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Abstract

Abstract — We propose a method to outer bound forward reachable sets on finite horizons for uncertain nonlinear
systems with polynomial dynamics. This method makes use of time-dependent polynomial storage functions that
satisfy appropriate dissipation inequalities that account for time-varying uncertain parameters, Lo disturbances, and
perturbations A characterized by integral quadratic constraints (IQCs) with both hard and soft factorizations. The
use of IQCs in forward reachability analysis allows for various types of uncertainty, including unmodeled dynamics.
The generalized S-procedure and Sum-of-Squares techniques are used to derive algorithms with the goal of finding
the tightest outer bound with a desired shape. Both pedagogical and practically motivated examples are presented,
including a 7-state F-18 aircraft model.

Keywords: Analysis of systems with uncertainties; Numerical algorithms; Reachable set estimation.

1. Introduction

The forward reachable set (FRS) is the set of all the successors to a set of initial conditions subject to the given
dynamics under all possible model uncertainties and disturbances in a finite horizon. The computation of the FRS
plays an important role in safety-critical systems, as it can verify whether a system is able to reach a target and
avoid an obstacle [1], [2]. Indeed, if an outer bound avoids obstacles and is encompassed by the target set at the final
time, then one can ascertain the same properties for all trajectories. In this paper, we present a method for finding
the smallest achievable outer bounds to the FRSs on finite horizons, since in many practical settings, systems only
undergo finite-time trajectories, such as robotic systems and space launch and re-entry vehicles.

The algorithm proposed in this paper uses a storage function that satisfies a dissipation inequality to characterize
the outer bound. The dissipation inequality framework, combined with the Sum-of-Squares (SOS) technique [3] and
the generalized S-procedure [4], allows us to simultaneously accommodate multiple sources of uncertainty, including
time varying uncertain parameters, Lo disturbances, and perturbations A whose input output properties are charac-
terized by integral quadratic constraints (IQCs) [5]. IQCs can model a rich class of uncertainties and nonlinearities,
including hard nonlinearities (e.g. saturation), time delays, and unmodeled dynamics, as summarized in [5] and [6].

Therefore, although our nominal systems are assumed to be polynomials, including IQCs allows us to extend our
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analysis framework to the class of systems beyond polynomial systems. IQCs are also used in [7] for robustness
analysis of linear time varying systems, and in [8] for region of attraction analysis of nonlinear systems.

The proposed analysis framework considers both hard and soft IQC factorizations. Dissipation inequalities usually
require IQCs to hold over all finite horizons (hard IQCs) [9], [10]. However, IQCs are often available in the infinite-
time horizon (soft IQCs), while the hard IQCs are not. To mitigate this issue, we incorporate soft IQCs in dissipation
inequalities by making use of a lower bound derived from [11], which is valid for soft IQCs over all finite horizons. We
formulate the reachable set computation as SOS optimization problems, which can be solved effectively by bisection.
In addition, our optimization problems do not require a feasible initialization of the storage function.

There are various existing approaches to reachability analysis, including interval analysis [12], Hamilton-Jacobi
methods [2], ellipsoid methods [13] and polytope methods [14]. Dissipation inequalities and SOS programming were
introduced to reachability analysis in [15-17], and further extended to uncertain nonlinear systems in [18]. However,
these previous results do not consider integral quadratic constraints (IQCs) and they bound the reachable sets on
the infinite-time horizon, which might yield overly conservative estimates for finite-time trajectories.

Finite-time reachability analysis using SOS programming is considered in [19], [20] using Lyapunov-based method.
Another finite-time reachability analysis paper, [21], provides an approximate analytical polynomial solution to the
Hamilton-Jacobi-Isaacs partial differential equations (HJE) for reachable set computation. The works [22, 23] extend
[21] to the state-constrained polynomial systems with time-varying uncertainties. While the work [22] focuses on
inner-approximating the finite-time horizon backward reachable set (BRS), the work [23] focuses on computing the
infinite-time horizon robust invariant sets. Occupation measures based method is proposed in [24] to compute outer-
approximations to the BRS for polynomial systems with control inputs. Note that [19, 20, 22—-24] only allow for time
varying parametric uncertainty. In contrast, our finite horizon results account for various sources of uncertainty.

To summarize, the main contributions of the paper are: (i) to analyze finite-time horizon reachability with
robustness guarantees, (ii) to extend the framework to a large class of uncertain systems by incorporating IQCs.

The paper is organized as follows. Section 2 presents the problem setup, the basic theorem, and computation
method for outer bounding the reachable sets for the nominal system: nonlinear system with Lo disturbances and
time varying uncertain parameters. Sections 3 considers the robust reachability analysis for the uncertain system:
interconnection of nominal system and perturbations A described by hard IQCs. Sections 4 extends the robust
analysis framework to A that satisfies soft IQCs. Section 5 applies the method to several aircraft examples, one of

which is compared with the result obtained using the method from [19]. Section 6 summarizes the results.

1.1. Notation

R™*™ and S™ denote the set of m-by-n real matrices and n-by-n real, symmetric matrices. RlL., is the set of
rational functions with real coefficients that have no poles on the imaginary axis. RH,, C RL, contains functions that
are analytic in the closed right-half of the complex plane. £5" is the space of measurable functions r : [0, c0) — R"",
with ||r||§ = fooo r(t)Tr(t)dt < oco. Associated with L£3" is the extended space L£57, consisting of functions whose
truncation rp(t) = r(t) for t < T; rp(t) := 0 for t > T, is in L5 for all T > 0. Define the finite-horizon Lo
norm as [[rly 4 77 = (ftfr(t)—'—r(t)dt) 1/2. If r is measurable, and ||7([, , 7; < oo then r € L37[to, T]. The finite

horizon induced L3 to L3 norm is denoted as [||l,_,5 ;) 79- For £ € R", R[{] represents the set of polynomials in



& with real coefficients, and R™[¢] and R™*P[{] to denote all vector and matrix valued polynomial functions. The
subset B[¢] := {m =7} + 75 + ... + 72, : 71, ..., s € R[E]} of R[¢] is the set of SOS polynomials in &. For n € R,
and continuous 7 : R" — R, Qp := {z € R" : r(z) < n}. For n € R, and continuous g : R x R" — R, define the

t-dependent sublevel set:
Qfm ={z eR":g(t,z) <n} (1)
KY P denotes a mapping to the block 2-by-2 matrix:

ATY +vA YB| o7
KYP(Y,A,B,C,D, M) := T M [c D}. (2)
BTY 0 DT

2. Nominal Reachability Analysis

Consider the nominal nonlinear system N defined on [tg, T7:

C(:(t) = f(t7 x(t), w(t)7 6(t))7 (3)

where z(t) € R™ is the state, w(t) € R™ is the external disturbance, §(t) € R™ is the time varying uncertain

parameter, and the vector field f : R x R” x R™ x R™ — R" is locally Lipschitz continuous.

Assumption 1. (i) functions w and § are measurable and locally essentially bounded, (ii) the disturbance w satisfies
w € Ly with [|wlly ) 1) < R for some R >0, (iii) there exists a non-decreasing polynomial function h : R — Rxg

with h(to) =0, h(T) =1 such that

/tw(T)Tw(T)dT < R2h(t), Vt € [to,T), (@)

to

(iv) for each t € [to,T], d(t) € D := {0 € R™ : ps(d) > 0}, where the polyomial ps € R[d] describes the prior

knowledge that bounds the uncertainty §.

The function h is used to describe how fast the energy of w can be released on the interval [tg,T]. Next, the

definition of the forward reachable set (FRS) is given as follows:
Definition 1. The FRS of the system N (3) from Xy at time T is defined as
FRS(T; N, ty, Xo, R, h,D) := {x(T) € R" : Fz(ty) € Xy, w satisfying (4) and §(t) € D,
such that z(-) is a solution to (3)}.
Our goal is to outer bound this FRS, and the following theorem provides a way of achieving it based on dissipation-
inequalities.

Theorem 1. Let Assumption 1 hold. Given vector field f : R x R™ x R"» x R"™ — R", time interval [to,T], local
region X; C R"™, set of initial conditions Xy C R™, disturbance bound R, function h, and set of uncertain parameters

D, suppose there exists a C' function V : R x R® = R that satisfies

8Vétt)x) + 8Va(t)x)f(t7m,w,5) S ’U_)Tw, V(t,x,’w,é) & [t07T] X Xl X R’I’Lw % D, (5&)
X

XO g ijo, (5b)

QXth(t) - Xl, Vt € [to,T]. (5C>



Then x(T) € Q¥,R2 for all x(tg) € Xy, where x(+) is a solution to the system N (3), and Q%O,QXR%Q) and Q¥7R2
are defined in (1). Therefore QY. g2 15 an outer bound to the FRS(T; N,to, Xo, R, h, D).

PRrOOF. Combining constraints (5a) and (5c), we have the following dissiaption inequality:

oV (t,x) n oV (t,x)
ot Ox

ft,z,w,0) <w'w, Yt z,w,d), st.teclty,T], =€ Qg%(t), weR™, §eD.

Since this dissipation inequality only holds on the set QXRQ h(t)> W€ need to first prove that all the states starting
from X won’t leave QXRz h(t) for all ¢t € [to,T]. Assume there exist a time instance Ty € [to, T], xo € Xp, and signals
w satisfying (4), 6(t) € D, such that a trajectory of the system N starting from z(tg) = x¢ satisfies V/(T1,2(11)) >
R2h(Ty). Define Ty = infy (4 2(1))>rR2n(t) t- Therefore, the dissipation inequality holds on [to, T»], and we can integrate
it over [tg, Ts]:

T>

V(T 2(To)) — V(to, o(to)) < /t w(t) Tw(t)dt.
0

By assumption g € X, it follows from (5b) that V (o, x(fp)) < 0. Combing it with w satisfying (4) to show
R*h(Ty) = V(Ty, 2(T2)) < R*h(Ty).

This is contradictory. Therefore there doesn’t exist a 11 € [to, T, such that z(77) ¢ Q% R2n(Ty)- A8 a result, for all
x(tg) € Xy, we have z(t) € QXRQh(t), for all t € [to, T, and thus z(T) € QY p.. O

If the function h is not given, then there is no a priori knowledge on how ftz w(7) "w(7)dr depends on t. In this

case the constraint (5¢) is modified to be
O pe C X, Vit E [to,T). (6)

This case is more restrictive for the storage function and yields larger outer bounds on the FRS.

We are interested in a tight outer bound to the FRS. Thus it is natural to search for a storage function V' that
minimizes the volume of Q¥ Rz~ However, an explicit expression is not available for the volume of Q¥ 2 for a generic
storage function. Instead, we introduce a user-specified shape function ¢ and its corresponding variable sized region
Q4 = {xz € R": g(x) < a}. The shape function ¢ can be associated with the user’s initial guess of the shape of the
actual reachable set or can signify the desired shape of the outer bound. An example of ¢ is given in Section 2.1.

The volume of Q¥ Rz can be shrunk, by enforcing
Q¥7R2 g ng (7)

while minimizing «. For more heuristic metrics for the volume of semi-algebraic sets, the reader is referred to [25].
To find a storage function V' that satisfies the constraints in (5) and (7), we leverage SOS programming. To do

so, we assume that Xy and A&; are semi-algebraic sets: Xj := {z € R" : r9(z) < 0}, and
X ={z € R" : p(x) <}, (3)

where rg, p € R|z] are specified by the user, and n € R is a decision variable that determines that volume of

AX;. Additionally, we restrict the system model, shape function, and storage function to polynomials, i.e., f €



R™[(t, z,w,9)], ¢ € R[z], V € R[(¢,z)]. Also define g(t) := (t —to)(T —t), whose value is nonnegative when ¢ € [to, T].
The polynomial functions are used to formulate the set containment constraints. With these ideas, sufficient SOS
conditions for the set containment constraints (5) and (7) are obtained. Also by choosing « as the cost function, we

obtain the following SOS optimization problem, denoted as sosopti(f, p, g, q,ro, R, h, ps),

min  «
a,n,s,V

st. S5 —€1 € X[x], 86 — €2 € B(x,t)], €1 > 0,3 > 0,

s; € B[(x,w,8,t)],Vi € {1,2,3}, 84 € X[z], 87 € E[(z, )],V € R[(¢, )], (9a)
— (G + G —wTw) + o= 1)1 — sag — sups € Sl .0, (9b)
— V|t:t0 + 8479 € E[LC}, (9C)
- (pfn)56+V7R2h757g€ Z[(I7t)]7 (gd)
—(q—a)ss + Vl]j=r — R* € X[a], (9e)

where s;,i € {1,...,7}, are SOS polynomials, called multipliers, whose coefficients are to be determined, €; and e,
are small positive numbers chosen by the user to guarantee that s; and sg cannot take the value of zero. The
optimization sosopt; is nonconvex as it is bilinear in two groups of decision variables («,n) and (s1, s5, s¢). Since we
can’t bisect on both a and 7 at the same time, we propose Algorithm 1 that solves the problem in two steps, and

bisects on one decision variable at one step.
Data: fvpa 9,49,70, R, h7p5

1 Preparation Step: solve for n* = argminn s.t. (9a)—(9d) by bisecting on 7.
2 Main Step: solve for o* = argmin « s.t. (9a)—(9e) by using n = * and bisecting on a.

Result: Minimized a*, outer bound Q¥ R
Algorithm 1: Computing the outer bound
The first step of Algorithm 1 is to find the smallest feasible local region X; (with respect to p) by setting aside

the original objective function and constraint (9e), and minimizing 7. The second is to find the least conservative
outer bound. The first and second steps bisect on 1 and «, respectively. Each iteration of bisection involves holding
a/n fixed and solving a feasibility problem, which is a standard semidefinite programming problem and is convex. If
the fixed value of a/n leads to infeasibility of the problem, then try to solve it with a larger «/n; otherwise, decrease

the value of /7.
Proposition 1. The SOS constraints (9b)—(9e) are sufficient conditions for (5) and (7).

PROOF. (9b) = (5a): The proof follows from the generalized S-procedure [4]. In (9b), when (z,?,0) satisfies p(z) <7
(iie. © € X)), g(t) >0 (ie. t € [to,T]), ps > 0 (i.e. § € D), for the polynomial in (9b) to be nonnegative, then
—(W + %f(t,x,w, §) —w "w) must be nonnegative. Thus (9b) implies (5a).

(9¢) = (5b): In (9¢), when a state z satisfies ro(z) < 0 (i.e. x € Ap), for the polynomial in (9¢) to be nonnegative,
then —V/(to, z) must be nonnegative (i.e. z € Q) ().

(9d) = (5¢): In (9d), when a state and time pair (z,t) satisfies V (¢, 2) < R2h(t) (i.e. x € QXRQh(t)) and g(t) >0
(i.e. t € [to,T]), for the polynomial in (9d) to be nonnegative, then —sg(¢,x)(p(x) — 1) must be nonnegative (i.e.
x € AXY).



(9¢) = (7): In (9¢), when a state = satisfies V(T,z) < R? (i.e. o € QY ), for the polynomial in (9e) to be

nonnegative, then —(g(x) — a)ss(x) must be nonnegative (i.e. x € Q). O

2.1. Application to a 2-state example

Consider the following academic example from [15]:

Ty =—21+ 22 — :z:lxg,
(10)

Ty = — Ty — Tixg + W,
where w is the disturbance satisfies (4) with R = 1 and h(t) = t?/T?2. In this example the uncertain parameter is
not, considered. We take [to,T] = [0,1 sec], ro(z) = "2 — 1. In Figure 1, the green points are simulation points
x(T), at T =1 sec, for the system (10) using disturbance signals w, with initial conditions inside Xy, which is shown
with the red dotted curve. In this example, the shape function ¢ is obtained by computing the minimum volume
ellipsoid Qf that contains all the simulation points z(T) at T = 1 sec, and ¢(z) = 4.842% — 3.05x122 + 1.5023. A
more accurate shape function can be obtained by fitting a higher degree polynomial to the simulation points [26].
Here, the polynomial p that defines the local region is obtained by computing the minimum volume ellipsoid QY
that contains some sampling points on the simulation trajectories z(t), for t € [0,T], and p = 0.989x2 — 0.051z122 +
0.94922 + 0.001x; + 0.001z2. Solving the first step of Algorithm 1 we obtain n* = 1.044, and A} is determined.
Solving the second step gives a* = 1.37. The outer bound is shown with the black curve, which tightly encloses all

x(T).

........ A{O
1 Y
X
05 —
z(T)
go
05
-1

Figure 1: Outer bound of reachable set at T" = 1 sec for the 2-state example with Lo disturbance.

3. Robust Reachability Analysis with Hard IQCs

Consider the uncertain nonlinear system shown in Figure 2, which is an interconnection F, (G, A) of a nonlinear

system G and a perturbation A. The dynamics of the nonlinear system G are of the form:

ta(t) =f(t,xa(t),1(t), w(t),6(t)),
v(t) =r(t, xa(t),1(t), w(t),6(t)),



where z¢(t) € R™ is the state of G, and §(t) € R™ is the uncertain parameter. The inputs of G are w(t) € R™ and
I(t) € R™, while the output is v(t) € R™. The system G is defined by the mappings f : R x R"¢ x R™ x R™ x R"s
— R"6 and r : RxR"¢ x R™ xR"» x R™ — R". The perturbation is a bounded and causal operator A : L5 — L5!.

Assume the interconnection F, (G, A) formed by G and A through the constraint

I(-) =A()) (12)
is well-posed. The well-posedness of the interconnection F, (G, A) is defined as follows.

Definition 2. F,(G,A) is well-posed if for all x¢(to) € R"¢ and w € L5* there exist unique solutions xg € L3S,

v e Ly, andl € Ly satisfying (11) and (12) with a causal dependence on w.

Again, assume all the trajectories of Fy, (G, A) start from zg(tg) € Xy C R™¢. The FRS of F,, (G, A) from &) at

time T is then defined as

FRS(T; Fy,(G,A), to, Xo, R, h, D) := {xa(T) € R"¢ : Jxg(ty) € Xy, w satisfying (4) and §(t) € D,

such that x¢(-) is a solution to (11) and (12)}. (13)

>

A

Figure 2: Interconnection Fy (G, A) of a nominal nonlinear system G and a perturbation A

From robust control modeling [27], the perturbation A can represent various types of nonlinearity and uncertainty,
including hard nonlinearities (e.g. saturation), time delays, and unmodeled dynamics. Different types of perturbation
have different input-output properties, and each property can be described by its corresponding IQCs [5]. To help
define IQCs, we introduced a virtual filter ¥ (shown in Fig 3) that is an linear time invariant (LTT) system, driven

by the input v and output [ of A, and with zero initial condition x(t9) = 0. Its dynamics are given by

g (t) =Aypwy(t) + Byrv(t) + Byal(t), (14a)

2(t) =Cyey () + Dyro(t) + Dyal(), (14b)

where x,(t) € R™ is the state, and z(t) € R™* is the output. For many types of perturbations (e.g. the ones in
Example 1 — 3), we can choose ¥ to be an identity matrix, i.e., z = [v;{]. But dynamic filters are able to capture
the correlation between the input and output signals of A across time, which enriches the description of A. For
examples on dynamic filters, the reader is referred to [5, 6, 28]. IQCs can be either defined in frequency domain or
time domain. The use of time domain IQCs is required by the dissipation inequality used in the paper. Time domain

IQCs consist of soft IQCs and hard IQCs, which are quadratic constraints on the output z associated with a matrix



M over infinite (soft IQC) or finite (hard IQC) horizons. The definition for hard IQCs is given below, the use of soft

IQCs is discussed in Section 4.

vV V
N

> A

v

Figure 3: Graphical interpretation for time domain IQCs

Definition 3. Let ¥ € RH"*"*") gnd M € §" be given. A bounded, causal operator A : L3 — L3 satisfies
the hard IQC defined by (¥, M) if the following condition holds for all v € L5?, and | = A(v):

/t 2(7) T Mz(t)dr >0, Vt € [to, T), (15)

to

where z =W [7] (Eq. 14b) is the output of U driven by the inputs (v,1).

We use the notation A € HardIQC(¥, M) to indicate that A satisfies the hard IQC specified (¥, M), i.e., given any
input v of A, the output I must be such that z = W [7] satisfies the constraint (15) characterized by (¥, M). Next,

we give two examples on different types of uncertainties and the corresponding hard IQCs.

Example 1. Consider the set Sy of LTI uncertainties with a given norm bound o > 0, i.e., A € S, if A € RH, with
Al < o. It’s proved in [29] that A € HardIQC (¥, Mp) over any finite horizon T < oo, where W = [ Y3 \1,011]
with U1 € RH%:* and

Mp € My = {{Ugﬂ _JOMH] My = o}. (16)

A typical choice for W11 [6] is

,with - m >0, (17)

\I’d’m = |:1 1 e 1 ]T
11 » (s+m)° ? (s+m)d

where m and d are selected by the user.

Example 2. Consider the set So of nonlinear, time varying, uncertainties with a given norm-bound o, i.e. A € Ss,

if ||A\|2_>27[t07T] <o. If A € S,, then the perturbation A satisfies the hard IQCs defined by (U, M) defined below:
02)\Inv .
U =TIy in, ME M, ;:{[ . 7;’%} : )\20}. (18)

Since the behavior of the perturbation A can be described by an IQC associated with a filter ¥ and a matrix
M, then the robust analysis on the original uncertain system F,(G,A) can be instead conducted on the extended
system shown in Fig. 4 with an additional constraint (15). The precise relation [ = A(v), for analysis, is replaced by
the constraint on z. This extended system is an interconnection of G and ¥, with A been removed. The dynamics

of the extended system are of the form:



where the state z := [zg; zy] € R",n = ng + ny, gathers the state of G and ¥. The mappings F', and H are given
by (dropping the dependence on t):
t,rxq,l,w,d
F(t,x,l,w,0) := ftze ) ,
Awl‘w + BwlT(t, ra,l,w, 5) + Bq/;Ql (20)
H(t,z,l,w,6) = Cyxy+ Dyir(t,zq,l,w,d) + Dyal.

v —
> z
. with
v, l /Z(T)TMZ(T)deo
to

A

Figure 4: Extended system of G and ¥

The original uncertain system to be analyzed is F, (G, A), which has a set of initial conditions Xy and an input w.
The analysis is instead conducted on the extended system (19), which has a set of initial conditions Xy x {0™*}, and
two inputs w and [. For any input w € £5* and initial condition z¢(tg) € R™¢, the solutions v € £32 and | € L3}
to the original system F, (G, A) satisfy the constraint (15). The extended system (19) with the IQC (15) “covers”
the responses of the original uncertain system F,(G,A). Specifically, given any input w € £5* and initial condition
zc(to) € R™, the input | € £5! is implicitly constrained in the extended system so that the pair (v,l) satisfies the
IQC (15). This set of (v,1) that satisfies the IQC (15) includes all input/output pairs of A. Therefore, the response
of this extended system subject to this implicit constraint (15) includes all behaviors of the original uncertain system
F,(G,A). The following theorem provides the method for outer bounding the FRS of the uncertain system F, (G, A)

by conducting analysis on the constrained extended system (19).

Theorem 2. Let G be a nonlinear system defined by (11), and A : L3 — L5 be a bounded and causal operator.
Let Assumption 1 hold. Additionally, assume (i) F\,(G,A) is well-posed, (i) A € HardIQC(Y, M), with U and M
given, and (i) all the trajectories of the extended system start from Xy x {0™¢}. For some F, H defined in (20),
time interval [to, T], local region X; C RS, set of initial conditions Xy C R™S, disturbance bound R, function h, and
set of uncertain parameters D, function ¢ : R"¢ — R, and o € R, suppose there exists a C' function V : RxR™ — R

that satisfies

oVt z) + av(t’x)F(t,:r,l,w,é) +2 "Mz <w'w, Y(z,t,1,w,08) € X x R™ x [to,T] x R™ x R™ x D, (2la)

ot Oox
Xo x {0™} C{x e R" : V(tg,x) <0}, (21b)
{z¢ eR"¢ : V(T,z) < R*} C Q%, Va, € R™, (21c)
{zc e R"¢ : V(t,2) < R*h(t)} C A1, V(t,zy) € [to, T] x R™, (21d)



where z is the output of the map H. Then all trajectories of F,(G, A) (defined by (11)—-(12)) starting from xz(to) € Xo
satisfy xa(T) € Q4. Therefore Q% is an outer bound to the FRS(T; F, (G, A), tg, Xo, R, h,D) (13).

ProoOF. By assumption that F, (G, A) is well-posed, the signals (z,v,[, z) generated for the extended system for the

input w € L3* are Lo, signals. By combining (21a) and (21d) we have the following dissipation inequality:

vV (t,x) N oV (t,x)

Ey e F(t,z,l,w,8)+ 2 Mz < w'w,

V(z,t, 1w, 0) s.t. & € QY pappyt € [to, T],1 € R, w € R™,§ € D. (22)

Since (22) only holds on the set QXRQh(t)’ we need to first prove that all the states starting from Ay x {0™¢} won’t
leave QXth(t), for all ¢ € [tg,T]. Assume there exist a time instance Ty € [to,T], zg € Xy x {0™*}, and signals w
satisfying (4), 0(t) € D, I(t) € R™, such that a trajectory of the extended system starting from x(tg) = xo satisfies
V(Ty,x(Ty)) > R2h(Ty). Define T = infy (1 2(1))>Rr2n(t) t, and integrate (22) over [tg, T3]:

T2

T>
V(Tg,x(Tg))—V(to,x(to))—F/ z(t)TMz(t)dtg/ w(t) T w(t)dt.

to to

By assumnption zq € Xy x {0™¥}, it follows from constraint (21b) that V(tg,z(to)) < 0. Comibining it with w

satisfing (4) yields

V(Ty, z(T)) + /T2 2(t) T M z(t)dt < R?h(T3). (23)

to

Next it follows from the hypothesis that A € HardIQC (¥, M) that
R?h(Ty) = V(Ty, 2(Tz)) < R*h(Ty). (24)

We can see the contradiction in (24). Therefore there doesn’t exist a T} € [to, T], such that x(77) ¢ Q¥1,R2h(T1)‘ As
a result, for all z(tg) € Ay x {0}, we have z(t) € QXRQh(t), for all ¢t € [to,T], and thus z(T') € Q%RQ. Finally, it
follows from (21¢) that z(T) € Q4. O

Notice that from the proof, Q¥ g2 is an outer bound to the FRS of the extended system from Ay x {0"*}. The set
Q4. a projection of Q;,m on the xg space, is an outer bound to the FRS of the actual uncertain system Fy, (G, A).
There is a large library of IQCs for various types of perturbations A [5]. It is common to formulate optimization
problems that search over combinations of valid IQCs. Specifically, let {(Uy, Mk)}ivzl be a collection of valid time-
domain IQCs for a particular A. If zj is the output of the filter ¥;, and Aq,...., Ay are non-negative scalars then it
follows that:
T N
/ D> Neze(t) T Mi(t)zi(t)dt > 0, Yo € L)%, 1, = A(vg), and T > to.
to k=1
In other words, a conic combination of time-domain IQCs is also an IQC. This conic combination can be represented
as U := [Uy;...; Uy] and M := blkdiag(A\1 My, ..., \nMy). The scalars Aj,...Ay > 0 are typically decision variables
in an optimization used to find the best IQC for the robustness analysis. In this parameterization W is fixed and M
is a linear function of variables A1, ..., Ay subject to non-negativity constraints. More general IQC parameterizations

can be found in [6]: given the type of the perturbation, the corresponding IQCs are parametrized by a fixed filter
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¥ chosen by the analyst and M in a feasible set M described by linear matrix inequality (LMI) constraints. These
general parametrizations will be used in the rest of the paper. Note that Example 1 and 2 also provide instances of
the general parametrization, where Mp and M are restricted to convex sets M; and Mo.

Along with V| we also treat M € M as a decision variable to give the optimization more flexibility. Assume
the set M is convex and described by LMIs. Again, assume X}, X are parametrized by p € Rlzg| and rg € Rlzg],
respectively, and restrict ¢ € Rlzg], f € R"|[(¢, zqg,l,w,d)], and r € R™[(¢,zq,l,w,d)]. Therefore, F' and H in
(19) are polynomials. By applying the generalized S-procedure [4] to (21), we obtain the following SOS optimization
problem, sosopts(F, H,p,g,q,70, R, h,ps, ¥, M),

B

st.  s5—e€ € Xx], 56 — €2 € E[(w,1)],e1 > 0,2 >0, M € M, V € R[(¢, )],

s4 € Blzg], s7 € X(x,t)], s; € X[(x,w,l,t,9)], Vi€ {1,2,3},

- (88‘; + %F +2 "Mz — wTw> + (p —n)s1 — s2g — s3ps € Xz, w,1,t, )], (25a)
_ V\t:to,m:[zG;O"‘w] + 8479 € Blxg], (25b)
—(q—a)s5 + V=g — R* € S[a], (25¢)
—(p—n)ss +V — R*h — s7g € X[(z,1)], (25d)

which is again bilinear in (o, n) and (s1,ss,56), and can be solved by using Algorithm 1. Although in the SOS
formulation, M is restricted to be time-invariant, extensions to allow for time-varying M are possible.
To keep track of all the tuning parameters in the paper, we provide a table that summarizes them, their corre-

sponding physical meanings, and some of their examples:

Table 1: List of tuning parameters

Physical meanings Shape of &} Outer bound shape | Energy releasing rate Filter for A
Parameters P q h v
Examples Sections 2.1, 5.1 Sections 2.1, 5.1 Section 2.1 Sections 5.1, 5.2.4

4. Robust Reachability Analysis with Soft IQCs

The previous section gives the result using hard IQCs, however, the library of IQCs are usually provided in

frequency domain [5], whose definition is given below:

Definition 4. Let I = II™ € RL )Xot e given. A bounded, causal operator A : L32 — L3 satisfies the

frequency domain I1QC defined by the multiplier 11, if the following inequality holds for all v € L3 and | = A(v),

o0 *

dw > 0, (26)

— 00

where © and [ are Fourier transforms of v and l.
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The frequency domain multiplier can be factorized as I = W~ MW where M € S™ and V¥ is a stable, LTI system of
appropriate dimension. Such a factorization always exists [6] but is not unique. This factorization (¥, M) gives rise

to a time-domain soft IQC as defined next.

Definition 5. Let ¥ € RH":*"*+") gnd M e S™ be given. A bounded, causal operator A : L3? — L3 satisfies
the soft IQC defined by (U, M) if the following inequality holds for all v € L3 and | = A(v):
/ 2(t) T Mz(t)dt > 0, (27)
to

where z =W [7] (Eq. 14b) is the output of U driven by the inputs (v,1).

We use the notation A € IQC(IT) and A € SoftIQC(¥, M) to indicate that A satisfies the corresponding frequency
domain and soft IQC, meaning that given any v, the output [ of A must be such that (26) and (27) hold, respectively.
By Parseval’s theorem [27], frequency domain and time domain soft IQCs are equivalent. Specifically, if A € IQC(II)
then A € SoftIQC(¥, M) for any factorization Il = U~ M ¥ with ¥ stable. Conversely if A € SoftIQC(¥, M) then
A € IQC(T~MU) as well. It also follows that A € HardIQC(¥, M) implies A € IQC(¥~M¥). However, A €
IQC(II) does not imply, for general factorizations, that A € HardIQC(W¥, M). As a result, soft IQCs are always
available while hard ones are not, which necessitates the use of soft IQCs in the dissipation inequality. Next, we give

one example of uncertainty and its corresponding soft IQC.

Example 3. Consider the set S of real constant parametric uncertainties with given norm bound o > 0, i.e.
A e Ss, if l(t) = A(v(t)) = orrv(t) with 71| < o. From [5], the frequency domain filter is chosen as Ils =

U;?;(lj(i‘)“) —Hﬁffiﬁz)}’ where 111 (jw) = IIf; (jw) > 0 and 3(jw) = -1, (jw) for all w. A soft IQC factorization

d,m

forIls is ¥ = {‘1’101 ‘I’Lfoim}’ where \Iltliim is defined in (17), and Mpg = [UZ/IAI%I _]\;\I/}fl}, where decision matrices are
subject to My, = M, Myy = —Mjy and W™ My OE™ > 0. The constraints W™ My OE™ > 0 can be enforced
by a KYP LMI [30]. Notice that ér; is a special case of the perturbation considered in Example 1, and thus érr €
HardIQC(V, Mp) as well. However, since Mp is a special case of Mpg with Mis = 0, the reachability analysis using

(U, Mpg) can be less conservative than using (U, Mp).

Soft IQCs are constraints that hold over the infinite time horizon and hence they cannot be directly incorporated
in the analysis based on finite-horizon dissipation inequalities. The following Lemma is a remedy for this issue: it
provides a lower-bound for soft IQCs on finite horizons then enabling their use for reachability analysis. This in
turn enables us to: (i) conduct reachability analysis when the hard IQC factorization does not exist; (ii) reduce

conservatism resulting from the hard IQC factorization when it exists, as discussed in Example 3 .
Lemma 1. ([11]) Let ¥ € RH" ™% gnd M € S" be given. Define Il := U~ M. If Tlyy(jw) < 0 Vw, then!
° D;;';—zM Dy < 0 and there exists a Yoo € S™ satisfying

KY P(Ya, Ay, Byz, Cyp, Dy, M) < 0. (28)

IThe notation Ilas refers to the partitioning II = [Eg g;z] conformably with the dimensions of v and I.

12



o If A e SoftIQC(V, M) then for allT >0, v € L5 and l = A(v),
T
/ 2(t) T M2(t)dt > —y(T) " Yooy (T) (29)
0
for any Yoo € S™ satisfying (28).

Lemma 1 is valid for multipliers that satisfy Ilo5 > 0. Multipliers satisfying the non-strict conditions IIo5 > 0
can be handled by a perturbation argument [31]. Based on the lemma given above, the following theorem considers

the analysis for the interconnection Fy, (G, A) with A that has a soft IQC factorization.

Theorem 3. Let G be a nonlinear system defined by (11), and A : L52 — L5! be a bounded and causal operator. Let
Assumption 1 hold. Additionally, assume (i) F,(G,A) is well-posed, (ii) A € SoftIQC(¥, M), with ¥ and M given,
(117) 11 := U~ MU satisfying Ilag < 0 Yw, and (i) all the trajectories of the extended system start from Xy x {0 }.
For some F, H defined in (20), time interval [to,T], local region X; C R™G, set of initial conditions Xy C R™C,
disturbance bound R, function h, and set of uncertain parameters D, function q : R"¢ — R, and a € R, suppose
there exists a Ct function V : RxR™ — R, and a matriz Yoo € S™* satisfying (28), such that the following constraints
hold

oV (t oV (¢
(t,2) + ( 7x)F(t,a:,l,w,cS) +2 Mz <w'w, V(z,t,1,w,6) € X x R™ x [to, T] x R" x R™ x D, (30a)

ot Ox
Xy X {0”"’[’} - {,T eR™: V(t07l‘) < O}, (30b)
{z¢ eR"¢ : V(T,z) < R*} C Q%,Vz, € R™, (30c)
{zc € R"¢ : V(t,2) < R*h(t)} C A, V(t, zy) € [to, T] x R™. (30d)

where Y =V — l’l}fggl'w, and z is the output of the map H. Then all trajectories of F,(G,A) (defined by (11)—(12))
starting from xg(to) € Xo satisfy xq(T) € QL. Therefore Q% is an outer bound to FRS(T; F\,(G, A), to, Xo, R, h, D)
(13).

PROOF. By assumption that F, (G, A) is well-posed, the signals (z,v,1, z) generated for the extended system for the
input w € L3 are Lo, signals. By combining (30a) and (30d) we have the following dissipation inequality:

oV (t,x) N oV (t,x)

5 p F(t,z,l,w,0) 4+ 2" Mz < w'w,

V(z,t,l,w,0) s.t. € QY eyt € to,T),l €R™,w eR™, 5 €D. (31

Since (31) only holds on the set QzRgh(t), we need to first prove that all the states starting from Ay x {0™¥} won’t
leave QXRQh(t), for all ¢ € [tg,T]. Assume there exist a time instance T} € [tg,T], zg € Xy X {0™*}, and signals w
satisfying (4), d(t) € D, I(t) € R™, such that a trajectory of the extended system starting from z(ty) = ¢ satisfies
V(T1,x(Ty)) > R*h(T1). Define Ty = infy¢ 4(4))> r2n(t) t, and integrate (31) over [to, To]:

T T2

V(Ty, 2(Tz)) — V(to, z(to)) +/t 2(t) T Mz(t)dt < / w(t) Tw(t)dt.

o to
By assumption zg € Ay x {0™¥ }, it follows from constraint (30b) that V (¢9, z(t0)) < 0. Combining it with w satisfying
(4) to show

T

V(Ty, 2(T3)) +/ 2(t) T Mz(t)dt < R*h(Ty). (32)

to
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It follows from Lemma 1, A € SoftIQC(¥, M), IIy; < 0 Vw and Yao satisfies (28) that (29) holds for the Ly, signals
(v,1, z), and thus

V(Ta, (Ty)) — x4 (To) " Yaguy(To) < R2h(Ty). (33)

Thus (33) is a contradiction, since V (T, 2(T2)) — 2y (T) " Yaowy (T2) = V(Tz,(Tz)) = R2h(Ty). Therefore there
doesn’t exist a Ty € [to,T], such that z(Ty) ¢ Q%,Pﬁh(Tl)' As a result, for all z(ty) € Ay x {0"¥}, we have
x(t) € QZth(t), for all ¢ € [to, T], and thus z(T) € Q}}“,R? Finally, it follows from (30c) that xg(T") € Q2. O

Remark 1. The use of soft IQCs requires some care as they are only defined in the frequency domain for Lo inputs
and yet the analysis must be performed using Lo signals (to prevent circular arguments). Section & is restricted to
the use of hard IQCs for which the time-domain IQC holds over finite time horizons. This removes the technical
details associated with soft IQCs. This restricts the analysis to IQCs that can be parameterized so that they are hard.
In Section 4, however, analysis conditions are derived based on soft IQCs. The issues related to soft IQCs are resolved
by constructing a finite horizon lower bound valid for Lo, signals (Lemma 1). This lower bound is then incorporated
in the reachability analysis in Theorem 3. The proof of Theorem 8 demonstrates that that the reachability analysis
uses the lower bound (29) valid for Loe signals (v,1, z), instead of using (27), which requires (v,l, z) to be Lo signals.

Note that the characterization of a frequency domain IQC as “soft” vs. “hard” depends on the factorization of
the frequency domain multiplier. The J-spectral factorization in [31] always yields a “hard” IQC for any frequency

domain multiplier (although this may not be an ideal parameterization for numerical implmentations)

By applying the generalized S-procedure [4] to (30), and using « as the cost function, we obtain the following
SOS problem, sosopts(F, H,p,g,q,70, R, h,ps, ¥, M):

min a
a,m,s,V,M,Y22,€1,€2

st.  VeR[(tz)],M € M and Yy € S™ satisfying (28),
s5 — €1 € X[x], 86 — €2 € X[(z,t)],€e1 > 0,e2 > 0,

84 € Blxg], s7 € B(x,t)], s; € X|(x,w,l,t,9)], Vi€ {1,2,3},

(G + GoF M = uTw) = sy — sag — saps € Bl w8, (340
- V|t:t0,m:[zg;0%] + sar0 € Xzgl, (34b)
— (¢ — a)ss + V]j=r — R* € 2[x], (34c¢)
—(p—n)sg+V — R*h —s7g € X[(z, )] (34d)

Compared with sosopts, the optimization sosopts has one more decision matrix Yoo and an associated KYP LMI

convex constraint, and it can also be solved by using Algorithm 1.

5. Examples

A workstation with a 2.7 [GHz] Intel Core i5 64 bit processors and 8[GB] of RAM was used for performing all

computations in the following examples. The SOS optimization problem is formulated and translated into SDP using
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the Sum-of-Squares module in Yalmip [32] on MATLAB, and solved by the SDP solver Mosek [33]. Table 3 shows

the degree of polynomials we chose, and the computation time it took for each example.

Table 2: Computation times for each example

Examples / sections # of x Degree of f Degree of V Degree of s | Time[sec]
Section 2.1 2 3 8 6 6.1 x 101

Section 5.1 4 3 6 4 1.1 x 102

Section 5.2.1: GTM 4 6 8 6 1.1 x 10
Section 5.2.2: GTM with w 4 3 8 6 3.2 x 103
Section 5.2.3: GTM with w, ¢ 4 3 8 6 5.0 x 103
Section 5.2.4: GTM with w, A 6 3 6 4 8.2 x 10°
Section 5.3 7 3 6 6 3.7 x 103

The dynamics f in the following examples are all time-invariant, but since our reachability analysis is addressed

in finite-time horizon, we use time-varying storage functions.

5.1. Van der Pol example

Consider the following Van der Pol oscillator dynamics in reverse time with time-invariant uncertain parameter

orr € [-3,3]:

&1 = x2(1 + 0.2077),

iy =x1 + (23 — 1)za.
In this case dry is treated as a perturbation, where | = A(v) = drrv, and v = 0.2z5. As discussed in Example 3,
the time invariant uncertain parameter dp; satisfies both hard and soft IQCs: dr; € HardIQC(¥, Mp) and dp; €
SoftIQC(V¥, Mp¢), where the constraints for Mp and Mpg are given in Example 1 and 3, respectively. The robust
reachability analysis is performed using both kinds of IQCs. In both cases, we use the same filter ¥, and choose d

and m from (17) to be d = 1, m = 4, which correspond to ¥ described by the following dynamics:

4
T T
Co= [84891 7 Dy = [10.00] . Dya = [0010]"

Therefore the filter ¥ introduces two filter states z, € R? to the extended system. Take the time horizon as
[to,T] = [0,1.5] and the initial set as Xy = {(z1,22) | 23 + 23 < 1}. Choose polynomials ¢ = p = 0.31502? —
0.0976z125 + 0.08161‘% — 0.0023z1 + 0.0002z5. The local region A is picked as QZ. The optimal o computed using
soft and hard IQCs are 1.21 and 1.60, respectively, which states the fact that the soft IQC achieves a less conservative
outer bound and captures the nature of the uncertainty. In Fig 5, the simulation points 2(T) of the Van der Pol
dynamics with the initial set Xy, and with values of 7y randomly drawn from [—3, 3] are shown with green dots. We
can see from Fig 5 that the outer bound obtained using the soft IQC (shown with the black solid curve) is enclosed
by the one computed using the hard IQC (shown with the purple dash-dotted curve). It also indicates that the outer

bound obtained using the soft IQC is less conservative.
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Figure 5: Outer bounds using soft/hard IQCs and simulation points z(T") at T'= 1.5 under uncertain parameter, with the initial condition

set Xp

5.2. NASA’s Generic Transport Model (GTM) around straight and level flight condition
The GTM is a remote-controlled 5.5% scale commercial aircraft [34]. Its longitudinal model [35] is
1

T :E(_D —mgsin(xy — x2) + Ty cos(xa) + T sin(z2)),
1

T = (=L + mgcos(xy — x2) — Ty sin(xa) + T, cos(xa) + x3),

1

M+T,

by =, (35)

Iyy
1"4 =3,

where states x; to x4 represent air speed (m/s), angle of attack (rad), pitch rate (rad/s) and pitch angle (rad)
respectively. The control inputs are elevator deflection wepe, (rad) and engine throttle w;, (percent). The drag
force D (N), lift force L (N), and aerodynamic pitching moment M (Nm) are given by D = §SCp(z2, teiev,q),
L = gSCr(x2, telew, §), and M = GSeCy, (2, Uelev, §),where § := %px% is the dynamic pressure (N/m?), and § :=
(¢/2x1)x3 is the normalized pitch rate (unitless). Cp,Cr, and C,, are unitless aerodynamic coefficients computed
from look-up tables provided by NASA.

A degree-6 polynomial model, provided in [36], is obtained after replacing all nonpolynomial terms with their
polynomial approximations. The polynomial model takes the form & = fg(z,u), where z = |11, 22,73, 24]" and
u = [uelev,uth]T. The following straight and level flight condition is computed for this model: z;; = 45 m/s,
xoy = 0.04924 rad, z3; = 0 rad/s, x4, = 0.04924 rad, with e, = 0.04892 rad, and wup,,; = 14.33%. The subscript
t denotes a trim value. A polynomial closed-loop model, denoted as & = fg(x), is obtained by holding uy, at its trim

value, applying a proportional pitch rate feedback ey = Kq%3 + Ueicw,t = 0.069823 + Ueico,t-

5.2.1. Analysis for the GTM

Reachability analysis is carried out on & = fg(x) around its trim point. The set of initial conditions Xy =
{r € RY(z —2)TCY(z — 2;) — 1 < 0} is a 4-dimensional ellipsoid inside the region of attraction, where C' =
diag(20%, (207 /180)2, (507 /180)2, (207/180)?), x; is the trim point. Take the local region X; = {z € R*|(z —
z;) 'O M (w — ) — 1 < 0}, where ) = diag(302, (307/180)2, (757/180)2, (307/180)2). Qf is chosen as the minimum

volume ellipsoid containing all the simulation points at terminal time.
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To improve the numerical conditioning, we define the scaled states xs, = N, S_Cllx, where we set Ny := diag(20,
207 /180, 507 /180, 207/180), since 20 m/s, 207 /180 rad, 507 /180 rad/s, 207/180 rad are farthest distances observed
in simulation that each state can be away from their trim point value given the initial condition set Xy. Then we have
the dynamics for the scaled states: &g = N S_Cll f6(Nseciser), and this scaled dynamics is the one we will use in the
SOS optimization problem. Before scaling, the coefficients of fg(x) vary from 1.6 x 1075 to 4.5 x 10!; after scaling,
they vary from 4.5 x 1073 to 1.8 x 10'. Before plugging the polynomial functions 7, g, p into the SOS optimization
problem, the parameters were scaled accordingly.

Figure 6 and Figure 7 show the outer bound of reachable set in xs — z3 space and x; — x4 space respectively, at
different simulation times. We can observe that Q¥,0 (black curve) contains all the simulation points z(T") (green

points) at each terminal time 7.

50

x3 [deg/s]
o
8
3 -
x3 [deg/s]
o

50 50

3 [deg/s|
o
— -
3 [deg/s]
o

40 0 10 20 40 0 10 20
3 [deg] 5 [deg]

Figure 6: Outer bounds for GTM model in z2 — x3 plane.
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Figure 7: Outer bounds for GTM model in 1 — x4 plane.

5.2.2. GTM with Lo disturbance

To save computation time, reachability analysis is conducted on a 4-state degree-3 model obtained from the
4-state degree-6 model, with the same initial condition set Xy as that from the previous section. But an input
disturbance w at the elevator channel is taken into consideration this time. The control input becomes e, =
Kqx3 4 Ueten,t + w = 0.069823 + Uejev,r + w. Figure 8 shows outer bounds at time 7' = 0.4 s with disturbances of

different £ bounds.

1 — x4 plane

29 — x3 plane
50 2 s.pane %
-
b 20
E = 10
g )
£oori o R 7 g
g I Hsz,[m,.T] =0 rad gj
K - HwHZ,[m,,T] < 0.002 rad
—— ||wl|a, 7y < 0.004 rad| -10
= = [Jw]lz,.17 < 0.006 rad i
e, Hsz[m,,T] <0.008 rad| _og
-50 | % trim, point
-20 -10 0 10 20 v " o -
@2 [deg] 1 [m/s]

Figure 8: Outer bounds for GTM model at T' = 0.4 sec with L2 disturbances.

5.2.3. GTM with Lo disturbances and time varying uncertain parameters
In addition to an input disturbance w at the elevator channel, satisfying ||w]|, (to,7] < 0-004 rad, assume that the

inertia I, in (35) is also uncertain: I, = v(t)I,,, where y(t) is a time varying uncertain parameter and I, is the
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nominal value of inertia. Define & := 1/, assume 7(t) € [12, 2], then 4(t) € [0.9,1.1] =: D. Equation (35) becomes

. M+ T, M +T,, (5M + T
[L‘g = = — = — .
Iy, Yyy Iyy

The result is shown in Figure 9, where the outer bounds with and without uncertain parameter are shown with blue

and magenta curves, respectively.
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Figure 9: Over bounds for GTM model at T' = 0.4 sec with Lo disturbance and parameter.

5.2.4. GTM with Lo disturbance and unmodeled dynamics A

Assume the control input at elevator actuator of the GTM system is corrupted by an Lo disturbance w, satisfying
||wH2,[t0’T] < 0.004 rad, and an LTT uncertainty A with ||A| , < o, where o > 0. Figure 10 shows a block diagram
for the uncertain GTM system. The input to the perturbation is v = K;x3 + tejev,+ +w, and the signal that actually
goes into the elevator channel i e, = v + [, where I = A(v). As discussed in Example 1, this LTI uncertainty A
satisfies hard IQCs defined by (¥, Mp) from Example 1. In this example, we choose d and m from (17) to be d = 1,

m = 1, and they correspond to ¥ of the following dynamics:

Again, the filter ¥ introduces two filter states z,, € R? to the extended system. We solve for the outer bounds with
two values of o using sosopts with the constraint set M defined in (16). The results are shown in Fig 11, where the

outer bound with ¢ = 0.1 is shown with the magenta curve, and the one with ¢ = 0.4 is shown with the blue curve.

w + v + Ueley = V + l
—
R GTM
xr
K

Figure 10: Uncertain nonlinear model for GTM.
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Figure 11: Outer bounds for GTM model at T' = 0.4 sec with L2 disturbance and perturbation A.

5.8. F-18 around falling-leaf mode flight condition

In this example, we analyze a 7-state, cubic degree F-18 closed-loop polynomial model & = f5(z) from [37], where
the states x1, ..., 27 represent sideslip angle (rad), angle-of-attack (rad), roll rate (rad/s), pitch rate (rad/s), yaw
rate (rad/s), bank angle (rad), controller state (rad) respectively. The trim point of the states is z; = [0 degree,
20.17 degree, -1.083 degree/s, 1.855 degree/s, 2.634 degree/s, 35 degree, 0 degree]. Consider the flight condition for a
coordinated turn (z7, = 0°) at a 35° bank angle and at the air speed of 350 ft/s. Around this condition the aircraft
is more likely to experience the falling-leaf motion. The analysis is performed around this flight condition.

The given initial set Xy = {z € R”|(x —2;)"C~1(z — x;) — 1 < 0} is a 7-dimensional ellipsoid inside the region of
attraction, where C' = diag((107/180)2,(257/180)2, (357/180)2, (307/180)2, (157/180)2, (257/180)2, (207/180)2).
Again, in order to improve the numerical conditioning, we scale the states x4 = N 'z, where N = diag(107 /180,
257 /180, 357 /180, 57 /180, 157 /180, 257 /180, 207/180). Take X, with radii twice as long as those of Xy. Take Qf
as the minimum volume ellipsoid containing all the simulation points x(7T').

Figure 12 and Figure 13 show the outer bound of reachable set in x; — o space and x3 — x5 space respectively,
at different simulation times. The red dotted curve is a slice of initial set X;. We can see that Q¥,0 (shown with
the black curve) tightly contains z(T") (shown with green points). We verified the reliability of the solutions of this

example from SOS programming with a post-processing step as advocated in [38].
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Figure 13: Outer bounds for F-18 model in 23 — x5 plane.

5.8.1. Comparison to the V, s iterations method

The outer bound of the reachable set at T" = 0.4 sec is also computed using the Vs iterations method from
[19] with the same shape function ¢ as the one we used before. The outer-approximations obtained using the Vs
iterations and quasi-convex methods are shown with the brown curves and black curves in Figure 14, respectively. We

can see that the brown curves enclose the black curves in both plots, and thus the outer bound from the quasi-convex
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method is less conservative.
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Figure 14: Comparison of outer bounds at 7" = 0.4 sec for F-18 model.

The computation details are shown in Table 3, including the obtained « and computation time. We can see that
compared with the V| s iterations, within the similar amount of computation time, using the same shape function,
the quasi-convex method from this paper is able to achieve smaller «, i.e. less conservative outer bound. Also, from
the value of a* reported in Table 3, we can see that the outer bound obtained using our method is contained by
QO 44, whose radii are 1.166 times those of Qf, the minimum-volume ellipsoid that contains all the simulation points.

This indicates the tightness of the outer bound.

Table 3: Computation results and details for the two methods

Methods a* Degree of V' | Degree of s Time[sec]
V, s iterations | 1.70 4 4 5.2 x 103
quasi-convex 1.36 6 6 3.7 x 103

6. Conclusions

We proposed a method for computing outer bounds of reachable sets using time varying storage functions that
satisfy “local” dissipation inequalities. The method is developed for nonlinear systems with polynomial vector fields
and simultaneously accounts for Lo disturbances, parametric uncertainties, and perturbations described by time-
domain integral quadratic constraints (IQCs). A key aspect is that IQCs can be used to account for unmodeled
dynamics. The computational algorithms rely on SOS programming and the generalized S-procedure. This leads
to quasi-convex optimizations for computing the tightest outer bound of the reachable set. It is thus possible to
compute the global optima for this optimization and no initialization is required for the storage function. We applied

the proposed method to several examples including several using nonlinear aircraft models.
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