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ABSTRACT 

Statistical regularities in the environment impact cognition across domains. In semantics, 

distributional approaches posit that similarity between words can be derived from regularities of 

the contexts in which they appear. Here, we study how regularities in written text impacts 

readers’ knowledge about orthography: Can similarity between characters be learned from the 

written environment? Adapting methods from distributional semantics, we model the contextual 

similarity among alphanumeric characters in a large text corpus. We find modest correlations 

between model-derived similarities with similarity derived from a behavioral experiment. 

Beyond this result, model-derived similarity from neural embedding models captures key aspects 

of orthographic knowledge, like case, letter identity and consonant-vowel status. We conclude 

that the text environment contains regularities that are relevant to readers and that statistical 

learning from is a promising way for this information to be acquired. More broadly, our results 

imply that the statistical regularities are relevant not only at the level of word semantics but also 

individual written characters.  
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Readers know a great deal about alphanumeric characters, not only how they can be 

legally combined but structured similarity between them. For example, we can easily distinguish 

between BLORK and BLO&K or B1ORK, knowing that only the former consists of letters 

exclusively. We agree that BLORK could be a word of English but BLRK could not, in part 

because it does not contain any vowel letters - A, E, I, O, or U. We know that PET and pet 

consist of the same letter identities, yet we use their case difference to distinguish between 

Positron Emission Tomography and the family dog. Aspects of this information are taught to 

some extent explicitly in school, but the current study investigates whether this knowledge is 

also available in a bottom-up manner from the written language environment.  

A number of distinctions within orthography are relevant to accessing the correct 

phonological and semantic information for a given orthographic string. At a broad level, the 

distinction between digit and letter characters is relevant for determining text type (e.g., a 

database or a novel) and these characters require different types of semantic access (quantity 

information for digits, lexical semantics for words). There is also some evidence that processing 

speed and facility differs between these character types (Schubert, 2017; Starrfelt & Behrmann, 

2011). Within the letter domain, multiple key distinctions are encoded by the English writing 

system. These include case, case-invariance, and consonant/vowel status. Whether a letter is in 

upper or lower case informs a reader about its location within a sentence, and some homonyms 

are distinguished only by case, including some that are acronyms or proper names (e.g., ‘Jack’ 

vs. ‘jack’). Access to the appropriate word semantics in these instances requires encoding of the 

letter case (for evidence that orthographic processing is affected by expectations that certain 

words are capitalized, see e.g., Perea, Jiménez, Talero, & López-Cañada, 2015; Peressotti, 

Cubelli, & Job, 2003; Kinoshita & Norris, 2018). Aside from these particular situations, case 
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invariance is an important property for fluent readers: the knowledge that ‘a’ and ‘A’ represent 

the same letter identity regardless of their differing appearance. The existence of abstract letter 

identities is a defining characteristic of the Roman alphabet and allows readers to understand that 

‘FRIDGE’ and ‘fridge’ are the same word (Besner, Coltheart, & Davelaar, 1984; Bowers, 

Vigliocco, & Haan, 1998; Kinoshita & Kaplan, 2008; Polk & Farah, 1997, 2002; Rothlein & 

Rapp, 2014). The final key distinction is between consonant and vowel letters. Recent evidence 

has suggested that these two sub-categories of letters affect processing by structuring the input 

representations (Chetail & Content, 2012, 2014; Chetail, Drabs, & Content, 2014; Chetail, 

Ranzini, De Tiège, Wens, & Content, 2018; Schubert, Kinoshita, & Norris, 2017) and/or 

affecting the speed of lexical access by constraining the matching entries (e.g., Carreiras, 

Vergara, & Perea, 2009; Duñabeitia & Carreiras, 2011; New, Araujo, & Nazzi, 2008; New & 

Nazzi, 2014; Vergara-Martínez, Perea, Marín, & Carreiras, 2011). Furthermore, in the domain of 

spelling, acquired deficits can differentially affect consonant and vowel letters (Buchwald & 

Rapp, 2006; Caramazza & Miceli, 1990; McCloskey, Badecker, Goodman-Schulman, & 

Aliminosa, 1994; Miceli, Capasso, Benvegnù, & Caramazza, 2004). These distinctions between 

alphanumeric characters are vital to accurate reading, yet the degree to which this knowledge can 

be acquired implicitly remains unknown. 

Statistical learning about orthography 

How do literate adults come to have knowledge about their written language? Statistical 

learning, or the ability to acquire knowledge about patterns in the input, has long been proposed 

as a mechanism by which children and adults learn language implicitly (for a review, see: 

Romberg & Saffran, 2010). Much of this work has focused on learning of transitional 

probabilities, such as knowing that the sound /t/ is frequently followed by /i/ (as in TEA /ti/, 
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TEEN /tin/, and TEAM /tim/), and never by /l/ (no English words begin with TL… */tl/). This 

allows a learner to acquire knowledge of the legal sequences in a language: to know that /ti/ but 

not */tl/ is allowable. Famously, even infants are sensitive to transitional probabilities of 

phonemes in a speech stream (Saffran, Aslin, & Newport, 1996) and show sensitivity to the 

frequency with which phonemes are presented (Maye, Werker, & Gerken, 2002). These early 

findings and many that followed suggest that some type of learning mechanism allows children 

to pick up on statistical regularities in the environment to acquire knowledge about their spoken 

language.  

Could similar statistical learning mechanisms apply to written language? The acquisition 

of written language is distinct from the acquisition of spoken language because spoken language 

abilities can be acquired through exposure alone while written language must be taught 

explicitly. However, there is a growing body of evidence suggesting that both children and adult 

readers are capable of learning implicit statistical patterns from written language. In this context, 

transitional probabilities capture the fact that the letter Q is often followed by U but never by K 

(QUEEN but not *QK). 

In children, sensitivity to orthographic statistical regularities can be observed as soon as 

their exposure to written language begins in earnest. In a 2008 review, Deacon and colleagues 

(Deacon, Conrad, & Pacton, 2008) concluded that from the earliest years of schooling, children’s 

reading and spelling behaviors are affected by statistic regularities of letter strings (words) they 

have seen. For example, after just a few months of reading instruction, children have picked up 

on some regularities such as allowable letter doublets (e.g., ‘LL’ and ‘EE’ but not ‘WW’). By 

first grade, children prefer pseudowords that conform to the statistics of their text environment 

over those that do not, on the dimensions of letter frequency and letter co-occurrences (Cassar & 
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Treiman, 1997; Pacton, Perruchet, & Fayol, 2001), and tend to reproduce these statistics in 

spelling tasks (Pollo, Kessler, & Treiman, 2009). Adults’ spelling behaviors also reflect the 

regularities of letter distribution. For example, when asked to spell pseudowords, English-

reading adults mimic the statistical patterns of English letter doubling (Treiman & Boland, 

2017). This evidence suggests a sensitivity to the statistical patterns of the text environment, 

specifically the transitional probabilities between letters. Furthermore, these and similar studies 

reveal that readers are sensitive to and reproduce the most frequent ways in which particular 

phonemes are realized in written words (for a review see: Kessler, 2009). 

The majority of work in orthographic statistical learning considers sensitivity to 

transitional probabilities or conditional relationships between orthography and phonology, 

accounting for effects of frequent bigrams (e.g., QU and LL vs. QK and II) and letter-sound 

relationships (e.g., spell /l/ with LL but do not spell /k/ with KK). In addition to these types of 

regularities, we can also consider what the text environment reveals about the elements of the 

orthography themselves. That is, what is an ‘a’, and how does it relate to other elements in the 

orthography, like ‘7’, ‘A’ or ‘U’? Our approach to investigating how this type of orthographic 

knowledge could be acquired through statistical learning is the distributional hypothesis—which 

has been a fruitful approach to modelling the semantic relationships between words on the basis 

of their text environment—applied to the single character level. 

The distributional hypothesis states that we learn about a given element of a set on the 

basis of the other elements with which it is likely to co-occur (see discussion in, e.g., Harris, 

1954). In semantics, the hypothesis is that words that are similar in meaning often occur in 

similar contexts. That is, they are likely to appear with a similar set of words, or to quote Firth 

(1957), “you shall know a word by the company it keeps.” Furthermore, a contextual 
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representation of which words a given word is likely to co-occur with forms part of the 

knowledge of what that word means and how it should be used (e.g., Firth, 1957; Miller & 

Charles, 1991). Evidence for the distributional hypothesis as it applies to semantic knowledge 

has been demonstrated empirically by the successes of techniques for text analysis including 

Hyperspace Analog of Language (HAL, Lund & Burgess, 1996) and Latent Semantic Analysis 

(LSA, Landauer & Dumais, 1997). LSA in particular served as a primer to the power of using a 

general learning mechanism to extract rich similarity information from a large distributed corpus 

of language, as semantic representations generated by LSA are highly related to many aspects of 

semantic processing in experimental data.  

Both HAL and LSA have been described as ‘count’ models that tally word co-

occurrences within a set window size or document (Mandera, Keuleers, & Brysbaert, 2017). 

From these counts, a measure of similarity between any two given words can be derived. More 

recent models with more complex architectures, including the class of neural embedding models 

(e.g., word2vec) developed by researchers at Google (Mikolov, Chen, Corrado, & Dean, 2013; 

Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), instead attempt to predict a word or its 

context, and have been shown in many situations to out-perform count style models (Baroni, 

Dinu, & Kruszewski, 2014; Mandera et al., 2017; though this success seems to be due to 

properties other than the predictive nature: Johns, Mewhort, & Jones, 2019; Levy, Goldberg, & 

Dagan, 2015).  

Leaving aside model type, successes of the distributional semantics approach include the 

ability to model judgements of semantic similarity (Landauer & Dumais, 1997), the ability to fill 

in the final word in a sentence (cloze task, Snyder & Munakata, 2008), the magnitude of 

semantic priming in lexical decision tasks (e.g., Günther, Dudschig, & Kaup, 2016; Hollis & 
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Westbury, 2016; Jones, Kintsch, & Mewhort, 2006; Mandera et al., 2017), and the distributed 

patterns of brain activity in semantic processing regions in response to both words (Fischer-

Baum, Bruggemann, Gallego, Li, & Tamez, 2017) and pictures (Carlson, Simmons, 

Kriegeskorte, & Slevc, 2014). In our work, we extend the spirit of this approach, considering 

whether contextual similarity is also relevant to our knowledge of orthography, and the extent to 

which “you shall know a letter by the company it keeps” (with apologies to Firth). 

The current study 

In this study, we consider how much readers can learn about the characters that comprise 

their orthography purely on the basis of statistics of the text environment. We employ two 

classes of models, a class of LSA-inspired vector accumulation models (Kanerva, Kristofersson, 

& Holst, 2000) and a class of more-complex neural embedding models (Mikolov, Chen, et al., 

2013). We trained models of each class on the same text corpus, resulting in a measure of 

similarity of characters in the environment as learned by each model. We submitted these model-

derived similarities to two tests. In the first test, we correlated the model-derived similarity with 

behaviorally-derived character similarity, both solely and in combination (using multiple 

regression) with other measures of empirically-derived similarity. The behaviorally-derived 

character similarity takes the form of reaction times from a task in which participants had to 

decide whether two characters are the same or different; the use of such a data set as a measure 

of similarity has been well established (e.g., Podgorny & Garner, 1979 [visual similarity]; 

Rothlein & Rapp, 2017; Wiley, Wilson, & Rapp, 2016 [more abstract types of similarity]). This 

test allows us to evaluate the extent to which the model-derived similarity is related to a broad 

measure of character similarity displayed by human readers. In the second test, we directly 

evaluated whether the models that are most highly-correlated with the behavioral data learned 
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appropriate structured similarity among orthographic categories. Here we tested for sensitivity to 

letter/digit status, case invariance, upper/lowercase status, and consonant/vowel status. As 

reviewed above, these categories have been shown to have psychological reality and affect 

reading behavior; testing whether the model-derived similarity reflects these categories serves as 

a proof of concept for a distributional source of this knowledge. 

MATERIALS AND METHODS 

Text Modeling 

The models we used fall into two classes: vector accumulation and neural embedding. 

The vector accumulation models are based on random indexing models by Kanerva and 

colleagues (Kanerva et al., 2000), adapted for the first time to the single character rather than 

word level. The neural embedding models are also adaptations of two prior algorithms: 

skipgram-with-negative-sampling (SGNS, Mikolov, Chen, et al., 2013) and Embeddings 

Augmented by Random Permutations (EARP, Cohen & Widdows, 2018), also newly adapted to 

the single-character level. To distinguish them from their word-based counterparts, we refer to 

the models in this paper as RandInd-char, SGNS-char, and EARP-char. The primary difference 

between the classes is that the vector accumulation models simply tally character occurrences 

while the neural embedding models are neural networks that progressively learn about each 

character’s context. Both learn incrementally from a sliding window that moves across the entire 

text corpus. After a training period, in which each document of the corpus is presented in a 

randomly-determined order, the output of interest reflects what each model learned about each 

character in the corpus. (See below for details of the model architectures and learning 

procedures.) This output takes the form of a similarity matrix for every pairwise combination of 
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uppercase letters, lowercase letters, and digits (62x62 similarity values). For Figure 3, the model-

derived similarity matrices were visualized using the Uniform Manifold Approximation and 

Projection (McInnes, Healy, Saul, & Großberger, 2018, https://github.com/lmcinnes/umap). 

For both classes, we generated 10 runs of each model specification, each with different 

random initializations of the vectors at the onset of training. We analyzed the central tendency 

(median) of each model across the 10 runs to avoid drawing conclusions based on incidental 

properties of the random starting point.  

Model architectures 

The vector accumulation models (RandInd-char) have relatively few trainable 

parameters. A vector for each character (this is analogous to the ‘semantic’ vectors in LSA) is 

initialized as a zero vector, and each character is also assigned an initial random vector of 100 

dimensions. During training, for each window, the random vector for every surrounding 

character is added to the semantic vector for the central character. Due to this simple addition 

procedure, the shuffling of document order across training runs does not have any impact on this 

model class. The outputs of interest after training are the vectors for each character, which are 

compared using a cosine metric to derive pairwise similarities between characters.  

The neural embedding models (SGNS-char and EARP-char) are more complex, 

consisting of shallow neural networks with a single hidden layer (100 hidden units). The network 

is initialized with random weights for the hidden units (generating variability not present in the 

random indexing models). During training, for each window the network is trained to predict the 

surrounding characters with a high probability of being present in that context (within the 

window). Learning in these models can be framed as back-propagation via stochastic gradient 

descent, with a linearly-decreasing learning rate across training epochs. In addition to predicting 
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positive examples (observed context characters in the window), these models implement 

‘negative sampling’ (Goldberg & Levy, 2014; Mikolov, Sutskever, et al., 2013): they are also 

trained to correctly reject negative examples that do not appear in the window. The outputs of 

interest from the fully-trained model are the (100-dimensional) vectors of input weights to the 

hidden units for each character. As with the vector accumulation models, a cosine metric is used 

to produce a similarity value for each pairwise combination of characters.  

Comparing the model classes, the neural embedding models have twice as many trainable 

parameters as the random indexing models due to the randomly-initialized hidden weights that 

change as documents are presented during training. This class also has additional variability from 

the document-order shuffling that occurs for each run: the decreasing learning rate means that 

documents presented earlier in training have a larger effect on the vectors than ones presented 

later. (This shuffling does not affect the random indexing models because they use simple 

addition and A+B = B+A). A third difference is that only the neural embedding models include 

negative sampling- learning of characters that are not present in the context, in addition to ones 

that are. Thus, the generalization across the 10 runs is of particular relevance to the neural 

embedding models which have more non-zero vectors at training onset and random variability in 

the negative sampling procedure. See Supplementary Methods and Cohen & Widdows, (2018) 

for further details of the algorithm implementations for both model classes. 

Training corpus 

For training we used the popular TASA (Touchstone Applied Science Associates, Inc.) 

corpus, which includes a variety of document types (including novels, educational texts, and 

newspaper articles) with a total of approximately 73 million characters (including spaces), 

comprising 12 million words and 44,486 documents.  
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Testing model-window properties 

We manipulated three properties across both classes of models. The first is a property of 

the corpus, the second a property of the moving window, and the third a property of how 

characters are considered within the window (see schematic depiction in Figure 1). The first 

property, Word Boundaries, controls whether the model represents spaces between words or 

whether the spaces are removed to create a single continuous ‘word’ in each document. We 

tested models with and without word boundaries. The second property, Window Size, controls the 

radius of the moving window of characters considered in each iteration. We tested models with 

radii of 2, 3, 4, 5, and 6 characters. Finally, we tested models with four different ways of 

representing the Positions of the characters in the window relative to the central character. The 

first version is a model that does not differentiate between the order of characters within the 

context window. (For the vector accumulation model this is akin to a ‘bag of letters’ model, for 

the neural embedding it is a SGNS model.) The remaining three versions encode character 

position in one of three ways: Directional, Positional, and Proximal. The Directional models 

represent separately the preceding (left) and following (right) characters in the window, with no 

distinction within these sets (“eat” and “tea” would result in different encodings for the character 

“a”, but “beats” and “beast” would not). The Positional models separately represent each 

character within the window, without a similarity structure among them. The Proximity model is 

similar to the Positional model, but with higher similarity between characters that are similarly 

situated in relation to the central character (“abets” and “baest” would result in orthogonal 

encodings for the character “e” with the positional model, and similar but not identical encodings 

with the proximity model). (Refer to further examples in Figure 1B.) In total, we generated and 

tested 80 models (2 Model Classes x 2 Word Boundaries x 5 Window Size x 4 Position). The 
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resulting contextual similarity matrices are available for download at the following DOI: 

10.17605/OSF.IO/P4QU9.  

Behavioral Experiment 

There is a range of tasks that could be used to elicit character similarity, just as a range of 

tasks has been used to determine semantic similarity and benchmark algorithms for distributional 

semantics. The task we employed here is not designed to provide explicit judgments about 

character context, but rather an indirect measure of similarity. In that way it is more similar to an 

analogy task (e.g., the Test Of English as a Foreign Language [TOEFL] Mandera et al., 2017) 

than a cloze or semantic rating tasks (e.g., Landauer & Dumais, 1997; Snyder & Munakata, 

2008) in the context of testing models of text-derived semantic similarity. 

To this end, we elicited a data set of behavioral character similarity in a same/different 

task with digits and uppercase letters. In this task, pairs which require a ‘Same’ response are 

physically identical (‘D   D’ or ‘4   4’) and those that require a ‘different’ response are physically 

non-identical (‘D   C’ or ‘D   4’). In a same/different task such as this, reaction time on the 

‘Different’ trials reflects the similarity between each letter pair: More similar stimuli in a pair 

require longer response times (RT) to decide they differ (Courrieu, Farioli, & Grainger, 2004; 

Podgorny & Garner, 1979; Rothlein & Rapp, 2017; Wiley et al., 2016; Zhai & Fischer-Baum, 

2019).  

Forty-seven undergraduate students (34 women, mean age = 19.8 years) provided 

informed consent to participate in the experiment, receiving credit in a psychology or cognitive 

science course. The stimuli were 25 uppercase letters and 9 digits; O and 0 were excluded. The 

characters were combined pairwise into 561 trials requiring a Different response. The ordering of 

the stimuli in the Different pairs (e.g., ‘4  D’ and ‘D  4’) was counterbalanced across participants 
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so that each participant saw each pair in only one order. The 578 Same trials consisted of 17 

presentations of each of the 34 Same pairs.  

On each trial, the two characters in a pair were presented in the center of the screen, in 

18-pt. fixed-width Consolas font, separated by approximately two character spaces. Stimulus 

presentation ended upon response or after 1500 ms elapsed; a fixation cross intervened between 

trials for 500 ms (±100 ms randomly-determined jitter on half of the trials). Participants 

responded by pressing a ‘same’ or ‘different’ key as quickly as possible, one key with each hand. 

The hands used for the response keys were counterbalanced across participants. A 40-trial 

practice block using symbol stimuli (e.g., %, $) preceded the main experiment. E-Prime 2.0 

(Psychology Software Tools, Pittsburgh, PA) was used for stimulus presentation and response 

collection. The entire experiment, including practice and a break, took about 45 minutes. 

Only data from the Different trials were analyzed for this study. Data were cleaned by 

removing error trials (6.7% of trials) and outliers (trials with RT more than 2.5SD below or 

above each participant’s mean RT). The resulting RTs were then normalized by dividing each 

trial’s RT by that participant’s mean RT. These data are available in the Supplementary 

Materials. 
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Correlations between model-derived similarity and behavioral similarity 

For each model class (vector accumulation, neural embedding), we correlated the model-

derived character similarity space from each model with the character similarity space of the 

behavioral data. We classified as the best model the one with the highest median correlation 

(Spearman’s rho) across the ten runs. We report p-values that meet the Bonferroni-corrected 

threshold (α = .05/40 = .00125) for multiple comparisons, corrected for the number of models in 

each class.  

Reliability check and noise ceiling 

As an additional check on the robustness of the results, we conducted a sampling 

procedure from the adult data. Each sample consisted of data from a randomly-selected subset of 

30 participants, then tested against the medians (across the 10 runs) for each of the models. The 

highest-correlated model for each sample was recorded and the sampling procedure was repeated 

10,000 times. This procedure allowed us to determine the extent to which the winning model fits 

some peculiarity of the full behavioral data set rather than a common pattern across samples of 

participants’ data. 

Additionally, we borrowed a method from representational similarity analysis (RSA) to 

calculate a noise ceiling for our behavioral data (Nili et al., 2014). The noise ceiling indicates the 

range in which a model is accounting for more than the minimum information present in the data 

(lower bound) and gives a maximum possible fit (upper bound), both based on the inherent noise 

in the data. The lower bound is calculated by averaging the correlations between each participant 

and the averaged group. The upper bound is calculated by averaging, in a leave-one-out manner, 

the correlations between each participant and the remaining participants as an averaged group. 
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Multiple regression 

We conducted multiple regression to investigate the contributions of other types of 

similarity to the empirical data and to quantify the unique contribution of contextual similarity. 

On the basis of prior work, we tested the contributions of visual similarity, name similarity, and 

character frequency (e.g., Rothlein & Rapp, 2017; Wiley et al., 2016).  

Two measures of visual similarity were used which differ in visual abstractness. Pixel 

overlap measures the number of overlapping pixels between any two characters, normalized by 

the total number of pixels present (Fischer-Baum et al., 2017; Kriegeskorte, Mur, & Bandettini, 

2008; Marinus et al., 2016; Schubert, 2017; Starrfelt & Behrmann, 2011). This is a stimulus-

driven measure of similarity, meant to roughly approximate low-level visual representations of 

each character as they were presented in the experiment. We computed the pixel overlap in 

MATLAB using black characters centered within a white background. Feature overlap, unlike 

pixel overlap, is a font-independent measure of visual similarity. The features used in this set are 

quite generic, including features such as “horizontal bar” and “line slanted 45-degrees left”; 

abstract enough to describe letters and digits regardless of the specific font in which they are 

presented. This measure is meant to approximate readers’ knowledge of the typical shape of 

letters and digits, rather than the specific visual details of the stimuli. (See further detail in 

Schubert, 2017.) Name similarity indexes the overlap between the spoken names (e.g., 3 as 

‘three’ /qɹi/, D as ‘dee’ /diː/) of the two characters of a pair. Each name was decomposed into its 

constituent phonemes and phonological features (e.g., /diː/ as consonantal, coronal, anterior, 

voiced for /d/ and high, front, tense for /iː/), and overlap was computed as in Rothlein and Rapp 

(2014). We also included a predictor that was the difference in first-order character frequency 

between the two characters of each pair. Character frequency has been shown to affect character 
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recognition speed (Jones & Mewhort, 2004; New & Grainger, 2011; Walker & Hinkley, 2003); 

in the current context this predictor also allows us to test whether the model-derived similarity 

extends beyond capturing first-order statistics. 

Sensitivity to orthographic categories 

In a second analysis, we explored the extent to which the model that best-correlated with 

the empirical character similarity also captured categorical distinctions in alphanumeric 

characters: between letters and digits, between upper and lowercase letters, between orthographic 

consonants and vowels, and knowing that different characters (g, G) correspond to the same 

abstract letter identity. This analysis asks whether these types of categorical distinctions about 

alphanumeric characters can be learned from the distributional properties of the bottom-up input 

alone. For each comparison, we computed the average similarity within each category (e.g., 

letters, digits separately) and the average similarity between members of the category (e.g., 

letters and digits together). We then conducted one-tailed t-tests to evaluate the significance of 

the category difference. It is worth noting that significance in this analysis does not provide a 

measure of how likely that any specific vector could be classified as belonging to one 

orthographic category or another. Instead, this analysis allows us to test whether or not the 

distribution of vector values differ by category membership, which indicates that this distinction 

has at least, in part, been learned. 

These analyses were run separately for each the 10 runs of the winning models; we report 

the most conservative results. While the correlation and multiple regression analyses are 

conducted on the subset of the contextual similarity that pertains to digits and uppercase letters 

only (minus 0 and O), because these are the characters used in the behavioral experiment, this 

analysis also considers all digit and letter characters in both cases with two exceptions. For the 
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consonant/vowel distinction, the letter Y was excluded due to its uncertain category membership. 

Furthermore, same-identity pairs were excluded from the consonant/vowel comparison because 

they could inflate the within-category similarity (same-identity pairs also by definition have the 

same consonant/vowel category).  

RESULTS 

Does model-derived similarity relate to behavioral similarity? 

Simple correlations 

In the behavioral task, average response time on Different trials was 507 ms and 493 ms 

on Same trials, and participants were 93.3% correct across the experiment. We computed 

correlations between the model-derived contextual similarity and the behaviorally-derived 

similarity. Figure 2 shows all of the correlations by model class and property. As can be 

appreciated in Figure 2A, the vector accumulation models have small variability across the 10 

runs of each model, due to fewer values randomly initialized across each run as the neural 

embedding models (see Methods). Overall, for this class there is a general pattern that larger 

radius sizes lead to higher correlations with behaviorally-derived similarity. The different 

positional schemes do not appear to have a systematic relationship with the correlation, as can be 

seen by the intermixing of the colors for each radius size. In Figure 2B, for the neural embedding 

models, there is higher variability across runs, and a more subtle but still present trend for larger 

radius sizes to result in higher correlations.1 Here, models without position coding (basic, in 

orange) perform more poorly than the models with permutation or proximity coding. 

 
1 In fact, a previous set of model iterations for the neural embedding models resulted in a winning model with no 
word boundaries and positional encoding (as here) but radius 6 outperformed radius 5. 
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To determine the best-fitting model, we took the median of the correlations across the ten 

model runs. Among the vector accumulation models, we found the highest correlation with the 

model with a radius of 5 characters, no word boundaries, and no position encoding (ρ = 0.17, p < 

.001). The highest correlation for the neural embedding models was with the radius 5, no 

boundary, positional model, with a slightly smaller but still significant ρ = 0.15, p < .001.  

Both of these winning correlations fall within the noise ceiling (lower bound: ρ = 0.09; 

upper bound: ρ = .20), suggesting that both models relate to a non-trivial proportion of the 

variance present in the behavioral data. To check the reliability of our results, we repeated the 

correlations between model-derived and behaviorally-derived similarities on 10,000 random sub-

samples of the behavioral data. For the vector accumulation models, the radius 5, no word 

boundary, no-position encoding model was most successful across 63% (6311/10000) of the 

samples. Likewise for the neural embedding model, the same model we found in the analysis 

with the entire behavioral data set (radius 5, no word boundaries, positional encoding) was the 

most highly-correlated model for approximately 37% of the samples (3744 times), the highest 

number of samples across the models. These sampling outcomes suggest that the success of the 

winning models is not due to a peculiarity of the full set of behavioral data but is consistent 

across smaller and repeated samples of the behavioral data. 

Multiple regression 

The correlations do not reach the upper bound of the noise ceiling, suggesting that model-

derived contextual similarity is not the only source of behavioral similarity in this task. We 

conducted multiple regression to test how other sources of similarity combine with contextual 

similarity to predict the behavioral data. Four predictors were entered into the base model: visual 
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pixel similarity, visual feature similarity, name similarity, and frequency.2 Without contextual 

similarity included, this base model fits the data, accounting for 14% of the variance F(4,556) = 

24.73,  p < .001, adjusted R2 = 0.1449. Adding contextual similarity from the highest-correlated 

vector accumulation model to the base model, we find that it is a significant predictor (b= .016, 

se = .0063, t = 2.47, p = 0.014), and this full model is also significant and accounts for 15% of 

the variance (F(5,555) = 21.18, p < .001, adjusted R2 = 0.1527). If we instead add contextual 

similarity from the highest-correlated neural embedding model to the base model, it is also a 

significant predictor (b= .020, se = .0076, t = 2.59, p = 0.010) and contributes to a significant full 

model accounting for 15% of the variance (F(5,555) = 21.32, p < .001, adjusted R2 = 0.1536).  

Directly comparing the regression models including the vector accumulation or neural 

embedding-based contextual similarity predictors indicates a very slightly higher variance 

accounted for with the neural embedding predictor (R2EARP-char = .1536, R2RandInd-char =  0.1527) 

but no statistical advantage when either predictor is added to a regression model already 

including the other (p > .27). 

Do the models learn the structure of English orthography? 

We next explored the structure in the model-derived contextual similarity of the highest-

correlated model from each class. The similarity space is depicted (projected into two 

dimensions) in Figure 3, where it is possible to visually appreciate the dissimilarity (as distance) 

between different characters. From this figure, which displays similarity from one run of the 

winning vector accumulation (Figure 3A) and neural embedding (Figure 3B) models, stark 

 
2 Correlations between these four predictors can be found in Table S1. Briefly, feature and pixel overlap are 
correlated with each other and also with frequency (ps < .01). Despite this, the variance inflation factors (VIF) for all 
predictors are less than 1.08, indicating that it is possible to examine their unique contributions to the regression 
model. 
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differences between the model classes can be seen in the degree of structure among the letter 

character categories (e.g., letter/digit, upper/lowercase). To quantify this structure, we carried out 

t-tests to compare within- and across-category similarity.  

First, we explored whether the model learned a distinction between letters and numbers. 

For each run, we calculated the average similarity of all digits to every other digits (e.g., 1-2, 3-6, 

8-9), of all letters to every other letter (e.g., A-B, D-q, f-p) and of all digits to all letters (e.g., 1-

A, 3-y). For the winning vector accumulation model, the average similarity of digits to each 

other was .90, the average similarity of letters to each other was .84, and the average similarity of 

digits to letters was .40. For the winning neural embedding model, the average similarity of 

digits to each other was .89, the average similarity of letters to each other was .26 and the 

average similarity of digits to letters was .20. For both model classes, the within category 

similarities (digits to other digits, letters to other letters) were significantly larger than the digit to 

letters similarities (RandInd-char: dig-dig vs. dig-let ts(563) > 30.08, p < .0001, let-let vs. dig-let 

ts(1844) > 69.76, p < .0001; EARP-char: dig-dig vs. dig-let ts(563) > 26.83, ps < .0001, let-let 

vs. dig-let ts(1844) > 2.16, ps < .016). Based solely on bottom-up contextual information about 

the distributional statistics of which other alphanumeric symbols are likely to appear together, 

both model classes learned that digits are more similar to other digits than they are to letters, and 

that letters are more similar to other letters than they are to digits, however it appears that the 

vector-accumulation model outperforms the neural embedding model in learning the broad class 

distinction between letters and digits.  

Within the category of letters, readers make further important distinctions. We compared 

the average similarity of letters within the same case (e.g., A-C, d-f) and all letters across case 

(e.g., a-F, B-v). For the vector accumulation model, we found that within case similarity (.91) 
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was significantly higher than cross case similarity (.80; ts > 11.68, ps < . 0001). Likewise, for the 

neural embedding model, within case similarity (.41) was significantly higher than cross case 

similarity (.13; ts(1324) > 20.63, ps < . 0001). Moving to still more sophisticated orthographic 

distinctions, we compared letters that map on to the same abstract letter identity across case (e.g., 

A-a, B-b) with those that do not (e.g., A-b, B-a). For the vector accumulation model, letters that 

shared the same abstract letter identity had a similarity of .82 and those that did not had a 

similarity of .80, resulting in a non-significant difference (ts < .8, ps > .21). However, for the 

neural embedding model, we found greater similarity when letters shared the same abstract letter 

identities (.33) than when they did not (.13; ts(674) > 5.59, ps < .0001). 

Finally, we investigated what the models learned about consonant and vowel letters. For 

the vector accumulation model, we found that consonants were similar to consonants (similarity 

= .82) and vowels to vowels (similarity = .85), but cross-category similarity was also quite high 

(.84), leading to no difference by consonant/vowel status (con-con vs. con-vow: ts(1158) < -2.73, 

ps > .99, vow-vow vs. con-vow: ts(438) < 1.03, ps > .15). For the neural embedding model, 

consonants were more similar to other consonants (similarity = .32) and vowels were more 

similar to other vowels (similarity = .32) than consonants were to vowels (similarity = .13; con-

con vs. con-vow: ts(1158) > 12.22, ps < .0001, vow-vow vs. con-vow: ts(438) > 4.53, ps < 

.0001). Both models learned the broad categorical distinctions of letters versus digits and upper 

versus lowercase letters, likely because these kinds of characters tend to appear in different 

contexts. However, only the neural embedding model demonstrates fine-grained knowledge of 

the structure of English orthography that we know that readers are sensitive to: that particular 

(upper and lower case) characters map onto a single identity, and letters can be divided into sub-

classes, specifically vowels and consonants. 



READING THE WRITTEN LANGUAGE ENVIRONMENT 

 

23 

Upon discovering the stark difference between the random indexing and neural 

embeddings models in their ability to learn orthographic categories, we wondered whether it can 

be attributed to particular features of this model class. One feature present solely in the neural 

embeddings model class is the ability to learn second-order relationships, which arises due to 

training of character context vectors (output weights) in the model. Because these vectors also 

learn, it allows the trained model to encode similarity between characters that occur next to 

similar but not identical other characters. As a result, neural embeddings models can learn more 

general similarity such as ‘occurs next to digits,’ whereas the random indexing models can learn 

only specific similarities between particular character pairs. We generated a hybrid neural 

embeddings model without learning of the character vectors to test the impact of this property, 

and found that these models were still able to distinguish consonants from vowels (con-con sim 

= .399, vow-vow sim = .449, con-vow sim = .227, con-con vs. con-vow: t(1158)=14.79, vow-

vow vs. con-vow: t(438)=8.04) and were sensitive to abstract letter identities (same = .384, diff = 

.215 , same vs. diff ID: t(674) = 6.01. (See Supplementary Methods for details of these hybrid 

models.) This result is particularly striking in comparison to the corresponding random indexing 

model (no boundary, positional, radius 5), which as a property of the class also not have learning 

of character vectors, and does not acquire the consonant-vowel distinction or abstract letter 

identity (con-con sim = .657, vow-vow sim = .706, con-vow sim = .676, con-con vs. con-vow: 

t(1158) = -1.69, vow-vow vs. con-vow: t(438) = 1.03; same ID = .566, diff ID = .547, same vs. 

diff ID: t(674) = 0.83). Thus, it seems that the learning occurring at multiple locations within the 

neural embeddings model is not responsible for its ability to learn orthographic category 

structure. 
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The other feature that differs between random indexing and neural embeddings models 

and may underlie their difference in performance is the use of negative information. Recall that 

the neural embeddings models learn not only to predict characters that are present in a given 

character context, but also characters that are not present, via negative sampling where the 

probability of a character appearing as a negative sample is derived from its frequency in the 

corpus.3 Johns and colleagues (2019) suggested that across multiple methods of implementing 

negative information (with and without explicit prediction), models with this property largely 

out-perform models with positive information alone. We found a similar pattern with our 

models: A hybrid EARP-char model without negative sampling had nearly uniform similarity 

values (close to 1) across all character pairs, and thus did not show any distinctions among 

character categories. Thus, it seems negative sampling allows the neural embeddings model class 

to out-perform the vector accumulation class in learning orthographic structure. 

DISCUSSION 

Prior research has shown that our knowledge about the semantic relationship between 

words can be captured, in part, by algorithms that consider the similarity of the contexts in which 

each word appears. We have shown that the same approach to statistical learning applied to 

single alphanumeric characters can capture some of what readers know about their orthography. 

In testing two classes of models that learn contextual similarity from text, we found that the two 

classes had different strengths in learning about the characters in English. The first class, vector 

accumulation, are very simple models that essentially track contextual character frequency. 

These models had a numerically higher correlation with human behavioral performance on a 

 
3 The original word2vec assigns the probability of a token being drawn for negative sampling as 𝐹".$%where F is the 
frequency of the token of interest ( number occurrences / total tokens in corpus). Following FastText, and the original 
EARP experiments, we used the Semantic Vectors default of 𝐹".%.  
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same-different task. They also captured the distinction between letter and digit characters, a 

difference which underlies the alphanumeric category effect, a general tendency for digits to be 

processed more quickly/easily than letters (Schubert, 2017). Polk and Farah first presented 

evidence that this distinction could be learned from context in 1994 (Polk & Farah, 1994, 1995), 

and our work confirms theirs, showing that a simple model can indeed pick up on the differing 

distributions of letters and digits in the text environment. However, orthographic structure is 

richer than the distinction between the broad categories of letters and digits. Our findings suggest 

that vector accumulation models cannot learn about this more detailed structure.  

The second class of models we tested, neural embedding models, have more complex 

architectures, involving learning at multiple locations within the model and learning from both 

positive and negative context examples. Neural embedding models were better able to capture 

the orthographic categories among letters, including the distinctions between uppercase and 

lowercase letters, vowels and consonants, and the case-invariance principle. Curious as to which 

properties of this model class might underlie the greater ability to these capture fine-grained 

distinctions, we implemented two modified versions of the winning EARP-char model: one in 

which character vectors are fixed during training, and one in which negative sampling is not 

used. We found that only models with negative sampling learn orthographic structure, speaking 

to the importance of negative sampling for learning appropriate similarity among both words (as 

in Johns et al., 2019) and single characters. The failure of EARP-char models without negative 

sampling is consistent with the tendency of random indexing models to converge upon a single 

vector when trained over repeated iterations (Cohen, Schvaneveldt, & Widdows, 2020). We have 

demonstrated a strength of the neural embeddings model class in that their use of negative 

information allows the learning of structured similarity consistent with English orthography. The 
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ideal statistical learner would extract similarities that correlate highly to the behaviorally-derived 

similarity and that also demonstrate sensitivity to orthographic categories, while the models here 

differ in their ability to match both types of information.  

There are three main implications of our results. The first is that the distributional 

statistics of text contain information that is relevant to readers’ knowledge of their written 

language. Though the mere presence of distributional information in the text environment is 

perhaps trivial, our work demonstrates that this information is functionally related to readers’ 

orthographic processing. The second implication is a proof of concept that statistical learning is a 

mechanism by which readers can learn about their written language at the level of individual 

characters. An algorithm implementing a particular type of statistical learning extracted character 

similarity information that is related to the similarity demonstrated by readers. Our testing did 

not reveal that all model classes and properties are equally successful; many did not correlate 

with human behavior above the noise inherent in the data. The successful ones may be 

considered as a simple test that statistical learning broadly can be an effective learning tactic. To 

be clear, we do not contend that readers have either a vector accumulation or neural embedding 

model with radius 5 and no sensitivity to word boundaries in their heads (see below for 

additional discussion of this point). In fact, it is likely that none of the implementational details 

of the models we tested are analogous to the mind’s solution to statistical learning from the text 

environment. However, statistical algorithms can acquire some aspects of knowledge that are 

also present in the reader’s mind. The third and broadest implication is that the distributional 

hypothesis, which states that we learn how things relate to each other by comparing the contexts 

in which they appear, might be a more general property of how humans learn from the 

environment and not just an account of how we learn word meanings.  
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The similarity learned by the most successful neural embedding model demonstrated 

sensitivity to important distinctions within English orthography. On the basis of the distribution 

of letters in the bottom-up input, letters were differentiated from digits and letter-specific 

features of orthographic representations like case and abstract letter identity were extracted. 

Perhaps most striking is the learning of the consonant-vowel sub-classes. The consonant-vowel 

distinction is most clearly a property of the phonological systems, in which the difference 

between these phoneme classes is grounded in acoustic and articulatory differences. Yet, the 

model was able to learn a distinction between orthographic consonants and vowels, based only 

on the distribution of letters, without any knowledge of how those letters are pronounced. This 

result could explain why the consonant-vowel status of letters can have an effect of early stages 

of letters string processing, well prior to the point of activating the phonology (e.g., Chetail et al., 

2018), and why deaf readers show sensitivity to the consonant-vowels status of letters (e.g., 

Olson & Nickerson, 2001). Distributional properties of the written input allow us to learn that the 

characters of our writing system contain elements and sub-classes with different distributional 

properties.  

We do not postulate that the precise specifications of our computer model describe the 

specific statistical learning mechanism by which language learners learn about the environment. 

Instead, our work, like Landauer and Dumais’s first introduction of LSA in 1997, serves as an 

indication of the vast amounts of data available in the environment, and the rich distributional 

structure that can be extracted from it, even at the level of individual alphanumeric characters. 

The properties that allowed the best fit to the behavioral data are not predictions about those used 

in mental computations for tracking letter statistics. Instead our contribution is at Marr’s 

computational level: A description of inputs and computations that arrive at the desired outputs. 
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The specific implementation, be it as EARP-char or as a set of cognitive processes or as neural 

wetware, is not our main concern.  

Relationship between the winning model and computational models of reading 

In addition to evaluating broad classes of models, we investigated specific properties 

within each model class. For the neural embedding model that was able to learn fine-grained 

orthographic structure, we found that the best performing model learned over a sliding window 

with a radius of 5 characters on either side, ignoring word boundaries and representing each 

character position within a window as totally distinct. First, let us emphasize that this model was 

not designed to be a mechanistic description of how the human mind extracts statistical 

regularities from text. Rather than a sliding window centered on each letter in turn, reading 

depends on fixations on the left portion of a word (in scripts read left-to-right) followed by 

saccades that typically jump eight or nine letter spaces (Rayner, Foorman, Perfetti, Pesetsky, & 

Seidenberg, 2001; Rayner, Slattery, & Bélanger, 2010). Nor are the models described above 

designed to be a theory of how we process strings of letters for reading aloud or lexical decision. 

Instead, these algorithms process the statistics of the text to determine how much information is 

available in this input, without semantics or phonology. Models of distributional semantics 

likewise do not respect the specifications of the visual word recognition system when they are 

run with window sizes of 5 or even 11 words at a time (e.g., Baroni et al., 2014); they are not 

meant to model the human semantic system but instead to test the extent to which semantic 

information can be extracted from word context. As Landauer and Dumais (1997) describe about 

the original LSA model with respect to word semantics, our EARP-char models represent an 

“abstract computational method” to examine whether the data present in letter context is related 

to human knowledge about letters. 
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Still, we found a specific set of properties that maximized how much the model-derived 

similarity from the text relates to human knowledge about letters. Below, we consider how well 

these properties map onto the assumptions about how orthographic input is coded in theories of 

visual word recognition. The space of proposed theories is wide (see Rapp & Fischer-Baum, 

2014 for review), including theories that the core units of visual word recognition are ordered 

letter pairs, or open bigrams (e.g., Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; 

Whitney, 2008), theories that letters are coded by flexible or uncertain positions defined relative 

to word boundaries (e.g., Fischer-Baum, Charny, & McCloskey, 2011; Norris, Kinoshita, & van 

Casteren, 2010), and theories that words are recognized by maximally aligning input strings to 

known letter strings based on common letter sequences (e.g., Davis, 2010). While the features of 

these theories of visual word recognition do not perfectly align with the properties that we 

compared in the models, we can consider how the winning model relates to the assumptions of 

these theories.  

First, the winning model makes no reference to word boundaries, yet they play a key role 

in all theories of word recognition. They are a critical component in theories that assume that 

letter position is defined relative to the boundaries of the word (e.g., Fischer-Baum et al., 2011; 

McCloskey, Fischer-Baum, & Schubert, 2013), but even in other theories a special status is given 

to the first letter in the word (e.g., Davis, 2010; Whitney, 2008). That models without word 

boundaries performed best suggests that statistical regularities both within and across words are 

relevant sources of information about character context, even though word boundaries are vital to 

the task of visual word recognition (e.g., Epelboim, Booth, Ashkenazy, Taleghani, & Steinman, 

1997; Kohsom & Gobet, 1997; Perea & Acha, 2009; Rayner, Fischer, & Pollatsek, 1998). 

Second, the window size of 5 letters to the left and right of fixation is somewhat larger than what 
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has been assumed in word recognition theories. For example, open bigram theories assume that 

readers track bigrams with at most two intervening letters, a far narrower window than the 

winning model treats as relevant (Grainger et al., 2006). However, we can tentatively conclude 

that position coding relative to the center of the sliding window is more compatible with certain 

theories of visual word recognition than others. Open bigram theories would predict that the 

winning model should be either a directional model –readers are only sensitive to which letters 

precede and follow the center letter (Grainger & van Heuven, 2004) – or a proximal model – that 

readers are sensitive to preceding and following letters, weighted by distance (Grainger et al., 

2006). However, the winning model was a positional model, more in line with theories that 

assume we recognize words by activating sequences of letters represented in different positions, 

either relative to some anchoring point (e.g., Fischer-Baum et al., 2011; Norris et al., 2010), or 

coded in a dynamic way to best align with existing mental representations of familiar words 

(e.g., Davis, 2010). The evidence favoring these theories from our analyses is weak, particularly 

since the models perform very similarly across these different property settings. But, on balance, 

we believe that the coding scheme adopted by our winning statistical learning model is slightly 

more consistent with positional models of letter position encoding than open bigram models. 

The gap between model and behavioral similarity 

The models we tested do not correlate extremely highly with the behavioral data but they 

are within the noise ceiling and the results are consistent across sub-samples of the data. We take 

the modest correlation to indicate both the promise of this method and the distance between this 

approach and an ideal orthographic statistical learner. We consider two potential reasons for why 

a maximal correlation was not observed.  
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Given that our correlations did not reach the upper bound of the noise ceiling, there is 

some additional variability in the adults’ character similarity data that is not captured by 

contextual similarity. That is, the implicit knowledge revealed by the RT data extends beyond 

knowledge of the contexts in which characters appear. The multiple regression analyses 

described above provide some support for this conclusion. In addition to contextual similarity, 

adults’ same-different reaction times were influenced by the visual similarity of characters. This 

result is not surprising considering the visual presentation; prior work has suggested this task is 

highly sensitive to visual similarity (Podgorny & Garner, 1979; Rothlein & Rapp, 2017; Wiley et 

al., 2016; Zhai & Fischer-Baum, 2019). This feature of the behavioral data can also be 

appreciated in Figure S2, which displays the difference the behaviorally- and model-derived 

similarities; pairs with high visual similarity (e.g., 8B, YV) have high similarity behaviorally but 

not in the model (dark pink cells in the figure). However, the significant contribution of 

contextual similarity above and beyond measures of visual similarity is consistent with the idea 

that contextual knowledge plays a role in determining broader character similarity. Other factors 

may also have impacted behavioral performance for particular character pairs, such as number 

magnitude (e.g., a distance effect may lead participants to be slower to indicate that ‘2   3’ are 

different than ‘2   8’), letter-to-phoneme mapping, or bigram frequency (e.g., ‘T   H’ vs. ‘T   L’). 

Our experiment was not designed to exclude the influence of these factors and it is unclear how 

the models would pick up this type of knowledge. In sum, the speed with which people decide 

whether or not two characters are identical is influenced by many factors, with contextual 

similarity playing only one role. Future work with other tasks that directly assess character 

contextual similarity but avoid the influence of factors such as visual similarity may result in 

higher correlations with contextual similarity as extracted by statistical learning algorithms. 
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The second potential reason that the correlation between model-derived and behaviorally-

derived similarities did not reach the upper bound of the noise ceiling is that the algorithms may 

be picking up on relationships that adults are not sensitive to. For example, the algorithms extract 

complex relationships among the characters within the moving window and is equally effective 

at extracting these relationships regardless of linguistic variables that are known to affect the 

speed and effectiveness of adults’ reading behavior, such as lexical frequency and syntactic 

complexity. In some ways then, we could consider the algorithms overpowered, picking up on 

contextual similarity that is perhaps more complex or otherwise beyond readers’ capabilities. 

Adults’ ability to track first-order transitional probabilities is well-documented (see discussion 

in: Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018), but the neural embedding algorithms in 

particular are tracking higher-order relationships beyond the capability of human statistical 

learning capabilities. In discussing readers’ sensitivity to statistical regularities such as how a 

particular sound is spelled, Kessler (2009) notes that while spelling behavior among multiple 

alternatives is non-uniform and correlated with patterns in a large corpus, there is not a perfect 

replication of the text statistics. Thus, while adults are statistical learners in some senses, they are 

not ideal learners, and powerful statistical learning algorithms are capable of extracting 

similarities that adults are not. Our conclusion is that literate adults use distributional knowledge 

about which characters co-occur to learn the relationship between alphanumeric symbols, in a 

manner that is similar to—but certainly not identical to—the algorithms we tested. 

Cross-linguistic considerations 

Our study only considered a single language, using an English language corpus and 

English readers as our study population. We propose that while the specific similarities learned 

between alphanumeric characters are determined by language, the broader claim that readers 
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extract statistical regularities from text is universal. Frost (2012) argues that accounting for 

readers’ sensitivity to the statistics of their text environment explains some reading effects which 

appear to be language-specific, without requiring language-specific mechanisms. Because 

different languages have different distributional properties, if readers’ behavior is affected by 

these properties, divergent reading behavior across languages is expected (see also: Chetail, 

Balota, Treiman, & Content, 2015). Additionally, some authors suggest that sensitivity to 

statistical regularities may be particularly important in readers of inconsistent orthographies, 

such as English (Samara & Caravolas, 2014). This seems to predict that the extent of fit between 

model-derived context similarity and behaviorally-derived similarity may differ in interesting 

and predictable ways depending on language properties. In future work, we hope to extend our 

modeling efforts to other languages to determine the extent to which statistical learning 

algorithms with the same properties capture relevant regularities in other languages, or if the 

best-fitting properties are language-specific.  

Conclusions 

In summary, we demonstrate that certain distinctions and similarities within orthography 

can be derived bottom-up from the environment. We show that a statistical learning algorithm 

with particular properties captures aspects of knowledge that adult readers have about their 

orthography, suggesting that there is rich contextual information at the level of alphanumeric 

characters and that readers are sensitive to statistical regularities of their written language 

environment.  
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Figure Captions 

Figure 1. Schematic depiction of the properties of the statistical learning algorithms employed in 

this study. Panel A: Demonstration of the context (moving window) for the underlined central 

character, for each setting of the properties Window Size and Word Boundary. In the first line, 

the model attempts to learn that [b], [r], [w], and [n] appear in contexts with [o]. Panel B: Details 

of the Position property, noting which characters are distinguished by a model learning the 

context of any given letter [x].  

 

Figure 2. Scatter plots of correlation (Spearman’s rho) values between the modeled contextual 

similarity (40 model specifications, 10 runs of each) for each model class and the behavioral 

similarity. Color corresponds to the position encoding scheme. Gray shading indicates noise 

ceiling. A. Correlations for the vector accumulation models. (Low variability for “Basic” models 

is due to the simplicity of this model: Few parameters change between runs leading to highly 

similar outputs.) B. Correlations for the neural embedding models. 

 
 
Figure 3. Projection of the model-derived similarity spaces into two dimensions (arbitrary 

distance units). An example model run is depicted here for each model class. A. Projection of the 

vector accumulation model that was correlated highest with behavioral similarity (RandInd-char 

radius 5, no boundary, no position encoding). Note the far separation between letter and digit 

characters and moderate separation between uppercase and lowercase letters. B. Projection of the 

neural embedding model that was correlated highest with behavioral similarity (EARP-char 

radius 5, no boundary, radius 5, positional). Note the clustering of vowel and consonant letters in 

addition to the separations seen in A. 
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