SolovayKitaev theorem [17], the above

result also suggests that arbitrary transformations within the
ground state subspace of certain topologically ordered
systems supported on a punctured manifold can be realized
with a constant-depth unitary circuit independent of the
system size, given that the braid group representation of the
topological order is computationally universal. Furthermore,
our result demonstrates, for the first time, how to construct a
universal logical gate set using constant depth unitary
circuits, thus circumventing the Eastin-Knill theorem [18],
where the long-range permutation is the key to circumvent
the assumption in Ref. [18] (see also Ref. [19]). In addition,
it also circumvents the no-go’s for universality in geomet-
rically local [20] and nonlocal [21] constant-depth circuits,
where the circumvention can be mainly attributed to the
nonstabilizer nature of the Turaev-Viro codes. Our result can
be generalized to arbitrary braids and Dehn twists, which
generate the mapping class group of genus g surfaces with n
punctures [22–24].
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With purely local operations, a unitary circuit that moves
non-Abelian anyons or defects over a distance lmust have a
depth of OðlÞ [25]. Abelian anyons, in contrast, can be
moved over arbitrary distances in Oð1Þ time through
transversal unitary operations. Our results are thus
possible because of the use of long-range permutations
in one time step (between two consecutive syndrome
measurements), which is naturally suitable for a variety
of experimental platforms with long-range connectivity or
movable qubits [27–39].
Turaev-viro codes.—We consider Turaev-Viro codes

[5,8], which can capture all nonchiral topological states
in two dimensions. For the application to universal gate sets
we are interested in the doubled Fibonacci state realized by
a specific type of Turaev-Viro code. The Turaev-Viro code
associates with a closed or punctured surface Σ a finite-
dimensional code space HΣ. We use Λ to denote a
triangulation of Σ and Λ̂ to denote the dual cellulation
associated with Λ. More specifically, Λ̂ defines a trivalent
graph, such as the honeycomb lattice shown in Fig. 1(a).
Each edge of Λ (equivalently, of Λ̂) is associated with
an N-state qudit. If the qudit on a particular edge is in the
state jai, we say that there is a string of type a passing
through that edge. The wave functions in the code space
can be viewed as superpositions of closed string-net
configurations [8].
The states in the code space are exact ground states of a

commuting projector Hamiltonian known as the Levin-Wen

Hamiltonian [8], HΛ̂ ¼ −
P

v Qv −
P

p Bp, where v and p

label the vertices and plaquettes of Λ̂. The three-body
vertex projection operator Qv depends only on the three
edges incident to v:

ð1Þ

Here, δabc ¼ 0, 1 are the branching rules of the allowed
string-net configuration. The Fibonacci Turaev-Viro code
has N ¼ 2 and therefore each edge of the trivalent graph
contains two types of strings, as illustrated on the right side
of Fig. 1(a), where the edges with (without) the red string
correspond to an occupied (unoccupied) site j1i (j0i). The
branching rules are specified as

δabc ¼
�
1 if abc ¼ 000; 011; 101; 110; 111;

0 otherwise:
ð2Þ

On a honeycomb lattice [Fig. 1(a)], Bp is a 12-body
operator that depends on the 6 qubits on the hexagonal
plaquette and also on the qubits on the 6 legs connecting
to the hexagon. The operator can be written as
Bp ¼ P

s dsB
s
p=D2, where ds is the quantum dimension

of the string label s and D ¼ P
s

ffiffiffiffiffi
d2s

p
is the total quantum

dimension. For the Fibonacci code, we have d0 ¼ 1, and
d1 ¼ ϕ ¼ ½ð ffiffiffi

5
p þ 1Þ=2�. The operator Bs

p is defined via

The plaquette operator consists of F symbols, Fabc
def. The F

symbols and the branching rules together define the
code. The F symbols also define a controlled-unitary
operation; the external a, b, c, d legs are the control qubits
that determine the resulting unitary Fabc

d , with matrix
elements ½Fabc

d �ef.
In the Fibonacci code, the only nontrivial F matrix is

F111
1 ¼

�
ϕ−1 ϕ−1

2

ϕ−1
2 −ϕ−1

�
: ð3Þ

All other F symbols are either 1 or 0, depending on whether
they are consistent with the branching rules [Eqs. (2)
and (4)]. A quantum circuit implementing the F operations
in the Fibonacci code is shown in Fig. 1(b) [40]. The circuit
inside the dashed box, consisting of a 5-qubit Toffoli gate
sandwiched by two single-qubit rotations, implements the
F matrix in Eq. (3). Here, Ryð�θÞ ¼ e�iθσy=2 are single-

qubit rotations about the y axis with angle θ ¼ tan−1ðϕ−1
2Þ.

(a) (b)

(c)

(d) (e)

FIG. 1. (a) Definition of the Levin-Wen Hamiltonian on a
triangulated manifold. (b) Circuit for F operation in the Fibonacci
code. (c) Definition of the 2-2 Pachner move on the triangulation
Λ and the corresponding trivalent graph defined by Λ̂. The pink
edges represent the edges being switched during the moves. (d),
(e) Definition of the 1-3 Pachner move with the addition or
removal of three ancilla qubits (white dots) and the circuit
implementation via unitary gates.
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All the other maps are taken care of by the rest of the
quantum circuit. The Fibonacci code can be implemented
by repeated measurements of the vertex and plaquette
operators Qv and Bp [40–43].
Local geometry deformation.—The wave functions in the

code space on two different triangulations (dual trivalent
graphs)Λ (Λ̂) andΛ0 (Λ̂0) that differ locally can be related by
moves known as 2-2 Pachner moves (also called F moves)
and 1-3 Pachner moves, with the following relations:

ð4Þ

ð5Þ

Here, ½Fabd
fce �� denotes the complex conjugate of the elements

of the F move defined in Eq. (4), while one has ½Fabd
fce �� ¼

Fabd
fce for the Fibonacci code. The local geometry deforma-

tion of the triangulation and dual trivalent graph correspond-
ing to the two types of Pachner moves are illustrated in
Figs. 1(c), 1(d). Note that the F move preserves the number
of qubits (and also their locations) and is obviously a unitary
transformation which can be implemented by the conditional
circuit in Fig. 1(b). On the other hand, the 1-3 Pachner move
adds (entangles) three additional ancilla qubits to the code
space, as shown in Fig. 1(d) (from left to right). The reverse
process (from right to left) removes (disentangles) three
qubits from the code space. Therefore, the 1-3 Pachner move
can be related to entanglement renormalization performing
either fine-graining or coarse-graining of the lattice, which
has been studied in the context of MERA (multiscale
entanglement renormalization ansatz) of string nets [15,16].
Taking into account the additional qubits, the 1-3

Pachner move can also be implemented by a sequence
of unitary gates as illustrated in Fig. 1(e). We first consider
three extra qubits, each initialized to the j0i state. Next, we
apply a CNOT (indicated by the purple arrow), which takes
jbij0i ↦ jbijbi. This is equivalent to an isometry in the
MERA language. At the same time, we apply modular
S∶j0i ↦ P

iðdi=DÞjii to the top-most qubit [44], which
effectively builds a “tadpole diagram” connected to the
original graph through the edge with the remaining ancilla
in the j0i state. Note that the original edge labeled by b is
split into two edges with the same label b. Next, we apply
two successive F moves and hence end up with the desired
trivalent graph with a triangular plaquette replacing the
original vertex in the center. This process is reversible.
Moving anyons in constant time.—An intuitive way to

understand the moving protocol is through the picture of

local entanglement renormalization. The essence of entan-
glement renormalization and the MERA circuit can be
understood as a global coarse graining (fine-graining)
process that “merges” (“splits”) several qubits together,
effectively removing (adding) qubits in the code, as illus-
trated in Fig. 2(a). In the context of topological order, one
can think of this process as squeezing (stretching) the
manifold which supports the topological states. Now one
can consider anyons or defects as punctures (yellow circles)
in the manifold as illustrated in the lower panel. In order to
separate two adjacent punctures to distance d, one needs a
MERA circuit with depth (layers) log2ðdÞ, where each step
stretches the manifold by a factor of 2. When the two
punctures are already separated by a distance d, one can
perform one layer of the local entanglement renormalization
circuit (with constant depth) to stretch (fine-grain) the region
between the two punctures to increase the distance to 2d,
which effectively adds qubits into the system, as illustrated
in Fig. 2(b). Now the manifold is effectively enlarged due to
the addition of qubits. In order to preserve the shape of the
manifold away from the region of the punctures, one can also
perform one layer of local entanglement renormalization to
squeeze (coarse-grain) the region on the left and right sides
of the punctures, as shown in Fig. 2(c). Thus one effectively
ends upwith the same overall shape of themanifold,with the
two punctures being separated by a factor of 2, i.e., d → 2d.
Note that according to the left panel of Fig. 2(c), in order
to map the qubit lattice exactly to the original shape, one
performs SWAPs (green arrows indicated in the bottom
layer) with largest distance of OðdÞ. The long-range
SWAP ensures that the actual location of each puncture is
moved by a distance d=2.

(a)

(b)

(c)

FIG. 2. Understanding the essence of braiding via the equiv-
alence of local entanglement renormalization and manifold
stretching/squeezing. (a) MERA is equivalent to stretching the
manifold in log2ðdÞ steps. (b) Local entanglement renormaliza-
tion is equivalent to stretching the manifold in a single step.
(c) Locally squeeze the rest of the region in a single step to
preserve the overall shape of the manifold.
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Constant-depth braiding circuit.—For the implementa-
tion of braiding, we need to introduce two elementary
gadgets, as illustrated in Fig. 3. In Fig. 3(a), we consider
triangulation of a single row of arbitrary length. By
utilizing ancilla qubits, we can implement the 1-3
Pachner moves, which increase the number of vertices
of the triangulation. By a finite sequence of F moves and
local SWAPs, we can effectively split a single row of
arbitrary length L into two rows, with a constant (inde-
pendent of L) number of steps (i.e., a constant depth local
unitary circuit). In Fig. 3(b), we illustrate how two rows can
be converted into a single row by a finite number of steps.
Note that in both protocols, the qubits on the outer
boundary of the rows shown are completely unaffected,
acting as control qubits for the unitary operations, allowing
the transformations to be applied to all rows in parallel.
Using the above gadgets, we can now demonstrate our

braiding circuit on a triangulated region (Fig. 4). First, in the
region between anyon I and III, we split rows of varying
lengths in two rows, while combining rows in the region
above the anyon [Fig. 4(b)]. We create a lattice Λ0 with a
shearing pattern on the left and right sides of anyon I; the
regions above anyon I being coarse grained (squeezed)while
the region below it is fine grained (stretched). Now via long-
range permutation of qubits (green arrows) Pσ , where Pσ is
the unitary representation of the permutation σ, we reach the
configuration in Fig. 4(c) which is isomorphic to the
configuration in Fig. 4(b), with anyon I being moved up

in space. To recover the original triangulation Λ, we apply
another retriangulation in the strip on the right of anyon I
(pink thick lines), thusmapping back to the original lattice in
Fig. 4(d).
The above protocol, using a constant-depth local quan-

tum circuit and long-range qubit permutations, effectively
moves one anyon vertically by a distance of the order of the
separation between the nearest anyon II (on the order of the
code distance d). The (vertical) separation between anyon I
and III is also increased by a factor of 2, which concretely
demonstrates the local entanglement renormalization idea
in Fig. 2(c). To complete a braiding cycle, we apply another
5 shots of a similar procedure, which then effectively
braid anyons I and II around each other as illustrated in
Figs. 4(e),(f). Here, we show the qubits (black dots) and
trivalent graph (light blue lines) explicitly for concreteness.
The permutations can be applied through a constant depth

circuit in a variety of ways. For example, arbitrary permu-
tations can always be implemented by a depth-two circuit,
where each layer corresponds to long-range SWAP oper-
ations applied in parallel. This can be seen by noting that an
arbitrary permutation of objects can be written as a product
of cyclic permutations over disjoint sets. A cyclic permu-
tation can always be performed in two steps, where each step
corresponds to SWAP operations applied in parallel.
To summarize, a single braiding operation can be

performed in a constant number of steps, independent of
the system size and code distance. This is in contrast to
previous computation schemes for the Turaev-Viro code in
Ref. [5], where braiding or Dehn twists are implemented by
sequential F moves with circuit depth of OðdÞ. Here we
have demonstrated a six-step procedure:

(a)

(d) (e)

(f)

(b) (c)

FIG. 4. (a)–(f) Braiding of two non-Abelian anyons in Turaev-
Viro codes with constant-depth circuit. The orange dashed lines
in (b) and (c) show the equivalent edges before/after the
permutation. Each green arrow in (e) corresponds to an instanta-
neous moving (number specifying the order) carried out by an
analogous procedure described in panels (a)–(d).

(a)

(b)

FIG. 3. Gadgets for local geometry deformation in Turaev-Viro
codes. The solid (dashed) purple lines represent added (removed)
edges during the 1-3 Pachner moves. The yellow arrow indicates
the equivalence between two triangulations. (a) Fine-grain the
lattice via splitting a single row into two in a bounded region.
(b) Coarse-grain the lattice via merging two rows into one.
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BI;II ¼
Y6

i¼1

LU 0
iPσ;iLU i: ð6Þ

Each step is composed of a constant-depth local quantum
circuit LU i corresponding to a retriangulation of the
manifold, a permutation of qubits Pσ;i over a distance
OðdÞ, and another local circuit LU 0

i in order to retriangulate
the manifold back to the original triangulation.
We emphasize that our protocols are constant depth

unitary circuits, which neither depend on the results of any
measurement outcomes nor introduce plaquette or vertex
operators whose measurement outcomes are unknown.
This makes our protocols fundamentally distinct from
other proposed methods for logical operations in stabilizer
codes, such as lattice surgery methods or certain schemes
for moving non-Abelian defects in Abelian stabilizer codes,
e.g., in Ref. [3]. Therefore, no classical communication or
classical computation is required and thus our protocols are
truly constant depth both in terms of quantum operations
and classical computation.
Topological protection and fault tolerance aspects.—

The constant-depth logical gates (denoted by U) developed
here are naturally topologically protected (and thus can be
made fault tolerant) since a local operatorOwith support in
a region R is mapped to another local operator U†OU
supported in a region R0 such that the area ratio of R0 and
R is bounded by an Oð1Þ constant factor c, similar to the
property of a locality-preserving unitary [45,46], i.e.,
suppðU†OUÞ ≤ csuppðOÞ. This is due to the constant
depth of the local unitary circuits and the specific form of
the permutations we used. As a result, the circuit only
changes the length of error strings by an Oð1Þ constant
factor independent of code distance d. Therefore, any local
error string with length much less than d remains local
during the protocol and can not access the non-locally
encoded logical information [47].
After the application of each logical gate, the extra time

overhead due to decoding and error correction depends on
the details of the logical circuit of the target quantum
algorithm. In the cases when the length of the error string
does not increase or increases linearly, the situation is
analogous to a constant-depth local quantum circuit [20]
and only Oð1Þ rounds of syndrome measurement per
logical gate is expected, leading to a constant time over-
head. In the worst-case scenario, when certain sequence of
braids are repetitively applied in the same region and the
error string is always stretched by a constant factor, the
error string will grow to the code distance in logd time
steps. To prevent this, OðdÞ rounds of measurement needs
to be inserted for every log d logical gates in the presence
of measurement noise to decode the error syndrome.
Therefore, we estimate that there is an Oðd= log dÞ time
overhead in the generic case to achieve full fault tolerance,
although a detailed decoding scheme needs to be further
developed to verify this estimation. Because of the strictly

bounded operator support of our logical gates (Fig. 4), one
also expects that certain highly sequential logical circuits
can also haveOð1Þ time overhead, when any given physical
qubit is only acted on byOð1Þ operators inOðdÞ time steps
(such that d rounds of measurement can be applied to
decode the error syndrome before the error string is
further stretched).
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