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Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of
atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process
understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is
difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last
Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of
evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to
produce a probability density function (PDF) for S given all the evidence, including tests of robustness
to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline
calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are
2.3–4.7 K, bounded by 2.0–5.7 K (although such high‐confidence ranges should be regarded more
cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the
low end of the range. This narrowing occurs because the three lines of evidence agree and are
judged to be largely independent and because of greater confidence in understanding feedback processes
and in combining evidence. We identify promising avenues for further narrowing the range in S, in
particular using comprehensive models and process understanding to address limitations in the
traditional forcing‐feedback paradigm for interpreting past changes.

Plain Language Summary Earth's global “climate sensitivity” is a fundamental quantitative
measure of the susceptibility of Earth's climate to human influence. A landmark report in 1979
concluded that it probably lies between 1.5°C and 4.5°C per doubling of atmospheric carbon dioxide,
assuming that other influences on climate remain unchanged. In the 40 years since, it has appeared difficult
to reduce this uncertainty range. In this report we thoroughly assess all lines of evidence including some
new developments. We find that a large volume of consistent evidence now points to a more confident view
of a climate sensitivity near the middle or upper part of this range. In particular, it now appears
extremely unlikely that the climate sensitivity could be low enough to avoid substantial climate change (well
in excess of 2°C warming) under a high‐emission future scenario. We remain unable to rule out that the
sensitivity could be above 4.5°C per doubling of carbon dioxide levels, although this is not likely. Continued
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Key Points:
• We assess evidence relevant to

Earth's climate sensitivity S:
feedback process understanding and
the historical and paleoclimate
records

• All three lines of evidence are
difficult to reconcile with S < 2 K,
while paleo evidence provides the
strongest case against S > 4.5 K

• A Bayesian calculation finds a
66% range of 2.6–3.9 K, which
remains within the bounds 2.3–4.5 K
under plausible robustness tests
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research is needed to further reduce the uncertainty, and we identify some of the more promising possibi-
lities in this regard.

1. Introduction

Earth's equilibrium climate sensitivity (ECS), defined generally as the steady‐state global temperature
increase for a doubling of CO2, has long been taken as the starting point for understanding global climate
changes. It was quantified specifically by Charney et al. (National Research Council, 1979) as the equili-
brium warming as seen in a model with ice sheets and vegetation fixed at present‐day values. Those
authors proposed a range of 1.5–4.5 K based on the information at the time but did not attempt to quantify
the probability that the sensitivity was inside or outside this range. The most recent report by the
Intergovernmental Panel on Climate Change (IPCC) (2013) asserted the same now‐familiar range but more
precisely dubbed it a >66% (“likely”) credible interval, implying an up to one in three chances of being out-
side that range. It has been estimated that—in an ideal world where the information would lead to optimal
policy responses—halving the uncertainty in a measure of climate sensitivity would lead to an average sav-
ings of US$10 trillion in today's dollars (Hope, 2015). Apart from this, the sensitivity of the world's climate to
external influence is a key piece of knowledge that humanity should have at its fingertips. So how can we
narrow this range?

Quantifying ECS is challenging because the available evidence consists of diverse strands, none of which is
conclusive by itself. This requires that the strands be combined in some way. Yet, because the underlying
science spans many disciplines within the Earth Sciences, individual scientists generally only fully under-
stand one or a few of the strands. Moreover, the interpretation of each strand requires structural assumptions
that cannot be proven, and sometimes ECSmeasures have been estimated from each strand that are not fully
equivalent. This complexity and uncertainty thwarts rigorous, definitive calculations and gives expert judg-
ment and assumptions a potentially large role.

Our assessment was undertaken under the auspices of the World Climate Research Programme's Grand
Science Challenge on Clouds, Circulation and Climate Sensitivity following a 2015 workshop at Ringberg
Castle in Germany. It tackles the above issues, addressing three questions:

1. Given all the information we now have, acknowledging and respecting the uncertainties, how likely are
very high or very low climate sensitivities, that is, outside the presently accepted likely range of 1.5–4.5 K
(IPCC, 2013)?

2. What is the strongest evidence against very high or very low values?
3. Where is there potential to reduce the uncertainty?

In addressing these questions, we broadly follow the example of Stevens et al. (2016, hereafter SSBW16) who
laid out a strategy for combining lines of evidence and transparently considering uncertainties. The lines of
evidence we consider, as in SSBW16, are modern observations andmodels of system variability and feedback
processes, the rate and trajectory of historical warming, and the paleoclimate record. The core of the combi-
nation strategy is to lay out all the circumstances that would have to hold for the climate sensitivity to be very
low or high given all the evidence (which SSBW16 call “storylines”). A formal assessment enables quantita-
tive probability statements given all evidence and a prior distribution, but the “storyline” approach allows
readers to draw their own conclusions about how likely the storylines are and points naturally to areas with
greatest potential for further progress. Recognizing that expert judgment is unavoidable, we attempt to
incorporate it in a transparent and consistent way (e.g., Oppenheimer et al., 2016).

Combining multiple lines of evidence will increase our confidence and tighten the range of likely ECS if the
lines of evidence are broadly consistent. If uncertainty is underestimated in any individual line of evidence—
inappropriately ruling out or discounting part of the ECS range—this will make an important difference to
the final outcome (see example in Knutti et al., 2017). Therefore, it is vital to seek a comprehensive estimate
of the uncertainty of each line of evidence that accounts for the risk of unexpected errors or influences on the
evidence. This must ultimately be done subjectively. We will therefore explore the uncertainty via sensitivity
tests and by considering “what if” cases in the sense of SSBW16, including what happens if an entire line of
evidence is dismissed.

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 2 of 92



The most recent reviews (Collins et al., 2013; Knutti et al., 2017) have considered the same three main lines
of evidence considered here and have noted that they are broadly consistent with one another but did not
attempt a formal quantification of the probability density function (PDF) of ECS. Formal Bayesian quanti-
fications have been done based on the historical warming record (see Bodman & Jones, 2016, for a recent
review), the paleoclimate record (PALAEOSENS, 2012), a combination of historical and last millennium
records (Hegerl et al., 2006), and multiple lines of evidence from instrumental and paleorecords (Annan &
Hargreaves, 2006). An assessment based only on a subset of the evidence will yield too wide a range if the
excluded evidence is consistent (e.g., Annan &Hargreaves, 2006), but if both subsets rely on similar informa-
tion or assumptions, this codependence must be considered when combining them (Knutti & Hegerl, 2008).
Therefore, an important aspect of our assessment is to explicitly assess how uncertainties could affect more
than one line of evidence (cf. section 6) and to assess the sensitivity of calculated PDFs to reasonable allow-
ance for interdependencies of the evidence.

Another key aspect of our assessment is that we explicitly consider process understanding via modern obser-
vations and process models as a newly robust line of evidence (section 3). Such knowledge has occasionally
been incorporated implicitly (via the prior on ECS) based on the sample distribution of ECS in available cli-
mate models (Annan & Hargreaves, 2006) or expert judgments (Forest et al., 2002), but climate models and
expert judgments do not fully represent existing knowledge or uncertainty relevant to climate feedbacks nor
are they fully independent of other evidence (in particular that from the historical temperature record, see
Kiehl, 2007). Process understanding has recently blossomed, however, to the point where substantial state-
ments can be made without simply relying on climate model representations of feedback processes, creating
a new opportunity exploited here.

Climate models (specifically general circulation models, or GCMs) nonetheless play an increasing role in
calculating what our observational data would look like under various hypothetical ECS values—in effect
translating from evidence to ECS. Their use in this role is now challenging long‐held assumptions, for exam-
ple, showing that twentieth century warming could have been relatively weak even if ECS were high
(section 4), that paleoclimate changes are strongly affected by factors other than CO2, and that climate
may becomemore sensitive to greenhouse gases (GHGs) in warmer states (section 5). GCMs are also crucial-
for confirming how modern observations of feedback processes are related to ECS (section 3). Accordingly,
another novel feature of this assessment will be to use GCMs to refine our expectations of what observations
should accompany any given value of ECS and thereby avoid biases now evident in some estimates of ECS
based on the historical record using simple energy budget or energy balance model arguments. GCMs are
also used to link global feedback strengths to observable phenomena. However, for reasons noted above,
we avoid relying on GCMs to tell us what values to expect for key feedbacks except where the feedback
mechanisms can be calibrated against other evidence. Since we use GCMs in some way to help interpret
all lines of evidence, we must be mindful that any errors in doing this could reinforce across lines (see
section 6.2).

We emphasize that this assessment begins with the evidence on which previous studies were based, includ-
ing new evidence not used previously, and aims to comprehensively synthesize the implications for climate
sensitivity both by drawing on key literature and by doing new calculations. In doing this, we will identify
structural uncertainties that have caused previous studies to report different ranges of ECS from (essentially)
the same evidence and account for this when assessing what that underlying evidence can tell us.

An issue with past studies is that different or vague definitions of ECS may have led to perceived, unphysical
discrepancies in estimates of ECS that hampered abilities to constrain its range and progress understanding.
Bringing all the evidence to bear in a consistent way requires using a specific measure of ECS, so that all lines
of evidence are linked to the same underlying quantity. We denote this quantity S (see section 2.1). The
implications for S of the three strands of evidence are examined separately in sections 3–5, and anticipated
dependencies between them are discussed in section 6. To obtain a quantitative PDF of S, we follow SSBW16
and many other studies by adopting a Bayesian formalism, which is outlined in sections 2.3–2.4. The results
of applying this to the evidence are presented in section 7, along with the implications of our results for other
measures of climate sensitivity and for future warming. The overall conclusions of our assessment are pre-
sented in section 8. We note that no single metric such as S can fully describe or predict climate responses,
and we discuss its limitations in section 8.2, as well as implications of our work for future research.
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While we endeavor to write for a broad audience, it is necessary to dip into technical detail in order to sup-
port the reasoning and conclusions, and some of the methods used are novel and require explanation. We
have therefore structured this assessment so that the discussions of the three lines of evidence (sections 3–5)
are quasi‐independent, with separate introductions, detailed analyses, and conclusions. Readers who are not
interested in the details can gain an overview of the key points from the concluding portions of these sec-
tions. Likewise, readers not interested in details of the statistical method could skip most of section 2 and
focus on the “storylines” presented in sections 3–5. The probabilities given in section 7 derive from the sta-
tistical method, but the independence issues discussed in section 6 are important for either quantitative or
qualitative assessment of the evidence.

2. Methods

This section first explains the measure of ECS we will use and how it relates to others (section 2.1) then pre-
sents the simple physical model used to interpret evidence (section 2.2). Section 2.3 summarizes the overall
methodology, and section 2.4 goes over this in more detail, beginning with a basic review of Bayesian infer-
ence intended mainly for those new to the topic while focusing on concepts relevant to the ECS problem
(section 2.4.1), then working through the solution of themodel and sampling approach (sections 2.4.2–2.4.4).
For other basic introductions to Bayesian inference, see Stone (2012) or Gelman et al. (2013).

2.1. Measures of Climate Sensitivity

Climate sensitivity is typically quantified as warming per doubling of CO2, but this is by tradition. One could
also consider the warming per unit radiative forcing or the increment of additional net power exported to
space per unit warming (the feedback parameter, i.e., energetic “spring constant” of the system) denoted λ.
Indeed (see section 2.2 and later), we will find it easier to write our evidence in terms of λ rather than
warming‐per‐doubling (ECS), making the definition of an ECS optional. One can imagine a range of CO2 for-
cing scenarios, each yielding its own value for the ECS; each such scenario also implies a matching value for
λ. Our approach simultaneously constrains both λ and S (see section 2.3).

In choosing the reference scenario to define sensitivity for this assessment, for practical reasons we depart
from the traditional Charney ECS definition (equilibrium response with ice sheets and vegetation assumed
fixed) in favor of a comparable and widely used, so‐called “effective climate sensitivity” S derived from sys-
tem behavior during the first 150 years following a (hypothetical) sudden quadrupling of CO2. During this
time the system is not in equilibrium, but regression of global mean top‐of‐atmosphere (TOA) energy imbal-
ance onto global mean near‐surface air temperature (SAT), extrapolated to 0 imbalance, yields an estimate of
the long‐term warming valid if the average feedbacks active during the first 150 years persisted to equili-
brium (Gregory et al., 2004). This quantity therefore approximates the long‐term Charney ECS (e.g.,
Danabasoglu & Gent, 2009), though how well it does so is a matter of active investigation addressed below.
Our reference scenario does not formally exclude any feedback process, but the 150‐year time frame mini-
mizes slow feedbacks (especially ice sheet changes).

This choice involves weighing competing issues. Crucially, effective sensitivity (or other measures based on
behavior within a century or two of applying the forcing) is more relevant to the time scales of greatest inter-
est (i.e., the next century) than is equilibrium sensitivity, and effective sensitivity has been found to be
strongly correlated (r = 0.95) with the magnitude of model‐simulated 21st century warming under a
high‐emission scenario (Gregory et al., 2015; Grose et al., 2017, 2018). It is also widely available from climate
models (e.g., Andrews, Gregory, Webb, et al., 2012), which facilitates many steps in our analysis. All candidate
climate sensitivity measures are based on an outcome of a hypothetical scenario never realized on Earth.
Ultimately, models or theory are required to relate the outcome of any one scenario to that of any other. The
ideal measure S is one that is as closely related as possible to scenarios of practical interest: those which pro-
duced evidence (e.g., the historical CO2 rise) or which might occur in the future. Effective sensitivity is a com-
promise that is relatively well related to both the available past evidence and projected future warmings.

The transient climate response (TCR, or warming at the time of CO2 doubling in an idealized 1% per year
increase scenario), has been proposed as a better measure of warming over the near to medium term; it
may be more generally related to peak warming and better constrained (in absolute terms) by
historical warming, than S (Frame et al., 2005; Frolicher et al., 2013). It may also be better at predicting
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high‐latitude warming (Grose et al., 2017). But as mentioned above, 21st century global mean trends under
high emissions are better predicted by S than by TCR, perhaps because of nonlinearities in forcing or
response (Gregory et al., 2015) or because TCR estimates are affected by noise (Sanderson, 2020). TCR is
also less directly related to the other lines of evidence than is S. In this study we will briefly address TCR
in sections 4 and 7.4 but will not undertake a detailed assessment.

The IPCC (at least through AR5) formally retains a definition of ECS based on long‐term equilibrium. Much
of the information they use to quantify ECS, however, exploits GCM calculations of effective (e.g., Andrews,
Gregory, Webb, et al., 2012), not equilibrium, sensitivity, and it appears that the distinction is often over-
looked. In this report, we will use “long term” to describe processes and responses involved in the effective
sensitivity S and “equilibrium” for the fully equilibrated ECS. The ECS differs from S due to responses invol-
ving the deep ocean, atmospheric composition, and land surface that emerge on centennial time scales (e.g.,
Frey & Kay, 2018; see section 5), though calculations here (following Charney and past IPCC reports) do not
include ice sheet changes.

To calculate the ECS in a fully coupled climate model requires very long integrations (>1,000 years).
Fortunately, a recent intercomparison project (LongrunMIP; Rugenstein, Bloch‐Johnson, Abe‐Ouchi,
et al., 2019) has organized long simulations from enough models to now give a reasonable idea of how
ECS and S are likely to be related.

Relationships between S and several other quantities are shown in Figure 1 from available models. Predicted
S is reasonably well correlated with the other sensitivity measures (Figure 1a), indicating that S is a useful
measure and also that the conclusions of this assessment would still hold if another measure were used.
Note that we do not consider here all possible measures; see Rugenstein, Bloch‐Johnson, Gregory,
et al. (2019) for a discussion of some additional ones, which also generally correlate well with S. S is less well
correlated to TCR (r = 0.81) than to ECS (r = 0.94), as expected since the TCR is sensitive to ocean heat
uptake efficiency as well as to λ.

Although the measures correlate well, all available LongRunMIP models equilibrate to a higher warming at
4xCO2 than S from the same simulation (Figure 1a, small symbols); details of how the equilibrium is esti-
mated are given in Rugenstein, Bloch‐Johnson, Abe‐Ouchi, et al. (2019) and Rugenstein, Bloch‐Johnson,
Gregory, et al. (2019). The median equilibrium warming per doubling at 4xCO2 is 17% higher than the

Figure 1. Relation of (a) other climate sensitivity metrics and (b) predicted warming by late this century, to S as defined
in section 2.1. In (a), symbols show 15 LongRunMIP model estimates of the equilibrium warming per doubling of
CO2 (Rugenstein, Bloch‐Johnson, Gregory, et al., 2019), with small purple symbols showing equilibria in 4xCO2
simulations and large black symbols equilibria in 2xCO2 simulations. Blue filled circles show TCR from CMIP5 models.
In (b), projected change in global mean temperature in 2079–2099 relative to 1986–2005, under the RCP8.5 (red),
RCP4.5 (magenta), and RCP2.6 (cyan) scenarios, from 24 CMIP5 models. CMIP5 data are from Grose et al. (2018). For
each set of points, a best linear fit is shown, with one standard deviation shown in gray shading (assumed
homogeneous except for ECS where it is assumed to scale linearly with S); see section 7.4 for further details on fits.
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median S, suggesting a robust amplifying impact of processes too slow to emerge in the first 150 years. This
occurs due to responses of the climate system on multidecadal to millennial time scales, including “pattern
effects” from differences between ocean surface warming patterns that have not fully equilibrated within the
first century or two (sections 3.3.2 and 4.2), slow responses of vegetation, and temperature dependence of
feedbacks. Evidence also shows, however (section 5.2.3), that sensitivity to two doublings (as assumed for
S) is somewhat greater than that to one doubling. This state dependence partly cancels out the low bias in
the 150‐year regression, leading to an ECS (for one doubling) that averages only 6% greater than S over
the simulations, although the ratio of the two is uncertain so we assign an uncertainty of ±20% (about
50% wider than the sample standard deviation in the available GCMs). Thus, statements about S in this
assessment can also be interpreted, to relatively good approximation, as statements about ECS for one dou-
bling of CO2. (We use the symbol ζ to represent this difference, with 1 + ζ therefore being the ratio of our
target S to the long‐term equilibrium.)

Figure 1b shows the relationships of S to future warming. The warming trend over the 21st century
(Figure 1b) is also well correlated with S, especially for the highest‐emission scenario Representative
Concentration Pathway 8.5 (RCP8.5). The correlations are not quite as strong for the weaker‐forcing cases,
suggesting that global temperature changes are harder to predict (in a relative sense) in more highly miti-
gated scenarios. This is mostly due to a weaker warming signal, but there is also a slightly greater model
spread, reasons for which are not currently understood.

To conclude, the effective sensitivity S that we will use—a linear approximation to the equilibrium warming
based on the first 150 years after an abrupt CO2 quadrupling—is a practical option for measuring sensitivity,
based on climate system behavior over themost relevant time frame while still approximating the traditional
ECS. Moreover, the quantitative difference between this and the traditional equilibriummeasure based on a
CO2 doubling (with fixed ice sheets) appears to be small, albeit uncertain. This uncertainty is skewed, in the
sense that long‐term ECS could be substantially higher than S but is very unlikely to be substantially lower.
Further work is needed to better understand and constrain this uncertainty.

2.2. Physical Model

Here we review the equations that will be used to relate the evidence to the key unknowns. According to the
conventional forcing‐feedback theory of the climate system, the net downward radiation imbalance ΔN at
the TOA can be decomposed into a radiative forcing ΔF, a radiative response ΔR due directly or indirectly
to forced changes in temperature which is the feedback, and variability V unrelated to the forcing or
feedback:

ΔN ¼ ΔF þ ΔRþ V (1)

Variability V can arise due to unforced variations in upwelling of cold water to the surface, cloud cover,
albedo, and so forth. The net radiation balance ΔN consists of the net absorbed shortwave (SW) solar radia-
tion minus the planet's emission of longwave (LW) radiation. Taking the radiative response ΔR as propor-
tional to first order to the forced change in global mean SAT ΔT, Equation 1 becomes

ΔN ¼ ΔF þ λΔT þ V (2)

where the climate feedback parameter λ is defined as the sensitivity of the net TOA downward radiation N
to T, dN/dt, (at fixed F). If this feedback parameter is negative, the system is stable.

In equilibrium over sufficiently long time scales (assuming λ < 0) the net radiation imbalance ΔN and mean
unforced variability Vwill each be negligible, leaving a balance between the (constant) forcing ΔF and radia-
tive response ΔR. In this case Equation 2 can be written as

ΔT ¼ −ΔF=λ (3)

The case of a doubling of CO2 defines the climate sensitivity:

S ¼ −
ΔF2xCO2

λ
; (4)

where ΔF2xCO2 is defined as the radiative forcing per CO2 doubling (noting that since our reference
scenario involves two doublings, ΔF2xCO2 is defined as half the effective forcing in that scenario).
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Estimation of this quantity is discussed in section 3.2.1. Note that while the above equations assume equi-
librium, our reference scenario (section 2.1) is not an equilibrium scenario; however, because in this sce-
nario ΔN is 0 (by construction) at the time of the projected equilibrium warming ΔT, these equations still
hold.

Finally, we note that the total system feedback λ can be decomposed into the additive effect of multiple feed-
backs in the system of strengths λi:

λ ¼ Σ λi: (5)

These feedbacks represent how the TOA radiation balance is altered as the climate warms by forced changes
in identified radiatively active constituents of the climate system. In this study these are represented as six
feedback components: the Planck feedback, combined water vapor and lapse rate feedback, total cloud feed-
back, surface albedo feedback, stratospheric feedback, and an additional atmospheric composition feedback.
These individual feedback components are elaborated in section 3, where evidence is presented to constrain
each of them (sections 3.3 and 3.4). Other process evidence is presented (section 3.5), which constrains the
total, λ. Finally, so‐called “emergent‐constraint” studies are discussed (section 3.6), which tie S to some
observable in the present‐day climate, thereby constraining λ and S. For reasons discussed later, however,
they are not used in our Baseline calculation but are explored via a sensitivity test.

The other evidence used (sections 4 and 5) comes from past climate changes and typically is interpreted via
Equations 2 and 3 in previous climate sensitivity studies. These have typically assumed that the equations
apply to any relevant climate change with universal values of λ and S, provided that the same feedbacks
are counted therein (cf. Equation 5). We will likewise apply these equations simultaneously to different past
climate change scenarios, leading to a set of relationships shown graphically in Figure 2 (which offers a pic-
ture of our overall model, in particular its dependence structure; see section 2.4.2 for more information).

Recent work, however, has shown that effective λ (the value that satisfies Equation 2 for some climate
change scenario) can vary significantly across scenarios even when the same feedbacks are nominally oper-
ating. All measurements relevant to climate sensitivity come from the recent historical period (during which
internal variability may play a large role and the climate is far out of equilibrium; section 4) or from proxy
reconstructions of past climate equilibria (during which the climate may have been quite different to that
of the reference scenario; section 5). Thus, possible variations in the apparent λ during those time periods
must be accounted for. Two particular issues are recognized. First, feedbacks can change strength in differ-
ent climate states due to direct dependence on global temperature or indirect dependence (e.g., via snow or
ice cover) or other differences in the Earth system (e.g., topography). Second, the net outgoing radiation ΔN
can depend not only on the global mean surface temperature but also on its geographic pattern ΔT′, leading
to an apparent dependence of λ on ΔT′ when applying Equation 2. Such pattern variations can arise either
because of heterogeneous radiative forcings, lag‐dependent responses to forcings, or unforced variability. To
use such observations to constrain our S and λ, it is important to account for these effects. Note that these
effects are distinct from atmospheric “adjustments” to applied radiative forcings (Sherwood et al., 2015),
which scale with the forcing and are included as part of the effective radiative forcing (ERF) ΔF.

We account for impacts on λ by defining an additive correction Δλ for each past climate change representing
the difference between its apparent λ and the “true” λ defined by our reference scenario. For simplicity we
define these corrections to subsume both forcing‐related and unforced variations, so that henceforth V = 0.
Equation 2 then becomes

ΔN ¼ ΔF þ λ − Δλð ÞΔT (6)

where λ is the “true” value we want to estimate. From the chain rule, having assigned to Δλ two compo-
nents, we obtain

Δλ ¼ ∂λ
∂T

ΔT þ ∂λ
∂T′ xð ÞΔT′ xð Þ ¼ Δλstate þ Δλpattern (7)

State dependence. The first term represents state dependence: The concept that the feedbacks in a glacial
climate, for example, might not remain the same strength over the next century. Ice‐albedo feedback, for
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example, has long been expected to be climate sensitive (Budyko, 1969;
Sellers, 1969), and some studies have found strong sensitivity of cloud
feedbacks (Caballero & Huber, 2013). The simplest parameterization of
this is to add a quadratic dependence of net outgoing radiation on ΔT,
which yields a linear dependence of total feedback λ:

Δλstate ¼ 2 α ΔT

There are, however, reasons to expect changes could be nonlinear (e.g.,
discontinuous changes in cloud feedbacks when ice sheets disappear) so
this formulation will not always be used (see section 5). State dependence
corrections are made only for paleoclimate evidence, and state depen-
dence of ΔF2xCO2 is subsumed into that of λ.

Pattern effects. The second term represents the “pattern effect” and
expresses the possibility that different patterns of warming will trigger
different radiative responses. The pattern effect is significant whenever
(a) the pattern of temperature change differs from that in the reference
scenario and (b) this difference in pattern is radiatively significant, that
is, alters the global mean TOA net radiation. Such patterns can arise
either due to non‐CO2 forcings, lags in response, or unforced variability.
In section 4.2, the possible existence of a pattern effect arising from

transient warming patterns that do not resemble the eventual equilibrium response is discussed further.
Pattern effects may also complicate the comparison of estimates derived from proxy reconstructions of
past equilibria, if the resulting sea surface temperature (SST) patterns differ from those of the reference
scenario. However, in the absence of reliable reconstructions of past warming patterns and a dearth of
existing literature addressing this, here we do not explicitly consider paleoclimate pattern effects. We note
that the concept of forcing “efficacy” (i.e., Hansen et al., 2005; Marvel et al., 2016; Stap et al., 2019;
Winton et al., 2010), in which one unit of radiative forcing produces a different temperature response
depending on where, geographically, it is applied, can be attributed to a pattern effect (e.g., Rose
et al., 2014) or to a forcing adjustment. Our estimated historical and paleoforcings ΔF will include uncer-
tainties from adjustment/efficacy effects.

Time scale. Finally, we note that any definition of planetary sensitivity depends on the time scale considered.
Our S incorporates only feedbacks acting on time scales of order a century. Traditional ECS allows for more
complete equilibration of the system, albeit with some feedbacks explicitly excluded (see section 2.1). In this
report we assume that ECS and S are related via

ECS ¼ 1þ ζð ÞS: (8)

See section 5.2.3 for more information. Earth system sensitivity (ESS), by contrast, reflects the slower feed-
back processes such as changes to the carbon cycle and land ice. Due to the lack of information on short tem-
poral scales, most paleoclimate reconstructions necessarily incorporate the effects of these slow feedbacks.
The difference between ESS and S or ECS is not relevant to the analyses in sections 3 and 4 but is discussed
further in section 5.3.

2.3. Statistical Method: Summary

To obtain probability distributions of the various quantities introduced and mathematically linked in
section 2.2, we adopt the Bayesian interpretation of probability, which describes our uncertain beliefs con-
cerning facts that are not intrinsically random but about which our knowledge is uncertain (e.g.,
Bernardo & Smith, 1994). The Bayesian approach has been adopted in many past studies inferring climate-
sensitivity from historical or paleoclimate data (see sections 4 and 5) and is used for other climate‐relevant
problems such as data assimilation (Law& Stuart, 2012), remote sensing (Evans et al., 1995), and reconstruc-
tion of past temperatures (Tingley & Huybers, 2010), among others.

Figure 2. A Bayesian network diagram showing the dependence
relationships between main variables in the inference model. Circles
show uncertain variables, whose PDFs are estimated; squares show
evidence (random effects on the evidence would appear as a second
“parent” variable for each square and are omitted for simplicity). Colors
distinguish the three main lines of evidence and associated variables
(blue = process, orange = historical, and red = paleoclimate). For
paleoclimate, only one ΔF/ΔT climate change pair is shown but two
independent ones are considered (see section 5).
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The basic expression of Bayes's rule for the case of unknown variables is

p ΦjEð Þ ¼ p EjΦð Þp Φð Þ
p Eð Þ (9)

where Φ is a vector of variables (in our case feedbacks λi and total λ, forcings, temperature changes, para-
meters representing Δλ's, and S) and E represents some evidence about these variables. p(Φ|E) is our
sought‐for posterior probability density of Φ given (conditional on) E, that is, the joint PDF of all the vari-
ables considering the evidence. On the right‐hand side, p(E|Φ), the likelihood, measures the probability of
the evidence E for any given Φ and is what quantifies the constraint offered by the evidence. p(Φ) is our
prior for Φ, that is, the PDF we would assign to Φ in the absence of E. p(E), the overall probability of E, is
essentially a normalization constant. A key insight is that a PDF can never be determined by evidence
alone but begins with one's prior expectations p(Φ), which are then modified by the evidence. The PDF
is small for Φ that are judged implausible at the outset (small prior) or unlikely to have led to the observed
evidence (small likelihood). If the evidence is strong enough to restrict values to a sufficiently narrow
range, the prior becomes practically irrelevant; this is typical for standard scientific measurements, and
the prior is usually unexamined. It is unfortunately not the case for climate sensitivity, so we need to
pay attention to the prior.

Because of the structure of our problem (in particular that ΔF2xCO2 is relatively well known and many con-
ditional independencies are expected among the variables, see section 2.4.2), the Bayes result 9 can approxi-
mately be written in terms of λ alone:

p λjEð Þ ∝ p λjEproc
� �

p Ehistjλð Þ p Epaleojλ
� �

(10)

and a similar equation can be written for S. Thus, the PDF of either sensitivity measure is approximately
proportional to the product of three components, one for each of our lines of evidence, where Eproc is the
process evidence and so on. The first term on the right‐hand side of Equation 10 is the PDF given only our
process understanding and an assumed prior on the feedbacks; this is estimated in section 3. The second
and third terms are marginal likelihoods of the historical and paleo evidence as functions of the sensitivity
measure, worked out (sections 4 and 5) by directly computing the probability of our best‐estimate warm-
ing as a function of all variables using the equations given in section 2.2. The posterior PDFs will be shown
in section 7 (and employ a fully accurate calculation, viz., Equation 9 with full likelihoods rather than
marginal ones; see section 2.4). Although Equation 10 is not exact, it is a very good approximation helpful
in understanding results.

Importantly, each term in Equation 10 is computed using a model (cf. section 2.2) and involves judgments
about structural uncertainty including limitations of the model. Our goal is for each term to represent fully
educated and reasonable beliefs. In sections 3–5 we will sometimes present a range of calculations and evi-
dence and then assert a quantitative likelihood informed by the totality of this evidence and background
knowledge. This will to some extent be unavoidably subjective.

A key assumption behind the multiplication in Equation 10 (also made in the fully accurate calculation) is
that the lines of evidence are independent, which we assume for our Baseline calculation. For example, this
means that learning the true historical aerosol radiative forcing would not alter our interpretation of the
paleo or process evidence, and so on for other uncertainties. The plausibility of this assumption and conse-
quences of relaxing it are explored in different ways in sections 6 and 7.

Many past studies (see sections 3–5) have produced PDFs of S based on a single line of evidence represented
by one likelihood term in Equation 10. One might think that if two such likelihoods from different evidence
look different, it means there is some inconsistency or problem in the way evidence is being interpreted. This
is a misconception. Suppose one line of evidence demonstrates S is above 3 K and the other that it is between
0 and 4 K; each by itself would yield a very different PDF, but together, they simply say Smust be between 3
and 4 K. This is embodied in Equation 10. The difference in ranges is no reason to question either line of
evidence so long as there is reasonable overlap. This point will be revisited in section 8 when discussing what
turns out to be strong similarity among our lines of evidence.
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In general, as discussed above, posterior PDFs depend on a (multivariate) prior. This prior is placed on all
variables in the system and must obey the model equations (section 2.2), which force the beliefs it expresses
about different variables to be consistent. In practice one begins with independent variables (in our case the
individual feedbacks λi, ΔF2xCO2, and for each past climate change the forcing ΔF, observational error for ΔT,
and parameters for Δλ; see sections 4 and 5). A prior on the dependent variables (i.e., the so‐called prior pre-
dictive distribution, PPD), such as λ and S, is then determined by the independent‐variable prior and the
model. In cases where one has prior knowledge about a dependent variable X, the prior on the independent
variables can be adjusted so that the PPD of X reflects this (see, e.g., Wang et al., 2018).

For each independent variable except the λi, we specify amarginal prior PDF by expert judgment using avail-
able evidence, discussed in the relevant sections 3–5. This is typical of past Bayesian studies. The knowledge
used to specify the prior for each variable is specific to that variable and not used elsewhere (this is important
for the historical forcing PDF, section 4.1.1). For the λi, we explicitly consider a likelihood of each feedback's
evidence Ei and a separate prior; that is, the PDF of λi is p (λi)p (Ei|λi). All of these prior PDFs adjust when the
evidence is considered, resulting in posterior PDFs.

Our baseline choice for the prior p(λi), which is consistent with past work on estimating feedbacks compo-
nents with which we are familiar, is uniform (over negative and positive values) and independent between
feedbacks (i.e., learning information about one feedback would not alter our beliefs about others in the
absence of other information on S; see section 7.2 for more discussion). From Equation 5, this implies a prior
on λ that is also uniform across positive and negative values. Thus, we do not rule out an unstable climate a
priori. An unstable climate is however ruled out by nonprocess evidence (i.e., the length and stability of
Earth's geologic record). For efficiency, at the outset we eliminate from our numerical calculations indivi-
dual λi for which the process likelihood is less than 10−10. Note that if the λi priors are restricted—for exam-
ple, a broad Gaussian rather than uniform—results are essentially unaffected, since values far away from 0
are ruled out by evidence.

We also consider a different multivariate prior PDF, specified in such a way as to induce a PPD on S (via
Equation 4) that is uniform from near 0 up to 20 K. This assigns high prior belief to combinations of λi that
happen to sum to small negative λ and 0 belief to combinations summing to positive λ (for which S is unde-
fined). Implementation of priors is further discussed in section 2.4.3, and issues concerning the choice of
prior are discussed in section 7.2.

2.4. Statistical Method: Further Information
2.4.1. Introduction to Bayesian Inference Modeling
Bayes's theorem arises as a consequence of the laws of probability. Considering all possible Φ and all E that
could have eventuated, the joint density (or probability, or PDF) of E and Φ of the real world, p(E,Φ), can be
decomposed in two different ways via

p E;Φð Þ ¼ p ΦjEð Þp Eð Þ ¼ p EjΦð Þp Φð Þ;

which immediately leads to Equation 9.

The likelihood p(E|Φ) is determined by the inference model, which takes the variables as an input and pre-
dicts what would be observed as a consequence of these variables. It is often a source of confusion. Although
expressed as a probability (of E), once E is known, p(E|Φ) is best thought of as a relative measure of the con-
sistency of the evidence with each value of Φ, according to our inference model. Low likelihoods indicate a Φ
that would be unlikely to give rise to the evidence that was seen, and if the likelihood is low enough, we
would say this Φ is inconsistent with that evidence. Bayes's theorem says that the probability of Φ given evi-
dence is determined by two things: the a priori plausibility of Φ and the consistency of Φ with the evidence.
Strictly speaking, “evidence” E should be observations of the real world. However, in this assessment (sec-
tion 3 in particular) we will also selectively consider as evidence the emergent behavior of numerical simu-
lations of processes (e.g., large‐eddy simulations [LESs] of cloud systems), where the numerical model is
informed by, and tested against, observations not used elsewhere in the assessment.

The roles of the prior and likelihood are most simply illustrated by an example of a test for a rare disease. If
the test correctly identifies both diseased and nondiseased patients 95% of the time, but only 1% of people
tested carry the disease, then a patient who tests positive still only has ~16% probability of carrying the
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disease. This is because even though the likelihood p(E|Φ) of the positive test result is high (0.95) under the
hypothesis that the patient is diseased (Φ = 1) and low (5%) under no‐disease (Φ = 0), the very low prior
p(Φ = 1) = 0.01 due to the rarity of the disease renders a low 0.16 posterior p(Φ = 1|E) of disease. This
may be obtained from Equation 9 noting that p(E positive) = 0.01 × 0.95 + 0.99 × 0.05 (equivalently one
can reason that out of 10,000 patients, 100 would have the disease, 95 of whom would test positive; but of
the 9,900 who do not have the disease, 5% or 495 would wrongly test positive, such that only 16% of those
testing positive are actually diseased). This example illustrates that prior information or beliefs can have a
powerful influence on outcomes, a point that has been emphasized in the context of inferring ECS from
the historical record (see Bindoff et al., 2013; Lewis, 2014).

While the above example is based on discrete (binary) Φ, in this assessment all variables are continuous.
Hence, probabilities are expressed as densities or continuous distributions in a real space. To illustrate this
case, consider that one has a thermometer with a Gaussian‐distributed error of standard deviation 2°C and
measures the temperature T of some fresh water and obtains 1.5°C. Now since we know the water is liquid,
the temperature must a priori lie between 0°C and 100°C. If our prior p(T) is uniform (all unit intervals of
Celsius temperature equally likely) within that range and 0 outside, our likelihood p(obs|T) is normally dis-
tributed about 1.5°C, but the posterior PDF is truncated with no weight on negative temperatures. Thus, the
maximum‐likelihood temperature (the one most consistent with the evidence) is 1.5°C—but the expectation
value (the mean of the PDF, or the average true temperature if this situation occurred many times) is higher
at 2.27°C. One could also imagine a highly nonuniform prior within 0–100°C, for instance, if the water were
known to be in the Arctic region. In this case T would be highly likely a priori to be near the freezing point,
and its expectation value given the measurement might even be lower than the measurement. Other priors
could also be possible, based on analogous past experience or any other line of reasoning.

The role of multiple lines of evidence, important for our assessment, is also clarified by a Bayesian approach.
If, in the above example, we had two independent measurements with the same Gaussian uncertainty each
returning 1.5°C, we would multiply the two likelihoods and renormalize, obtaining a new likelihood with a
standard deviation of 1.4°C (which could be combined with the same prior to get a new PDF). This indepen-
dence assumption would be justified if the second observation came from a different technology, for exam-
ple, infrared radiometry. But if it came from the same thermometer used again, we would expect the same
error both times and the new likelihood and PDF would be unchanged. If the second observation came from
another thermometer by the same manufacturer, we would have to delve into the reasons for thermometer
error to decide how independent we expect the two measurements to be. These issues are highly relevant to
this assessment and are discussed in section 6.

The final generalization required is that our problem is multivariate. In section 2.4.2 we describe in more
detail the multivariate problem solved in this assessment.
2.4.2. Description of Methods and Calculations
Following Equation 9, themost general approach for amultivariate system, after specifying a prior, would be
to calculate the likelihood of the entirety of evidence E, as a function of the full set of model variables Φ (of
which there are 15 if we treat six distinct feedbacks, λ, ΔF2xCO2, S, and three pairs of ΔT and ΔF—one histor-
ical and two paleoclimate—see sections 3 and 5). Calculating a 15‐dimensional likelihood function in this
way is computationally inefficient and moreover is not very helpful conceptually. Fortunately, we can
simplify and better understand the problem by considering more carefully the relationships between
variables.

These relationships are illustrated graphically in Figure 2, separated into three broad lines of evidence. All
quantities in Equations 3–5 are unknown (random) variables characterized by PDFs, shown as circles in this
figure. So the only things “known” before priors are placed on the variables are the evidence (shown by
boxes), the equations linking the variables, and the relationships between these variables and the evidence.
Note that while many previous ECS studies have taken ΔF2xCO2 as a known constant, we consider it as
uncertain, and therefore, λ and S are not uniquely related—though in practice the uncertainty in ΔF2xCO2
is relatively small and λ and S are nearly reciprocal.

Figure 2 shows the dependence in the inference model, in which individual feedbacks combine to deter-
mine λ, which then determines (together with ΔF2xCO2) S and (together with forcings) the magnitude of
forced responses. The arrows indicate direct causality, where a (“child”) node value is determined by
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the (“parent”) variables upstream that point to it. This has strict implications for the conditional inde-
pendence of variables inherent in the joint distribution p(Φ)—most importantly, that any variable is
conditionally independent of all others that are not its descendants, given its parents (see, e.g.,
Pearl, 1988). The Bayesian inference process can work backward, where information on a child tells
us about its parent(s), and information from multiple children is independent if there are no direct links
in the diagram between the children.

A first simplification therefore is that the evidence consists of a set of components (boxes in Figure 2), which
we supposed to be conditionally independent given Φ. In general, we suppose the remaining uncertainties in
E, once Φ is known, arise from instrumental and other errors that are unrelated between lines of evidence;
possible violations of independence will be revisited later in the assessment. The likelihood components can
be collected into lines of evidence (e.g., the three shown by colors in Figure 2), and, based on this indepen-
dence ansatz, the likelihood of all evidence E can be written as follows:

p EjΦð Þ ¼ p EprocjΦ
� �

p EhistjΦð Þp EpaleojΦ
� �

; (11)

where p(Eproc|Φ) is termed the “process likelihood,” which isolates the impact of process evidence, and so
on for the other two. The multivariate PDF of Φ follows from inserting Equation 11 into Equation 9; to
obtain the marginal posterior PDF of S, p(S|E) (or any other particular variable) would require integrating
that multivariate PDF over all variables in Φ other than S.

A further simplification, however, is that in our inference model, each evidence line directly depends
only on the most immediate model variable(s), not the entire Φ. For example, once λ and historical
ΔF are specified, the historical warming ΔT does not depend on paleoclimate changes or individual
feedbacks, a further statement of conditional independence. This means that the historical likelihood
p(Ehist|Φ) can be written as a function of λ and ΔF2xCO2 alone, for example, p(Ehist|λ,ΔF2xCO2). The same
can be done for the paleo evidence. This motivates an expression analogous to Equation 9 for the total
likelihood or PDF of just the variables of interest, λ or S, which we develop here for better understand-
ing of the approach.

It is not possible, however, to simplify the entire process likelihood in a similar way to the historical and
paleo likelihoods as above. This is because the primary part of this evidence consists of multiple pieces Ei
pertaining to individual feedbacks i, and these cannot be written as a function of λ; hence, we cannot directly
write p(Eproc|λ,ΔF2xCO2). Each Ei can, however, be written as a function of its parent feedback value λi alone
which is again a great simplification. These feedback values are the independent variables in our inference
model (those with no parent variables). Starting from these, the PDF of each feedback, given its direct evi-
dence Ei only, is

p λijEið Þ ¼ p Eijλið Þ p λið Þ=p Eið Þ: (12)

where p(λi) is a prior PDF for λi. The posterior PDF of the total λ given all individual‐feedback evidence Ei
is an integral over these component feedbacks:

p λjEi;…;Enð Þ ∝ ∫∏p λijEið Þ δ λ − Σλið Þ dλ1dλ2 … dλn; (13)

where hereafter, for clarity, we omit normalization constants. In the special case of Gaussian distributions,
which result from the priors and likelihoods employed in section 3, this integral produces another
Gaussian whose mean and variance are simply the sums of those of the components (see, e.g., Ross, 2019).

There is additional process evidence Eλ, from “emergent constraint” approaches, that depends on the total λ;
that is, Eproc = {Ei, …, En, Eλ}. The PDF of λ given all process evidence, if both types are independent, is the
product of the component‐derived PDF (Equation 13) and the likelihood of this additional evidence:

p λjEproc
� �

∝ p λjEi;…;Enð Þ p Eλjλð Þ: (14)

(However, in part because of dependence concerns, this evidence is only used in a sensitivity test, see
section 3.) The historical and paleo evidence depends on λ and ΔF2xCO2 (denoted F in Equations 15–17
for brevity). We assume (see section 3.4) that λ and F are independent a priori, so that
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p λ;FjEproc
� � ¼ p λjEproc

� �
p Fð Þ: (15)

This can be combined with the other lines of evidence to yield

p λ;FjEð Þ ∝ p λ;FjEproc
� �

p Ehistjλ;Fð Þ p Epaleojλ;F
� �

(16)

Integrating Equation 16 over F yields a marginal PDF of λ. Also, using Equation 4, the marginal PDF of S
could be obtained by integrating over λ and F:

p SjEð Þ ∝ ∫p F′ð Þ p λ′;F′jEð Þ δ S − F′=λ′ð Þ ∂S=∂Fð Þ−1 ∂S=∂λð Þ−1dF′ dλ′; (17)

where primes denote integration variables. In practice, ΔF2xCO2 contributes very little to the uncertainty in
historical or paleo forcings and therefore plays a weak role in those likelihoods. If the interdependence
among likelihoods arising from this small role is neglected, the above integrals over ΔF2xCO2 could be per-
formed separately for each line of evidence rather than over the entirety, yielding Equation 10 given ear-
lier or an equivalent equation for S. Note that calculations shown in this assessment do not make this
approximation. Equation 10 or its S equivalent resemble the basic equation used in past ECS studies on
the historical and/or paleo records, except that the process PDF p(λ|Eproc) or p(S|Eproc) takes the place
usually occupied by the prior on ECS or λ.

So far Equation 16 shows likelihoods for historical and paleo evidence only. The process PDF (Equation 14)
can be written as the product of a process marginal likelihood p(Eproc|λ) and a PPD, p(λ), which is the prior
PDF on λ induced by those placed on the independent variables upstream. An analogous product can be
written for S. Either PPD can be calculated from Equations 12–17 by setting the likelihoods to unity, since
it is just the predicted distribution of λ and S with no evidence. The marginal process likelihood is then
the ratio of the process PDF to this PPD. Calculating this likelihood thus requires integrating over all possi-
ble combinations of the λi (i.e., their joint distribution) weighted by their prior probabilities. This is because
an individual feedback value/evidence Ei cannot be predicted from the sum λ alone; its likelihood of occur-
rence for a given total depends on the probabilities (hence priors) of all of the feedbacks. Hence, the marginal
process likelihood versus λ or S is not independent of the prior the way the other likelihoods are: It changes
each time the prior is changed.

There is in general no closed form solution to Equations 13–17 and therefore we use a Monte Carlo sampling
approach to compute the solution. This is described further in section 2.4.4. This approach is fully consistent
with Equations 13–17 but approaches the problem more directly via Equation 11.
2.4.3. Specification of Priors and Novel Aspects of Our Approach
As mentioned in section 2.3, prior PDFs must be placed on all independent variables and are propagated
to the dependent variables (such as λ and S) via the model equations. For each of the independent vari-
ables except the λi, the prior PDF is specified by expert judgment using the available evidence about that
quantity, without considering any other lines of evidence. These expert priors are given in the appropri-
ate sections and are crucial in determining the historical and paleo likelihoods. Note that PDFs of these
and other variables change once all the evidence is propagated through the model. For example, if his-
torical warming turns out to be weaker than would be expected based on the other lines of evidence,
then our posterior PDF of S shifts downward from what it would have been with only the other evi-
dence—but at the same time, our posterior PDF of the historical ΔF also shifts downward relative to
what we expected a priori. These revised, posterior PDFs will not be presented except those of S and
the historical forcing ΔF.

Many previous studies have used past climate changes to constrain climate sensitivity using Bayesian meth-
ods (e.g., Aldrin et al., 2012; Johansson et al., 2015; Skeie et al., 2014, 2018) and so had to specify priors. Such
studies mostly aimed to constrain Swithout incorporating the process knowledge exploited here, instead fit-
ting inference models formulated with S or λ as an independent variable. As such, they required prior PDFs
for S (whichwere typically uniform in S or peaked at S values somewhere within the 1.5‐ to 4.5‐K range). Due
to the use of a different inferencemodel, the prior on S in this assessment is nominally based on less informa-
tion and hence not fully equivalent to those in the past Bayesian ECS studies. This and other issues of how to
interpret the priors are taken up in section 7.2.
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2.4.4. Calculation of Likelihoods and Sampling Method
Implementation of the Bayesian updating generally follows the principles described in Liu (2004), in which
we sample from our prior over Φ and weight each instance in the sample according to the likelihood p(E|Φ).
The weighted ensemble is then an approximation to the posterior PDF and can be analyzed and presented as
desired (e.g., in terms of the mean/expectation and credible intervals) via relationships such as expectation
E[Φ|E] = Σ (wj Φj)/Σ (wj), where Σ denotes a sum over all instances Φj from Φ and wj is the weight. This
approach can also be viewed as a specific form of importance sampling (Gelman et al., 2013) in which the
prior is used as an initial “proposal” distribution from which samples are drawn and subsequently weighted
to estimate the target distribution.

To create the sample, we begin by sampling the independent variables according to their priors (e.g., uniform
sample distribution for a uniform prior) and then use the inferencemodel equations to calculate the values of
each dependent variable (such as S) and themodel outputs for each instance in the sample. This yields a sam-
ple population approximating the PPD for all variables in Φ. Next, a weightwj for each instance j is computed
from the global likelihood function (which is a product of local likelihoods, cf. Equation 11). Finally, the pos-
terior PDF is approximated by the histogram of the weighted sample (see below).

For the individual‐feedback process evidence (see section 3), the likelihood for each feedback component i is
represented as a Gaussian function with mean μi and standard deviation σi. Each sample instance j is accord-
ingly given a likelihood weight for λij equal toG(λij, μi, σi) where λij is the ith feedback value of the jth instance
in the sample andG(x, μ, σ) is defined as the GaussianN(μ, σ) function evaluated at x. The weights for the six
feedbacks are multiplied to give the total likelihood weight for the individual‐feedback evidence. In the base-
line case with a prior uniform in λi, the posterior after updating by this likelihood thus approximates the
anticipated Gaussian N(μi, σi), although we do not explicitly take advantage of this relationship within the
algorithm, in order to allow full generality. Similarly, an “emergent constraint” likelihood is specified in
terms of a Gaussian in total λ, evaluated G(λj, μλ, σλ).

For the observed temperature change evidence (see sections 4 and 5), we consider a forward model in the
basic form (cf. Equation 3):

ΔT ¼ f Φ′ð Þ;

where the predicted temperature change ΔT is a function of the other model variables Φ′. The observed tem-
perature change ΔTobs, which includes an uncertainty σe due to measurement error and unforced variability,
is interpreted as giving rise to a likelihood which takes the Gaussian form N(ΔT, σe) (Annan &
Hargreaves, 2020). Thus, the likelihood assigned to any Φ′ is G(ΔT, ΔTobs, σe), which is the probability of
the observed warming for a given ΔT = f(Φ′). This value is maximized when ΔT is equal to ΔTobs and drops
off rapidly as the difference between ΔT and ΔTobs becomes large compared to σe. The exact forward models
used will differ from 3 due to additional terms as previously mentioned and are given in sections 4 and 5.

Likelihood weights for process (excluding emergent‐constraint), emergent‐constraint, historical, and paleo-
climate evidence (separately for cold and warm periods) are calculated for each instance. These weights (or
a subset thereof) are then multiplied together to give a single likelihood weight w for each member of the
sample.

The posterior PDF for Φ can be calculated from the weighted sample distribution; marginal PDFs for variable
subsets are calculated from the marginal sample distributions. For example, a posterior PDF for S is calcu-
lated as the histogram of S in the sample (i.e., the PPD), weighted by the corresponding likelihood weights
—that is, p(S|E) ∝ Σj∈Q wj, where the set Q contains all instances jwhose Sj falls within a histogram bin cen-
tered on S—with normalization. Posterior PDFs for any other variable in Φ are calculated similarly. Themar-
ginal likelihood function for any variable (e.g., S) is just the average weight w from the same histogram.
Hence, the marginal likelihood is equal to the PDF divided by the PPD.

Various approximations aremade in the sampling calculations tomake them less computationally expensive.
The Baseline calculation initially samples each feedback component uniformly and independently over the
range U(−10,10). We also use an alternative prior, which is calculated by weighting samples from the
Baseline prior to give a PPD for S which is uniform from near 0 to 20 K. This does not include 0 because
the Baseline prior covers a finite range U(−10,10). When calculating the posterior, to avoid wasted
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computational effort, we restrict the initial sample to absolute values for each feedback λi within a six stan-
dard deviation range of the likelihood function for that feedback. This does not affect the posterior PDF
because the likelihood is effectively 0 outside this range. The posterior calculation in section 7.2 with a
uniform‐S PPD uses a weighted version of an equivalent sample (and so also makes this approximation).
This approximation enabled us to produce stable 5–95% ranges with a Monte Carlo sample size of 2 × 1010.
We also used kernel smoothing to produce satisfactorily smooth posterior PDFs. (We applied a Gaussian ker-
nel smoother to the posterior PDFs with a standard deviation of 0.1 K and found that this affected the 5–95%
ranges by atmost 0.02 K.) Since in the Baseline calculation the feedback evidence yields a process PDF, which
is Gaussian in λ (cf. Equations 13 and 14), this can be reused as a feedback‐based prior on total lambda and
combined with the prior on ΔF2xCO2 via Equation 15 and the downstream likelihoods via Equations 14 and
16, thus avoiding the need to sample from a prior on the λi feedbacks each time the calculation is repeated.
This more streamlined calculation requires only a 2 × 108 sample size and is used as the baseline for most
of the sensitivity tests with a uniform‐λ prior in section 7. In calculations that use a uniform‐S prior and omit
process evidence (in sections 4 and 7), we speed up the calculations by sampling from uniform independent
distributions for S and ΔF2xCO2, calculating λ from Equation 4.

3. Constraints From Process Understanding
3.1. Introductory Concepts

From Equation 4, climate sensitivity is the amount of surface temperature increase necessary to induce a
radiative response ΔR whose energy loss to space cancels the energy trapped by a CO2 doubling (the CO2's
radiative forcing ΔF2xCO2). The radiative response ΔR is achieved through changes in the various climate sys-
tem constituents that influence Earth's radiation balance. The goals of “Process” research into climate sensi-
tivity are to determine (a) themagnitude of CO2 radiative forcing and (b) themix of changes in various climate
system constituents that produces the necessary radiative response ΔR. The responses of these constituents to
warming are termed feedback. The constituents, including atmospheric temperature,water vapor, clouds, and
surface ice and snow, are controlled by processes such as radiation, turbulence, condensation, and others. The
CO2 radiative forcing and climate feedback may also depend on chemical and biological processes.
3.1.1. Definitions of CO2 Radiative Forcing and Climate Feedbacks
CO2 radiative forcing ΔF2xCO2, with units W m−2, includes both the direct radiative impact of doubling of
atmospheric CO2 and the indirect radiative impacts arising from adjustments of the atmosphere and surface
that happen without the surface temperature T having appreciably risen.

For climate feedbacks, we expand upon Equation 5 to express the total climate feedback parameter λ, with
unitsWm−2 K−1, as the sum of the sensitivities of TOA radiation to factors ximultiplied by how those factors
xi change with surface warming:

λ ¼ ∑i λi ¼ ∑i
∂N
∂xi

dxi
∂T

¼ λPlanck þ λwater vapor þ λlapse rate þ λsurface þ λclouds þ λother (18)

where xi conventionally includes the changes in temperature (Planck), water vapor, lapse rate, surface
albedo, and clouds. Each of the terms on the right‐hand side of Equation 18 is known as a “feedback,”
for example, the Planck feedback, water vapor feedback, and lapse rate feedback. Since ΔF2xCO2 is defined
per a prescribed atmospheric CO2 concentration, carbon cycle feedback on CO2 is excluded here.
However, we also consider feedbacks λother from other changes in atmospheric composition such as those
associated with atmospheric ozone and aerosol‐cloud interactions and from changes in stratospheric
temperature and water vapor not normally quantified. Readers interested in this conventional
forcing‐feedback theory may consult Hansen et al. (1984), Dessler and Zelinka (2015), Sherwood
et al. (2015), and Hartmann (2016).
3.1.2. Lines of Evidence for Process Understanding
Process evidence focuses on the current climate and its internal variability, excluding evidence considered in
the historical and paleoclimatic sections (sections 4 and 5, respectively). There are four primary sources for
process evidence for S,ΔF2xCO2 and climate feedbacks:
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1. Global climate models (GCMs). Their strength is that they are a globally complete representation of the
climate system approximately satisfying known conservation laws of energy, mass, and momentum.
They can be used to estimate feedback and forcing from idealized experiments, such as the simulation
following an abrupt quadrupling of CO2 or an atmosphere‐model‐only integration with quadrupled
CO2 but fixed SST and sea ice. One weakness is that they account for subgrid processes, particularly of
clouds and convection, with approximate parameterizations whose varying representations contribute
to a large intermodel spread in the cloud feedback. Archives of many GCM simulations, particularly
those collected for the Coupled Model Intercomparison Projects (CMIPs, Eyring et al., 2016; Meehl
et al., 2005; Taylor et al., 2012), have been used to determine the robust and nonrobust aspects of
GCM‐simulated CO2 forcing and feedbacks.

2. Observations. Short‐term responses at global and regional scales can be quantified from satellite obser-
vations of the covariation of TOA radiation with temperature, particularly from interannual variabil-
ity. These observable responses likely differ from those associated with CO2‐induced long‐term
warming, creating uncertainty as to the interpretation of short‐term feedback‐like responses. GCMs
can be used to test the correspondence between short‐term responses and the longer‐term ones deter-
mining λ and S.

3. Process‐resolving models. High‐resolution atmospheric simulations, such as LESs, explicitly calculate the
turbulence associated with clouds. These models have increasingly been used to understand cloud feed-
backs, primarily for tropical marine low‐level clouds, by forcing them with the environmental changes
associated with climate warming. Their simulated cloud responses are likely more realistic than those
of GCMs because LES resolves the main cloud‐forming motions, which GCMs must parameterize. LES
does, however, still contain parameterizations of cloud microphysics and the motions that are smaller
than the resolution of their grids, which is typically ~10 m for boundary layer clouds or ~100 m for deep
convection clouds. LES also cannot simulate all important cloud conditions, must be forced by uncertain
environmental changes from GCMs, and, for the case of boundary layer clouds, may be missing the
effects of mesoscale motions occurring at scales larger than their domain size. A very different type of
process model used to estimate the clear‐sky direct component of ΔF2xCO2 is the observationally verified
line‐by‐line radiative transfer model, which is more accurate than the radiative transfer models used in
GCMs.

4. Theory. Although limited in precision, theory can provide critical assurance regarding feedbacks inferred
from the other sources. For example, basic thermodynamics supports the lapse rate and water vapor feed-
backs. Also, the understanding that tropical tropospheric overturning circulations are governed by the
balance between subsidence warming and clear‐sky radiative cooling underlies the fixed‐anvil tempera-
ture hypothesis relating to the high‐cloud altitude feedback.

A new type of reasoning called emergent constraints arises by combining two of these primary sources—
GCMs and observations (Hall et al., 2019). Emergent constraints are empirical relationships between a
present‐day climate system variable and a future climate change that emerge in an ensemble of simulations
by structurally diverse GCMs. (More generally, emergent constraints also exist using variables from other
periods in the past but these are not discussed in this section.) If the constraint is valid, one may infer a more
likely estimate of the future change when given an observation of the present‐day variable. Using emergent
constraints in this way can be viewed as a kind of model weighting. Confidence in this inference depends on
the strength of the present‐to‐future relationship, the relative observational uncertainty of the present‐day
variable, and how well the relationship is understood. Emergent constraints exist for S as well as individual
feedbacks and are used to inform our assessment.
3.1.3. Methodology for Assessing Process Understanding
As discussed in section 2.4, we use two approaches to assess the constraints on S. We do not assess S directly
but rather assess ΔF2xCO2, λ and λi, which are related to S via Equations 4 and 18.

In the primary approach, we use all sources of evidence to determine a prior for ΔF2xCO2 (section 3.2.1) and
likelihood functions for each individual feedback component λi in Equation 18. Consistent with our target
definition of S, we characterize the feedbacks λi acting over the 150 years following an increase of CO2.
The relatively certain Planck, water vapor, lapse rate, surface albedo, and other feedbacks are assessed in sec-
tions 3.2.2–3.2.5, and in section 3.3 we assess the cloud feedback that is much more uncertain than the other
feedbacks. For the cloud feedback we assume that the total cloud feedback is a linear sum of feedbacks from
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individual cloud types, each of which we consider separately. Such an approach is necessary to fully exploit
our current understanding, much of which pertains to specific cloud types. In section 3.4, we combine the
results from individual feedbacks to derive PDFs for the total cloud feedback and total climate feedback
parameter λ. Finally, in section 3.5 we examine observations of global interannual radiation variability to
address the concern that we might have missed some important feedbacks through our method of combin-
ing individual feedbacks.

In the secondary approach, we consider emergent constraints that have been used to directly infer S based
upon the relationships between S and present‐day climate system variables exhibited in GCM ensembles.
This evidence is given its own distinct likelihood function in section 3.6, where we also discuss the relative
independence of this evidence from that used in the primary approach and why greater caution in the use of
this evidence is required.

A summary of all assessed process understanding of S then follows in section 3.7.
3.1.4. Further Considerations
Both approaches are consistent with the effective climate sensitivity S definition used (section 2.1). Thus,
when considered, GCM feedback estimates are generally calculated from the linear regression of associated
anomalies on global mean SAT during the first 150 years of the abrupt 4xCO2 experiment simulations. One
problem with this approach is that GCM feedback estimates calculated in this manner when combined with
a CO2 forcing that uses surface albedo and tropospheric adjustments from fixed‐SST GCM experiments (sec-
tion 3.2.1) would overestimate our target definition of S by ~15%. (This is because the CO2 forcing estimated
from fixed‐SST experiments is ~15% larger than that estimated via ordinary linear regression from abrupt
4xCO2 experiments.) However, because this error only affects feedback estimates from GCMs and not the
feedback estimates from theory, LES, or observations of interannual variability, the overall impact on the
feedback values estimated with the primary approach would be much less (<5%) and is accordingly
neglected.

Mathematically, Gaussian likelihoods are assigned for each individual feedback component λi. This means
thatwe assume that the likelihood is aGaussian function of the variable being assessed, requiring thatwe spe-
cify two parameters—themean and standard deviation. Note that if a Gaussian likelihood function is applied
to a variable with a broad (e.g., uniform) prior PDF in that variable, the implied posterior PDF will also be
Gaussianwith the samemean and standard deviation. Broad priors are appropriate for feedback components
for which we do not have an a priori expectation of their value, and which can be positive or negative (our
Baseline prior case). Hence, the likelihood functions for λi determined below can be considered equivalent
to PDFs for this case.

3.2. Process Understanding of CO2 Radiative Forcing and Noncloud Feedbacks
3.2.1. CO2 Radiative Forcing
Increases in CO2 lead, all other things unchanged, to a decrease in LWemission to space (i.e., the CO2 “green-
house effect”). This instantaneous radiative forcing for a doubling of CO2 can be obtained from very accurate
line‐by‐line radiative transfer models (W. D. Collins et al., 2006; Etminan et al., 2016; Pincus et al., 2015);
these are in very good agreement and provide a global mean estimate of 2.9 W m−2 at the TOA (Figure 3).
The instantaneous CO2 radiative forcing varies with location due to variations in temperature, water vapor,
clouds, and tropopause position (Huang, Tan, & Xia, 2016). The traditionally defined forcing also includes a
contribution from the perturbed stratosphere because the stratosphere is dynamically isolated from the sur-
face (Hansen et al., 1981). Within a few months, the stratosphere cools in response to increased CO2 causing
an additional reduction in the emission to space of LW radiation. This “stratospheric adjustment” is well
understood and is estimated to add 0.9 W m−2 at the TOA (Figure 3).

Using an updated line‐by‐line radiative transfer model that also includes the SW absorption bands of CO2 as
well as the spectral overlap with N2O absorption bands, Etminan et al. (2016) estimate the sum of the instan-
taneous radiative forcing and the stratospheric adjustment, often called the stratospheric‐adjusted radiative
forcing (SARF), to be 3.8 W m−2 for a doubling of CO2, using the equation in their Table 1. They also show
that the radiative forcing increases slightly more than logarithmically with CO2 concentration. The 5th to
95th percentile uncertainty range for the SARF is estimated to be ±10% (i.e., ±0.38Wm−2), with major com-
ponents of the uncertainty due to the radiative transfer code, the method of calculating the stratospheric
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adjustment, and the specification of temperature, clouds, and tropopause
position (Etminan et al., 2016; Hodnebrog et al., 2013). Uncertainties due
to spectroscopic data themselves are considered to be much smaller (<1%)
(Mlynczak et al., 2016).

Components of the surface and troposphere also adjust in response to the
increase in CO2, independent of the rise in surface temperature (Boucher
et al., 2013; Gregory & Webb, 2008). They are fundamentally the same as
the stratospheric adjustment in a sense that they occur rapidly tomodulate
the TOA radiative flux (Sherwood et al., 2015), but their estimates are
methodologically distinct as currently these tropospheric and surface
adjustments can be estimated globally only from GCMs (M. H. Zhang &
Huang, 2013; Smith et al., 2018; Vial et al., 2013). Clouds are one compo-
nent with reductions of low and middle‐level clouds producing a positive
radiative adjustment of ~0.4 W m−2 (Andrews, Gregory, Forster, et al.,
2012; Kamae et al., 2015; Sherwood et al., 2015; Smith et al., 2018).
Several mechanisms for these cloud reductions have been identified.
First, the increase in CO2 causes the vertical profile of radiative cooling
to shift to higher levels. This results in less radiative cooling at low levels,
a shoaling of the marine boundary layer, and a reduction of low
clouds (Kamae & Watanabe, 2013). LES also simulates boundary layer
shoaling and low‐cloud reductions (Blossey et al., 2016; Bretherton &
Blossey, 2014; Bretherton et al., 2013), lending credence to the GCM
results. Second, the increase in CO2 also causes a reduction in the verti-
cally integrated tropospheric radiative cooling, which reduces the strength
of the overall hydrologic cycle and hence the overall amount of cloud pro-

duced (Dinh & Fueglistaler, 2020). Finally, plant physiological processes cause the stomatal resistance to
increase with increasing CO2 (Doutriaux‐Boucher & Webb, 2009). The resulting reduction in surface eva-
poration and concomitant increase in sensible heat flux to the atmospheric boundary layer dries and warms

Figure 3. Assessed values of the 2xCO2 effective radiative forcing (ERF) at
the TOA. Orange bars represent stratospheric‐adjusted radiative forcing
(SARF), tropospheric and surface albedo adjustments, and their sum (i.e.,
ERF). The error bar indicates the 5–95% ranges of the respective terms.
Further decomposed components are presented for reference by blue bars
based on Etminan et al. (2016) and Smith et al. (2018). The contribution
from land surface warming has been excluded in the surface adjustment.

Table 1
Assessed Values for ΔF2xCO2 and Climate Feedbacks λi Based Upon the Various Lines of Process Evidence

Term Value

Source

GCMs Observations Process‐resolving models Theory

Effective radiative forcing from a CO2 doubling ΔF2xCO2 N(+4.00, 0.30) ✓✓ ✓ ✓✓ ✓

Planck feedback N(−3.20, 0.10) ✓✓ ✓✓ ✓✓

Water vapor + lapse rate feedback N(+1.15, 0.15) ✓✓ ✓✓ ✓ ✓

Surface albedo feedback N(+0.30, 0.15) ✓✓ ✓✓ ✓

Individual cloud feedbacks
High‐cloud altitude N(+0.20, 0.10) ✓✓ ✓ ✓ ✓

Tropical marine low cloud N(+0.25, 0.16) ✓✓ ✓✓ ✓

Tropical anvil cloud area N(−0.20, 0.20) ✓✓ ✓

Land cloud amount N(+0.08, 0.08) ✓✓ ✓ ✓

Middle‐latitude marine low‐cloud amount N(+0.12, 0.12) ✓✓ ✓✓ ✓

High‐latitude low‐cloud optical depth N(+0.00, 0.10) ✓✓ ✓

Total cloud feedback λclouds N(+0.45, 0.33)
Stratospheric feedback N(+0.00, 0.10) ✓✓ ✓

Feedbacks induced by atmospheric composition changes N(+0.00, 0.15) ✓✓

Climate feedback parameter λ N(−1.30, 0.44)

Note. The “Source” column identifies which lines of process evidence support the assessed value. If the source column has a double check mark (✓✓), then it
signifies that the line of evidence provided a usable quantitative estimate. If the source column has a single check mark (✓), then it signifies that the line of evi-
dence provided qualitative support for mechanisms involved or the sign of the feedback but does not provide a usable quantitative estimate. If the source column
is without a check mark, then it signifies that the line of evidence was not used in the assessment of that term. The reason for not using a line of evidence for a
given term varies but typically was because a line of evidence is absent or not applicable for that term or because it provided inconsistent or untrustworthy results.
Values are reported as Gaussians in the format N(x, y), where x is the mean and y is the standard deviation. Means and standard deviations have units of W m−2

for ΔF2xCO2 and W m−2 K−1 for feedbacks. ΔF2xCO2 is specified as a prior, λ and λclouds as a PDF, and the remaining λi as likelihood functions.
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the near surface air. This reduces the low‐level relative humidity and
clouds over land (Andrews & Ringer, 2014; Arellano et al., 2012).

Other adjustments include negative ones from increased LW emission to
space from a warmer troposphere and increased land surface tempera-
tures and positive ones from increased water vapor and reduced surface
albedo (Figure 3; Andrews, Gregory, Forster, et al., 2012; Kamae &
Watanabe, 2012; Smith et al., 2018; Vial et al., 2013). The increase in land
surface temperature in these GCM experiments results from the increase
in surface downward LW radiation (itself the direct consequence of the
increased CO2 concentration) and happens despite the simulations being
performed with fixed SSTs. The land surface warming slightly increases
the global mean surface temperature, and its inclusion would be inconsis-
tent with a definition of radiative forcing, which counts only those adjust-
ments that occur without change in the global mean surface temperature.
Thus, we exclude the land surface warming component, yielding a total of
+0.2Wm−2 as the sum of surface albedo and tropospheric adjustments, as
calculated from the data in Smith et al. (2018). (In reality, a portion of the
other surface and tropospheric adjustments are the consequence of the
land surface warming and also should be excluded. However, current
research has not isolated the portion of these adjustments that results
from the land surface warming from the portion that directly responds
to the CO2 concentration.)

The sum of the instantaneous radiative forcing and the stratospheric,
tropospheric, and surface albedo adjustments is known as the ERF
and for a doubling of CO2 will be denoted with the symbol ΔF2xCO2.
From the above arguments and Figure 3, we estimate the Gaussian prior

of ΔF2xCO2 to have a mean of 2.9 + 0.9 + 0.2 = 4.0 W m−2. As for uncertainty in the ERF, we assign its
5th to 95th percentile uncertainty range to ±0.5 W m−2, where the increase in uncertainty above that of
the SARF is attributed to the additional source of uncertainty from the surface and tropospheric adjust-
ments (dominated by the clouds) (Smith et al., 2018). Interpreting this uncertainty as being Gaussian dis-
tributed, we determine the standard deviation to be 0.3 W m−2. Altogether, we assess the prior of ΔF2xCO2
to be N(+4.0, 0.3), where we use the notation N(x, y) to indicate a Gaussian distribution with mean x and
standard deviation y.

To estimate the CO2 ERF for perturbations other than a doubling, different approaches are used in the paper.
To estimate a CO2 ERF time series over the historical period, section 4 uses the equation for SARF in Table 1
of Etminan et al. (2016) scaled by the ratio of ERF to SARF for CO2 doubling which is 4.0/3.8 (an increase of
5%). The scaling factor is applied under the assumption that the sum of tropospheric and surface albedo
adjustments is linearly proportional to the SARF. Section 5 follows the same approach and also adjusts
the forcing of CH4 and N2O by the same 5% factor, based upon the assumption that the adjustments behave
similarly for these other well‐mixed GHGs.
3.2.2. Planck Feedback
The Planck feedback represents the extra emission to space of LW radiation arising from a vertically uniform
warming of the surface and the atmosphere with no change in composition. Physical expectation for this
feedback is that λPlanck ≈ − 4εσT3 ≈ − 3.3 W m−2 K−1 for present‐day conditions, and the values shown
in Figure 4 from GCMs of −3.2 ± 0.04 W m−2 K−1 (1‐sigma) (Caldwell et al., 2016; Colman &
Hanson, 2017; Vial et al., 2013) and those from observations of interannual variability (Dessler, 2013) are
both in general agreement with this physical expectation. Uncertainties in modeled λPlanck arise from differ-
ences in the spatial pattern of surface warming, and the climatological distributions of clouds and water
vapor that determine the planetary emissivity (ε). In particular, the latter impacts the radiative temperature
kernel, which is often held fixed in studies of inter model spread, thus leading to slight underestimates of
structural uncertainty in λPlanck within individual studies. Accounting for these issues, we assign the likeli-
hood function for the Planck feedback to be N(−3.2, 0.1).

Figure 4. Estimates of global mean climate feedbacks from observations of
interannual variability (blue triangles), from CMIP5 and CMIP6 model
simulations of global warming in response to an abrupt CO2 quadrupling
(colored circles—orange: Vial et al., 2013; green: Caldwell et al., 2016; red:
Colman & Hanson, 2017; and purple: Zelinka et al., 2020) and from this
assessment (black squares). Error bars on climate model feedback estimates
span the one standard deviation range across models. Observational
estimates are derived using a combination of ERA‐Interim meteorological
fields and CERES TOA radiative fluxes (Loeb et al., 2009) covering the
period March 2000 to December 2010 (Dessler, 2013). Error bars on the
observational estimates are 1‐sigma uncertainties, accounting for
autocorrelation. Individual feedbacks are computed by multiplying
temperature‐mediated changes in relevant fields by radiative kernels
(Huang et al., 2017; Shell et al., 2008; Soden et al., 2008). Error bars on
values from this assessment correspond to 1‐sigma uncertainties. Note that
Planck feedback estimates are offset by 2.5 W m−2 K−1 from their actual
values in order that they appear within the plot range.

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 19 of 92



3.2.3. Water Vapor and Lapse Rate Feedbacks
The water vapor feedback quantifies the change in outgoing LW and absorbed SW radiation at the top of the
atmosphere due to changes in atmospheric water vapor concentration associated with a change in global
mean surface temperature. It arises because water vapor absorbs both LW and SW radiation and its concen-
tration is expected to increase exponentially with temperature. The equilibrium (saturation) concentration
increases following fundamental thermodynamic theory of the Clausius‐Clapeyron relationship. Although
concentrations are usually below saturation (relative humidity less than 100%), this difference is well under-
stood (Sherwood, Roca, et al., 2010) and well captured by GCMs with adequate resolution (Sherwood,
Ingram, et al., 2010). Increases in specific humidity in response to 1 K of warming at constant relative humid-
ity in the middle and upper troposphere result in a greater reduction in outgoing LW radiation than similar
increases in the lower troposphere due to the masking effects of overlying water vapor and clouds (Soden
et al., 2008; Vial et al., 2013). A given increase in specific humidity generally has a larger impact on LW than
on SW radiation. GCM simulations and observations of the seasonal cycle, interannual variability, and cli-
mate trends all exhibit relatively small changes in relative humidity with warming, and therefore large
increases in specific humidity with warming (Boucher et al., 2013; Dessler & Sherwood, 2009). The agree-
ment of observations and GCMs with expectations from basic thermodynamic theory (Romps, 2014) leads
to high confidence in robustly positive water vapor feedback.

The lapse rate feedback is the change in LW radiation emitted to space resulting from any nonuniformity of
the change in temperature in the vertical. The LW emission to space depends on both surface and atmo-
spheric temperatures. The more the atmosphere warms per degree of surface warming, the greater the
increase in LW emission to space, and hence the greater the LW radiative damping of surface warming.
Low‐latitude warming occurs along a moist adiabat such that free‐tropospheric warming exceeds that at
the surface, causing a negative lapse rate feedback. At higher latitudes with greater stability and reduced cou-
pling between the surface and free troposphere, warming is generally largest near the surface, leading to a
positive lapse rate feedback (Manabe & Wetherald, 1975). Though consistently negative in the global mean,
the strength of the lapse rate feedback varies among models and between observational estimates.

The impact of the separate uncertainties in these feedbacks on the climate feedback parameter λ is lim-
ited, however, because GCMs and physical reasoning suggest that these two feedbacks are strongly antic-
orrelated (M. H. Zhang et al., 1994; Held & Shell, 2012; Soden & Held, 2006). This is fundamentally
because radiation to space depends to good approximation on the relative humidity, which changes little
overall with warming as mentioned above, and the near‐surface temperature (Ingram, 2010). Although
the anticorrelated spread of the two feedbacks in models was thought to arise because models experien-
cing greater upper tropospheric warming also experience greater moistening of the upper troposphere, it
is now clear that the varying partitioning of surface warming between the tropics and extratropics is
responsible. Specifically, models with warming concentrated at low latitudes have larger negative extra-
tropical lapse rate feedbacks and stronger positive extratropical water vapor feedbacks (Po‐Chedley
et al., 2018). As a result of this anticorrelation, it is useful to consider the sum of the lapse rate plus water
vapor feedback, which is much less uncertain than the individual components. Still, there remains
structural or methodological uncertainty with studies coming up with ensemble mean estimates of
0.9–1.4 W m−2 K−1 (Figure 4), which exceeds the intermodel spread. This could partly be due to the
use of different radiative kernels, and likely related to SW absorption by water vapor (Pincus et al., 2015).
These central estimates are in quantitative agreement, though, with estimates based on reanalysis
(Dessler, 2013) (Figure 4). From this agreement and with consideration of the uncertainty in both reana-
lysis and GCM estimates, we therefore assess the likelihood function for the lapse rate plus water vapor
feedback to be N(+1.15, 0.15).
3.2.4. Surface Albedo Feedback
The surface albedo feedback mostly arises from warming‐induced shrinkage of the cryosphere, which
exposes less reflective surfaces that absorb more sunlight. It is dominated by snow and sea ice at high lati-
tudes. Its strength is determined primarily by how snow and ice vary with global mean temperature, the con-
trast in albedo between frozen and nonfrozen surfaces, and the SW transmissivity of the atmosphere as the
photons have to traverse the atmosphere at least twice to be reflected to space by the surface. Quantitative
estimates from GCMs and observations based on interannual variability generally agree, with a feedback
value near 0.3 W m−2 K−1 (Figure 4), and GCMs suggest that the feedback value implied by interannual
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variability is near that in response to long‐term CO2 warming (section 3.5). The relevance of internal climate
variability to global warming is also supported by an emergent constraint from the seasonal cycle for the sur-
face albedo feedback which is very strong on Northern Hemisphere land and is mostly caused by snow cover
changes (Hall et al., 2006; Qu & Hall, 2007, 2014). Early attempts to form an emergent constraint on sea ice
feedbacks were less encouraging (Colman, 2013; Crook & Forster, 2014); however, recent progress has been
achieved by taking advantage of the seasonal cycle in Arctic sea ice to constrain its contribution to global
feedback (Thackeray & Hall, 2019). Mostly, this progress arises from a focus on surface albedo feedback in
near‐term global warming, well before Arctic sea ice vanishes.

However, uncertainties can be larger than apparent in these comparisons for various reasons. Observed
trends in surface albedo for the period 1979 to 2008, driven mostly by Northern Hemisphere sea ice loss, sug-
gest a larger value of surface albedo feedback (Cao et al., 2015; Flanner et al., 2011; Pistone et al., 2014),
although internal decadal variability may also be contributing to the diagnosed feedback in this period.
Atmospheric transmissivity largely depends on liquid or mixed phase clouds in the Arctic summer season,
and since many GCMs fail to simulate these clouds (Karlsson & Svensson, 2013; Pithan et al., 2014),
GCMs likely overestimate the surface albedo feedback. The surface albedo feedback is also state dependent
such that reduced cryospheric extent will reduce its magnitude in a warmer climate (Block &
Mauritsen, 2013; Jonko et al., 2012; Thackeray & Hall, 2019). Separately, some GCMs exaggerate snow
albedo feedback on land because they do not account for vegetation masking (Qu & Hall, 2007, 2014;
Thackeray et al., 2018).

Based upon the good agreement between the observed estimate from interannual variability and the GCM
values for both interannual variability and long‐term warming, we assign a central estimate of surface
albedo feedback as 0.3 W m−2 K−1. As the just‐discussed uncertainties do not have a consistent sign, we
do not alter the central estimate but double the quantitative uncertainties diagnosed from observations
(Dessler, 2013) and GCM intermodel spread. Thus, we assess the likelihood function for the surface albedo
feedback to be N(+0.3, 0.15).

Apart from the cryosphere, a small positive surface albedo feedback comes from the inundation of coastal
lands by sea level rise which thus replaces land with a less reflective ocean surface. For the Last Glacial
Maximum (LGM), the estimated radiative effect is of order 1 W m−2 (Köhler et al., 2010; see section 5.1).
But because sea level rise realized during 150 years and several K of warming would be limited to at most
a few meters compared to the LGM change of over 100 m, the resulting effective feedback is only of order
0.01 W m−2 K−1. Other surface albedo feedbacks can occur as a function of changing precipitation patterns
affecting soil moisture, vegetation changes in response to moisture and/or temperature changes, and
changes in surface chlorophyll in response to ocean circulation changes. Calculations suggest that these
feedbacks are also negligible on global mean temperature, although they can significantly affect regional cli-
mate changes (Levis et al., 1999).
3.2.5. Stratospheric Feedback
The feedback estimates shown in Figure 4 do not include those from the response of stratospheric tempera-
ture and water vapor to climate warming. Banarjee et al. (2019) calculate a stratospheric water vapor feed-
back of +0.15 ± 0.04 W m−2 K−1 (1‐sigma) from 27 CMIP5 model simulations of the abrupt 4xCO2

experiment, resulting from the robust increase in stratospheric water vapor in each model. Climate warm-
ing, however, increases the strength of the Brewer‐Dobson circulation; this forces temperature anomalies
that compensate for those induced by water vapor, with the result that the net feedback is smaller. From
11 CMIP5models, Huang, Zhang, et al. (2016) quantify the total feedback from changes in stratospheric tem-
perature and water vapor to be 0.00 ± 0.04 W m−2 K−1 (1‐sigma).

Based upon this study, we assess the likelihood function for this total stratospheric physical feedback to be
N(+0.0, 0.10), where the increased standard deviation is justified by a lack of confidence in the fidelity with
which the CMIP5 GCMs used by Huang, Zhang, et al. (2016) simulate stratospheric processes. Increased
standard deviation is also justified by the lack of quantitative confirmation from observations. However,
qualitative observational support for our assessment exists. Specifically, observations show that increases
in lower stratospheric water vapor in interannual variability are correlated to increases in tropospheric tem-
perature (Dessler et al., 2013) and observations support the notion that the Brewer‐Dobson circulation has
strengthened over the most recent four decades (Fu et al., 2015, 2019).
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3.2.6. Feedbacks From Other Atmospheric Composition Changes
In this assessment we consider well‐mixed gases (CO2, CH4, and N2O) to be specified forcers, since in the
modern era, they are effectively under human control. Thus, we do not include climate‐driven variations
of these gases (e.g., carbon cycle feedbacks). However, this still leaves several possible sources of feedback
apart from the traditional ones discussed so far.

One example is ozone, an absorber of both SW and LW radiation whose chemistry responds to temperature
and temperature‐mediated circulation changes. The direct feedback from climate‐driven tropospheric ozone
changes appears negligible (Dietmuller et al., 2014). However, the indirect effects of ozone changes could be
considerable with one study suggesting that interactive ozone chemistry induces a substantial negative feed-
back averaging 0.13 W m−2 K−1 (Nowack et al., 2015). In their study, the robust strengthening of the
Brewer‐Dobson circulation in a warmer climate causes a reduction of tropical lower stratospheric ozone,
and because this region is particularly cold this leads to a reduction of the greenhouse effect. Follow‐up stu-
dies with other models found similar ozone concentration changes but similar or smaller impacts on the cli-
mate feedback parameter λ in response to CO2‐induced climate change (Chiodi & Polvani, 2017; Dacie
et al., 2019; Marsh et al., 2016). In contrast, a larger impact has been identified in response to solar forcing
(Chiodi & Polvani, 2016) and with stronger impacts on atmosphere and ocean circulations (Chiodi &
Polvani, 2017; Muthers et al., 2016; Nowack et al., 2017). Simulations with fully interactive atmospheric
chemistry in the GISS CMIP5 models had an ~10% increased S compared to noninteractive versions
(Schmidt et al., 2014), and this change was influenced in part by the ozone changes, but also the direct
and indirect aerosol responses to a higher CO2 world.

Awarmer climate could also affect the production and/or lifetime of aerosols, in particular, dust, sea salt, nat-
ural sources of SO2/SO4 and reactive nitrogen species, and natural fires. Besides changes to the direct aerosol
radiative effect (Paulot et al., 2020), this could lead to additional indirect aerosol effects on clouds (Gettelman
et al., 2016; Gettelman& Sherwood, 2016) and fire‐induced effects on surface albedo. For example, one recent
study showed that the increase in SouthernOcean emissions of primary organicmatter and gaseous dimethyl
sulfidewith climatewarming could impact the climate feedback parameter λ by 0.2Wm−2K−1 depending on
how the aerosol change affected cloud droplet number (Bodas‐Salcedo et al., 2019). Another recent study
showed that the increase withwarming of sea‐salt emissions altered λ by 0.13Wm−2K−1 (Paulot et al., 2020).
A review of possible mechanisms (Carslaw et al., 2010) suggested high uncertainty but a possible total effect
of up to ±0.2Wm−2 K−1 over the 21st century. A direct CO2 effect to the biophysical change in stomatal con-
ductance over land has been accounted for in many GCMs and has been discussed in section 3.2.1.

In the absence of evidence for a systematic effect, we assess these processes have no expected net effect and
assign the mean of the likelihood function for λotherto 0. For the standard deviation, we base our quantitative
estimate on the Nowack et al. (2015), Schmidt et al. (2014), and Carslaw et al. (2010) studies, and assign a
value of 0.15 W m−2 K−1.

3.3. Process Understanding of Cloud Feedbacks

Because both observations and GCMs indicate that the largest uncertainty resides with the cloud feedback
(Figure 4), it has been the main focus of climate feedback research for the past three decades. The cloud feed-
back is particularly difficult since there are diverse cloud formation processes, most of which are challenging
to represent in GCMs, and we must add up the response to warming of all cloud types capable of making a
significant radiative contribution.

Given this complexity, it is logical to start by considering the mean and range of GCM simulations of both
present‐day zonal mean cloud fraction and its response to global warming (Figures 5a and 5b) and the cor-
responding radiative impact (Figures 5c–5e), noting the simulated roles of various cloud types. (Note that
these GCM cloud feedbacks are presented only to orient the reader for the following sections, which will
assess specific cloud feedbacks based upon all of the evidence from observations, process‐resolving models,
theory, and GCMs.)

Even though GCMs disagree significantly on the value of the total cloud feedback, at least 80% of 25 CMIP5
models agree on the direction of change in cloud cover over 80% of the atmosphere (see stippling in
Figure 5a). This indicates that GCMs broadly agree onmany large‐scale responses including an upward shift
of clouds near the tropopause, a poleward shift of clouds in midlatitudes, and a decrease in clouds of
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0.5–1% K−1 in most of the troposphere. The intermodel standard deviation of cloud fraction response to
warming (Figure 5b) can be considered an internal measure of model uncertainty. It tends to be greatest
in regions where the multimodel mean cloud fraction is large, more so for tropical boundary layer and
deep convective clouds.

Figure 5c shows the corresponding zonally averaged cloud feedbacks, with a solid line shown at latitudes
where at least 14 of the 18 GCMs providing the needed data agree on the feedback sign. Equatorward of
50° latitude, GCMs robustly predict positive feedback, of which more than half is due to low cloud. Most
of the positive nonlow (i.e., high and middle level) cloud feedback is due to cloud altitude shifts
(Figure 5d), whereas most of the positive low‐cloud feedback is due to cloud fraction reductions
(Figure 5e). Negative cloud feedbacks near 60°S are primarily due to an increase in cloud optical depth (opa-
city), particularly in low cloud.

Our level of understanding of the physical processes responsible for these patterns of cloud response and
radiative feedback varies. We begin with cloud feedbacks that are considered more certain (high‐cloud alti-
tude) or important (tropical low cloud) before discussing less certain feedbacks associated with other
cloud types.
3.3.1. High‐Cloud Altitude Feedback
The altitude of high‐cloud tops is expected to increase with global warming, a response that arises from rela-
tively basic physics. Convective mixing in the tropics occurs only at altitude ranges experiencing substantial
radiative cooling by water vapor (Manabe & Strickler, 1964), which expand upward as the atmosphere
warms if relative humidity does not change substantially. Because anvil clouds form from detrainment near
the top of the convecting layer, they too are expected to rise with warming, roughly isothermally (Hartmann

Figure 5. Multimodel and zonal mean cloud diagnostics: (a) Mean cloud fraction (contours, every 5%) and warming
response (shading), with stippling where at least 20 of the 25 contributing CMIP5 models agree on the sign of the
response. (b) Intermodel standard deviation of cloud fraction response. (c) Total cloud feedback from all clouds and also
partitioned into contributions from low (cloud top pressures >680 hPa) and other (“nonlow,” cloud top pressures
<680 hPa) clouds. (d) Non‐low‐ and (e) low‐cloud feedback partitioned into amount, altitude, and optical‐depth
responses to warming. Latitudes where at least 14 of the 18 contributing models agree on the sign of the feedback are
plotted with a solid line. Feedbacks in (c)–(e) are calculated from abrupt4xCO2 simulations of seven CMIP5 models and
from equilibrium 2xCO2 simulations of 11 CMIP3 slab‐ocean models (see Zelinka et al., 2016, for details). Note that all
plots use an area‐weighted latitude scale. Figure based upon Zelinka et al. (2016).
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& Larson, 2002). Because cloud‐top temperature and hence LW emission to space from high‐cloud tops does
not increase in step with the warming atmosphere and surface below, this response impedes the planet's
ability to radiate away extra energy—a positive radiative feedback (Yoshimori et al., 2020). This notion
can be traced back at least as far as Cess (1974), who showed that the empirical relationship between tem-
perature and outgoing LW flux (Budyko, 1969) was better explained by cloud top temperature rather than
altitude staying constant with surface warming.

Observations of interannual variability confirm that tropical high clouds rise with surface warming (Eitzen
et al., 2009; Y. Li et al., 2012; Vaillant de Guélis et al., 2018; Xu et al., 2005, 2007; Zelinka & Hartmann, 2011;
Zhou et al., 2014). Using interannual variability in cloud properties observed by CALIPSO over 2008–2014,
Vaillant de Guélis et al. (2018) estimate a global mean short‐term LW cloud altitude feedback of
0.86 ± 0.48 W m−2 K−1 (1‐sigma). Scaling this short‐term value by the ratio of short‐ to long‐term altitude
feedbacks in a single GCM computed using the same methodology implies a long‐term value of
0.35 ± 0.20 W m−2 K−1. Further observational analyses for longer periods and examination of the relation-
ship between short‐ and long‐term altitude feedbacks in more GCMs are needed. At longer time scales, the
climate change‐induced upward shift of high clouds is expected to be detectable and distinct from the noise
of internal variability sooner than for other cloud properties (Chepfer et al., 2014; Marvel et al., 2015).
Indeed, 25‐year trends from artifact‐corrected ISCCP and PATMOS‐x satellite data sets (Norris &
Evan, 2015) indicate an upward shift of high clouds, suggesting that this signal may already be emerging
from the noise (Norris et al., 2016).

An increasing altitude of high clouds with warming has been simulated ever since GCMs began predicting
cloud distributions (Hansen et al., 1984; Wetherald &Manabe, 1988) and is clearly seen in Figure 5a. All cur-
rent climate models simulate a positive feedback from increases in the altitude of high‐cloud tops with global
warming (Zelinka &Hartmann, 2010; Zelinka et al., 2012, 2013). This feedback has amean and one standard
deviation of 0.20 and 0.10 W m−2 K−1 across all GCMs (including some CMIP6 models) that have provided
the necessary diagnostics to perform the calculations in Zelinka et al. (2016). The purple curve in Figure 5d
shows the multimodel mean latitudinal dependence of this LW cloud radiative feedback. The simulated
increase in altitude is a global phenomenon, but its strength is modulated regionally by the mean‐state
high‐cloud distribution. In model simulations, a slight warming of cloud tops occurs rather than the purely
isothermal response anticipated by Hartmann and Larson (2002). This has been attributed to increases in
upper tropospheric stability (Bony et al., 2016; Zelinka & Hartmann, 2010) but can be modulated by changes
in humidity (Kluft et al., 2019), ozone and stratospheric upwelling (Dacie et al., 2019), and additional pro-
cesses (Seeley et al., 2019). The same principles have been shown to apply in the extratropics, providing sup-
port for the positive extratropical cloud altitude feedback (Thompson et al., 2017), which GCMs suggest is
comparable in magnitude to the tropical cloud altitude feedback. Depletion of condensate by mixing with
the drier environment is also relevant for high‐cloud coverage and its vertical shifts with warming (Seeley
et al., 2019) but should not affect the basic result that warming increases high‐cloud altitude.

Tropical clouds also shift upward nearly isothermally with warming in cloud‐resolving models and LESs
(Harrop & Hartmann, 2012; Khairoutdinov & Emanuel, 2013; Kuang & Hartmann, 2007; Narenpitak
et al., 2017; Tompkins & Craig, 1999). Global cloud‐resolving model simulations further support this upward
shift, including in the extratropics (Bretherton et al., 2014; Satoh et al., 2012; Tsushima et al., 2014). The
cloud altitude feedback diagnosed in Bretherton et al. (2014) falls within the range of conventional GCMs
quoted above, providing an important confirmation of its sign and magnitude in a model that explicitly
simulates cumulus convection.

In summary, theoretical, observational, high‐resolution modeling and GCM studies all support a positive
high‐cloud altitude feedback. Given that GCMs appear to represent the relevant physics and have a mean
feedback within the uncertainty estimate of a limited first observational estimate, we assess the likelihood
function of the high‐cloud altitude feedback to be N(+0.20, 0.10), where the mean and standard deviation
corresponds to that of GCMs. This assumes that GCMs well sample the uncertainty in the effective
high‐cloud amount and the rate at which the high‐cloud altitude will rise with warming.
3.3.2. Tropical Marine Low‐Cloud Feedback
Uncertainties in the response to climate change of low‐latitude marine boundary layer clouds (cumulus and
stratocumulus) in subsiding regions remain a central challenge. The GCM intermodel spread in the tropical
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low‐cloud feedback is large and well correlated with intermodel spread in
S (Bony & Dufresne, 2005; Vial et al., 2013). However, a combination of
process‐resolving modeling and new observational analysis is leading to
a better understanding and quantification of the most important cloud
response mechanisms, leading to increasing confidence that this regime
contributes to positive global cloud feedback.

The feedback of low clouds is almost exclusively via SW radiation because
they have a small effect on TOA LW radiation. Figure 5e shows that most
GCMs simulate positive low‐cloud feedbacks throughout low latitudes
(30°S to 30°N), which are especially strong in the deep tropics (10°S to
10°N) and are almost exclusively due to reduced cloud amount in a war-
mer climate. As will be discussed in section 3.3.5, GCMs also simulate
positive low‐cloud feedback in midlatitudes (30–50° latitude), where the
mechanisms controlling low cloud are likely similar but quantitatively
less well constrained. Despite the general agreement among GCMs in
the sign of the feedback, the large intermodel spread has motivated major
efforts to use other lines of evidence, namely, process‐resolving models
and observations, to infer the tropical low‐cloud feedback.

Bretherton (2015) reviews results from LES of low‐latitude marine cloud‐topped boundary layers in
present‐day versus perturbed climates. This work suggests that four main mechanisms affect the cloud
response on climate time scales. These are (1) cloud reduction due to thermodynamic effects of overall warm-
ing of the atmosphere‐ocean column, including the associated increase in specific humidity; (2) stratocumu-
lus cloud reduction due to the direct effect of CO2 increases on boundary layer radiative cooling, an important
process for stirring up cloud‐forming turbulence (note this contributes to rapid adjustment to CO2 (sec-
tion 3.2.1), and not the temperature‐mediated feedback that we are trying to determine here); (3) increases
in the stratification between the boundary layer and overlying free troposphere, favoring more cloud; and
(4) reductions in themean subsidence rate, which favormore cloud by keeping the cloud layer from shoaling.
Other possible forcings, such as changes in free‐tropospheric relative humidity and surface wind speed, may
be important for regional cloud response to climate change but seem to be secondary to global cloud feedback.
LES for the expected globalwarming environment typically predicts less low cloud, hence positive cloud feed-
back. This happens because the warming‐induced reduction in low cloud (Mechanism [1]) overwhelms the

increases from the small changes in expected stratification and subsidence
(Mechanisms [3] and [4]).

The cloudy boundary layer responds within hours to days to changes in
the overlying atmosphere or underlying ocean. Klein et al. (2017) review
a series of observational analyses that have tried to quantify the sensitivity
of clouds to each of the “cloud‐controlling factors” associated with the
mechanisms above using satellite observations of natural space‐time
variability on weekly to interannual time scales (Brient &
Schneider, 2016; McCoy et al., 2017; Myers & Norris, 2016; Qu et al., 2015;
Zhai et al., 2015). These studies also establish that in GCMs sensitivities to
these factors are similar for the century time scale climate warming as for
present‐day climate variability. Using the GCM predictions of how the
controlling factors change with climate warming, Klein et al. (2017) find
positive thermodynamic feedback and a smaller, partially compensating
contribution from negative stability feedback; the effects of other possible
cloud‐controlling factors are either small or difficult to observationally
separate from these. They estimate a 90% confidence interval for the local
radiative feedback of low‐latitude marine low clouds of 0.3–
1.7 W m−2 K−1 (Figure 6). They also compare their observational results
to the LES studies reviewed by Bretherton (2015), finding that LES esti-
mate a similar range of positive cloud feedback, with trade cumulus
regimes in the lower half of this range and stratocumulus regimes in the

Figure 6. Local tropical low‐cloud feedbacks from observations, large‐eddy
simulations, and global climate models from Klein et al. (2017). Each dot
represents the feedback from an individual research study. The upper
horizontal bar indicates the central estimate and 90% confidence interval
for the feedback inferred in that study from the observations. The lower bar
indicates the range of feedbacks simulated by global climate models. Note
that our assessment reinterprets the upper horizontal bar into a likelihood
statement assuming a uniform prior and with considering additional
evidence (section 3.3.2).

Figure 7. Assessed values of individual cloud feedbacks and the total cloud
feedback based upon process evidence. For individual cloud feedbacks,
maximum likelihood values are shown by black diamonds and the widths
of blue rectangles, with 2 times the 1‐sigma likelihood values shown by
the width of the black uncertainty bars. For the total cloud feedback, the
mean value of the PDF is shown by a black diamond and the width of the
accompanying blue rectangle, with 2 times the PDF standard deviation
shown by the width of the black uncertainty bar.
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upper half of this range. Observations fromCesana et al. (2019) also support the notion that the positive feed-
back from trade cumulus regimes will be smaller than those from stratocumulus regimes.

Given the agreement between observations and LES shown in Figure 6, we base our assessed tropical
low‐cloud feedback on these two lines of evidence. Since 25% of the globe is covered by marine tropical sub-
sidence regimes, the local feedbacks shown in Figure 6 aremultiplied by 0.25 leading to the Klein et al. (2017)
estimate that the tropical low‐cloud contribution to the global cloud feedback is 0.25 ± 0.11 W m−2 K−1 (1‐
sigma). Thus, we assign the mean value of the likelihood function of the tropical low‐cloud feedback to
+0.25 W m−2 K−1. However, we have subjectively chosen to increase the standard deviation of likelihood
function from 0.11 to 0.16 W m−2 K−1, reflecting methodological uncertainties in the direct use of LES
and current climate observations to infer climate change.

It is important to recognize that these estimates rely on the environmental conditions applied to LES and the
observations. These boundary conditions were taken from GCM climate change simulations dominated by
CO2 warming. If future changes in boundary conditions differ from those predicted, this would imply a dif-
ferent response of low clouds. In particular, over the historical period from 1980–2015, the tropical western
Pacific SST increased markedly with little or no change of tropical eastern Pacific SST. This pattern of SST
change caused an increase in the strength of the capping inversion in tropical subsidence regions (Zhou
et al., 2016). The net result was increased low cloud in tropical subsidence regions, which can be understood
to result from the combination of very little warming‐induced reduction of low cloud (Mechanism [1]) and
strong stratification‐induced increase in low cloud (Mechanism [3]) (Seethala et al., 2015; Zhou et al., 2016).
Thus, due to the dependence of low cloud on the pattern of SST change, tropical low clouds increased even as
the planet as a whole warmed over the period 1980–2015. This is the physical explanation underlying the
low‐cloud contribution to the “pattern effect,” which significantly affects interpretation of the historical
record and is discussed in section 4.2.
3.3.3. Tropical Anvil Cloud Area Feedback
In addition to the positive feedback fromhigh‐level clouds rising in awarmer climate (section 3.3.1), a change
in the areal coverage of these clouds in a warmer climate may exert a feedback. Of particular interest is the
response of “anvil” high clouds found in tropical deep convection regions in conditions of high SST and
large‐scale ascent. These clouds are highly reflective of solar radiation and at the same time greatly reduce
the outgoing LW radiation to space (Kiehl, 1994). Small changes in the balance between these large cooling
and warming effects may cause a significant radiative feedback on climate warming.

A reduction in the area coverage of tropical anvil clouds with warming was first suggested to be a strongly
negative feedback by Lindzen et al. (2001) and is sometimes referred to as the “iris” effect. Lindzen
et al. (2001) hypothesized that the microphysical processes in convective updrafts that provide much of
the condensate for high‐level clouds becomemore efficient with climate warming causing a decrease in anvil
cloud area. While GCMs show that the simulation of tropical high clouds and their climate response are
highly sensitivity to convective updraft microphysics (Clement & Soden, 2005; Mauritsen & Stevens, 2015;
Zhao, 2014; Zhao et al., 2016), there is no clear evidence that precipitation efficiency would increase in a war-
mer climate.

Another mechanism that could cause a decrease in anvil cloud area would be a tendency in a warmer world
toward increased convective organization—the propensity for clouds to cluster or aggregate (Khairoutdinov
& Emanuel, 2010; Mauritsen & Stevens, 2015). In both observations (Stein et al., 2017; Tobin et al., 2012) and
convection resolving models (Bretherton et al., 2005), aggregated convective cases are considerably drier and
have less upper‐level clouds. However, there is no clear evidence from cloud‐resolving models that aggrega-
tion systematically increases with temperature (Wing, 2019). Even if aggregation does not systematically vary
with temperature, the degree of aggregation in the base climate may affect climate feedbacks. This is because
the dryness and less upper‐level cloud of aggregated states may cause smaller water vapor and high‐cloud
altitude feedbacks (Wing, 2019), or increase the sensitivity to feedbacks from exposed low clouds (Bony
et al., 2016).

Bony et al. (2016) proposed anothermechanism for a decrease in anvil cloud area with warming called a “sta-
bility iris.” Specifically, in a warmer world there is increased static stability at the levels where convective
updrafts detrain and form high‐level clouds. This increased stability is associated with a weaker radiatively
driven divergence at these heights, which results in less detrained mass and hence less anvil cloud.
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While these proposed mechanisms generally suggest reduced anvil cloud area with warming, they do not
determine the net cloud radiative effect that would impact S. A separate theoretical argument by
Hartmann et al. (2001) posits that large‐scale circulations act to keep net cloud radiative effects of tropical
deep convection regions close to the small net cloud radiative effects of nearby nonconvective regions. If
such considerations apply to a warmer world, this would predict small net cloud feedbacks from clouds in
tropical deep convective regions.

As for GCMs, they are not deemed trustworthy for the simulation of anvil cloud area because they lack suf-
ficient cloud microphysics and convective organization processes, among other reasons. GCMs also largely
fail to reproduce the observed increase in outgoing LW radiation that accompanies warming on interannual
time scales (Mauritsen & Stevens, 2015) despite simulating some decrease in anvil cloud area with warming
at least in some models (Bony et al., 2016). Thus, little confidence is placed in the small GCM response of
tropical high‐cloud area with warming (Figure 5d).

One might place greater confidence in convection‐resolving models, but results are varied. While
cloud‐resolving models run in limited area or tropical channel domains tend to simulate decreases in
high‐cloud area with warming (Bony et al., 2016; Cronin & Wing, 2017), global or near‐global models with
convection permitting resolution simulate little change (Bretherton et al., 2014; Narenpitak et al., 2017) or
even increases (Chen et al., 2016; Tsushima et al., 2014). The one simulation with increased high cloud
was very sensitive to the representation of ice cloud microphysics and sub‐grid‐scale turbulence, suggesting
that the current generation of convection‐resolving models may not provide definitive answers about the
response of tropical high clouds to warming (Bretherton, 2015).

This leaves observed variability as the primary guide to tropical high‐cloud feedbacks, particularly for the net
radiative impact of high‐cloud changes. Observational analyses focus on the response of tropical high clouds
to interannual variability, under the idea that short‐term feedbacks in tropical high clouds are relevant to
their long‐term climate feedbacks, an idea partially supported by GCM analyses (Mauritsen &
Stevens, 2015). Using CERES radiation budget measurements, I. N. Williams and Pierrehumbert (2017)
found that under warming, the large reduction in SW reflection by fewer tropical deep convective clouds
was a little bit smaller than the large reduction in the LW trapping by tropical deep convective clouds. The
net result, seen in their Figure 3, is a local cooling of 1–5 Wm−2 K−1. We convert their estimate of a tropical
feedback to a global feedback by accounting for differences in area fraction and local versus global tempera-
ture changes and by removing an estimate of the positive cloud feedback from increased cloud altitude (this is
done so as not to double count the altitude feedback estimated in section 3.3.1). This yields an estimate of the
tropical anvil cloud area feedback of −0.23 ± 0.08 W m−2 K−1 (1‐sigma) from their study (note this uncer-
tainty only includes sampling errors).

Other observational studies have tried to estimate the net radiative effect of changing anvil clouds. While a
negative feedback was also found in Choi et al. (2017), some studies have found tropical high clouds produce
neutral (Zelinka & Hartmann, 2011) or even slightly positive cloud radiative feedbacks (B. Lin et al., 2002;
Chambers et al., 2002). While the results from I. N. Williams and Pierrehumbert (2017) are given more
weight because they use themost accurate radiation budget measurements covering themost recent analysis
period, we also recognize the considerable uncertainties associated with the observational estimates, the dif-
fering quantities measured in various studies, and the correspondence between short‐term observed and
long‐term climate feedbacks. Accordingly we assign a maximum likelihood value of −0.20 Wm−2 K−1, with
a large standard deviation of 0.20 W m−2 K−1. Our assessment would be consistent with the moderately sta-
bilizing negative cloud feedbacks found in I. N. Williams and Pierrehumbert (2017) but does not rule out
neutral cloud feedbacks, since a value of 0 is within one standard deviation of our maximum likelihood
value. Note that the effect we find based on recent observational analyses is an order of magnitude smaller
than the strongly stabilizing cloud feedbacks once suggested by Lindzen et al. (2001) and Lindzen and
Choi (2011).
3.3.4. Land Cloud Feedback
Preferential warming of land surfaces is expected to lead to relative humidity reductions, particularly
where the climatological temperatures are warm, that is, the tropics, subtropics, and midlatitudes in
summer (Findell & Delworth, 2001; Manabe et al., 1981; Sherwood & Fu, 2014). The primary explana-
tion for this relative humidity reduction is that the combination of surface evaporation and horizontal
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water vapor transport from oceans does not increase as fast with warming as Clausius‐Clapeyron
requires to keep local relative humidity constant (Byrne & O'Gorman, 2016; Scheff & Frierson, 2015;
Sherwood & Fu, 2014). This is mainly because the surface temperature warms considerably more over
land compared with the ocean (Byrne & O'Gorman, 2013a; Joshi et al., 2008), a robust result of GCM
warming simulations. Theoretically, the greater warming over land may result in large part from atmo-
spheric dynamics (Sobel & Bretherton, 2000) maintaining constant convective instabilities between
ocean and land leading to nearly the same changes in surface moist static energy (Byrne &
O'Gorman, 2013b; Sherwood & Fu, 2014). Secondary contributions to relative humidity reductions with
warming may come from reductions in soil moisture (Berg et al., 2016; Manabe & Wetherald, 1987) or
regional circulation changes such as the poleward expansion of subtropical dry zones (Scheff &
Frierson, 2012). (Note that effects on relative humidity and clouds from the response of plant stomata
to CO2 increases contribute to rapid radiative adjustment to CO2 (section 3.2.1) and not the
temperature‐mediated changes discussed here).

The consequence of the relative humidity reductions is a widespread reduction of cloudiness over warm land
regions that are very robustly simulated by GCMs (Bretherton et al., 2014; Kamae et al., 2016). Decreasing
cloudiness due to decreases in relative humidity is also theoretically expected and supported by observations
of low clouds over land (Del Genio & Wolf, 2000; Y. Zhang & Klein, 2013). In GCMs, the contribution from
cloud amount reductions over land to the global mean cloud feedback is +0.08 W m−2 K−1 with standard
deviation 0.03 W m−2 K−1, based upon the calculations of Zelinka et al. (2016) applied to all available mod-
els. While clouds at all vertical levels of the atmosphere decrease, the majority of this net cloud feedback
comes from the reduction in low clouds, which increases the absorption of solar radiation but does not
appreciably affect the emission to space of LW radiation. Apart from GCMs, observations show decreases
in surface relative humidity over recent decades (Willett et al., 2018), which are consistent with those pre-
dicted by the primary explanation given the observed amount of ocean warming (Byrne &
O'Gorman, 2018). These relative humidity reductions may be attributed to anthropogenic forcing of the cli-
mate system (Douville & Plazzotta, 2017).

In summary, we assess this feedback to be credible and assign a maximum likelihood value of +0.08
W m−2 K−1, which matches the mean of available GCM predictions. However, we assign a higher
standard deviation, 0.08 W m−2 K−1, to reflect the fact that GCMs have substantial biases in land cli-
mate, which indicates some structural uncertainty. In particular, GCMs markedly underestimate the
relative humidity, cloudiness, and precipitation and overestimate surface temperature during the warm
season (Ma et al., 2014; Morcrette et al., 2018). Furthermore, biases in the mean climate appear to
project upon climate responses to warming at least in middle latitudes (Cheruy et al., 2014; Y. Lin
et al., 2017).
3.3.5. Midlatitude Marine Low‐Cloud Amount Feedback
Middle‐latitude (30–60°) cloud coverage is strongly modulated by baroclinic disturbances in the storm
track. A positive extratropical cloud feedback has long been expected to accompany global warming
owing to the poleward shift of the storm track and its attendant clouds toward regions of less incoming
solar radiation. In apparent support of this notion, trends in satellite and ground‐based cloud observations
indicate poleward shifts of middle latitude cloud maxima and/or subtropical cloud minima (Bender
et al., 2012; Eastman & Warren, 2013; Marvel et al., 2015; Norris et al., 2016), but the exact magnitude
of these shifts is uncertain owing to observational data artifacts that can introduce spurious trends.
Moreover, the observed sensitivity of net cloud radiative effects to interannual variations in jet latitude
appears surprisingly small, owing to compensation between high‐ and low‐cloud responses. Namely,
whereas upper‐level clouds tend to move poleward with the jet, low‐level clouds (which can be more tied
to surface conditions) do not. Rather, enhanced subsidence, stability, and cold advection lead to increased
low‐cloud coverage in regions vacated by higher clouds (Grise & Medeiros, 2016; Tselioudis et al., 2016;
Zelinka et al., 2018). Thus, it is unlikely that substantial cloud feedbacks arise from storm track shifts
(Ceppi & Hartmann, 2015; Grise & Polvani, 2014).

Midlatitude, low‐cloud responses could also be driven by thermodynamic processes similar to those govern-
ing the tropical low‐cloud response (Narenpitak et al., 2017; Qu et al., 2014). Indeed, Norris and
Iacobellis (2005) infer a positive midlatitude cloud feedback based on observed variations in midlatitude
cloud properties with temperature, while controlling for other meteorological influences. Zhai
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et al. (2015) and McCoy et al. (2017) also infer a positive feedback from observed variations of low clouds
with temperature in the 30–40° latitude band.

GCMs consistently predict reduced cloud fraction throughout the midlatitude troposphere with warming
(Figure 5a), and the reduction in low‐cloud amount induces a strong positive feedback (Figure 5e).
Modeled midlatitude net cloud‐radiative effect anomalies attributable to future jet shifts are small compared
to the total predicted radiative change (Ceppi & Hartmann, 2015; Kay et al., 2014; Wall & Hartmann, 2015),
consistent with the observational results above. A positive midlatitude cloud feedback may be caused by SST
increases and stability decreases, but further study is needed to quantify the dependence of low cloud on SST
and inversion strength or other cloud‐controlling factors at midlatitudes before making confident attribution
statements.

In summary, despite the apparent lack of a substantial cloud feedback from poleward shifts of the mid-
latitude storm track, observed variations of midlatitude low clouds (McCoy et al., 2017; Norris &
Iacobellis, 2005; Zhai et al., 2015) provide qualitative support to the strong positive midlatitude
low‐cloud amount feedbacks robustly predicted by GCMs. Based upon the calculations of Zelinka
et al. (2016) applied to all available models, the GCM contribution to global feedback from ocean areas
between 30° and 60° latitude (27% of the globe) has a mean of 0.12 W m−2 K−1 with a standard deviation
of 0.08 W m−2 K−1. Extrapolating the observationally derived tropical low‐cloud feedback (Klein
et al., 2017) to the midlatitude oceans after accounting for reduced insolation yields a feedback between
0.08 and 0.20 W m−2 K−1, depending upon whether the observed tropical low‐cloud sensitivities are
assumed to apply to the entire 30–60° latitude band or only to the 30–40° latitude band investigated in
Zhai et al. (2015) and McCoy et al. (2017). Considering both the GCM and observational estimates, we
assign a maximum likelihood value of +0.12 W m−2 K−1, consistent with the GCM mean and observa-
tional estimates, but increase the standard deviation to 0.12 W m−2 K−1 to reflect uncertainty in GCM
simulations of marine low cloud and the range of observational estimates.
3.3.6. High‐Latitude Low‐Cloud Optical Depth Feedback
Cloud optical depth (opacity) can increase due to either smaller cloud particles (for a given cloud water path)
and/or increases in water path (Stephens, 1978). Several mechanisms that favor increased optical depth with
warming have been proposed. First, a shift of cloud ice to liquid upon warming leads to brighter clouds, as a
given amount of cloud water is more reflective if distributed among liquid droplets, which tend to be smaller,
rather than fewer large ice crystals (Storelvmo et al., 2015). Second, increases in the liquid fraction of con-
densate can inhibit precipitation (Klein et al., 2009; Solomon et al., 2011), resulting in clouds with more total
water content. Third, the adiabatic water content of clouds increases with temperature following fundamen-
tal thermodynamic theory (Betts & Harshvardan, 1987). Opposing these effects, liquid clouds may be
thinned via increased entrainment drying with warming due to the greater saturation deficit (Blossey
et al., 2013; Bretherton, 2015; Bretherton & Blossey, 2014; Bretherton et al., 2013; Brient & Bony, 2013;
Rieck et al., 2012; Sherwood et al., 2014), though this mechanism has only been investigated for subtropical
low clouds, and its relevance for cloud thickness as opposed to cloud fraction is uncertain.

GCMs simulate a negative feedback poleward of about 40° latitude from optical depth increases, especially
for low clouds (Figures 5d and 5e). GCMs also exhibit a strong correspondence across time scale for the tem-
perature sensitivities of high‐latitude cloud optical depth and liquid water path (i.e., an emergent constraint;
Ceppi et al., 2016; Gordon & Klein, 2014), suggesting that present‐day observations can be used to assess this
feedback. Terai et al. (2016) inferred a SW low‐cloud optical depth feedback of +0.24 W m−2 K−1 averaged
between 40° and 70° of both hemispheres by quantifying the sensitivity of low‐cloud optical depth to surface
temperature in Moderate Resolution Imaging Spectroradiometer satellite observations. In an independent
analysis also using these observations, Ceppi et al. (2016) derived a SW cloud optical depth feedback of
−0.35 W m−2 per degree of 850‐ to 500‐hPa temperature change averaged over 45–60°S. Renormalizing by
global surface warming and accounting for the fact that the feedback is weaker in the Northern
Hemisphere (NH) yields a value of −0.20 W m−2 K−1. Assuming that these values also apply to the
40–70° latitude band (30% of the globe) yields values of −0.06 W m−2 K−1 (Ceppi et al., 2016) and
+0.07 W m−2 K−1 (Terai et al., 2016). Quantitative differences in these results likely arise from differences
in cloud types analyzed and in the predictors used in deriving cloud optical depth sensitivities. Guided by
these two studies, we assign the maximum likelihood value for the high‐latitude low‐cloud optical depth
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feedback to 0.0 Wm−2 K−1. The standard deviation of the likelihood func-
tion we assign to 0.10 W m−2 K−1, which allows for additional uncertain-
ties beyond these two studies.

This assessed feedback value is consistent with observational evidence
suggesting that the negative high‐latitude optical depth feedback simu-
lated by many GCMs is too strong, likely due to an exaggerated phase
change feedback. In GCM experiments in which mean‐state supercooled
liquid water content more closely matches observations (Frey &
Kay, 2018; Tan et al., 2016), the negative SW optical depth feedback at
high latitudes is weakened considerably. This negative feedback has also
weakened in some CMIP6 models, possibly related to improvements in
mean‐state cloud phase distribution (Zelinka et al., 2020).

3.4. Process Assessment of λ and Implications for S

Sections 3.2 and 3.3 have assessed the process evidence and assigned a
Gaussian prior for ΔF2xCO2 and Gaussian likelihoods for individual cli-
mate feedbacks. Table 1 records the values of these terms and which lines
of process evidence were used in their derivation.

According to Equation 18, the climate feedback parameter λ is equal to the
linear sum of individual feedbacks. We further assumed that the total
cloud feedback can be written as a linear sum of the individual cloud type
feedbacks we assessed in section 3.3. Linearity of radiative feedbacks has
been established (Colman & McAvaney, 1997; Mauritsen et al., 2013;
M. H. Zhang et al., 1994; Wetherald & Manabe, 1980), although indepen-
dence is another matter (see below). We formulate a Gaussian PDF for
λclouds by adding the standard deviations for the individual cloud feed-
backs in quadrature (assuming independent and uniform λi priors) and,
similarly, formulate a PDF for λ by adding the standard deviations of all
feedbacks in quadrature (cf. Equation 13). Note this manner of combining
feedbacks is valid only for the Baseline prior (see section 2.3). The resulting
PDF for the total cloud feedback is N(+0.45, 0.33) (Table 1 and Figure 7).
Relative to themean cloud radiative effect of around −20Wm−2 in today's
climate (Loeb, Doelling, et al., 2018), a cloud feedback of +0.45Wm−2K−1

is equivalent to an ~2% decrease in the net radiative effect of clouds for every
K of temperature increase. Interpreting standard deviations as uncertainty, the total cloud feedback has the lar-
gest uncertainty relative to the other feedbacks (Planck, water vapor + lapse rate, surface albedo, atmospheric
composition, and stratospheric), just as it has in past assessments. In addition, quadrature summing of our
assessed values shows that the uncertainty from all high cloud types combined is approximately equal to that
of all low‐cloud types combined, indicating that future research is needed to improve the physical understand-
ing of both high and low clouds.

Our PDF for λ is N(−1.30, 0.44) (Table 1 and Figure 8a). Also assuming the prior on ΔF2xCO2 is independent
from λ, the PDF of S using only process evidence can be derived (Figure 8c). The 50th percentile (median) of
the S PDF occurs at 3.1 K, with the 17th and 83rd percentiles at 2.3 and 4.6 K. The asymmetric shape to the S
PDF results from taking the inverse of the symmetric λ PDF following Equation 4 and the fact that in relative
terms, λ is much more uncertain than ΔF2xCO2 (Roe & Baker, 2007). This implies that shifting the S PDF
downward would require the identification of an unknown negative feedback much larger in magnitude
than the unknown positive feedback that would be required to shift the S PDF upward by an equal amount
(Schlesinger, 1989). Equivalently, the process assessment constrains the lower bound of Smore tightly than
its upper bound.

Onemay question our assumption of independence between ΔF2xCO2 and λ, as well as among likelihoods for
all feedbacks except those for water vapor and lapse rate which we treat together in Table 1. Of particular
importance is a significant anticorrelation between ΔF2xCO2 and λ in GCMs (Andrews, Gregory, Webb,

(a)

(b)

(c)

Figure 8. PDFs and likelihood functions based upon the assessment of
individual climate feedbacks and the emergent constraint literature.
(a) PDF for λ from combining evidence on individual feedbacks using the
Baseline λi prior. (b) Emergent constraint likelihood for λ. Note that this
likelihood is not a PDF. See section 3.6 for an explanation of how the
parameters of this likelihood function were determined and why they differ
from the parameters recorded in Table 2. (c) PDF for S from combining
evidence on ΔF2xCO2 and individual feedbacks using uniform λi priors.
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et al., 2012; Webb et al., 2013), which acts to reduce CMIP5 intermodel spread of S by about 0.6 K relative to
what would be anticipated if these were uncorrelated (Andrews, Gregory, Webb, et al., 2012; Caldwell
et al., 2016). This anticorrelation cannot be explained as an artifact of the Gregory method for calculating
ΔF2xCO2 and λ (Gregory et al., 2004) as it is seen in GCM experiments with both realistic and idealized con-
figurations (e.g., fixed SST with globally uniform SST increases of 4 K) (Ringer et al., 2014). It is also seen in
ensembles of untuned perturbed‐parameter versions of single models as well as ensembles of tuned GCMs
(Webb et al., 2013). A compensation between cloud feedback and adjustment is found to be the direct cause
of this ΔF2xCO2‐λ covariance (Chung & Soden, 2017; Ringer et al., 2014), but covariance exists even between
feedbacks (Caldwell et al., 2016; Huybers, 2010; McCoy et al., 2016). Unlike the case of the water vapor and
lapse rate anticorrelation, the mechanisms behind feedback covariances are generally not understood
although new research attempts to explain these issues (McCoy et al., 2016). In conclusion, because these
GCM covariances are not understood and initial analyses suggest that they are weaker in the CMIP6 model
ensemble (Zelinka et al., 2020), we conservatively overlook the anticorrelation found in some GCMs, leading
to a somewhat broader overall uncertainty. But given the potential of feedback and forcing anticorrelations
to reduce the overall uncertainty in S calculated from individual feedbacks and forcing, it should be a high
priority for future research to determine the physical basis of these relationships and their relevance for the
real world.

3.5. Constraints From Observations of Global Interannual Radiation Variability

A significant concern with our primary approach is whether we have recognized all important feedbacks,
that is, whether there could be large missing feedbacks, particularly from any cloud types that we did not
assess. While GCMs indicate that the cloud feedbacks we have not assessed are small in magnitude having
amean and standard deviation of −0.02 and 0.15Wm−2 K−1, respectively (not shown), a more powerful way
to address this concern is by considering the studies that have attempted to constrain the total climate feed-
back parameter λ via analysis of observed interannual variability in globally averaged TOA net radiation.
The premise is that interannual temperature fluctuations will have had the chance to activate feedbacks
from any and all cloud types. This premise is plausible (a) because the warming correlated with interannual
fluctuations of global mean temperature is global in nature, occurring in both the tropics and extratropics
(Dessler, 2013), and (b) because the inherent time scales of all clouds are fromminutes to at most a few days,
and thus, there is more than enough time available for clouds to respond to the interannual changes in
temperature.

After accounting for changes in forcing, linear regression of observed anomalies in global net radiation ΔN
on observed anomalies in global surface temperature ΔT provides an empirical estimate of λ according to
section 3.1. The reviews of Forster et al. (2016) and Loeb et al. (2016) report that the studies with the
most robust methods and recent radiation data found λ values ranging from −1.13 ± 0.5 to
−1.25 ± 0.5 W m−2 K−1 (1‐sigma) (Dessler, 2013; Donohoe et al., 2014; Murphy et al., 2009; Trenberth
et al., 2015). Dessler et al. (2013) additionally estimated values of individual feedbacks in section 3.1 such
as the water vapor, lapse rate, cloud, and surface albedo feedbacks, which we have discussed in
section 3.2 and displayed in Figure 4.

Empirically estimated feedback values change somewhat depending on the regression method and the
observational data sets (Forster, 2016; Loeb et al., 2016; Proistosescu et al., 2018), although differences are
generally small (Dessler & Loeb, 2013; Zhou et al., 2013). Larger changes occur when the regression is cal-
culated over different time periods; Loeb et al. (2016) report feedback values of −1.18 ± 0.58 but
−0.27 ± 0.47 W m−2 K−1 (1‐sigma) for the 2001–2013 and 2001–2015 periods, respectively. Considering
the range of uncertainty, these values are not inconsistent with each other, and taken together, they provide
a similar mean and spread as our PDF for λ from combining feedbacks (Figure 8a). Because the latter used
Dessler's (2013) observed estimates of the clear‐sky feedbacks in section 3.2, this comparison only tests
the consistency of our assessment of the total cloud feedback with Dessler's estimate which is
+0.49 ± 0.35 W m−2 K−1 (1‐sigma) for the 2000–2010 period. This value overlaps well with the PDF for
the total cloud feedback (Table 1). However, estimates for periods includingmore recent years are more posi-
tive (A. E. Dessler, personal communication, 2017).

A fundamental question is whether feedbacks diagnosed from short time scales are representative of the
long‐term feedbacks (Forster, 2016; Loeb et al., 2016; Proistosescu et al., 2018). Because many
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atmospheric processes involved in climate feedbacks evolve on short time
scales (hours to weeks) and thus quickly adjust to more slowly changing
boundary conditions such as surface temperature, the radiative response
to warming of all climate feedback processes might be invariant from
interannual to long‐term time scales. However, to the extent that unre-
lated radiation anomalies drive surface temperature anomalies, the cli-
mate feedback parameter diagnosed from the relationship between
anomalies in radiation and temperature might be biased high (Spencer
& Braswell, 2010). Calculations though suggest that this is a relatively
minor concern as the dominant source of interannual variability in tem-
perature is from ocean forcing and not radiation (Dessler, 2011;
Proistosescu et al., 2018).

Another aspect of this question is whether the spatial patterns of surface
temperature change seen in interannual variability provoke global mean
responses similar to those of the smoother pattern anticipated from
long‐term CO2 warming (Proistosescu et al., 2018). For example,
low‐cloud and lapse rate feedbacks depend strongly upon the pattern of
surface temperature change (sections 3.3.2 and 4.2). The warming pattern
from interannual variability is dominated by El Niño variability within
the tropics but also has warming at higher latitudes (Dessler, 2013). As
such, while not as uniform, the interannual warming pattern exhibits
some similarity to the long‐term warming pattern projected by GCMs,
which has often been called “El Niño like” (Meehl & Washington, 1996;
Vecchi et al., 2008; Yu & Boer, 2002, also see section 4.2). Most notably
at both long‐term and interannual time scales, there is greater warming
in the central and eastern Pacific relative to that in the western Pacific

and this favors positive low‐cloud and lapse rate feedbacks. Given the similarity in spatial pattern of surface
temperature change, global averages of the feedbacks inferred from interannual time scales might be
expected to exhibit some similarity to those associated with long‐term warming.

GCMs can be used to test the similarity between global feedbacks at different time scales. Colman and
Hanson (2017) examined individual feedbacks in CMIP5 models and found that interannual values diag-
nosed from preindustrial control simulations were generally consistent with values in response to climate
warming for the water vapor, lapse rate, surface albedo, and total cloud feedbacks (Figure 9). A general con-
sistency also applies to decadal time scale feedbacks derived from preindustrial control simulations (Colman
& Hanson, 2018). In particular, cloudiness exhibits similar spatial responses to increasing temperature at
interannual and long‐term time scales (i.e., an emergent constraint is present), with interannual and
long‐term feedbacks well correlated across models, albeit with a slope different than unity (Zhou et al., 2015).
The consistency of GCM climate feedbacks between interannual variability and long‐termwarming supports
the use of the interannual observations in assessing climate feedbacks.We conclude that the chances ofmajor
errors or omissions in our assessment are reduced, particularly for our assessment that the total cloud feed-
back is positive, since we do not find any evidence of missing feedbacks in the interannual variability.

In summary, examining global mean radiation variations provides a similar central estimate of λ and com-
parable spread to that obtained from combining feedbacks. On its own, there is a danger that our
combining‐feedback approach could miss unassessed feedbacks—particularly from clouds—and to account
for this quantitatively we should broaden the PDF given in section 3.4 (without shifting its central value). On
the other hand, the global mean satellite evidence in principle includes all rapid feedbacks including those
from the clouds we did not assess. Moreover, it is largely independent from the individual process evidence;
bear in mind that although a similar approach was used in section 3.2 to help constrain clear‐sky feedbacks,
the main concern is clouds. Therefore, updating the PDF from section 3.4 with this additional evidence
would make the PDF narrower, again without shifting its central value. In light of these opposing considera-
tions, both of which are hard to quantify precisely, we judge the result obtained in section 3.4 to be a fair
representation of the overall probabilities given all evidence, and will be adopted in this assessment.

Figure 9. Individual feedbacks in CMIP5 climate models (circular symbols)
and inferred from observations (error bars along the y axis). The y axis
displays relationships derived from natural variability at the interannual
time scale using 100 years of preindustrial control simulations from CMIP5
climate models (Colman & Hanson, 2017) and using ~11 years of
observations between March 2000 and December 2010 (Dessler, 2013).
Error bars span the 1‐sigma uncertainties of the observed feedback
estimates. The x axis displays the long‐term feedbacks from climate model
simulations of the response to an abrupt quadrupling of CO2 (Colman &
Hanson, 2017). The black dashed line is the 1:1 line, whereas the short solid
thick lines among the climate model points display the ordinary least
squares linear regression lines between simulated interannual and
long‐term feedbacks.
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Table 2
Emergent Constraints for S Based Upon Present‐Day Climate System Variables and CMIP Models

Category Present‐day climate system variable Reference Authors' statements about S

Central estimate
of S (K) from
ordinary linear

regression

Central estimate of
λ (W m−2 K−1)
from ordinary

linear regression

Low cloud Boundary layer cloud amount
response to SST variations in

subtropical stratocumulus regions
(after removing the stability

contribution)

Qu et al. (2014) No statement 3.74 −1.03

Seasonal response of boundary layer
cloud amount to SST variations in
oceanic subsidence regions between

20°and 40° latitude

Zhai et al. (2015) Models consistent with observation “have
S higher than the multi‐model mean with

“an ensemble mean S of 3.9 K and a
standard deviation of 0.45 K.”

4.13 −0.82

Fraction of tropical clouds with tops
below 850 hPa whose tops are also

below 950 hPa

Brient et al. (2016) Models consistent with observation “have
S between 2.4 and 4.6 K.”

3.06 −1.20

Sensitivity of cloud albedo in
tropical oceanic low‐cloud regions

to present‐day SST variations

Brient and
Schneider (2016)

“Most likely S estimate around 4.0 K; an S
below 2.3 K becomes very unlikely (90%

confidence).”

3.68 −0.92

General
cloud

Difference between tropical and
Southern Hemisphere midlatitude

total cloud fraction

Volodin (2008) An estimate of S is “3.6 ± 0.3” (1‐sigma). 3.63 −0.97

Extent to which cloud albedo is
small in warm SST regions and large

in cold SST regions

Siler et al. (2017) A likely value of S is “3.68 ± 1.30 K (90%
confidence).”

3.55 −0.97

Humidity Southern Hemisphere zonal average
midtropospheric relative humidity
in dry zone between 8.5°S and 20°S

Fasullo and
Trenberth (2012)

“Manymodels, particularly those with low
S, … are identifiably biased.”

4.12 −0.96

Tropical zonal average lower
tropospheric relative humidity in

moist convective region

Fasullo and
Trenberth (2012)

“Only a few models, generally of lower
sensitivity, are identifiably biased.”

3.42 −1.06

Tropospheric zonal average relative
humidity vertically and latitudinally
resolved between 40°N and 40°S

Su et al. (2014) “Models closer to the satellite observations
tend to have S higher than the

multi‐model mean.”

3.85 −0.90

Strength of resolved‐scale humidity
mixing between the boundary layer

and the lower troposphere in
tropical East Pacific and Atlantic

Sherwood
et al. (2014)

No specific statement 4.13 −0.76

Strength of small‐scale humidity
mixing between the boundary layer

and the lower troposphere in
tropical convective regions

Sherwood
et al. (2014)

No specific statement 3.26 −1.14

Sum of Sherwood resolved‐scale and
small‐scale humidity mixing

Sherwood
et al. (2014)

“Observations at face value implies a most
likely S of about 4 K, with a lower limit of

about 3 K.”

4.07 −0.83

Precipitation Strength of model's precipitation
bias in the “double‐ITCZ”

(Intertropical Convergence Zone)
region

Tian (2015) “S might be in the higher end of its range
(~4.0 K).”

4.02 −0.87

Radiation Net top‐of‐atmosphere radiation
averaged over the Southern

Hemisphere

Trenberth and
Fasullo (2010)

“Only the more sensitive [higher S]
models are in the range of observations.”

3.53 −1.05

Temperature Amplitude of seasonal cycle of
surface temperature

Covey et al. (2000) No specific statement 3.23 −1.16

Strength of global average surface
temperature interannual variations
and their temporal autocorrelation

Cox et al. (2018) The emergent constraint “yields a central
[S] estimate of 2.8 K with 66% confidence

limits … of 2.2–3.4 K.”

2.91 −1.22

Circulation Latitude of the southern edge of the
Hadley cell in austral summer

Lipat et al. (2017) Models “closer to the observations … tend
to have smaller S values.”

2.80 −1.23
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3.6. Emergent Constraints on S From Present‐Day Climate System Variables

In recent years, a wide variety of present‐day climate system variables including clouds, water vapor, preci-
pitation, radiation, circulation, and temperature has been identified with skill at predicting S through emer-
gent constraints (Table 2). Emergent constraints on S also exist related to the rate of warming since 1970 and
tropical temperature changes during the LGM and mid‐Pliocene warm period (mPWP) and are discussed
elsewhere (sections 4.1.3, 5.2.4, and 5.3.1, respectively). The common occurrence of variables related to
clouds, and tropical low clouds in particular, is not surprising given the leading role of the SW cloud feed-
back from tropical low clouds in explaining S variance in CMIP ensembles (Caldwell et al., 2018; Qu
et al., 2018). Several constraints involve the short‐term temperature sensitivity of low clouds, which is likely
related to their long‐term feedback, and perhaps total λ, if the relationship between clouds and their
cloud‐controlling factors were constant across time scales (section 3.3.2). Indeed, if total λ were constant,
the fluctuation‐dissipation theorem suggests that the amplitude and autocorrelation of interannual tempera-
ture variability would depend on λ (among other factors), such that observations of temperature variability
might constrain λ and hence S. This is the physical explanation given for the temperature variability emer-
gent constraint of Cox et al. (2018).

It is a relatively new activity to constrain future climate using the intermodel spread of a GCM ensemble and
observations of a correlated present‐day climate system variable. Hall et al. (2019) give a framework to con-
sider this activity and provide “confirmation indicators” to gauge the trustworthiness of an emergent con-
straint. This is helpful as spurious predictors may be present in climate model ensembles due to their
small size (Caldwell et al., 2014).

One confirmation indicator is out‐of‐sample testing, which can partially be achieved by comparing results
across generations of CMIP ensembles. Caldwell et al. (2018) found that four out of five emergent constraints
constructed using the earlier CMIP ensembles had no skill at predicting S in the CMIP5 ensemble. It will be
interesting to see how many of the constraints in Table 2 will have predictive capability in the new CMIP6
ensemble.

Another confirmation indicator is having a verified and plausible mechanism explaining the constraint.
Although the proponents of each constraint have offered explanations, verifying them is difficult. One test
is whether the present‐day predictor is also correlated with available measures of the specific climate feed-
back identified in the physical explanation (Caldwell et al., 2018). Unfortunately, the lack of specificity in the
physical explanations for many constraints limits the applicability of this test. In this assessment, we take the
viewpoint that all emergent constraints have some (even if limited) information about S.

The application of the same mathematical approach to all constraints facilitates comparison of their predic-
tions. Column 5 of Table 2 reports a central estimate of S derived for 17 emergent constraints. This estimate
is calculated from the ordinary least squares linear regression of S on the present‐day climate system variable
evaluated at its observed value using the data for the combined CMIP3/CMIP5 ensemble compiled in
Caldwell et al. (2018) and, hence, represents the maximum‐likelihood value of S assuming a linear relation-
ship. More advanced methods of determining the predictand S from emergent constraint relationships are
discussed in Bowman et al. (2018), Schneider (2018), Williamson and Sansom (2019), and Brient (2020).

Table 2
Continued

Category Present‐day climate system variable Reference Authors' statements about S

Central estimate
of S (K) from
ordinary linear

regression

Central estimate of
λ (W m−2 K−1)
from ordinary

linear regression

Average 3.60 ± 0.42 −1.01 ± 0.14

Note. Emergent constraints are categorized by the type of present‐day climate system variable (Columns 1 and 2) with the reference for each constraint in
Column 3. Column 4 reports the authors' statements about S quoted directly from the cited reference. Column 5 reports a central estimate of S from each con-
straint calculated from the ordinary least squares linear regression of S on the present‐day climate system variable evaluated at its observed value. The data used
in these calculations are taken from that compiled by Caldwell et al. (2018). Column 6 reports a central estimate for λ calculated in the samemanner as Column 5.
The last row reports the averages and standard deviations of the data in Columns 5 and 6.
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All emergent constraints predict this maximum‐likelihood value of S to lie between 2.8 and 4.2 K, consistent
with the statements given in the original papers (Column 4 of Table 2). A general tendency for greater agree-
ment with observations of present‐day climate system variables for GCMs with S values in this range was
also found in related model‐weighting studies using observations of multiple present‐day climate system
variables (Brown & Caldeira, 2017; Huber et al., 2011; Knutti et al., 2006; Murphy et al., 2004).

Overall, these studies suggest that observations of a wide range of present‐day climate system variables are
more consistent with S higher than 2.8 K. This consistency of predictions suggests that it may be possible to
form a single likelihood function to represent this evidence. We proceed approximately, as there is no estab-
lished literature on how to combine constraints, particularly when dependencies between constraints may
exist (Hall et al., 2019). (See Bretherton and Caldwell [2020] for a first attempt to combine the predictions
from multiple emergent constraints.)

First, we consider these emergent constraints using present‐day climate system variables to be constraints on
the climate feedback parameter λ, rather than S, since the present‐day climate system variables are not
directly a function of CO2 variations and are more closely related to climate feedback processes than S itself.
To determine their predictions for λ, we calculate central estimates for λ from the regression of λ on the
present‐day climate system variables in the identical way as for S (Column 6 of Table 2). The central values
of λ locate on average at −1.01 W m−2 K−1, and this average does not vary by more than 0.05 W m−2 K−1 if
one excludes the emergent constraints that do not pass the ensemble robustness and physical mechanism
tests of Caldwell et al. (2018). We therefore assign −1.01 W m−2 K−1 as the mean of a Gaussian likelihood
function for λ based upon this emergent constraint evidence.

The second step of assigning a standard deviation to the likelihood function is more complicated. The uncer-
tainties in λ calculated from the errors in the linear regression fit and the observational uncertainty in the
present‐day climate system variable are insufficient to characterize the structural uncertainty, especially
for λ values outside the range seen in the available GCMs. Several considerations favor assigning a larger
width to the likelihood function. First, the authors of individual constraints may have consciously or uncon-
sciously chosen details of their present‐day climate system variable to optimize its correlation with S over the
GCMs they were examining, which results in an overconfident prediction. Furthermore, the emergent con-
straint approach implicitly assumes that all other GCM characteristics relevant for λ except the present‐day
climate system variable are unbiased and complete, and to the extent that this is not the case, predictions
could be biased (Klein & Hall, 2015). Finally, when compared with the individual feedback approach, the
emergent constraint approach appears less rigorous given the general lack of verified mechanisms and rela-
tive indirectness of the relationship between the present‐day climate system variable and a highly integrated
quantity like the total climate feedback parameter λ, which is dependent on multiple feedbacks (Hall
et al., 2019; Klein & Hall, 2015). (This is less of a concern for emergent constraints for individual climate
feedbacks.) With these considerations in mind, we assign the Gaussian width of the likelihood function from
emergent constraints to be 0.6 W m−2 K−1, a value ~40% larger than the uncertainty in λ from the primary
process approach assessing individual feedbacks (section 3.4). The likelihood function from emergent con-
straints is thus N(−1.01, 0.6) and illustrated in Figure 8b. It indicates very low likelihood on the low end
of S (large negative λ) but much less constraint on the high end of S (small negative λ).

One may wonder how independent emergent constraints are from the primary approach, given that both
approaches use GCMs and in some cases the same present‐day observational evidence (particularly for tro-
pical low clouds). One could perhaps treat the latter issue by only examining those constraints using
present‐day climate system variables not already considered by the primary assessment, but a common reli-
ance on GCM simulations of present‐day climate would remain. Furthermore, while independent informa-
tion is suggested by the fact that all emergent constraints have a central estimate of λ smaller than that of the
process central estimate of −1.30Wm−2 K−1, the difference in predicted λ is not large compared to the over-
all uncertainty and could be the result of a missing process biasing the prediction of either emergent con-
straints or the individual feedbacks. Other arguments supporting independence are that the emergent
constraint and individual feedback methodologies are very different and that some emergent constraints
use present‐day climate system variables not considered by the primary approach. We conclude that the
two approaches are not wholly dependent, but are also unlikely to be wholly independent.
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In summary, we consider the emergent constraints from present‐day climate system variables to offer evi-
dence favoring S above 2.8 K. However, the evidence comes with a greater number of issues than those
affecting the primary approach. These issues are that (a) many of these emergent constraints for S are not
confirmed with respect to either robustness to model ensemble or a known physical mechanism, making
it difficult to know how much confidence to give them; (b) it is unclear whether the evidence from these
emergent constraints is independent of the evidence used in the primary approach to assess individual feed-
backs; and (c) we formulated a likelihood function in an ad hoc manner. While future work may address
these issues, they currently warrant a cautious approach to the treatment of these emergent constraints in
the Bayesian analysis of S. Accordingly, in section 7 we use the emergent constraint likelihood function only
for a sensitivity study, not for our Baseline calculation. In the sensitivity study, the emergent‐constraint evi-
dence is assumed to be independent in order to explore its maximum impact.

3.7. Summary

The climate sensitivity S is determined by the radiative forcing per CO2 doubling ΔF2xCO2, and the sensitivity
of TOA net radiation to global mean temperature (“total climate feedback”), λ. In this section, we assessed
the various lines of evidence—observations, theory, GCMs, and process‐resolving models—directly con-
straining these two quantities. The focus is on physical processes that control the TOA energy balance via
the global albedo and the greenhouse effect. ΔF2xCO2 is relatively well known, and its direct component
can be calculated from the equations of radiative transfer using line‐by‐line models. Most uncertainty there-
fore comes from the climate feedback parameter λ, which is in turn the sum of contributions λi from a set of
distinct feedbacks.

Among these distinct feedbacks, those due to clouds remain the main source of uncertainty in λ, although
the uncertainty in the other feedbacks is still important. It follows from Equation 4 and the relatively small
uncertainty in other feedbacks and CO2 forcing that a negative feedback from clouds is required to push S
near or below 2 K. Moreover, this negative feedback must strengthen nonlinearly to push S progressively
lower, since dS/dλ ~ λ−2. We find that a negative total cloud feedback is very unlikely and that there is suffi-
cient evidence to effectively rule out the values of λ required to bring S below 1.5 K, thus placing a strong
constraint against very low S.

Carefully quantifying these inferences on a feedback‐by‐feedback basis and for the CO2 forcing produces a
process‐based PDF for S which has its median value at 3.1 K and the 17th and 83rd percentiles at 2.3 and
4.6 K (Figure 8c). This is based on Gaussian means and standard deviations for ΔF2xCO2 and each λi
(Table 1), with broad prior probabilities and a priori independence assumed for all quantities. Results are
robust to sensitivity tests as discussed later in section 7.3. This PDF still stands when accounting for (a)
the additional constraint from separate evidence from observations of global interannual radiation variabil-
ity on λ and (b) the additional uncertainty associated with possible errors in identifying a complete set of
feedbacks λi, the two of which we take to roughly cancel out. In this sense, the total λ evidence from obser-
vations of interannual radiation variability makes an important contribution even though it is not directly
used in the likelihood.

Separately, emergent constraints on S based upon present‐day climate system variables offer an alternative,
but not entirely independent approach to assess S, based upon exploiting the relationship across a GCM
ensemble between S and an observed present‐day climate system variable. By combining the evidence from
the available constraints, we assess a separate emergent constraint likelihood function for λ (Figure 8b).
Relative to the individual feedback approach, the emergent constraint approach points toward a somewhat
smaller λ and larger S, but with considerably less precision. It also comes with greater caveats necessitating a
more cautious treatment.

Regardless of approach, the total cloud feedback is the key quantity driving the uncertainty, since other feed-
backs are well constrained by multiple lines of evidence supported by good basic physical understanding.
The cloud feedback is constrained mainly by summing up feedbacks associated with different cloud regimes
(section 3.3) but also by observable indicators of the total global sensitivity (section 3.5). Over the past dec-
ade, the contribution to this feedback from tropical marine low clouds has received the greatest attention
due to its dominant contribution to the spread in total cloud feedback across different GCMs (Bony &
Dufresne, 2005). Recent research has produced strong new evidence that these clouds provide positive
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feedback (section 3.3.2 and Figure 6). The reduced uncertainty surrounding this feedback component should
be viewed as a significant advance. However, uncertainty from other cloud responses remains significant
and possibly underappreciated, thus worthy of greater attention in the future.

The inferred positive total cloud feedback arises from several contributions. These include (1) a lifting of
high cloud tops in warmer climates, as indicated by detailed numerical cloud simulations, observed trends
since the 1980s, climate models and expected from theory; (2) a dissipation of tropical and midlatitude mar-
ine low cloud, probably due to increased mixing of environmental air into clouds as the climate warms, as
indicated by observed cloud variability, and detailed numerical cloud simulations; and (3) a dissipation of
warm‐season low cloud over land due to decreasing boundary layer relative humidity, as expected because
land warms faster than oceans, and as seen in observed humidity trends since the 1970s and in GCM simula-
tions of warming. Meanwhile, a sizable negative feedback from clouds in tropical deep convection regions is
inferred from observations of interannual variability but does not overwhelm the combined positive feed-
backs from rising high cloud tops and reduced low‐cloud cover. Separately, a negative feedback due to tran-
sitions from ice to liquid in high‐latitude clouds present in many GCMs is now thought to be unrealistic.
Interannual fluctuations in TOA energy balance, which reflect the net effect of all cloud types, also point
to a positive total feedback, suggesting that we have not missed any major feedbacks by assessing only a
finite set of individual cloud types.

To reconcile all of the above evidence with an overall negative feedback from clouds (which is what would
be required for S to be below 2 K given the other feedbacks, as discussed above) would require multiple
lines of evidence to have failed significantly for at least one cloud type. For example, the low‐cloud feed-
back could be negative only if observed sensitivities have been misinterpreted, numerical cloud models
are incorrect, the overall cloud feedback is near one end of the range indicated by satellite data, and sev-
eral emergent‐constraint studies are incorrect. It would be perhaps easier to imagine some unanticipated
negative cloud feedback—but one that simultaneously has not appeared in climate models, detailed cloud
simulations, or observed interannual variability or trends since 1979, so all lines of evidence would some-
how have missed this feedback. Similar multiple failures or misinterpretations of the evidence are prob-
ably required to make the cloud feedback strongly positive enough to yield S significantly above 4.5 K,
although high S values are harder to rule out than low ones because S increases nonlinearly as positive
feedback increases.

Several research trends have contributed to the recent progress in constraining Swith process understanding
and are expected to contribute in the future:

• Increased use of high‐resolution process models such as LESs and cloud‐resolving models to understand and
constrain the feedbacks from a wider variety of cloud types. Increasing computational power allows for
longer simulations of models with finer‐resolution and larger domains. For example, larger domains will
permit LES to simulate the impact of mesoscale circulations on the feedbacks from tropical marine low
clouds (Nuijens & Siebesma, 2019). Furthermore, short simulations of global models with a horizontal
grid of O(1 km) are now feasible. However, progress for cold clouds requires improved representations
of ice cloud microphysics.

• Increased use of high‐quality satellite observations with longer records to better constrain climate feedbacks
and the physical processes responsible for them. Continuing cloud and radiation observations from both
passive and active sensors will reduce uncertainty in feedbacks inferred from interannual variability
and identify whether the feedbacks exhibited through trends to the emerging warming are consistent with
current understanding. However, progress requires maintaining observations that are in danger of disap-
pearing at the end of current satellite missions. High‐quality in situ observations will also help constrain
key process uncertainties not amenable to satellite observations.

• Increased analysis and understanding of climate feedbacks. New diagnostics have improved quantification
and understanding of specific cloud feedbacks in both GCMs and observations. Emergent constraints aid
in identifying which present‐day observations are of most value for inferring climate feedbacks. The inter-
play between GCM experimentation and observational analysis has yielded important insights into topics
such as the relationships among climate feedbacks and their dependence on the spatial pattern of warm-
ing. An important goal is to develop a more complete understanding of how the climate feedbacks from
short‐term variability we observe relate to the feedbacks from long‐term forced climate change we seek.
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4. Constraints From the Historical Climate Record

What canwe learn about climate sensitivity from the historical record of changes in globalmean temperature
and the energy budget? The world has warmed by approximately 1 K since the eighteenth century (Allen
et al., 2018). This warming is primarily attributable to the net effect of anthropogenic GHGs and aerosols,
but other external influences on the climate system and internal variability have also played a role (see assess-
ment in Bindoff et al., 2013). A number of studies have estimated climate sensitivity based on observed
changes in temperature and ocean heat uptake over a given period, alongwith the radiative forcing estimated
from emissions inventories, observations, and climatemodels. Best estimates of climate sensitivity from such
approaches range from 1–3 K and feature wide uncertainty ranges, particularly toward high values. More
recent studies appear to have lowered the upper limits on sensitivity owing primarily to better constrained
and stronger estimates of radiative forcing (see Knutti et al., 2017, and Forster, 2016, for reviews of recent pro-
gress), although recent wider ranges of aerosol forcing have put this narrowing into question (see below).

It is not straightforward to infer a constraint on climate sensitivity from the historical record. GHG forcing is
not the only driver of historical climate change, and climate generates substantial variability. Also, as intro-
duced in section 2.3, the climate is not in equilibrium with the forcing, and the feedbacks operating over the
recent period may be different from those that determine sensitivity at equilibrium (see also Knutti et al.,
2017). In section 4.1 we first diagnose climate sensitivity using the traditional approach, using Equations 2
and 4, where we ignore the role of variability in TOA radiation (V). We refer to the quantity thus estimated
as Shist. Section 4.2 then diagnoses a value of S employing the full Equation 6, taking into account differences
between radiative processes over the historical period compared to those over 150 years of a hypothetical
CO2 quadrupling. Results are summarized and compared to earlier estimates in section 4.3.

4.1. Inferring Shist From the Historical Climate Record

Most published estimates of Shist based on the instrumental climate record directly or indirectly rely on a sim-
ple global energy balance model for the climate system (Equation 19) (see Forster, 2016; Gregory et al., 2002;
Otto et al., 2013). Expressed in terms of the inferred climate sensitivity for the historical record, Shist, combin-
ing Equation 2 with Equation 4 and neglecting internal variability V, the energy balance model becomes

Shist ¼ ΔF2xCO2 ΔT= ΔF − ΔNð Þ (19)

where ΔT is the forced change in global mean surface temperature, ΔF is the global mean radiative for-
cing, and ΔN is the change in global mean downward net TOA energy imbalance. Here, ΔN can be mea-
sured directly either from the ocean heat content and/or from satellite observations constrained by ocean
heat content (Forster, 2016), and ΔF2xCO2 is the radiative forcing for CO2 doubling. The change Δ is taken
between the present day and a base period early in the historical record, boundary conditions that will be
discussed in detail in section 4.1.1.

This inferred historical sensitivity Shist should not be confused with the TCR, which measures the transient
warming of the Earth system before it reaches equilibrium. By contrast, Equation 19 attempts to use transi-
ent observations to estimate an equilibrium quantity by accounting for the radiative imbalance ΔN (Frame
et al., 2005; Otto et al., 2013).

Here, we assess the observationally based constraints on each of the three quantities: ΔT, ΔF and ΔN (sec-
tion 4.1.1). We combine them with the PDF of ΔF2xCO2 from Table 1 to calculate the resulting likelihood
for different values of Shist assuming this simple energy balance model (section 4.1.2). We further investigate
how such likelihoods change if the simple energy balance model (Equation 19) is modified by applying it to
the changes in surface temperature and warming attributed to GHGs only and by fitting models of varying
complexity to observed spatial and temporal patterns of climate change (section 4.1.3).
4.1.1. Observationally Based Estimates, Their Inputs, and Uncertainties
Observationally based changes and their uncertainties depend on which periods of the historical record are
used to estimate them. We define the “base period” from which anomalies are taken to be the average over
years 1861–1880 (1 January 1861 to 31 December 1880) because during this time GHG levels were relatively
close to (although not at) preindustrial levels, there were no large volcanic eruptions, and temperature
records have adequate global coverage (see Hawkins et al., 2017; Schurer et al., 2017). We also consider
the alternative base period 1850–1900 (1 January 1850 to 31 December 1900), which spans some major
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volcanic eruptions but reduces the impact of internal climate variability due to its extended length. We
define “present day” as the average over years 2006–2018 (1 January 2006 to 31 December 2018), a period
over which the global energy imbalance was observed with relatively small uncertainty. We use
differences between these two periods to estimate ΔT, ΔF, and ΔN and produce constraints on Shist.
4.1.1.1. Forced Surface Temperature Change (ΔT)
In order to estimate the global mean temperature change ΔT, we rely on gridded surface temperature data.
There are two recognized uncertainties associated with this observational record. First, the surface network
is sparse, particularly in the early portion of the historical record, potentially leading to biased estimates of
global mean temperature changes if observations are missing over regions that are warming more (e.g., the
Arctic) or less rapidly (e.g., the Southern Ocean) than the global mean. Second, gridded temperature records
generally blend SST over the oceans with near‐SATs over land, potentially leading to an inconsistency, as S
and Shist are often assumed to be based on global mean SAT changes. For example, using observations that
are based on a combination of SAT and SSTs to estimate global SAT changes can lead to a small underesti-
mate of observed warming (Richardson et al., 2016). The underestimate becomes more severe when missing
coverage data is neglected as well (Schurer et al., 2018). This then would lead to an underestimate of S based
on SAT.

To account for coverage bias in the observations, we use the data set developed by Cowtan and Way (2014),
which corrects for missing data in the observational network. To compare blended SST/SAT data in obser-
vations with SAT‐only trends in the energy budget, we add an offset term to the “blended” observations. This
term is derived from the difference between CMIP5 model SAT fields and blended model SAT/SST fields
(here, taken from the “xax” blended fields in Richardson et al., 2016). Uncertainties in the resulting esti-
mated observational SAT fields were calculated by adding in quadrature the 5% to 95% uncertainties in
the Cowtan andWay (2014) trends to the 5–95% range of the difference between SAT‐only fields and blended
model SAT/SST fields across all CMIP5 RCP8.5 simulations, as the uncertainties were assumed to be inde-
pendent and PDFs are presumed Gaussian. The results were found to be insensitive to the choice of RCP sce-
nario and model. These estimates are detailed in Table 3.

The relatively small uncertainties in Table 3 account for temporal error autocorrelation (e.g., Morice
et al., 2012) but do not factor in internal variability. We quantify internal variability of global mean tempera-
ture by considering all possible combinations of global temperature changes between periods of the same
length as used in our calculations (20 years to imitate Years 1861–1880, 51 years for Years 1850–1900, and
13 years for 2006–2018) that are separated by more than a century within unforced preindustrial control
simulations of 21 CMIP5 models, giving an average standard deviation of 0.08 and 0.07 K for the shorter
and longer base periods, respectively. Absent knowledge of whether this has contributed to or detracted from
the observed warming, we combine (in quadrature) the uncertainty in warming arising from internal varia-
bility with that arising from instrumental uncertainties (presented in Table 3). This yields our overall esti-
mates of uncertainty of ±0.14 and ±0.12 K (5–95% ranges) for forced warming relative to 1861–1880 and
1850–1900, respectively (expressed as ranges in Column 6 of Table 5). The main ΔT used in this analysis
(e.g., Figure 11) is taken over 1861–1880 to 2006–2018 as 1.03 (0.89 to 1.17 K, 5 to 95% range) K (Table 5,
Line 1, Column 6) due to the greater availability of data since 1861, compared to 1850 and a relatively
reduced level of volcanic activity.

Table 3
Temperature Trends Used to Assess Energy Budget Constraints on Shist

Data set Time period
Observed blended

trend (SAT/SST) (K)
Observed blended

trend uncertainty (K)
SAT‐blended trend
from models (K)

SAT‐blended trend
uncertainty (K)

Estimated
SAT trend

(K)

SAT trend
uncertainty

(K)

Cowtan
and
Way

2006_2018 minus
1850–1900

0.96 ±0.07 0.09 ±0.04 1.02 ±0.08

Cowtan
and
Way

2006_2018 minus
1861–1880

0.94 ±0.07 0.08 ±0.04 1.03 ±0.08

Note. Uncertainties are 5% and 95% ranges and exclude the contribution from internal variability (section 4.1.1). The bold row marks the baseline values chosen
for the main estimate of Shist, although the full range of estimates is used in assessing uncertainties.
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4.1.1.2. Global Energy Imbalance Change (ΔN)
Since the ocean accounts for most of the energy storage in the climate system, ocean heat uptake dominates
the change in global energy imbalance ΔN. This means that a tight constraint on ocean heat content changes
can make the difference between a strong and very weak constraint on climate sensitivity (e.g., Johnson
et al., 2016). Uncertainty in the data set arises from incomplete coverage, similar to the surface temperature
discussed above, measurement techniques, and preindustrial reference period.

Here we estimate Earth's global energy imbalance for 2006–2018 as 0.8 W m−2 (0.55 to 1.05, 5–95% range).
This global imbalance is estimated from the change in ocean heat content over time, estimated using in situ
ocean observations with near‐global ocean coverage (Desbruyères et al., 2016; Johnson et al., 2016; Purkey &
Johnson, 2010) combined with heat content changes associated with ice sheet changes, sea ice loss, and land
warming (Mouginot et al., 2019; Schweiger et al., 2011; Shepherd et al., 2018; Zemp et al., 2019). It is domi-
nated by the uptake of heat by the ocean, which accounts for over 95% of the imbalance (Johnson et al., 2016).
This range of global energy imbalance is supported by other analyses of in situ observations (Cheng
et al., 2017; Ishii et al., 2017; Levitus et al., 2012). It is also supported by several independent lines of evidence
suggesting that in situ observations are accurate: (i) a high correlation between interannual variations in in
situ and satellite energy imbalance estimates (Johnson et al., 2016) and (ii) the closure of the global sea level
budget (Chambers et al., 2017).

The global energy imbalance assumed for both 1861–1880 and 1850–1900 base periods is 0.2 W m−2

(0 to 0.4 W m−2, 5 to 95% range), where these values are chosen to span those derived from GCMs (Lewis
& Curry, 2015), energy balance modeling (Armour, 2017), and inferred ocean warming given observed
SSTs using ocean GCMs (Gebbie & Huybers, 2019; Zanna et al., 2019). As above, we quantify internal varia-
bility by considering all possible combinations of global energy imbalance changes between periods of 20
(or 51) and 13 years in length that are separated by more than a century within unforced detrended prein-
dustrial control simulations of CMIP5 models, giving an average standard deviation of 0.07 W m−2 for both
base periods. The resulting value of the change in global energy imbalance is ΔN 0.6 Wm−2 (0.3 to 0.9, 5% to
95% ranges assumed Gaussian, errors added in quadrature) for both base periods.
4.1.1.3. Radiative Forcing Change (ΔF)
The third important input is the total radiative forcing ΔF. While often referred to as an observable quantity,
radiative forcing is not directly observable and must be derived from radiative transfer models supported by
estimates of rapid adjustments from climate models. While GHGs have dominated the forcing over the his-
torical record, other forcing agents such as aerosols and land use change have played important roles as well.
Even relatively small forcings can matter: While volcanic forcing is short‐lived, cases where volcanic forcing
is markedly different between the beginning and end of a period analyzed could lead to long term climate
variations as seen in the last millennium (see PAGES‐2k; Schurer et al., 2014). These effects can contaminate
constraints (Lewis & Curry, 2015), and errors in volcanic forcing could indirectly impact the magnitude of
the forced response (see Johansson et al., 2015; Santer et al., 2014). We chose the reference periods at the
beginning and end of the historical record to minimize this effect. However, uncertainty in radiative forcing
is dominated by the contribution from anthropogenic aerosols, especially via their impact on clouds, which
is relatively unconstrained by process knowledge or direct observations (Bellouin et al., 2020). Here, to avoid
circular reasoning, we try not to use constraints on aerosol forcing based on idealized models fit to the his-
torical record (see review in Bindoff et al., 2013), and instead, we rely on bottom‐up estimates of aerosol for-
cing from models with comprehensive atmospheric physics.

We obtain our prior PDF of ΔF based on the approach of IPCC AR5 Chapter 8 (Myhre et al., 2013), but using
data extended through 2018 (Forster, 2016) and updating a number of forcing components. First, we use the
SARF formula (see section 3.2.1) for CO2, CH4, and N2O, from Table 1 of Etminan et al. (2016). These SARF
estimates increase CH4 forcing by 25% compared to AR5, mainly to account for previously underestimated
SW absorption (Etminan et al., 2016). To this, we add tropospheric adjustments and surface albedo estimated
from the radiative kernel analyses of Smith et al. (2018) to estimate a CH4 ERF over the historical period.
Section 3.2.1 details a similar approach for CO2. To estimate the evolution of CO2 ERF over the historical
time period, the ERF‐to‐SARF ratios for CH4 and N2O are assumed to be constant over the period, implying
that the tropospheric and land‐albedo adjustments scale with their SARF values. Compared to the original
AR5 time series, ozone ERFs and their time series are updated following Myhre et al. (2017).
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Aerosol ERFs are taken from Bellouin et al. (2020), using the uncon-
strained PDF (Figure 8 of their paper, with correction). The best estimate
from Bellouin et al. (2020) utilizes top‐down energy budget constraints
and attribution studies, so to avoid circular arguments, we only employ
the unconstrained estimate, which does not rely on detection and attribu-
tion studies to constrain aerosol through observed warming or energy
budget estimates. Compared to that of AR5, this PDF has a longer tail
toward strong negative ERF, thus representing an increased uncertainty,
with a peak around −0.8 W m−2 and a 5% to 95% range of −3.15 to
−0.37 W m−2. This PDF is based on combining ranges of estimates from
known physical processes involved in aerosol forcing and satellite and
other observations.

To calculate the forcing time series and its uncertainty, individual ERF
time series for CO2, other GHGs, stratospheric ozone, tropospheric ozone,
land use surface albedo, black carbon on snow, stratospheric water vapor,
contrails, and solar and stratospheric volcanic aerosols are combined
using Monte Carlo draws, assuming that each time series has constant
fractional uncertainty computed from the best estimate and the 5% to

95% range of the individual ERFs. These fractional uncertainties were based on the 1750–2011 ERF uncer-
tainties fromMyhre et al. (2013). Since historical CO2 concentrations are accurately known, the uncertainty
in CO2 ERF is assumed proportional to that in ΔF2xCO2. For terms other than aerosol, individual
half‐Gaussian PDFs are used for lower and upper bounds (Forster, 2016; Myhre et al., 2013). For the total
aerosol forcing including aerosol cloud interaction, samples from the unconstrained PDF of Bellouin
et al. (2020) are scaled by a factor that reproduces the ranges of their PDF when applied to their forcing per-
iod (1850/2005–2015). The resulting PDF for ΔF has a long tail toward smaller values because of the aerosol
component (Figure 10), with a median of 1.83 W m−2 and a 5–95% range of (−0.03, 2.71) W m−2. Table 4
details the ERF best estimates used for the individual components and periods. The PDF of ΔF2xCO2 is given
in section 3.2.1 (see Table 1).

Results shown for comparison in Tables 4 and 5 also employ an aerosol estimate based on AR5 data
(Boucher et al., 2013), which did not explicitly include energy budget studies but did rely on expert judgment
based on selected GCM results and satellite analyses. Figure 10 compares both estimates for the Baseline per-
iod used here. The increased uncertainty range in Bellouin et al. (2020) compared to AR5 comes from asses-
sing an increased number of aerosol‐cloud‐interaction processes, less confidence in the satellite‐based
estimates of aerosol forcing and different choices in expert judgment. The orange line in Figure 10 is the pos-
terior of ΔF that has been computed from the overall assessment of S in section 7 of the manuscript. In com-
parison to the prior PDFs, this is much more tightly constrained to positive forcing, ruling out a strongly

Figure 10. Prior and posterior PDFs of total (anthropogenic plus natural)
ΔF (W m−2), comparing the 2006–2018 period with the 1861–1880 period.
The black curve shows the prior forcing used in the Baseline calculation,
which uses the unconstrained aerosol forcing based on Equation (8) from
Bellouin et al. (2020). The green curve shows the extended AR5 aerosol
forcing. The orange curve shows the posterior PDF produced when all prior
PDFs are updated by all evidence used in the full Baseline calculation
(see section 7), including process, historical, and paleoclimate evidence.

Table 4
Historic ERF Medians for the Full 1750–2018 Period and the Two Time Periods Analyzed in This Report

Periods
Carbon
dioxide

Other well
mixed

greenhouse
gases

Tropospheric
ozone

Stratospheric
ozone Aerosol

Land
use

albedo
Stratospheric
water vapor

Black
Carbon
on snow Contrails Solar Volcanic

BASELINE ERFs with Bellouin et al. (2020) unconstrained aerosol PDF
1750 to
2018

2.147 1.110 0.425 −0.050 −1.395 −0.163 0.079 0.040 0.050 0.000 −0.171

1861–1880 to 2006–2018 1.731 0.969 0.348 −0.050 −1.179 −0.106 0.064 0.020 0.048 0.017 −0.113
1850–1900 to 2006–2018 1.705 0.961 0.344 −0.050 −1.092 −0.105 0.064 0.018 0.048 0.011 0.180
Modified aerosol ERF to extended Boucher et al. (2013) estimate, other columns as above
1750 to2018 −0.842
1861–1880 to 2006–2018 −0.667

Note. Half Gaussians are used to create the individual PDFs for sampling unless except for the aerosol ERF in the BASELINE case which employs the uncon-
strained PDF from Figure 8 of Bellouin et al. (2020). The row appearing in boldface contains the values used in the Baseline calculation.
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negative aerosol ERF. This means that, in our analysis, it is more S that is
providing a constraint of forcing over the historical period than vice versa
(see Bellouin et al., 2020, and section 7).
4.1.2. Computing the Likelihood
The observed warming, increase in ocean heat uptake, and overall posi-
tive radiative forcing change constitute evidence for Shist of above 0. To
inform a PDF of Shist, we need the likelihood P (Ehist|Shist, ΔN, ΔF,
ΔF2xCO2), which quantifies how likely it is that such evidence Ehist would
be observed given a putative value of Shist (see section 2.3). To obtain this,
we rearrange the energy balance (Equation 19) so that a forward model
(cf. Equation 3) arises for the predicted temperature response ΔT from
each combination of inputs ΔF, ΔN, ΔF2xCO2, and Shist:

ΔT ¼ Shist ΔF − ΔNð Þ=ΔF2xCO2 (20)

where ΔF, ΔN, and ΔF2xCO2 are random variables having specified
prior distributions (i.e., uncertainties), which we randomly sample,
hence generating a sample of possible ΔT values, for any given Shist.
In doing this, to allow for the correlation between the CO2‐forced part
of ΔF and ΔF2xCO2 (Lewis & Curry, 2015; Otto et al., 2013), we decom-
pose ΔF into its CO2 and non‐CO2 constituent time series and sample
the latter independently of ΔF2xCO2 before recombining to obtain the
sample ΔF. We assume that the (prior) PDFs of ΔF and ΔN are uncor-
related (independent). Note that ΔT is not the observed warming but
the expected warming based on the other information, given Shist.
The difference between ΔT and the best‐estimate observation, ΔTobs,
equals the sum of the observational error and unforced variation of
global mean surface temperature, which has a Gaussian prior distribu-
tion with standard deviation σe. Hence, the likelihood of the observed
warming for any particular sampled combination of (ΔF, ΔN, and

ΔF2xCO2) is a Gaussian of width σe evaluated at ΔTobs − ΔT, and the overall or “marginal” likelihood
of the evidence given Shist is found by averaging over the sample (see section 2.4.2). This analysis
assumes that observational errors plus internal variability of ΔN and ΔT are independent. While it is
possible there may be some correlation in geographic sampling errors, we expect any added uncertainty
due to this to be swamped by other errors discussed below. (Our calculations do not account for a small
correlation between ΔN and ΔT (mean r2 of ~0.1) in the control simulations, which would have a neg-
ligible impact on the results.)

Figure 11a shows the resulting likelihood for Shist, with the maximum likelihood Shist = 2.5 K. If combined
with a broad, uniform prior on Shist ~ U(0,20) as common in published studies, this likelihood produces a
posterior PDF for Shist with a 5–95% range of 2.0–16.1 K and a median of 4.3 K. These values of Shist are
higher than reported in recent publications (e.g., Forster, 2016; Lewis & Curry, 2018; Table 5) for two rea-
sons. First, we are using updated values of ΔT, ΔF, and ΔN. Second, this Bayesian PDF for Shist is slightly dif-
ferent to the non‐Bayesian distribution that would be obtained by substituting those of ΔT, ΔF, ΔN, and
ΔF2xCO2 directly into Equation 19 (5–95% range of 1.9–14.4 K and a median of 3.1 K; Table 5 and the green
curve in Figure 11b).

The primary contributor to uncertainty in Shist is our limited knowledge of the historical forcing asso-
ciated with anthropogenic, tropospheric aerosols (Figure 11a). Aerosol forcing is important in determin-
ing the left‐hand tail of the Shist estimates: The lowest estimates of Shist result when aerosol forcing is
estimated to be small or positive. If aerosol forcing were around 0, Shist could be as low as 1.2 K. The pos-
sibility of net positive aerosol forcing is also considered to be small based on process‐based (thus, indepen-
dent of energy balance models) estimates of aerosol effects (Bellouin et al., 2020). On the other hand, as
we cannot rule out an aerosol forcing more negative than −2 W m−2, relatively high values of Shist cannot
be ruled out either.

(a)

(b)

Figure 11. (a) Likelihood function for Shist derived from the planetary
energy budget of the 2006–2018 period compared to the 1861–1880
period. Different analyses are shown based on the alternative estimates in
Table 5. The dashed line shows the impact of reducing the uncertainty in
ΔT and ΔN by 90%. The gray line shows the impact of using the original
Cowtan and Way (2014) blended data set that mixes surface air temperature
observations with sea surface temperature observations. The orange line
shows the impact of using 1850–1900 for the earlier period, while the red
line shows the impact of using the AR5 aerosol forcing. (b) PDF of Shist
based on likelihood function in (a) combined with a uniform prior on Shist
(black line) and PDF derived directly from Equation 19 (green line).
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Secondary contributors to uncertainty in Shist are the global warming
trend and energy imbalance. Sensitivity tests are shown in Table 5 asses-
sing the impact of (i) using a different aerosol forcing estimate, (ii) using
a different base period (1850–1900 rather than 1861–1880), and (iii) using
a global temperature estimate that is a blend of SST over oceans and SAT
over land rather than being adjusted to produce a global SAT product.
These secondary contributors produce ~10% or smaller changes to central
estimates of Shist. Our main analysis in Table 5 uses Cowtan and Way
SAT‐derived temperatures from 1861–1880. While the present‐day energy
imbalance is well constrained by ocean temperature observations, the
energy imbalance prior to about 2002 is uncertain, and we must rely
entirely on models to estimate energy imbalance prior to about 1950. A
sensitivity test of eliminating nearly all uncertainty in ΔT and ΔN
(Figure 11a) demonstrates that the uncertainties in these values contri-
bute little to the overall uncertainty in Shist.
4.1.3. ConsistencyWith Estimates Based onOther ForwardModels
The energy budget approach used above facilitates comparison with sev-
eral previous estimates. However, it does not make full use of the observa-
tional record. In particular, by using only global mean quantities
diagnosed as differences between the two periods over a century apart,
it does not make use of any spatial or temporal information within the his-
torical climate record. Temporal informationmay be particularly useful to
reliably account for the effect of volcanic forcing, which can cause
long‐term change (e.g., Broennimann et al., 2019) including in the ocean
(Gregory et al., 2013; note that as section 4.1.2 uses model‐based estimates
of ocean ΔN to 1950 prior to observations being available, this effect is neg-
ligible here). It can also make use of the difference in time evolution of
GHGs versus aerosols after the 1980s, which can help disentangle their
effects (e.g., Undorf et al., 2018, and references therein). We ask in the pre-

sent section: Do estimates that use both the spatial and temporal history of anthropogenic and naturally
forced warming further constrain S? In other words, would we get different or stronger constraints if we
made use of that additional information?

We address this question by first comparing the above results to an estimate based on the portion of the
observed surface and ocean warming that has been attributed to increasing GHGs (Tokarska, Schurer,
et al., 2020): ΔTghg, ΔFghg, and ΔNghg. Attribution makes use of the time‐space pattern of warming to disen-
tangle the effects of other forcings, particularly aerosols, from those of GHGs and then applies the same
energy budget (Equation 20) as above, but uses attributed warming and greenhouse‐gas‐only forcing
changes. This sharply reduces forcing uncertainty but increases uncertainty in the warming in the ocean
and atmosphere, as there is uncertainty in the amount of warming that can be attributed to GHGs (see
Bindoff et al., 2013, for an assessment of attributed warming). Note that the analysis ends in 2012 due to
the availability of single‐forcing simulations. Note also that it neglects changes in ΔN other than ocean
warming, which are estimated to be small above. The results, shown in Figure 12, illustrate that the use
of the time‐space pattern from observations in deriving attributed inputs to Equation 20 reduces uncertainty
by effectively downweighting very strong aerosol forcing as less consistent with observations. Note that PDFs
arising from this approach, using a flat prior in Shist, yield Shist of 1.3 to 3.1 K (5% to 95% interval with the
most likely value at 2 K, and median 2.1 K). Some studies have chosen to double the noise variance to
address uncertainty in the pattern of warming (e.g., Schurer et al., 2018), which would widen our results
if done here (dotted lines in the figure). In contrast, direct sampling of the distribution (dashes) rather than
using a flat prior in S has a small influence on the PDF.

As an alternative to the energy‐budget approach, where Shist is diagnosed from long‐term changes in Earth's
energy budget discussed in section 4.1.2 and above for a greenhouse‐gas‐only energy budget, several groups
have employed a framework in which Shist (or a feedback parameter λ, which is the inverse of Shist) is only
one of multiple parameters of a simple dynamical model simulating multiple physical processes. These

Figure 12. Illustration of probability density functions from alternative,
published approaches (as labeled). Tokarska, Schurer, et al. (2020) rely on
an energy budget approach using the observed warming and ocean heat
uptake attributed to greenhouse warming and is most directly comparable
to our main approach. The solid line relies on a flat prior in S, the
dashed line is directly sampled (see text; similar to green line in Figure 11),
and the dotted line is the same as the solid line, but based on doubled
variance of climate variability when deriving the attributed warming
estimates. Johansson et al. (2015) and Skeie et al. (2018) results are based
on time‐space analysis using simple climate model fits to observations
and are also depicted for a uniform prior in S. Results suggest that use of
time‐space patterns (either in simple model fits or deriving attributed
surface and ocean warming) reduces the upper tail of climate sensitivity yet
is affected by uncertainty in methods used, particularly if using simple
models.
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dynamical models exploit differences in the spatiotemporal responses to different forcings and are particu-
larly effective in distinguishing between the responses to abrupt forcings like volcanic eruptions and
slower‐varying forcings like GHGs. Generally, approaches use Bayesian priors and multiple free parameters
(variables) including climate sensitivity, aerosol forcing, and ocean effective diffusivity or a similar quantity.
For a given set of these variables, the dynamical model is integrated forward, and the likelihood is computed
by comparing observations to the full spatiotemporal model output. Posterior estimates of Shist arise from
updating prior information on Shist, aerosol forcing, and rate of ocean heat uptake, using the dynamical
model and observations and then integrating out the latter two variables (Forest et al., 2002; Frame et al.,
2005). Many published estimates are available (e.g., Aldrin et al., 2012; Andronova & Schlesinger, 2001;
Forest et al., 2002; Johansson et al., 2015; Lewis & Curry, 2015; Libardoni & Forest, 2011; Skeie et al., 2018;
see Knutti et al., 2017, for references and details). Estimates will be the more powerful and reliable, the more
data they use up to the present period, the more effectively they use time‐space patterns to distinguish
between causes of change, and the more state‐of‐the‐art the aerosol forcing and climate models. Note that
posterior ranges of Shist are sensitive to the choices of dynamical model and observational data set, suggest-
ing that the complex spatiotemporal likelihoods employed with these models can amplify both model struc-
tural differences (Annan, 2015; Bodman & Jones, 2016) and observational errors (Libardoni & Forest, 2011).
Furthermore, the ranges are sensitive to the choice of prior distributions (see, e.g., Bodman & Jones, 2016;
Frame et al., 2005; Knutti et al., 2017; Lewis, 2014; see also sections 2.4.4 and 7.2). Figure 12 shows (for illus-
tration only) the results of two approaches when using a uniform prior in Shist, which yields an estimate of
what a likelihood function against S would look like for comparison to the result of section 4.1.1. Both esti-
mates shown (Johansson et al., 2015; Skeie et al., 2018) use a full Bayesian treatment. These studies analyze
similar observed periods (1880–2011 for Johannson and 1850–2014 for Skeie et al., 2018) but use slightly dif-
ferent data sets for surface temperature and ocean heat content and employ different time‐dependent dyna-
mical models, with separate representations for land and ocean in Johansson et al. (2015) and separate
representations for Northern and Southern Hemispheres in Skeie et al. (2018). They also use different priors
for model parameters other than Shist, differ in their treatment of volcanism and total forcing uncertainty,
and use different estimates of natural variability (e.g., the Johannsen et al. estimate widens if not using El
Niño–Southern Oscillation [ENSO] as a covariate).

These choices translate to large differences in estimates of Shist. Skeie et al. (2018) report a 90% interval of
1.2–3.1 K, while Johansson et al. (2015) estimate a 5–95% range of 2.0 to 3.2 K (for a comparison of all avail-
able estimates to date, see Knutti et al., 2017). We attempted to encompass both results into a synthetic PDF
based on an inverse Gaussian (not shown), which maintained a thicker tail on the right‐hand side from both
estimates by matching the 95th percentile but encompassed the Skeie et al. lower 5% tail and widened this
tail (making the 10–90% range fit the 5–95% range) to account for overall structural uncertainties. The result-
ing PDF was very close to the greenhouse‐gas‐attributed case (red curve) for doubled variance shown in
Figure 11.

We emphasize that neither the global energy budget approach (section 4.1.2) nor fitted dynamical models
provide a purely observational constraint on Shist. The estimates of ΔT, ΔF, ΔN, and ΔF2xCO2 used are neces-
sarily based on a combination of observational data with multiple models. Climate model data are employed
to estimate global mean, near‐SAT change, to infer missing values, or the effects of blending (Cowtan
et al., 2015; Richardson et al., 2016). ERF time series depend on radiative transfer models and
model‐estimated aerosol effects and climatological atmospheric structure. And though observations of ocean
warming over recent decades provide increasingly precise estimates of the modern global energy imbalance
(Johnson et al., 2016; Trenberth et al., 2016), climate models are necessary to evaluate the global energy
imbalance during the preindustrial period against which historical warming is compared (e.g., Lewis &
Curry, 2015) as well as its internal variability.

Moreover, even the energy budget equation (section 4.1) is a simplifiedmodel (Hegerl & Zwiers, 2011). There
are several notable assumptions inherent in this model (see section 2.2). For instance, it assumes that the
global temperature response to an equivalent magnitude of forcing associated with different radiative for-
cing agents or global ocean heat uptake will be the same. Equation 19 also assumes that global radiative
response to warming is exactly proportional to global mean temperature change and that the radiative feed-
backs governing radiative response do not vary in time or state. As the radiative response to warming varies
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within comprehensive global climate models (e.g., Andrews et al., 2015, 2018; Armour, 2017; Armour
et al., 2013; Ceppi & Gregory, 2017; Dong et al., 2020; Marvel et al., 2015, 2018; Proistosescu et al., 2018;
Rose et al., 2014; Shindell, 2014; Winton et al., 2010) energy‐balance models could be developed that account
for such variation (e.g., Ceppi & Gregory, 2019). In the next section, we explore these limitations and con-
sider the extent to which estimates of Shist from the historical record constrain the effective climate sensitiv-
ity S targeted in this assessment.

The rate of warming since only the 1970s or 1980s can also be exploited as an emergent constraint on TCR
and on climate sensitivity (when accounting for the nonlinearity in the response between the present day
and equilibrium), as aerosol forcing changes are thought to be relatively small over this period in the global
mean (Jiménez‐de‐la‐Cuesta & Mauritsen, 2019; Tokarska, Stolpe, et al., 2020). The more recent CMIP6
models have a wider range of climate sensitivity than CMIP5, and many exhibit a strong warming since
the 1970s (Forster et al., 2020), allowing for a relatively strong emergent constraint on TCR (Nijsse et al., 2020;
Tokarska, Stolpe, et al., 2020; Winton et al., 2020). These estimates are susceptible to potentially large and
unaccounted for uncertainties in the pattern effect which make it challenging to constrain S from such
methods (Jiménez‐de‐la‐Cuesta &Mauritsen, 2019). They also likely underestimate the role of aerosol radia-
tive forcing and its uncertainty as they assume the models' small aerosol forcing change since 1970 is correct,
whereas aerosol forcing evolution might be more complicated (Regayre et al., 2015).

Overall, using the time‐space information of past warming, either by fitting a simple model or estimating the
GHG contribution only to recent observed changes, tends to reduce the upper tail of Shist while maintaining
the lower (cf. Figures 11 and 12). This suggests that some of the stronger aerosol forcing values included in
the recent, wider estimate of forcing uncertainty used in section 4.2 are not readily compatible with histor-
ical observations, although uncertainty in these “top‐down” estimates of aerosol are substantial, and the
time evolution of the forcing rather than its magnitude can also contribute to any poor fit seen with historical
observations. Nevertheless, we carry forward the estimate of Shist that is based on the overall energy budget
(section 4.1.2 and Figure 11). We do so because it is the most up‐to‐date estimate and requires the least
assumptions such as in the time‐space pattern of aerosol forcing, which is quite uncertain (Schurer
et al., 2018).

4.2. Transitioning From Shist to S

Given constraints on Shist from the historical climate record, what can be said about the effective sensitivity S
as defined in section 2.1? If radiative feedbacks near equilibrium under CO2 forcing were identical to the
responses governing historical warming—in other words if there were a unique, linear relationship between
ΔN‐ΔF and ΔT—then S would be equivalent to Shist. However, there is growing evidence that this relation-
ship has not been constant in time and that the sensitivity Shist inferred over the historical period may under-
estimate S, due to complications noted at the end of section 2.2.

Recognition of this problem began with model studies, but its key components have since been identified in
observations as well. Many studies spanningmultiple generations of climatemodels have found a strong ten-
dency for radiative feedbacks to become less negative—an increase in climate sensitivity—as equilibrium is
approached (Andrews et al., 2015; Armour, 2017; Armour et al., 2013; Ceppi et al., 2017; Geoffroy et al., 2013;
Gregory & Andrews, 2016; Knutti & Rugenstein, 2015; C. Li et al., 2013; Lewis & Curry, 2018; Marvel
et al., 2015; Murphy, 1995; Proistosescu & Huybers, 2017; Rose et al., 2014; Rugenstein et al., 2016; Senior
&Mitchell, 2000; K. D. Williams et al., 2008; Winton et al., 2010; Zhou et al., 2016). This behavior arises from
the fact that the global radiative response ΔN to surface warming depends on the spatial pattern of that
warming (Andrews et al., 2015, 2018; Andrews & Webb, 2018; Armour et al., 2013; Dong et al., 2019;
Gregory & Andrews, 2016; Marvel et al., 2018; Paynter & Frölicher, 2015; Winton et al., 2010; Zhou
et al., 2017). The spatial pattern of warming can evolve for a number of reasons including the different time
scales of ocean adjustment at different geographic locations (e.g.,Marshall et al., 2015; Rugenstein et al., 2016;
Stouffer, 2004), an evolving importance of different radiative forcing agents (Hansen et al., 2005; Marvel
et al., 2015; Shindell, 2014), and internal climate variability (note that while the estimates of Shist discussed
above include the effect of internal variability on ΔT itself, they do not include its other impacts on the radia-
tion balance ΔN). The resulting changes in apparent feedback strength as spatial patterns of warming evolve
have therefore been termed “pattern effects” (SSBW16), distinguishing them from a feedback dependence on
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the magnitude of global mean warming (e.g., Bloch‐Johnson et al., 2015; Caballero & Huber, 2013; Meraner
et al., 2013; see section 5.2.3).

New studies have clarified how pattern effects are likely to work. Figure 13 illustrates the key components of
how temperature patterns are expected to affect ΔN. Warming in the West Pacific warm pool, a region of
deep ascent in the troposphere, warms the troposphere and increases tropospheric stability throughout
the tropics. In turn, this gives rise to enhanced radiation to space and enhanced low‐cloud cover (e.g.,
Andrews & Webb, 2018; Ceppi & Gregory, 2017; Dong et al., 2019; Wood & Bretherton, 2006; Zhou
et al., 2016). In contrast, warming in the East Pacific, a region of overall descent, is trapped in the lower tro-
posphere, decreasing tropospheric stability and leading to a reduction in low‐cloud cover (see section 3.3.2).
The result is that warming in the West Pacific produces negative cloud and lapse rate feedback responses,
while warming in the East Pacific produces more positive ones (Figure 13c). Warming at high latitudes pro-
duces a muted radiative response associated with positive lapse rate and sea ice feedbacks (Armour
et al., 2013; Dong et al., 2019; Po‐Chedley et al., 2018) as well as through an impact on cloud cover through
changes in tropospheric stability (Rose & Rayborn, 2016; Rose et al., 2014; Senior & Mitchell, 2000;
Trossman et al., 2016; Winton et al., 2010).

The impact of varying tropical SST patterns on cloud cover on decadal to centennial time scales, which is
thought to dominate the pattern effects in models (Andrews et al., 2015; Dong et al., 2019; Zhou et al., 2017),
has been seen in satellite observations as well. Specifically, the observational studies of Zhou et al. (2016),
Loeb, Thorsen, et al. (2018), Ceppi and Gregory (2017), Fueglistaler (2019), and Loeb et al. (2020) find

(a) (b)

(c) (d)

Figure 13. Illustration of the pattern effect. (a) Linear trend in observed sea surface temperatures (SSTs) over years
1870–2017 from the AMIP2 data set (Hurrell et al., 2008). (b) Linear trend in CMIP5 mean SSTs over 150 years
following abrupt CO2 quadrupling. (c) Global mean TOA radiative response induced by perturbing SSTs in one region at
a time, calculated as anomalous TOA radiative fluxes in response to local SST perturbations in NCAR's Community
Atmosphere Model Version 5 (CAM5) (Zhou et al., 2017; see also Dong et al., 2019, for comparison to CAM4).
(d) Relationship between historical feedbacks λhist and the long‐term λ in coupled CMIP5 and CMIP6 models using
values from analysis in Lewis and Curry (2018) and Dong et al. (2020) (blue points), respectively, and for
atmosphere‐only simulations from Andrews et al. (2018) (orange points).
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evidence for a pattern effect in the satellite records of cloud cover and TOA radiation as well as in atmo-
spheric reanalysis fields of tropospheric stability. Importantly, GCMs appear to be able to capture the essen-
tial physical mechanisms linking SST patterns to radiative response (Loeb et al., 2020), providing confidence
in the theory behind the pattern effect and the use of models to estimate how radiative feedbacks may
change with evolving warming patterns (section 4.2.1).

The dependence of ΔN on warming pattern implies that Shist will provide an accurate estimate of S only if the
pattern of long‐term forced warming is similar to the observed pattern of warming over the historical record.
However, the projected pattern of long‐term warming in response to CO2 forcing (Figure 13b) is strikingly
different from the pattern of observed warming over the historical period (Figure 13a). While the predicted
forced pattern is smooth, the observed pattern is highly heterogeneous with little long‐term warming in the
East Pacific and Southern Ocean. This indicates that if our understanding of cloud responses and the forced
warming patterns is correct, the historical record includes cloud responses that have damped warming, but
which will not persist in the long term. While the observed pattern is subject to uncertainties especially ear-
lier in the record, the pattern since 1900 is robust across several station‐based data sets (Solomon &
Newman, 2012), and its key features are supported by sea level pressure trends (L'Heureux et al., 2013)
and are consistent with trends reported for more recent periods in Pacific trade winds (England et al., 2014)
and sea level (Rhein et al., 2013; White et al., 2014).

There are likely multiple reasons for the heterogeneous historical warming. As discussed above, comprehen-
sive GCMs predict some robust changes in the pattern of warming as the climate equilibrates to an imposed
GHG forcing. In particular, warming tends to be delayed within the eastern equatorial Pacific and Southern
Ocean, which are regions of ocean upwelling (e.g., Armour et al., 2016; Clement et al., 1996; Marshall
et al., 2015). Yet the GCMs predict that warming in those regions will eventually become amplified relative
to their surroundings (e.g., C. Li et al., 2013), resulting in more positive climate feedbacks and an increase in
climate sensitivity as equilibrium is approached (Andrews et al., 2015; Armour, 2017; Geoffroy et al., 2013;
Proistosescu et al., 2017; Rugenstein, Caldiera, & Knutti, 2016; Winton et al., 2010). Indeed, enhanced warm-
ing within these regions can be seen in the warming predicted by CMIP5models over the 150 years following
an abrupt CO2 quadrupling (Figure 13b)—the period corresponding to our climate sensitivity metric S
within the models. Enhanced temperature changes within these regions are also supported by proxy recon-
structions of past climate states (Masson‐Delmotte et al., 2013; Tierney et al., 2019, 2020). The observed
warming pattern (Figure 13a) is atypical compared to historical simulations of climate models. Some of
the heterogeneity in early twentieth century SST trends may reflect unaccounted‐for offsets among groups
of measurements (Chan et al., 2019), but there remain discrepancies between modeled and observed warm-
ing over this period (Hegerl et al., 2018). It is unclear if these reflect stronger internal variability than simu-
lated in some GCMs, observational error, or a combination of both. GCMs are also not generally able to
capture the far‐better observed pattern of SST trends since ~1980, particularly in the tropical Pacific
Ocean (Zhou et al., 2016) and Southern Ocean (Kostov et al., 2018).

The observed pattern of SST changes since ~1980 resembles internal variability such as the negative phases
of the Interdecadal Pacific Oscillation (Mauritsen, 2016; Meehl et al., 2016) and Southern Annular Mode
(Kostov et al., 2018), and recently, each seems to have begun reversing (e.g., Loeb, Thorsen, et al., 2018;
Stuecker et al., 2017). This suggests a likely contributing role from unforced variability. It is possible the
observed warming pattern also contains a signature of external forcing, such as by stratospheric ozone
changes (Marshall et al., 2014), aerosols or volcanic eruptions (Santer et al., 2014; Schmidt et al., 2014;
Takahashi & Watanabe, 2016) or that it constitutes a forced response not captured by models (e.g.,
Kohyama et al., 2017; McGregor et al., 2018; Seager et al., 2019; see discussion in section 5).

Regardless of the cause, the relative lack of observed warming within these key geographic regions implies
that radiative feedbacks will become less negative in the future if the long‐term warming pattern becomes
more similar to that suggested by GCM simulations, paleo proxies and theory, suggesting that Smay be lar-
ger than that implied by Shist.
4.2.1. Quantifying the Historical Pattern Effect
The implication from current evidence outlined above is that the long‐term feedback under CO2 forcing, λ,
will be less negative than the apparent historical feedback, λhist. Here we use CMIP5 and CMIP6 GCMs to
quantify this feedback change, denotedΔλ=λ−λhist. RearrangingEquation6 followingEquation20,wewrite

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 48 of 92



ΔT ¼ − ΔF − ΔNð Þ= λ − Δλð Þ (21)

allows us to evaluate the likelihood function of λ and in turn of our tar-
get climate sensitivity according to S = −ΔF2xCO2/λ (see section 2.3).

Climatemodels generally suggest that feedbacks will become less negative
in the future (Δλ > 0) as the spatial pattern of warming evolves, but
because models do not fully reproduce observed patterns, there are uncer-
tainties in how best to quantify this. Armour (2017) and Lewis and
Curry (2018) considered changes in radiative feedbacks in CMIP5 model
simulations with gradually increasing CO2 at a rate of 1% per year
(“1pctCO2”) (Armour, 2017; Gregory et al., 2015), taking Year 100 as an
analog for historical warming. Comparing λhistwith eachmodel's effective
feedback λ (estimated as λ = −ΔF2xCO2/S within simulations of abrupt
CO2 quadrupling abrupt4xCO2), they find that the majority of models
show a less negative global radiative feedback under abrupt4xCO2 than
under 1pctCO2, with an average radiative feedback change of
Δλ = +0.2 W m−2 K−1 (−0.1 to +0.6 W m−2 K−1 range across models)
from Armour (2017) and Δλ = +0.1 W m−2 K−1 (−0.2 to

+0.2 W m−2 K−1 range across models) from Lewis and Curry (2018). Note these values differ slightly from
those in Armour (2017) and Lewis and Curry (2018) who estimated S based on a regression over Years
21–150 following abrupt CO2 quadrupling rather than Years 1–150 as done here. Using the early portion
of abrupt4xCO2 simulations as an analog for historical warming and following the methods of Lewis and
Curry (2018), Dong et al. (2020) find an average radiative feedback change of Δλ = +0.1 W m−2 K−1 (−0.2
to +0.3 W m−2 K−1 range across models) for CMIP5 models and Δλ = +0.1 W m−2 K−1 (−0.1 to
+0.3 W m−2 K−1 range across models) for CMIP6 models.

A limitation of using 1pctCO2 and abrupt4xCO2 simulations to estimate feedback changes is that they do
not account for the influence of non‐CO2 forcing agents (in particular, aerosols which force the system
very heterogeneously) and internal variability. Ideally, feedback changes could be quantified within his-
torical forcing simulations, but this quantification has been made for only those few GCMs within which
the historical radiative forcing has been quantified accurately enough for calculations of λhist to be per-
formed. Using historical simulations of the latest Hadley Centre Global Environmental Model
(HadGEM3‐GC3.1‐LL), Andrews et al. (2019) find an average radiative feedback change of
Δλ = +0.2 W m−2 K−1 (−0.2 to +0.6 W m−2 K−1 range across four ensemble members). This value is
on average larger than the Δλ = +0.04 W m−2 K−1 estimated using the early portion of the model's
abrupt4xCO2 simulation (Dong et al., 2020), suggesting that the value of Δλ may depend on having a
realistic representation of historical forcing and of volcanic forcing in particular (Gregory et al., 2020).
However, there is substantial spread in the value of Δλ across ensemble members, consistent with the
results of Dessler et al. (2018) who find that internal climate variability alone results in a
0.5 W m−2 K−1 spread in λhist and thus also in the value of Δλ across a 100‐member,

historical‐simulation ensemble of the Max Planck Institute Earth
System Model (MPI‐ESM 1.1). Altogether, these coupled model
results suggest mean value of around
Δλ = 0.2 W m−2 K−1 ± 0.4 W m−2 K−1 (5–95% range). Assuming
Gaussian uncertainties, Equation 21, along with historical estimates of
ΔT, ΔF, and ΔN, results in a maximum likelihood for S = 2.9 K (green
line in Figure 14; Table 6), somewhat higher than the equivalent value
of 2.5 K for Shist (black line in Figure 11a; Table 6).

If models are to be a credible guide to the size of the pattern effect, they
must accurately capture the relative patterns of historical and long‐term
temperature change. However, historical and 1pctCO2 simulations
of coupled models generally produce patterns of warming that more clo-
sely resemble that of their abrupt4xCO2 simulations rather than that of

Figure 14. Likelihoods for S based on historical energy budget estimates
accounting for pattern effects using different methods. The black curve
shows the likelihood we use for our main analysis in section 7, which is
based on feedback changes estimated using observed SST patterns
(Andrews et al., 2018) but with inflated uncertainty to account for several
considerations described in the text. The dotted black line shows the effect
of halving the uncertainty in Δλ. The green line shows the likelihood
accounting for feedback changes estimated from transient simulations of
coupled climate models (Armour, 2017).

Table 6
Statistics of the Likelihood P (Ehist|S) Combined With a Uniform Prior
(From 0 to 20 K) on S, Based on the Two Different Estimates of Future
Feedback Changes as Outlined Above

Scaling method
Max

likelihood (K)
Median
(K)

5% value
(K)

95% value
(K)

None 2.5 4.3 2.0 16.1
Transient
simulations

2.9 6.2 2.3 17.9

Observed SST
pattern

3.8 8.5 2.8 18.6

Note. The method based on prescribed observed SST patterns is chosen as
the preferred estimate (in bold).
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observed warming (Figure 13; Seager et al., 2019), suggesting that these simulations may underestimate the
pattern effect (Andrews et al., 2018; Marvel et al., 2018).

An alternative approach is to estimate the pattern effect on the basis of differences between the observed
ΔSST pattern and the anticipated long‐term one. This method does not rely on model calculations of transi-
ent change but does rely on an accurate long‐term ΔSST pattern. To implement this method, we use
atmosphere‐only simulations wherein observed SSTs and sea ice concentrations are prescribed as boundary
conditions (Andrews et al., 2018; Dong et al., 2019; Gregory & Andrews, 2016; Zhou et al., 2016). All other
boundary conditions (GHGs, aerosols, etc.) are held fixed in time such that the SST and sea ice impact on
the radiation balance (the feedback) can be estimated by linear regression. These atmosphere‐only model
simulations exhibit values of Shist that range from 1.6–2.1 K, in good agreement with that derived from global
energy budget constraints (section 4.1.2) and unanimously lower than values of S found in abrupt4xCO2

simulations using the samemodels (2.4 to 4.6 K) (Andrews et al., 2018). Andrews et al. (2018) collect all exist-
ing such model runs (from six different models, albeit only from four modeling centers) and find an ensem-
ble mean value of Δλ = +0.6 W m−2 K−1 (+0.3 to +1.0‐W m−2 K−1 range across models). Similar values are
found if the equilibrium feedback is estimated as λ = −ΔF2xCO2/S rather than from the regression over Years
1–150 following abrupt CO2 quadrupling as in Andrews et al. (2018).

We prefer this approach for estimating the pattern effect because it is derived using observed SSTs and is thus
not biased by errors in historical SSTs simulated by coupled models. However, this estimate still hinges on
several key considerations. The first is that it relies on the accuracy of the observed SST and sea ice changes.
Using alternative SST data sets, Andrews et al. (2018) found little change in the value of Δλ within two mod-
els (HadGEM3 and HadAM3). The sensitivity of results to the choice of data set represents a source of uncer-
tainty in the quantification of Δλ using atmosphere‐only GCMs that has not been fully explored. The second
consideration is that it relies on the abrupt4xCO2 pattern of warming simulated by coupled models
(Figure 13b) being an accurate representation of long‐term response to CO2 forcing. If the long‐term warm-
ing pattern were to resemble that of observed historical warming, this would imply a value of S that is closer
to our assessed value of Shist. The inability of coupled models to capture the observed pattern of warming in
the tropical Pacific (e.g., Seager et al., 2019) and Southern Ocean (e.g., Armour et al., 2016) may call into
question their ability to accurately simulate the long‐term pattern of warming. However, a range of observa-
tional evidence from paleoclimate proxies and theory suggest that amplified warming in the southern high
latitudes will indeed eventually emerge (Masson‐Delmotte et al., 2013) once the deep ocean waters that are
upwelled to the Southern Ocean surface are warmed, likely taking hundreds of years or more (Armour
et al., 2016). Moreover, proxy data since the Pliocene suggest that warming in the eastern tropical Pacific will
eventually become amplified relative to the west (Tierney et al., 2019, 2020) as the upwelled water stems
mostly from midlatitudes (Fedorov et al., 2015). Moreover, as noted above, much current evidence points
to the observed pattern of warming being strongly influenced by internal variability and/or short‐lived cli-
mate forcers. This suggests that the observed warming pattern is transient in nature. Thus we assign a low
probability that the forced pattern will strongly resemble the historically observed one.

A third consideration is whether the models used here to quantify the pattern effect faithfully represent the
clouds and corresponding radiation response to these SST patterns. Comparison of National Center for
Atmospheric Research (NCAR)'s CAM5 to observed low‐cloud trends in the East Pacific revealed that the
model may underestimate the cloud increase (Zhou et al., 2016). Analysis of six CMIP6 models driven by
observed SST and sea ice boundary conditions suggests that the models can generally replicate TOA radia-
tion changes observed by satellite over 2000–2018 but that the models may underestimate the sensitivity
of global radiation to SST changes and thus the magnitude of Δλ (Loeb et al., 2020). A final consideration
is the extent to which the quantification depends on the selection of models used. The six models used here
(fromAndrews et al., 2018) represent an ensemble of opportunity, and it is unlikely that they capture all pos-
sible future feedback changes. A broader analysis would be needed to draw conclusions as to whether the
methods employed here are biased.

In light of these considerations, we choose for our main analysis Δλ=+0.5Wm−2 K−1 with Gaussian uncer-
tainty ±0.5 W m−2 K−1 (5–95% range). This range is informed by the Andrews et al. (2018) estimate of the
pattern effect based on observed SSTs but allows for a greater (though still small) possibility that the pattern
effect may be smaller than reported in that study. Using this mean value of Δλ and uncertainty in
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Equation 21, along with historical estimates of ΔT, ΔF, and ΔN, results in a maximum likelihood for
S = 3.8 K, substantially higher than that of Shist derived in section 4.1.2 or that of S derived from transient
coupled models (Figure 14 and Table 6). Combining this likelihood (black line in Figure 14) with a broad
uniform prior on S ~ U(0,20) yields a posterior with a 2.8 to 18.6 K 5–95% range (note that this large upper
limit indicates that the data do not constrain the upper limit of climate sensitivity beyond the prior).

This estimate of the historical likelihood for S using a pattern effect based on observed SSTs follows our pre-
ferred approach, and we carry this forward into section 7 to be combined with other lines of evidence.
However, we also consider the sensitivity of the results to a halving of the uncertainty on our assessed value
of Δλ (Figure 14). This reduces the 5–95% range slightly when combined with a SU(0,20) prior slightly from
2.8–18.6 to 2.9–18.5 K. These results suggest that the historical record currently provides only weak con-
straints on S and that improved quantification of both the pattern effect and the historical aerosol forcing
is necessary to rule out high values of S in particular.

4.3. Summary

Because the climate sensitivity S would directly affect the magnitude of any radiatively forced climate
change, the magnitudes of known changes can constrain S if enough is known about what drove them.
The best‐observed example is the warming over the instrumental period. In this section we assessed what
this warming tells us about S. Over this period the GHG forcings are known fairly accurately, while the lar-
gest uncertainties are the strength of non‐GHG forcings and the impact of nonequilibrium effects. These
effects matter because the warming period is not very long compared to time scales of natural variability
and system response lags.

The best‐known nonequilibrium effect is the TOA (and surface) energy imbalance, which persists for dec-
ades to centuries after an applied forcing due to the long time required for the oceans to fully equilibrate.
This imbalance is reflected in changes in global ocean heat content, which, along with the surface warming,
is reasonably well measured in recent decades, albeit with errors larger than sometimes appreciated.

To quantify how consistent various climate sensitivities are with the evidence, following past studies, we cal-
culate a likelihood of the observed ocean heat content and surface temperature changes as a function of S.
This calculation employs a PDF of total radiative forcing, based on direct observations andmodels of the var-
ious forcing agents and their radiative effects.

A second nonequilibrium effect has recently come to the fore which significantly affects the likelihood func-
tion, called here the historical “pattern effect.” Ocean surface warming in recent decades has occurred in a
much more heterogeneous geographic pattern than that predicted at equilibrium under CO2 forcing. Model
simulations and satellite observations now show that this recent heterogeneity has driven net increases in
low‐cloud cover and global albedo, reducing the warming relative to what it would have been with a
smoother, equilibrium pattern of warming. If as expected this heterogeneous pattern is temporary (either
a transient or a natural fluctuation), the implication is that S inferred from historical warming using straight-
forward assumptions or simple models with constant S, which we have denoted Shist, is less than the true S.
The direction of this bias is physically understood, and we are confident about that, but its magnitude is
highly uncertain because we rely heavily on GCM simulations to quantify it. The development of observa-
tional constraints on themagnitude of the pattern effect is critical to be able to better constrain the likelihood
of high values of S based on historical evidence.

Taking all the above factors into account, we find that given the historical evidence, themaximum‐likelihood
value is S = 3.8 K, but values between 1.9 and 20 K and above can still be considered consistent with the evi-
dence (likelihood >0.2). In particular, the historical observed climate change provides a strong constraint on
the lower bound of S, effectively ruling out negative feedbacks, but only a very weak constraint on the upper
bound. This latter conclusion, which differs from many previously published studies using the historical
record, arises in part because the “pattern effect” could potentially allow even high values of S to be reconcil-
ablewith onlymoderate historical warming. The possibility of strong negative aerosol ERF also precludes set-
ting a tight upper bound on S. Indeed our high‐likelihood range for Shist (not accounting for the pattern
effect) is consistent with most of those previous studies if we use older forcing and warming estimates, so
the increase here is due to revised estimates rather than any difference in methodology. The Bellouin
et al. (2020) aerosol ERF used here allows more negative tails than some recent estimates, especially those
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that implicitly match aerosol forcing to the observed warming. Previous studies that have not accounted par-
ticularly for the pattern effect produced energy budget constraints on S that were unjustifiably tight and too
low.

The historical warming does provide strong evidence against S of ~1.5 K or less, because roughly 1 K of
warming has already occurred, and this is likely all a forced signal (Allen et al., 2018; see also Bindoff et al.,
2013; Schurer et al., 2018); this realized warming is less than the equilibrium warmingand from a forcing
almost certainly less than ΔF2xCO2. Even assuming a very small aerosol forcing, the lowest plausible
observed warming (neglecting known negative biases), and the highest plausible radiative imbalance during
the base period, it seems nearly impossible to assign nonnegligible likelihoods to values of Shist (let alone S)
less than 1.2 K. To reconcile the evidence with an S below even 2 K under reasonable PDFs of observed
warming and imbalance would require either aerosol forcing to be near 0, or for aerosol forcing to be weak
and the pattern effect to be weaker than expected.

Accordingly, the historical record offers potential to further narrow the S range at both ends with further
research progress. If weak aerosol forcings can be ruled out, for example, the constraint at the low end could
rise (this may also gradually happen with further warming, if it continues at the pace of the last few years). If
the limit of strongly negative aerosol forcing were constrained, this would sharply reduce the upper tail as it
would no longer allow very small net forcing which, in combination with large warming, leads to high esti-
mates. On the other hand, if further research can limit the maximum size of the pattern effect on the histor-
ical radiative balance, this could permit the record to bound the high end of S, especially if aerosol forcing
uncertainty is reduced. Future avenues of research employing decadal changes and regional patterns with
emergent constraints over the historical period may eventually be able to place a tighter constraint on
Shist that avoids issues of circularity arguments with estimates of aerosol forcing, which combined with
improved quantification of the pattern effect, may lead to a tight bound on S.

5. Constraints From Paleoclimate Records

Climate sensitivity estimates using paleoclimate information rely on a basic paradigm that there are times
before the instrumental period for which we have a reasonable estimate of a climatic state. In particular, this
concerns an estimate for global mean temperature that was sufficiently stable over centuries to millennia
(i.e., in a quasi‐equilibrium state), together with estimates of how forcings differed from the “preindustrial”
state. From these we can derive estimates of the overall sensitivity of the climate state to radiative forcings.
This means that, in contrast to studies of historical constraints (section 4), paleoclimate studies do not con-
sider disequilibrium in the planetary energy budget or ocean heat content and in principle we can use the
energy balance Equation 3. However, we must contend with not just changes in GHGs but also changes
in land surface vegetation, ice (land and sea), topography, and even potentially continental shapes and posi-
tion (Farnsworth et al., 2019) for deep time periods, as well as other forcing and climate uncertainties that
arise from the more limited information available. This requires Equation 3 to be modified with various
additional terms (see also section 2.2). These terms will be discussed in more detail as they are introduced
in the following subsections.

To make climate sensitivity estimates from paleoclimate data compatible with the parameter S targeted
in this report (section 2.1), the influence of slow feedback processes needs to be explicitly resolved.
Feedbacks resulting from the expansion and reduction of continental ice sheets are particularly important.
The effects of vegetation and land surface changes and (partly vegetation‐related) dust aerosol influences
also need to be considered. While CO2 and CH4 concentrations can act as feedbacks to other climate changes
as well as forcings on paleo time scales, care needs to be taken to account for this in estimates of S; all that is
available are total values for CO2 and CH4 concentrations during the last 800,000 years (from ice cores) and
only CO2 for older times. Furthermore, in reality feedback strength is not a constant parameter of the climate
system; in particular, it may vary with the climate state and applied forcing, and this variation may be sig-
nificant in the context of paleoclimate.

We consider colder climates than preindustrial (including glacial cycles), and warmer periods than prein-
dustrial separately, with the LGM (~20,000 years ago) and mPWP (3.3–3.0 Ma) being the best known and
most comprehensively studied examples. In accordance with section 2, we develop estimates for a
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likelihood function of the temperature change and priors on the forcings. Our basic approach is to generate
ranges that encapsulate the range of plausible estimates presented in the literature. These are expressed in
the form N(X, Y), which is a Gaussian distribution with mean X and standard deviation Y (all uncertainties
are one standard deviation unless otherwise stated). We then calculate sensitivity likelihoods based on these
constraints using the modified versions of Equation 3. The modifications to Equation 3 are necessarily dif-
ferent in form for the cold and warm periods due to the different level of evidence and the differing
approaches in published research. Information from other intervals can, in principle, be included following
a similar style of argument, especially as further detailed records through older intervals of the last 1 to 2Myr
emerge and as greater spatial coverage is developed. As an additional example, and as supporting evidence,
we show the results obtained from analysis of the very warm period of the Paleocene‐Eocene Thermal
Maximum (PETM), but this is not used in our final estimate.

As discussed in section 5.1, there is considerable uncertainty in measurements of climate variables gleaned
from paleoclimate. Therefore, researchers interested in climate sensitivity have focused on intervals in the
past when temperatures and GHG forcings have been very different to those of today and thus where the
signal is also large. In sections 5.2 and 5.3 we present numerical values based primarily on our expert assess-
ment of the relevant literature. We then combine the information in section 5.4 to produce a likelihood func-
tion for S based on paleoclimate information.

5.1. Estimating Climates in the Past—Methods and Sources of Uncertainty

The methods for obtaining paleoclimate changes and forcings from geologic evidence are less direct than
those using the instrumental record. This results in considerable additional uncertainty, much larger than
the uncertainty for direct measurements over the last few hundred years. We outline some of the methods
and sources of uncertainty here. Reducing the uncertainties has the potential to lead to major improvement
in future estimates of climate sensitivity using evidence from the geological past.

In practical terms, continental ice sheet variations are approximated using global sea level reconstructions
and modeling (Clark & Mix, 2002; Clark & Tarasov, 2014; de Boer et al., 2010, 2012, 2014; Grant et al., 2014;
Hansen et al., 2007, 2008, 2013; Lambeck et al., 2006, 2010, 2014, 2017; Rohling et al., 2012, 2017). Vegetation
and land surface changes are very poorly constrained. For a few rare intervals, large‐scale biome reconstruc-
tions have been produced (typically ~125,000, ~20,000, and ~6,000 years ago; Bartlein et al., 2011; Harrison &
Prentice, 2003; Harrison et al., 1995; Hopcroft & Valdes, 2015b; Kageyama et al., 2017; Otto‐Bliesner
et al., 2017; Prentice et al., 1993; Wu et al., 2007). It is very difficult to obtain sufficiently dense global net-
works of well‐dated pollen data for such exercises; even for the well‐studied LGM a robust vegetation map
has yet to be developed. High‐resolution dust‐aerosol records exist from only a few locations andmostly from
the very remote polar regions (ice core records; Lambert et al., 2008; Schüpbach et al., 2018). Although dust
is being incorporated in models (Kageyama et al., 2017; Otto‐Bliesner et al., 2017), and quality dust‐flux
records from downwind of the dominant source regions (the world's great deserts) are being developed, a
high density of such records is needed because dust is poorly homogenized in the atmosphere; it mainly
influences the radiative balance close to, and downwind of, the source regions.

Past estimates of climate properties from direct measurements of atmospheric composition comprise only
GHG concentrations (CO2, CH4, and to some extent also N2O) in air bubbles preserved in ice cores. The old-
est records, fromAntarctic ice cores, cover the last 800,000 years (Siegenthaler et al., 2005), and there is some
further information as far back as 1Ma from shallow blue ice samples in Antarctica (Higgins et al., 2015; Yan
et al., 2019). For other properties, including CO2 concentrations, so‐called “proxy” measurements are used,
which are empirically calibrated to climate properties on the basis of their modern spatial distributions
and/or on the basis of calculations through the underpinning physical or chemical relationships (notably
Boron‐isotope data; see below).

For properties that are less globally homogeneous (e.g., sea level, land ice sheets, or temperature), some level
of modeling is required to transform sparse measurements into global estimates. Such models vary in com-
plexity, from a simple metric for latitudinal variation, smoothing toward present‐day patterns, or utilizing
patterns from paleoclimate simulations with state‐of‐the‐art climate models. In all cases, the community
aims to develop a variety of independent proxies for each predominant climate property (for a CO2 example,
see Badger et al., 2019; Dyez et al., 2018), so that confidence in individualmeasuresmay be evaluated through
comparison. This is important because certain climate proxies may, for example, be affected by changes
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through time in initial seawater ratios of the elements or isotopes used or respond nonlinearly to change in the
controlling climate property (with one end of the relationship relatively insensitive to change, so that the proxy
loses fidelity, or saturates). Cross validation is especially valuable if it can be performed between a proxy and
direct measurements from ice cores; a key example concerns the validation of CO2 reconstructions from the
Boron‐isotope proxy by intercomparison with direct measurements of CO2 changes from ice cores (e.g.,
Chalk et al., 2017; Foster, 2008; Honisch & Hemming, 2005; Martínez‐Botí et al., 2015; Raitzsch et al., 2018).

Another issue with proxies is that many rely on fossilizing biological signal carriers (e.g., foraminifera or
concentrations of specific biomarkers), which implies a dependence over time on species‐specific behaviors,
ecological niche changes, and biomineralization pathways. The impacts of these issues are commonly mini-
mized by limiting analyses to a single, well‐defined species or biomolecule, but further back in time we are
inevitably dealing with species that are no longer extant. Ecological equivalence is commonly assumed
(mostly based on shape and shell‐development similarities), supported by whole‐assemblage evaluations
of the entire suite of past species' ecological niche occupations relative to one another (commonly using
stable oxygen and carbon isotopes). However, working with extinct species in ancient time intervals clearly
introduces greater uncertainty than working with species alive today.

Finally, good chronology (dating) is essential when comparing records of different proxies or ice core
data. Here, relative age equivalence is even more important than absolute age control: For evaluating paleo-
climate sensitivity, past (proxy) values of climate forcing factors need to be compared to synchronous values
of temperature, no matter what the absolute age of the interval is. Chronological control for such records is
best in the past 40,000 years, when radiocarbon dating is available, and age uncertainties are only up to a
century or two in the best cases (Hogg et al., 2013; Reimer et al., 2013). Next best control exists for the last
glacial cycle (past 100,000 years), with strong constraints from ice core chronologies from Greenland and
the West Antarctic, supported by U‐series dated cave deposits, allowing comparisons between records with
age uncertainties of the order of at best 500 years (e.g., Shackleton et al., 2000; Grant et al., 2012; WAIS
Divide Project Members, 2015; Marino et al., 2015). In older levels still, down to half a million years ago
or so, combined application of U‐series dated cave deposits and astronomical time scale tuning of exception-
ally rhythmic sedimentation systems (like that in the Mediterranean) provide a sound level of age control
with uncertainties of the order of ±1,000 to 2,000 years (Grant et al., 2014). Targeted use of events, such
as instantaneous volcanic ash deposits, can provide selected intervals of improved control relative to the
uncertainties stated above. But it is evident that comparison between records is hindered to some extent
by chronological control, which by itself introduces an unavoidable portion of uncertainty in calculated
paleoclimate sensitivity estimates.

The types of proxies used for estimating climate variables for cold periods over the last 800 kyr are mostly
different from those used for the warm periods further back in time. This means that we may expect uncer-
tainties for these cold and warm periods, which we evaluate separately below, to be largely independent.

5.2. Evidence From Cold Periods: LGM and Glacial‐Interglacial Transitions

Glacial‐interglacial cycles of the Pleistocene (last 2.5 Myr) are best known from the last half million years.
Over that time they were characterized by well‐documented CO2 fluctuations between ~180 and
~280 ppm (Siegenthaler et al., 2005; we quote all gas concentrations by volume) and methane fluctuations
between ~350 and ~700 ppb (Loulergue et al., 2008). Sea level/ice volume fluctuations took place over a total
range of about −130 to +10 m (e.g., Grant et al., 2014; Rohling et al., 2009, 2014).

We focus mostly on the LGM (between 19,000 and 23,000 years before present) as it is the most recent
quasi‐stable cold period and has been extensively studied. Relative to other, earlier but similarly cold, glacial
maxima there is a wealth of data available for the LGM from both paleo archives and modeling studies.

In this section, the focus is on summarizing our understanding of paleoclimates using information from
observations and modeling in order to derive priors on ΔF and likelihoods for ΔT for different intervals.
For all temperature changes and forcings in this section, we use a Gaussian error distribution and give the
uncertainty as one standard deviation, unless otherwise indicated.
5.2.1. Surface Temperature Change ΔT
Last glacial to interglacial global mean temperature change estimates have been much studied and remain
debated. Across studies, the inferred range is between ~3 and ~7 K below preindustrial with little probability
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of lying outside this range (Annan & Hargreaves, 2013; Friedrich
et al., 2016; Hansen et al., 2007; Köhler et al., 2010; MARGO, 2009;
Masson‐Delmotte et al., 2010; Rohling et al., 2012; Schmittner et al., 2011;
Snyder, 2016a). We therefore takeN(−5, 1) as our observational likelihood
of the temperature change.
5.2.2. Forcings Contributing to ΔF
Radiative forcing at the LGM consists of several components, and we
describe the most significant of these here. Note that changes in global
annual mean orbital forcing are negligible (~0.1 W m−2), although regio-
nal and seasonal changes range from −9 to −3 W m−2 (Kageyama
et al., 2017). Here we consider estimates from the literature, and estimate
values for these forcings, in order to calculate an overall best estimate for

the total forcing. Some of the literature also provides quantitative uncertainty estimates, which we use as an
approximate guide, although finally we use a somewhat larger value to reduce the possibility of overconfi-
dence in our estimate.

Lower GHG concentrations are well characterized for the LGM. Here we use the latest PMIP4/CMIP6 LGM
estimates of [CO2] = 190 ppm, [CH4] = 375 ppb, and [N2O] = 200 ppb (Kageyama et al., 2017). For the prein-
dustrial GHGs, we use the CMIP6 estimates for 1850 (Meinshausen et al., 2017), [CO2] = 284 ppm,
[CH4] = 808 ppb, and [N2O] = 273 ppb. The forcing formulae from Etminan et al. (2016) translate these con-
centrations into CO2: −2.16 W m−2, CH4: −0.37 W m−2, and N2O: −0.27 W m−2. However, in line with the
discussion in section 3.2.1 we increase the GHG forcings by 5% to account for the land warming effect (tropo-
spheric and surface albedo adjustments). They therefore become −2.27, −0.39 and −0.28, respectively.
Because the forcing due to a doubling of CO2, ΔF2xCO2, is considered uncertain in our analysis (with a central
estimate of 4.0Wm−2, see section 3.2.1), we represent the CO2 component of the forcing as −2.27/4.0 =−0.57
ΔF2xCO2 in our calculation.We further increase theCH4 valueby 45% to−0.57Wm−2 to account for ozone and
stratospheric water vapor effects (following Hansen et al., 2005).

Forcing from the large ice sheets, via albedo and elevation changes (lapse rate feedback) and the concomi-
tant drop in sea level, have been estimated at around −3.2 Wm−2 by the IPCC AR4 (Hegerl et al., 2007) and
−3.7 W m−2 ± 0.7 W m−2 in a review by Köhler et al. (2010). The single model analysis of Friedrich
et al. (2016) obtains a rather lower value of −1.6 W m−2 for the ice sheet forcing, which they ascribe to
the effect of cloud cover substantially masking the ice albedo change. The climate models that participated
in the second and third Paleoclimate Model Intercomparison Projects (PMIP2 and PMIP3) have values from
−2.6 to −3.5 W m−2 (PMIP2, Braconnot et al., 2012) and from −3.6 to −5.2 W m−2 (PMIP3, Braconnot &
Kageyama, 2015). The different ice sheet reconstruction used for PMIP2 and PMIP3 led to a difference in for-
cing of about −1 W m−2 (Abe‐Ouchi et al., 2015). We represent this evidence with an estimate of
−3.2 W m−2 ± 0.7 W m−2.

The radiative impact of changes in vegetation is estimated to be −1.1 ± 0.6 W m−2 (Köhler et al., 2010;
Rohling et al., 2012, and references therein). A variety of estimates have been made of the forcing due to
the glacial increase in atmospheric dust loadings, with a range of best estimates of 0.1 to −2.0 W m−2

(Albani et al., 2014; Claquin et al., 2003; Hopcroft et al., 2015; Köhler et al., 2010; Mahowald et al., 2006;
Ohgaito et al., 2018; Rohling et al., 2012; Takemura et al., 2009; Yue et al., 2011). While some research sug-
gests that models tend to overestimate the influence of dust because of an inappropriate distribution of grain
size and shape (Kok et al., 2017), we use a range of −1.0 ± 1 W m−2 at one standard deviation in order to
include the full range of published results with a significant likelihood that the forcing is outside that range.

Having separated out the CO2 forcing as −0.57 ΔF2xCO2, the rest (ΔF′) sums to −6.15 W m−2, consisting
of −3.2 W m−2 (ice sheet), −0.57 W m−2 (CH4), −0.28 W m−2 (N2O), −1.1 W m−2 (vegetation), and
−1.0 W m−2 (dust). Our maximum likelihood estimate for total forcing is therefore −8.43 W m−2.
Köhler et al. (2010) also suggest that additional, less commonly discussed factors, such as surface albedo
change due to shelf exposure related to glacial sea level lowering, bring the total glacial‐interglacial
radiative forcing closer to −10 W m−2. Models from PMIP2 suggest that the albedo effect of exposed
shelf is −0.7 to −1.3 W m−2 (Braconnot et al., 2012). Friedrich et al. (2016) estimate a substantially

Figure 15. Likelihood arising from cold‐period evidence (solid line).
Dashed line shows the likelihood that would arise if state dependence of
λ were omitted (α = 0).
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weaker total forcing of −7.6 W m−2, largely due to weaker ice sheet
forcing, and Rohling et al. (2012) estimate −8 W m−2 (with a plausible
range of −6.25 to −9.75 W m−2). Combining in quadrature the uncer-
tainty ranges provided by Köhler et al. (2010) for the components of
the forcing generates a nominal uncertainty of ±1.4 W m−2.
However, this calculation ignores nonlinearity in the addition of differ-
ent forcings (for which there is limited evidence, but it may be signifi-
cant; e.g., Yoshimori et al., 2009) and also may not account fully for
the range of published estimates. To account for this, we use a some-
what larger overall uncertainty estimate of ±2 W m−2 (1‐sigma). In
sum, we use N(−8.43, 2) W m−2 as our observational estimate of the
forcing change.

5.2.3. Corrections for State Dependence of Sensitivity and Slowness of Equilibration
A direct application of energy balance Equation 3 thus points to a moderate sensitivity of around 2.4 K hav-
ing highest likelihood (i.e., 5 × 4.0/8.43; see dashed line in Figure 15). However, such a calculation rests on
the assumption that feedbacks remain constant over a wide range of climate states and forcings. This has
been the approach generally taken in paleodata‐based studies (Hansen et al., 2007; Köhler et al., 2010;
Martínez‐Botí et al., 2015; Masson‐Delmotte et al., 2010; PALAEOSENS, 2012; Rohling et al., 2012).
However, it is increasingly being questioned by studies concerned with potential state dependence of paleo-
climate sensitivity (Friedrich et al., 2016; Köhler et al., 2015; Rohling et al., 2018; Stap et al., 2019; von der
Heydt et al., 2014, 2016; Zeebe, 2013). Several of these studies suggest that the relationship between forcing
and temperature responsemight not be linear, indicating that sensitivity depends on the background climate
state and/or the efficacy of the forcings.

Quantitative estimates of feedbacks through glacial cycles suggest that, for the LGM, the difference due to
the nonlinearity may be of the order 0.5 W m−2 K−1, both in models (Crucifix, 2006; IPCC, 2013;
Yoshimori et al., 2009, 2011) and in data from observations (Friedrich et al., 2016; Köhler et al., 2015, 2018),
though there are large uncertainties in these estimates. Most analyses suggest stronger net feedback for gla-
cial states (i.e., λmore negative, implying a lower sensitivity), but even this is not certain. We parameterize
this uncertainty in feedback through an additive term, which is linear with temperature change; that is, the
local feedback at temperature anomaly ΔT is given by λ + α ΔT, where α is an uncertain parameter and λ is
the feedback for the modern state. The total radiative anomaly relative to equilibrium arising from a tem-
perature anomaly of ΔT is then given by the integral of this varying feedback which amounts to λ ΔT +
α/2 ΔT2. Based on the above references, we choose our prior for α to be N(0.1, 0.1), which implies a mean
change in feedback of −0.5 W m−2 K−1 at an estimated glacial cooling of −5 K, with a likely range of 0 to
−1 W m −2 K−1 and a significant chance of exceeding these limits.

Additional to this nonconstancy in feedback strength, we also account for uncertainty in relating the
quasi‐equilibrium response to the regression‐based (see section 2.1) estimate of S. Modeling experiments
(Rugenstein, Bloch‐Johnson, Abe‐Ouchi, et al., 2019; Rugenstein, Bloch‐Johnson, Gregory, et al., 2019;
and see section 2.1) suggest modest differences between the long‐term equilibrium sensitivity and our target
S based on regression of an abrupt 4xCO2 simulation. We use the symbol ζ to represent this difference, with
1 + ζ therefore being the ratio of our target S to the long‐term equilibrium (Equation 8). The mean value of
1 + ζ is 1.06, arising from the eight models for which these estimates are available, suggesting that sensitivity
as inferred from the quasi‐equilibrium paleoclimate states considered here is slightly larger than the target S
for this assessment. Because this result is obtained from a small ensemble, we use a slightly inflated uncer-
tainty of 0.2 relative to the ensemble spread of 0.15.

We include these effects via modifications to the basic energy balance Equation 3, writing

ΔT ¼ − −0:57 ΔF2xCO2 þ ΔF′ð Þ
λ

1þ ζ
þ α

2
ΔT

; (22)

where the term αΔT/2 represents a state dependence in the sensitivity and 1 + ζ represents the transfer
between the long‐term quasi‐equilibrium and the target S. S may then be derived from λ via Equation 4.

Table 7
Parameters of the Distributions That Are Used to Estimate S From the Cold
Climate States, Equation 22

Term Distribution

ΔT (K) N(−5, 1)
ΔF2xCO2 (W m−2) N(4.0, 0.3)
ΔF′ (W m−2) N(−6.15, 2)
α N(0.1, 0.1)
ζ N(0.06, 0.2)

Note. Radiative forcing per CO2 doubling from section 3.2.1.
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Table 7 summarizes the distributions discussed for the various parameters in cold climate states. The result-
ing likelihood is shown in Figure 15, plotted in terms of S. The maximum likelihood value is at 2.5 K, drop-
ping to about 0.1 at 1 K and 0.35 at 6 K (relative to our maximum likelihood value of 1).
5.2.4. Discussion
We now consider the consequences of low or high climate sensitivity for our understanding of the Earth
system. Low present‐day sensitivity to CO2 would require some combination of low cooling at the LGM
(note, however, that there is little scope for the LGM temperature change to be less than 3 K because
that is the value inferred from observations at low latitudes) and larger‐than‐estimated forcing and/or
large response to non‐CO2 forcings, of which the ice sheet albedo is dominant. A larger than expected
difference between our target S and the paleo equilibrium sensitivity (i.e., large 1 + ζ) would also make
low S somewhat more likely. Total CO2 and other GHG forcing is well constrained at just under
−3 W m−2 at the LGM, and modeled responses to such forcing are close to linear when other boundary
conditions are held fixed (i.e., preindustrial ice sheets) (Hansen et al., 2005). A low climate sensitivity of,
say, 1 K per CO2 doubling together with a true temperature anomaly of −3 K (at the very low end of
the observed range) would require a very large additional radiative forcing effect of ice sheets (around
−8 W m−2) to generate the additional 2 K or more of cooling. While few detailed factor analyses have
been performed, estimates of the radiative effect of the continental ice sheets are typically of the order
−2 to −4 W m−2 (e.g., Köhler et al., 2010, 2015); that is, at least a factor of 2 less than would be
required to support a low climate sensitivity. Furthermore, models do not tend to exhibit such a strong
response to ice sheets; instead, they suggest that—if anything—the total effect of multiple forcings is
generally smaller than the linear sum of responses to forcings individually (Pausata et al., 2011;
Shakun, 2017; Yoshimori et al., 2009). These arguments are consistent with our inferred low relative
likelihood of 0.2 at S = 1 (Figure 15).

High sensitivity to CO2 of around 6 K per CO2 doubling could be supported by a cooler LGM temperature
anomaly of around −7 K (the higher end of the range suggested from proxy‐data evaluations; e.g.,
Snyder, 2016a), together with a muted response to non‐CO2 forcings and/or substantial nonlinearity with
respect to forcing magnitude (i.e., large values of α in Equation 22). Since CO2 alone would lead to a cooling
of 4 K in this case, this would imply a limited (3 K) impact of the ice sheets and other forcings (around
−2Wm−2; less than half of what has been previously estimated). This appears to be consistent with our like-
lihood of 0.3 for S = 6 K (Figure 15). This picture is supported by evidence that spans the most recent five-
glacial cycles (Rohling et al., 2012), and we do not have conflicting evidence from other cold periods. Further
back in time, uncertainties are greater as the data are substantially poorer; prior to the Pleistocene we have to
go back 280Myr to find a period when Earth's temperature wasmuch colder than preindustrial (Montañez &
Poulsen, 2013; Royer et al., 2004).

We note that the climate models included in the second and third Paleoclimate Model Intercomparison
Projects (PMIP2 and PMIP3) had climate sensitivities in the range of around 2–5 K. Emergent constraint
analyses have found at best a weak relationship between the cooling exhibited in each simulation and the
equilibrium sensitivity of the models (Hargreaves et al., 2012; Hopcroft & Valdes, 2015a; Masson‐Delmotte
et al., 2013), due to model uncertainty in processes that are important for the LGM but not related to future
climate change, such as the influence of the ice sheets (Crucifix, 2006; Hopcroft & Valdes, 2015a). All of these
models lie in the high likelihood region of our main result, and we therefore do not expect to be able to dis-
criminate strongly between them.

5.3. Evidence From Warm Periods
5.3.1. Warm Periods—Mid‐Pliocene
The mPWP occurred over the interval of 3.3–3.0 Ma and is the most recent time in the past when CO2 con-
centrations are thought to have been high enough to be comparable to present‐day values. During this time,
there were orbital cycles with periods of 40,000 years, during which CO2 levels inferred from high‐resolution
boron isotope data varied between ~300 and ~400 ppmv (e.g., Martínez‐Botí et al., 2015) and sea level fluc-
tuated by about 30 m (Rohling et al., 2014). Other CO2 proxies are less conclusive, partly because they have
not yet been measured in sufficient resolution to distinguish individual orbital cycles (Dyez et al., 2018).
Despite progress in recent years, both the GHG forcing and the global temperature response during the
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mPWP warm intervals remain uncertain. Here we analyze the mPWP, in
order to provide inputs to Equation 3, in a similar way to the LGM analysis
above.
5.3.1.1. Surface Temperature Change ΔT
Following initial global assessments (Haywood et al., 2010), where SSTs
were judged to be higher than Holocene values by about 0.8 K in the tro-
pics, rising to 1.7 K globally, Pliocene SSTs have been considerably revised
to higher values, particularly in the tropics (e.g., O'Brien et al., 2014; Y. G.
Zhang et al., 2014). Compilations that focus on the more reliable geo-
chemical proxies now place mean tropical SST during warm intervals of
the Pliocene at +1.5 K, relative to the Holocene (Herbert et al., 2010).
Further refinements are likely to push this estimate even higher (e.g.,

O'Brien et al., 2014; DiNezio et al., 2009). The compilation of Rohling et al. (2012) reveals that tropical
SST change is ~50% of the global mean change over the last 0.5 Myr, a value that is also consistent with
the PMIP3 ensemble at the LGM. Applying that to the mid‐Pliocene suggests a mean global SAT increase
of around 3 K relative to the Holocene (although this value still has substantial uncertainty, and we therefore
represent our temperature likelihood as N(3, 1) K).
5.3.1.2. Forcings Contributing to ΔF
Climate forcing during the mPWP is likely dominated by CO2, but other forcings must also be considered, as
for the LGM (i.e., Unger & Yue, 2014). There remains considerable uncertainty regarding all GHG concen-
trations. PlioMIP, the PlioceneModel Intercomparison Project, assumed a value of 405 ppm CO2, which is at
the high end if considering CO2 alone, but which was chosen to implicitly include the effect of other
well‐mixed GHGs.

To bracket most reported values, we set a value of N(375, 25) ppm for CO2 and assume that N2O and CH4

together represent an additional 40% ± 10% of forcing (Hansen et al., 2013; Martínez‐Botí et al., 2015;
Sosdian et al., 2018), which results in a best estimate for total forcing of 2.2 W m−2 with an uncertainty of
0.6 W m−2 at one standard deviation (not precisely Gaussian), relative to the 284‐ppm preindustrial state
due to well‐mixed GHGs.

Since our aim is to estimate the short‐term response due to carbon dioxide change, we need to consider the
influence of other forcings. In other words we need to consider the difference between the ESS (see
section 2.1) and S. If the forcings were individually well known, then we could do this directly by including
them in the energy balance equation as we did for the LGM. However, forcings such as changes in ice sheets
and vegetation are difficult to quantify in detail, and tectonic and/or orographic forcings relative to the pre-
sent complicate the assumption that all feedbacks were driven by CO2 change (Lunt et al., 2010). For exam-
ple, uncertainties remain with respect to the overall sizes and temporal variability of ice sheets. With
Pliocene sea level at least 6 m above the present (Dutton et al., 2015), we know that ice sheets were smaller,
but the upper boundary for sea level remains unclear (Dutton et al., 2015) as does the Pliocene
glacial‐interglacial amplitude variability (de Boer et al., 2010; Miller et al., 2012; Naish et al., 2009;
Rohling et al., 2014; Stap et al., 2016). Overall, sea level estimates (as available at the time of study) at times
with ~375 ppm CO2 reveal a median at +21 m and asymmetrical 68% and 95% probability envelopes of 9–27

and 1–33 m, respectively (Foster & Rohling, 2013). In addition, the “time
slab” approach used in PlioMIP (where data from warm intervals within
the longer period are amalgamated to form a single climatology) intro-
duces further uncertainties, for example, regarding the regional influence
of orbital changes. These are in the process of being quantified more care-
fully (Dowsett et al., 2016; Haywood et al., 2016) and time series
approaches similar to those developed for the last 800 kyr are also begin-
ning to be applied to the mPWP (e.g., Martínez‐Botí et al., 2015).

Since we do not have accurate estimates of the ice sheet and vegetation for-
cings, we instead use an uncertain parameter to represent the amount by
which these (generally slower) responses inflate the response that would
be generated by CO2 alone. Lunt et al. (2010) argue that this ratio ESS/S

Figure 16. Likelihood arising for mPWP.

Table 8
Parameters of the Distributions That Are Used to Estimate S From the
mPWP, Equation 23

Term Distribution

ΔT (K) N(3, 1)
CO2 (ppm) N(375, 25)
ΔF2xCO2 (W m−2) N(4.0, 0.3)
fCH4 N(0.4, 0.1)
fESS N(0.5, 0.25)
ζ N(0.06, 0.2)

Note. Radiative forcing per CO2 doubling from section 3.2.1.
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is around 1.4 for the Pliocene based on simulations usingHadCM3,while Haywood et al. (2013) find an ensem-
ble mean ratio of 1.5 with considerable variation between models but with a total range of 1 to 2 across the
models in the PlioMIP1 ensemble. We represent these results with an ESS inflation factor 1 + fESS where
fESS is distributed as N(0.5, 0.25).

We thus represent the energy balance of the climate system for the Pliocene as

ΔT ¼ −ΔFCO2 1þ f CH4ð Þ 1þ f ESSð Þ
λ

1þ ζð Þ
(23)

where ΔF (CO2) is the forcing due to CO2 (i.e., ln([CO2]/284)/ln(2) × ΔF2xCO2), 1 + fCH4 is the additional
forcing due to methane and N2O, which equals (1 + N(0.4, 0.1)), and 1 + ζ represents the transfer between
quasi‐equilibrium and regression estimate of feedback.

Table 8 summarizes the distributions discussed for the various parameters in warm climate states. The
resulting likelihood is shown in Figure 16 and has a maximum likelihood S of around 3.2 K.
5.3.1.3. Discussion
As in section 3.2.4, we now consider storylines that could explain low and high values for the sensitivity. A
low climate sensitivity would require some combination of lower temperature change and/or greater
response to non‐GHG/non‐CO2 forcing. An mPWP global mean warming of 1 K would suggest a sensitiv-
ity of about 1.2 K per CO2 doubling, but this requires that we ignore the known low‐temperature bias of
some paleothermometers (e.g., O'Brien et al., 2015). This is a low‐likelihood scenario, although uncertain-
ties in orbital forcing influences make it hard to be sure. Our calculation as presented in Figure 16 gives a
likelihood of 0.3 at S = 1.2 K per CO2 doubling.

On the other hand, if the GHG forcing were lower than recent estimates (e.g., Martínez‐Botí et al., 2015),
then a high sensitivity is quite easily reconciled with the data. For example, the lowest CO2 estimates within
the mPWP reach as low as 330 to 350 ppm (Dyez et al., 2018; Martínez‐Botí et al., 2015; Pagani et al., 2010).
Relative to preindustrial conditions, 350 ppm (with associated changes in CH4 and N2O) only represents
1.7 W m−2. For that value, 2‐K warming would imply a sensitivity of nearly 4.5 K per CO2 doubling, and
3 Kwould suggest a sensitivity of ~6.5 K per CO2 doubling. If the CO2 forcing were as small as 330 ppm, these
values would shift to 6 and 9 K, respectively. Such a low forcing is considered unlikely and would require a
minimal to nonexistent role for non‐CO2 forcing during the mPWP. Our mPWP likelihood is around 0.4 at
6 K and drops to 0.2 at S = 8 K per CO2 doubling.

As was the case in section 4.1, some models have been used to perform simulations of the mPWP as part of
PMIP3 (PlioMIP) (Haywood et al., 2013). While all models generated plausible simulations for this period,
there is little discriminatory power to distinguish between them. This is unsurprising given that their climate
sensitivities range within the high likelihood range of our analysis. Emergent constraints analyses have been
performed using these models (Hargreaves & Annan, 2016). While these suggest a climate sensitivity consis-
tent with our results, we do not consider them sufficiently robust to further narrow our likelihood, due to the
high uncertainty in both model boundary conditions and proxy data.
5.3.2. Warm Periods—PETM
Of the pre‐Pliocene warm intervals, the rapid global warming event known as the PETM (~56 Ma) provides
perhaps the best opportunity to further constrain ECS. Here we explore this opportunity with a comprehen-
sive analysis of the available evidence arising from this period. Due to the large uncertainties and the danger
of overconstraining the likelihood should these be underestimated, however, we have chosen not to include
the PETM evidence in our final likelihood estimates. We present the analysis here both because it provides
supporting evidence to our overall conclusion and in the hope that it may spur future research.

Coincident with a dramatic input of biogenic carbon into the active climate system, warming occurred
rapidly (in <20 kyr, likely in as little as 4 or 5 kyr; Kirtland Turner et al., 2017; Zeebe et al., 2016).
Dunkley Jones et al. (2013) compiled available SST data and, comparing these with results from a single
model, concluded that the global PETM temperature anomaly relative to the early Eocene was in the range
4 to 5 K. Incorporating recent SST data from the tropics, Frieling et al. (2017) estimate a tropical change of
2.7 K with 5.3 K for the global SST anomaly (<2 K very unlikely). Using a ratio for global SST to global
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temperature change of 0.9, based on the results from an ensemble of mod-
els run for the Eocene Climatic Optimum (EECO ~50 Ma) (Lunt
et al., 2013), this gives a slightly higher global temperature estimate of
5.9 K. This suggests a central value around 5 K. Relative to the other
paleointervals discussed in the previous sections, relatively few PETM stu-
dies have estimated this global value, and uncertainty in the interpreta-
tion of measurements from so deep in the paleorecord is high.
Therefore, despite the closeness of the estimates in the literature, our
uncertainty in this global value is greater than the equivalent for the other
intervals considered in the previous sections. Here we use a range of N(5,
2) K, which includes the published values within the high likelihood
range.

While rapid in geological terms, the time scale for the PETM warming is still sufficiently long for a
quasi‐equilibrium temperature response to the radiative forcing. The PETM is associated with a global nega-
tive δ13C anomaly of around 3–4‰, which is indicative of an injection of a large amount of biogenic carbon
into the Earth system driving this warmth, either in the form of CO2, CH4, or both. Although constraining
the CO2 change across the PETM is an area of active research, a number of first‐order constraints can be for-
mulated for our purposes, based on Earth system modeling of the δ13C anomaly and accounting for the
response of the deep ocean carbonate system and the carbon isotopic composition of the likely carbon
sources (e.g., Cui et al., 2011). This gives a maximum CO2 change of 5 times (from 800 to 4,000 ppm; Cui
et al., 2011) and a minimum of 2 times CO2 (1,000 to 2,000 ppm). More recent estimates, based on paleo‐
observations, are consistent with this modeling approach and suggest a change from about 900 ppm to
between 1,500 and 4,100 ppm (95% confidence range), with a central value of 2,200 ppm (Gutjahr et al., 2017),
or a change from about 700–1,000 to about 1,400–3,300 ppm (Schubert & Jahren, 2013). Here we model the
increase in CO2 by assuming a baseline of 900 ppm increasing to a Gaussian defined as N(2,400, 700) ppm.

A large uncertainty when using the PETM in this way concerns the magnitude of the change in CH4 concen-
tration that is potentially associated with the event (e.g., Zeebe et al., 2009). In the absence of firm current
constraints on CH4 and N2O concentrations at the PETM, we again use a factor applied to the CO2 forcing
to account for this additional forcing. Large and sustained inputs of CH4 directly into the atmosphere
have the potential to extend the lifetime of CH4 in the troposphere by up to a factor of 4 (Schmidt &
Shindell, 2003), so the impact of CH4 on PETM temperatures can be larger than sometimes assumed. We
therefore draw the scaling factor from N(0.4, 0.2), which is consistent with our previous assumption for
the mPWP but allows twice the uncertainty.

The PETM background climate state differs substantially from the present (e.g., there are major differences
in paleogeography and the basic state is much warmer), leaving open the possibility of substantial feedback
differences between the PETM and the present including slow “Earth system” feedbacks such as vegetation.
We have little basis for making a quantitative estimate for this and therefore include additional uncertainty

in the form of an additive term β on the net feedback of magnitude N(0,
0.5) W m−2 K−1, which has a similar magnitude to the term used for the
LGM, although in this case we do not suppose a direct relationship with
the amount of warming. The arbitrary nature of this choice, and the pos-
sibility that this component could be much more significant, is the main
reasons that we do not include the PETM result in the final summary like-
lihood for S obtained from paleo‐information.

The resulting equation for the PETM therefore has the form

ΔT ¼ −ln CO2=900ð Þ
ln 2ð Þ

ΔF2xCO2 1þ f CH4ð Þ
λ

1þ ζð Þ þ β
(24)

where ΔF2xCO2, λ, fCH4, and 1 + ζ are as before and β is the additional
state dependence parameter.

Figure 17. Likelihood arising for the Paleocene‐Eocene Thermal
Maximum. The maximum likelihood value of around 2 K corresponds to
a 5‐K warming and ~3xCO2 change together with its accompanying CH4
increase.

Table 9
Parameters of the Distributions That Are Used to Estimate S From the
PETM, Equation 24

Term Distribution

ΔT (K) N(5, 1)
CO2 (ppm) N(2,400, 700)
ΔF2xCO2 (W m−2) N(4.0, 0.3)
fCH4 N(0.4, 0.2)
β N(0, 0.5)
ζ N(0.06, 0.2)

Note. Radiative forcing per CO2 doubling from section 3.2.1.
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Table 9 summarizes the distributions discussed for the various parameters
in the PETM. Our likelihood function is shown in Figure 17.

The nature of the proxies used to estimate the forcing and climate state
at the PETM is very similar to that of the proxies used for the mPWP;
they are likely to share some errors and biases. For this reason, we do
not consider the PETM information to provide a new, fully independent
line of evidence. As a sensitivity test, we consider the case that the
uncertainties in CO2 and temperature for both periods are correlated
at the 80% level. We also assume the same transfer function ζ. Under
these assumptions, the joint likelihood (Figure 18) is shifted slightly to
lower values than the result obtained in section 5.2.1 for the mPWP
alone, with the high‐value tail slightly narrower. This calculation
depends on some highly uncertain parameters for which we have had
to make somewhat arbitrary judgments, such as the importance of state

dependence for the PETM. Differentiating between state dependence in the radiative forcing, and in the
feedbacks (Caballero & Huber, 2013), could be an area of future progress. A recent modeling study found
that changes in geography, ice, and vegetation may have had large impacts at the Eocene (Farnsworth
et al., 2019). So, while the calculation shown here may be pessimistic, we have no firm basis for asserting
a higher level of independence and choose to omit the PETM calculation from our overall result while
acknowledging that it does appear to add support to the mPWP analysis.

5.4. Combining Constraints From Warm and Cold Periods

As outlined at the end of section 5, the uncertainties in the evidence that form the constraints described in
sections 5.1 and 5.2 above are substantially independent, because the ways in which the GHG levels and
estimated temperatures are calculated are not very related (typically different measurements and proxies
are used). There are some dependencies, however, which are specifically accounted for. In particular,
dependency arises through the parameters ΔF2xCO2 and ζ. Performing the Bayesian updating across the
full vector of uncertain parameters accounts for these dependencies. Tests show that these dependencies
between our cold and warm period uncertainties hardly affect our results because the uncertainties con-
stitute only a small part of the total uncertainty in our result.

The final combined likelihood function including our evidence from both cold and warm states, and includ-
ing the dependencies, is shown in Figure 19.

5.5. Summary

Like the industrial‐era warming trend (analyzed in section 4), climate changes that occurred naturally dur-
ing earlier epochs also depended on S and can likewise constrain S if enough is known about what drove
them. We find that the two most informative time intervals are the LGM cold period (LGM, ~20,000 years
ago) and the mPWP (3.3–3 Myr ago), although we have also considered previous glacial cycles, and espe-
cially the PETM warm period (~56 Myr ago), to test for consistency. The LGM and earlier glacial maxima

were 3–7 K colder than the late Holocene (recent preindustrial millennia)
because the Earth's orbit favored climatic changes that included large ice
sheets in the Northern Hemisphere, increasing the planetary albedo, as
well as GHG drawdown (largely into the deep oceans). The mPWP was
1–5 K warmer than the Holocene due to higher ambient GHG concentra-
tions as well as smaller ice volume, and the PETMwas roughly 3–7 K war-
mer than the baseline Eocene climate due to a geologically rapid release of
GHGs. Thus, each climate change we have examined had different
aspects, which helps to provide a more reliable constraint on S. The paleo-
climate data come from intervals where the climate was different to today,
but fairly stable for several thousand years, meaning that slow feedback
processes need to be taken into account. By treating these slow processes
as forcings rather than feedbacks, we are able to make inferences about S.
Both the temperature changes that are used, and the slow feedback

Figure 19. Blue‐dashed is the cold periods' likelihood. Red dashed line is
the warm periods' likelihood. Magenta solid line is the final combined
likelihood from paleoclimate evidence.

Figure 18. Analysis of mPWP and PETM results. Blue and green dashed
lines are mPWP and PETM results as previously shown. Red line is joint
likelihood obtained accounting for dependency as described in the text. As
explained in section 5.3.2, the mPWP result is our proposed result.
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influences that are removed, are constrained using indirect proxy records. This introduces considerable
uncertainty in the climate sensitivity estimates.

Paleoclimate sensitivity estimates have been made with increasingly detailed documentation of what's
included and what's uncertain. For cold periods, estimates are predominantly (but not only) from the period
covered by the ice cores. The availability of ice core data means that radiative forcing estimates are well con-
strained (including CO2, CH4 and—through a scaling based on measurements in parts of the records—N2O,
and aerosol dust). We summarize that the most likely estimate for climate sensitivity for cold periods falls
close to 2.5 K. Extreme estimates range from a likelihood of about 0.1 at 1 K to a high‐end likelihood of about
0.35 at 6 K. Here, the low extreme of 1 K assumes a glacial temperature anomaly of −3 K, relative to prein-
dustrial times, which is the lowest‐magnitude end of estimates available. It also requires a very large radia-
tive forcing effect of ice sheets that is some 2 to 4 times larger than typical reconstructions; climate models
also do not exhibit such a strong response to ice sheets. So the low extreme of 1 K is highly unlikely. At the
high end, 6 K assumes a glacial temperature anomaly of −7 K, relative to preindustrial times, which is at the
extreme end of estimates available. It also requires a radiative forcing effect of ice sheets that is less than half
of the estimates in most studies. Hence, as high as 6 K is unlikely, although it has a slightly greater likelihood
than the low extreme of 1 K.

For past warm periods, we suggest amost likely S of 3.2 K, with extremes that range from about 1 to 8 K (like-
lihoods about 0.2 at each value). We can only give a range for the most likely estimate, because of structural
uncertainties that remain in mean global SAT increase, in non‐CO2 GHG concentrations, and in global ice
volume (sea level). More, andmore detailed, observational constraints are needed. Our low extreme estimate
assumes that temperature changes were at the low end of the published spectrum and that there was a larger
than commonly anticipated impact of non‐GHG/non‐CO2 forcing. For our low extreme of about 1.2 K, we
assumed that mid‐Pliocene global mean warming was 1 K, which equates to the present‐day climate.
Though unlikely given Pliocene paleoclimate evidence, this cannot be fully excluded. High sensitivities
require that mPWP CO2 levels were at the very low end of published estimates. If we then assume that
non‐CO2 forcing was negligible, then we find an unlikely but not impossible high extreme estimate for S
of up to 10 K. Information from the PETM broadly supports the estimated likelihood obtained using climate
information from the Pliocene, but we consider the evidence too uncertain for it to be included in the like-
lihood function.

Since the dominant uncertainties for warm and cold periods are different (e.g., ice sheet forcing affects cold
climates but not warm ones; GHGs are poorly known for deeper time warm climates but directly measured
from ice cores for more recent cold climates), they provide a tighter constraint in combination than sepa-
rately, even though they are not wholly independent. Together, they suggest that S is likely to fall within
1.5–5 K, with highest likelihood around 2.5 K. These results are fairly similar to those obtained in the
PALAEOSENS assessment (PALAEOSENS, 2012). The paleoclimate evidence offers significant promise to
constrain S further. In particular, if LGM ice sheet forcing and global temperature can be better constrained,
the cold‐period evidence could further constrain the upper end of the current range. The PETM is an active
area of research, and it may in future be possible to use evidence for this period with more confidence to
further constrain sensitivity. There is also a possibility in future of using evidence from other intervals such
as the Eocene and Miocene. Progress will depend equally on further development of biogeochemical paleo-
climate modeling to test interpretations of existing proxy data and on collection of more such data.

6. Dependence Between Lines of Evidence

Combining evidence from multiple lines hinges on a crucial question: are they independent? Some observa-
tion, assumption, model (or model component), or unknown influence on climate could have influenced
more than one line of evidence or its interpretation. Such mutual influences are inevitable at some level,
since all scientists communicate regularly and share views on the climate system. What we are concerned
with here is whether there are quantitatively significant codependencies across the major evidence lines,
and what impact this might have on our results. A pedagogical example was given in section 2.4.1, and each
of sections 3–5 has already addressed evidence codependencies within the individual, major lines (sec-
tions 3.6, 4.1.2, and 5.3.2).
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Such codependencies may either increase or decrease uncertainty. For example, some unaccounted‐for fac-
tor might cause two lines of evidence to deviate in the same direction (e.g., pushing both toward a lower
apparent S) or alternatively push them in opposite directions. In the former case, the true overall uncertainty
is larger than if we ignored the codependency, while in the latter case it is smaller. In this assessment we will
simply ignore codependencies that appear to be of the latter, “buffered” variety (a conservative strategy,
which could lead us to overestimate uncertainty). But the former, “reinforcing” codependencies require
attention.

We are not revisiting here the degree of uncertainty of any one line of evidence, but instead asking whether,
if one line of evidence for whatever reason points too low (or too high) in terms of S, this affects the inter-
pretation of the other lines. For more discussion of this issue and what is meant by independence, see
Annan and Hargreaves (2017).

6.1. Use of GCMs

An obvious suspect for codependent errors is our use of GCMs in various ways to interpret or support all
three lines of evidence. Overreliance on these models is hence dangerous, especially since the models may
differ systematically from reality in important ways.

Our use of them, however, arguably relies on different model aspects for each line of evidence. For example,
they help constrain feedbacks (section 3) and play a large role in quantifying the historical “pattern effect”
(section 4), but the former involves global mean temperature sensitivity of clouds and other variables, while
the latter involves regional departures from the global mean. These could be seen as orthogonal and indeed
appear to be uncorrelated in GCM ensembles (see below); for example, regional SST changes depend
strongly on ocean processes (e.g., Kostov et al., 2018), while global feedbacks do not (Ringer et al., 2014).
Moreover, both the feedbacks and pattern‐effect responses are supported by observations and process under-
standing. GCMs are also used to estimate adjustments to paleo forcings, but again, these involve aspects such
as atmospheric responses to ice sheets and aerosol sources, which would be expected to depend on different
model processes from those relevant to the other lines. GCM climate sensitivities are not directly used
(although GCMs do help to constrain some of the feedbacks in section 3); in general, these models are used
to quantify corrections and secondary effects (and their uncertainties), which were neglected in traditional
studies.

Nonetheless some of these “secondary effects” turn out to be large, and there are some potential interdepen-
dencies between evidence lines, some of which do involve GCMs. These are now examined.

6.2. Potential Codependencies

The main potential codependencies we see are as follows.

GCM model selection bias. Modelers and process experts are aware of the historical climate record. GCM
aerosol forcings might have been selected in order to match the observed warming rate over the twentieth
century (e.g., Kiehl, 2007), and otherwise, plausible models or feedbacks might have been discarded because
of perceived conflict with this warming rate, or aversion to a model's climate sensitivity being outside an
accepted range. If so, any factor causing an error in Shist could in principle have caused a same‐signed error
in the process estimates of S, that is, a “reinforcing” codependency.

Our strategy for mitigating this is to rely on multiple lines of evidence in assessing the strength of key feed-
backs (section 3). We find that there is sufficient evidence from observations of present‐day weather varia-
tions and climate variability, process models not used in climate simulations, and observational tests of
GCMs unrelated to historical warming, to support the process evidence and likelihoods presented without
relying on their ECS values (see section 6.1). Also, the historical evidence (section 4) relies on “bottom‐

up” estimates of aerosol forcing and does not use constraints on forcing that arise from temperature trends
over the historical record (see section 4.1.1). In addition, the historical record has been extensively investi-
gated by detection and attribution methods, which allow a change in feedback or forcing strength by rescal-
ing the time‐space pattern of response to best match the observed records. These results (see section 4.1.3)
support the inferences made from the overall warming and forcing trends. Therefore, the process evidence
may be considered essentially independent of the other two lines of evidence even if climate model develop-
ment has indeed suffered from selection biases.
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Transfer function/SST pattern error. Relating the apparent sensitivities (e.g., Shist) from historical and
paleoclimate changes to the target S requires GCMs. For the historical period this involves mainly
how models capture gradients of SST from the tropical Indo‐Pacific warm ocean to other regions and
their impact on cloud cover (section 4.2). There is evidence that these gradients may have been stronger
during cold and weaker during warm paleoclimates. The historical SST record meanwhile shows gradi-
ents within the tropics and midlatitudes strengthening more than predicted by GCMs. Stronger gradi-
ents are expected to increase the (negative) global net cloud radiative effect (see section 3.4) for a
given global mean temperature.

First, we consider the impact if this expected cloud sensitivity to warming patterns were wrong or overesti-
mated. Since the sensitivity causes us to infer S > Shist because of the “warm‐getting‐warmer” pattern in the
historical record, an overestimated cloud sensitivity would imply an overestimate of S. However, during
paleoclimate periods, where warm regions changed less than cool regions, the same error could lead to an
underestimate of S. We therefore find that codependency between paleo and historical evidence is “buf-
fered.” Codependencies are also possible whereby errors in cloud physics more generally could affect both
the historical transfer function and process understanding; however, given that there are a wide range of
cloud feedback behavior and transfer functions implied across GCMs, a codependency should appear as a
correlation between the two, but available evidence does not suggest a correlation (Dong et al., 2020)
although this merits further investigation. So we conclude that uncertainty in the cloud sensitivity to SST
patterns is not an evident codependency concern.

Amore serious concern ismisinterpretation of observed historical surfacewarming patterns and/or incorrect
expectations of forced patterns,which could affect historical and process evidence. The calculations of the his-
torical pattern effect (section 4.2.1) and low‐cloud feedback (section 3.3.2) both assume that long‐termwarm-
ing will be relatively uniform, as predicted by GCMs. However, the observed historical warming shows an
increasing warm‐cold gradient in the tropics which is not fully predicted (section 4.2). The most likely expla-
nations are an unforced variation, underestimated lag effect of ocean thermal inertia, and/or response to vol-
canic forcing. Each of these would be transient. However, there is evidence that a similar forced pattern could
be missing from GCMs due to mean state biases (Kucharski et al., 2015), raising the possibility that the resi-
dual historical warming is at least partly an equilibrium response to CO2 forcing (Luo et al., 2018; McGregor
et al., 2018). If so this would imply a negative feedback mechanism missing from current GCMs and process
evidence generally (section 3). It would also mean that S is closer to Shist, that is, not as high as calculated
assuming the observed historical pattern to be unforced. This is a reinforcing codependencywhich introduces
a one‐sided uncertainty into both the process and historical evidence, addressed further below.

Aerosol forcing error. Although better recognized with respect to the historical record, aerosol forcing uncer-
tainty also affects the paleo evidence. Given that different aerosol types are involved during each era and
may have different cloud impacts, it may be expected that any aerosol forcing errors are unrelated, in which
case no codependency is expected. But to consider this possibility anyway, if present‐day anthropogenic
aerosol negative forcing were weak relative to expectations, S would be underestimated from historical evi-
dence. However, since the LGM was much dustier than the Holocene, a related situation for dust forcing
would cause us to overestimate S from paleo evidence. Hence, even if the errors were related they would tend
to compensate if the two estimates are combined (referred to here as “buffering”). If instead preindustrial
aerosol amounts are underestimated then our historical‐estimated S would be too high, yet with less
vegetation‐related aerosol during the sparsely vegetated LGM our paleo‐estimated S would be too low.
Thus, the errors will again tend to compensate if the two are combined.

Due to the complexity of aerosols and their effects, one cannot be sure about buffering. Therefore, we have
done calculations (section 6.3 below) of the impact of codependency for extreme cases of fully codependent,
versus antidependent, effects. This follows the methodology of Annan and Hargreaves (2017) but uses a
more appropriate two‐layer climate model for the historical period. We find that the posterior PDF is only
modestly affected even in these extreme cases. We thus conclude that it is safe to set aside major concerns
about codependency of the aerosol uncertainties.

CO2 radiative forcing error. There is some uncertainty in the radiative forcing per doubling of CO2, ΔF2xCO2
(section 3.2.1). If ΔF2xCO2 is higher than the best estimate, then the true S will be proportionately higher,
since all process evidence is referenced to radiative flux variations rather than CO2 changes, while S is
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defined based on CO2 change. For other lines of evidence, an impact is also expected but it depends on the
relative magnitude and direction of the CO2 versus non‐CO2 forcings, since the contribution of CO2

increases with ΔF2xCO2: For historical warming (where CO2 and non‐CO2 forcings oppose each other) a high
ΔF2xCO2 would push net forcing higher, thus historical‐estimated S lower, while for prehistoric changes
(where other forcings reinforce CO2) this would push paleo‐estimated S higher. Because of the buffering
of effects between the historical and paleo periods, and since the uncertainty in CO2 forcing is relatively
small, we ignore this codependency.

It could be argued that the above scenarios only deal with uncertainties we know about but that some major
oversight, invisible phenomenon, or structural error in how the problem is formulated could also affect mul-
tiple lines of evidence. It is, however, difficult to deal with such “unknown unknowns” without concrete pro-
posals for particular problems whose possible impacts can be explored rationally. In trying to consider
plausible candidates on the process side—very strong and unanticipated feedback from low or high clouds
being the only candidates that seem physically able to deliver large feedbacks—it is difficult to see how a
strong feedback would fail to have registered in either of the other lines of evidence, unless some second,
unrelated surprise coincidentally canceled it out. Such multiple surprises are already catered for by consid-
ering the evidence to be independent, as long as each surprise has been allowed for properly via the tails in
the respective likelihoods (see also section 7.3). Possible medium‐term Earth system responses, such as a for-
est dieback, could fail to register in either historical or process understanding but would not appear to deliver
a large enough feedback for this dependency to significantly affect matters. Very slow responses and nonli-
nearities would affect only the paleo evidence and were accounted for there.

6.3. Simple Dependence Test

Since we did find a possible reinforcing codependency between the process and historical evidence asso-
ciated with the pattern effect, we modeled its effect using a simplified calculation in which the historical
and process likelihoods versus λ are approximated as Gaussians that each includes a distinct, unshared error
component, and a shared error component from the pattern effect. We suppose here that half the variance in
historical Δλ (0.32 from section 4) arises from uncertainty in the forced SST pattern, which would also affect
the evolution of cloud feedbacks; the other half is from uncertainty in the radiative response to a known pat-
tern (accounted for separately in the process analysis). This leads to a shared error component of N(0, 0.21).
The baseline process distribution,N(−1.30, 0.44) from Table 1, therefore includes this plus an unshared com-
ponent N(−1.30, 0.39) and the historical likelihood, approximated as N(−1.07, 0.55), includes this plus an
unshared component N(−1.07, 0.51). The two total λ likelihoods can be combined either assuming them
to be independent or assuming the unshared components to be independent but the corrections to be dupli-
cated. The PDF of S (based on the process and historical evidence only) has a 90% range of 2.2–6.9 K in the
first case, widening to 2.1–7.4 K in the second case. In other words, the codependency has a fairly small effect
on the final result, at least if approached in this way. The basic reason for this is that the shared error var-
iance, 0.04 (W m−2 K−1)2, is 6 times smaller than that of the unshared historical error and 3 times smaller
than that of the unshared process error. Therefore, the pooled uncertainty is dominated by the unshared
components. Nonetheless, this dependency may deserve further attention especially if other uncertainties
(e.g., in aerosol forcing) are significantly narrowed.

6.4. Summary

We judge that for the most part, the three lines of evidence appear to be practically independent in the sense
that any significant errors we can envisage would affect the lines differently. We do, however, find one
important uncertainty for which this is not the case, related to “pattern effects.” If CO2 forcing happens to
produce more warm‐region warming than expected, this would potentially affect both historical and
process‐based estimates of S in the same sense. Idealized calculations (section 6.3) indicate that allowing
even for this relatively strong codependency does not strongly affect a combined PDF. In our subsequent
analysis we will therefore proceed with a baseline approach of considering the three main lines of evidence
to be independent. However, given that the possibility of major, unexpected dependencies can never be ruled
out, we also explore possible impacts of this using more drastic tests where single lines of evidence are dis-
carded altogether (section 7.3).
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7. Quantitative Synthesis of Evidence for S

Here we present results from the Bayesian approach described in section 2
to produce quantitative estimates of the probability distribution for S
given the evidence presented in the previous sections. This builds on
many previous studies (e.g., Annan&Hargreaves, 2006; Hegerl et al., 2006;
SSBW16).

First, we present the results of a “Baseline” calculation. This calculation is
the synthesis of our basic assumptions as outlined in the previous sections
and is not primarily intended to represent a best or consensus estimate. It
is, however, based on transparent assumptions, the sensitivity to which
can be tested in a relatively straightforward way. In the following sections
we assess the sensitivity of the Baseline outcome to (a) the choice of prior,
(b) the exclusion of each of the lines of evidence in turn, and (c) allowan-
ces for potential uncertainties not explicitly catered for elsewhere in our
calculations. These tests, respectively, explore (a) the robustness of our
results to alternative formulations of prior beliefs as represented in the
Bayesian approach; (b) the influence of the different lines of evidence
and how much of a constraint may be provided with only two indepen-
dent lines; and (c) how much additional uncertainty a researcher would
have to have in order for their uncertainty to significantly influence the
results. These sensitivity tests inform the interpretation of our results in
section 8, based in part on the “storylines” approach of SSBW16.

7.1. Baseline Calculation

Figure 20 shows our Baseline calculation of the posterior PDF for S and
how the lines of evidence contribute to it. The PDF for S is calculated by
sampling from a uniform prior on feedback components and performing
a Bayesian update using evidence likelihoods from individual feedback
components (section 3), historical evidence (section 4), and evidence from
warm and cold paleoclimates (section 5). The emergent constraint evi-

dence from section 3 is not included in the Baseline calculation. Likelihood weights for each line of evidence
are multiplied, based on the assumption that the lines of evidence are independent (see section 2 for details).
The 66% (17–83%) range for S, given all lines of evidence included, is 2.6–3.9 K with a median of 3.1 K. The
90% (5–95%) range is 2.3–4.7 K.

Figure 20b shows marginal likelihood functions for S from the various lines of evidence. The process likeli-
hood depends on the prior (section 2) and is calculated using the default uniform λ prior used for the
Baseline calculation. These likelihoods give one indication of the relative effectiveness of the various lines
of evidence in constraining S. The values of these likelihoods at the vertical gray lines indicate the relative
strength of the corresponding evidence in constraining the 17th and 83rd percentile values (66% range) of
the posterior PDF of S, with a smaller likelihood indicating a stronger constraint. The strongest constraint
at the upper end of the S range arises from the paleoclimate evidence (mainly due to that from cold climates),
with a weaker constraint from the process evidence and the weakest constraint arising from the historical
evidence. The strongest constraint at the lower end of the range arises from the historical evidence, with
the process evidence and warm paleoclimate evidence giving weaker constraints, and the cold paleoclimate
evidence providing the weakest constraint.

A limitation of comparing marginal likelihoods as above is that, unlike the historical and paleo evidence, the
process evidence (based on feedback components) cannot be uniquely expressed as a function of λ and
ΔF2xCO2 (see section 2). This makes the marginal likelihood dependent on the Bayesian prior on the indivi-
dual feedback variables. An alternative approach is to compare the predicted PDF of S based on the process
understanding combined with a uniform λ prior with the marginal likelihoods of the historical and paleo
evidence (cf. Equation 10); this is done in Figure 20a (note that for plotting consistency the historical and
paleo evidence is shown as PDFs under uniform‐S priors, preserving the shape of the likelihoods).

(a)

(b)

Figure 20. Posterior PDF for S and comparison of lines of evidence. Panel
(a) shows our Baseline posterior PDF for S in black and PDFs for each
main line of evidence individually, where the process evidence is combined
with a uniform λ prior, while the others are combined with a uniform
prior on S. Panel (b) shows marginal likelihoods for S for the various lines
of evidence used in the Baseline calculation: the individual‐feedback
process evidence (section 3), the likelihood from historical evidence
(section 4), and the likelihoods for past warm and cold climates from
paleoclimate evidence plus their combined likelihood (section 5). All
likelihoods are scaled to have a maximum value of unity. Vertical gray lines
show the 66% range for the Baseline posterior for S.
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Multiple PDFs (or likelihoods) based on different sources of information are
not necessarily expected to match, only to overlap. In our case there is sub-
stantial overlap between the lines of evidence, whether regarded in terms of
likelihood functions (Figure 20b) or PDFs obtained as in Figure 20a, and
maximum likelihood values are all fairly close. This indicates strong consis-
tency among the three lines of evidence. The tails of the likelihoods and
PDFs are different, however, which indicates variation in the strength of
the constraints.

Our Baseline calculation above is based on one particular prior, assumes
independence between lines of evidence, and makes no allowances for
“unknown unknowns.” We therefore perform a number of sensitivity
tests to explore these limitations, to allow for the possibility that our
Baseline range for S is overconfident.

7.2. Sensitivity to Priors

We now consider different prior distributions and discuss the alternative
perspectives that these priors may represent.

As discussed in section 2, we place priors on all independent variables of
our inference model, including the six feedbacks λi, and these induce a
PPD on each dependent variable including S. The PPD of S indicates what
its posterior PDF would be, given the inference model and priors, before
any subsequent updating with evidence likelihoods. As such, the PPD

for S can be a useful tool for understanding the influence of the prior on the predicted variables for a given
inference model.

Our Baseline calculation places independent, uniform priors on the λi feedbacks, as is implicitly assumed in
many past studies of these feedbacks (section 2.4.3). Although we use uniform priors on λi, other broad func-
tions of λi yield similar results as long as the feedback priors are independent. A prior with unbounded uni-
formly distributed λi feedbacks induces a PPD for λ which is also unbounded and uniformly distributed.
Hence, our Baseline prior (Figure 21a) will be called “UL”. This, given a reasonably well constrained value
for ΔF2xCO2, results in a PPD for S that decreases with increasing S (Figure 21b), because smaller and smaller
changes in λ change S by a given amount as λ approaches 0 and S becomes large (Roe & Baker, 2007; Frame
et al., 2005). (Note, however, that for practical reasons we place bounds on the λi feedback priors in our
numerical calculations—see section 2.4.4.)

It may be argued that a uniform λ prior is undesirable since it assigns low probability density in the PPD for S
at high values of S from the outset, and it has been argued in previous studies (e.g., Frame et al., 2005)
that a state of ignorance about S is represented by considering a uniform prior probability density of S

(a)

(b)

Figure 21. Prior predictive distributions for (a) λ and (b) S. Our Baseline
(UL, red) prior is uniform in six λi feedbacks, each ~U(−10, 10) W
m−2 K−1, compared to an alternative prior (US, orange), which reweights
the Baseline prior to be uniform in S from near 0 to 20 K.

Table 10
Mean, Mode, Median, and Percentile Values of Posterior PDFs for S

5th percentile 17th percentile 50th percentile 83rd percentile 95th percentile Mode Mean

Baseline (UL, uniform λ Prior)a 2.3 2.6 3.1 3.9 4.7 3.0 3.2
US (Uniform S prior)a 2.4 2.8 3.5 4.5 5.7 3.1 3.7
UL No Process 2.0 2.4 3.1 4.1 5.2 2.7 3.3
UL No Historicala 2.0 2.3 2.9 3.7 4.6 2.6 3.1
UL No Paleo Warma 2.2 2.5 3.1 4.0 5.1 2.9 3.3
UL No Paleo Colda 2.3 2.6 3.2 4.1 5.1 3.0 3.4
UL No Paleo 2.2 2.6 3.3 4.6 6.4 2.9 3.8
US No Process 2.3 2.8 3.7 5.2 6.9 3.1 4.0
UL + EC (emergent constraints) 2.4 2.7 3.2 4.0 4.8 3.1 3.4
Fat tails 2.2 2.5 3.1 4.0 4.9 2.8 3.3

aSensitivity tests considered to bound plausible structural uncertainty.
Note. Further statistics are available in the online data repository (see Data Availability Statement).
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(see section 4). Therefore, we also consider an alternative prior that
induces an approximately uniform PPD on S, which we refer to as the uni-
form S prior (US) for brevity (Figure 21).

Specifying a prior that is uniform in S is not straightforward in our infer-
encemodel. There is no unique way to choose priors on the feedbacks λi to
yield any given PPD for S; there are many possible joint feedback priors
that yield a uniform PPD for S over some interval. Different such joint
priors over λi can induce different posterior PDFs on S, even though their
induced PPD(S) is the same. The specific case of a uniform PPD on S
implies that the feedbacks have a high probability of summing to a rela-
tively small value. Accordingly, any US prior must possess at least one
of two characteristics: It must either assume the uncertainties in the feed-
backs to be anticorrelated or else assume that the individual feedbacks are
likely to take extremely small values. In the former case, the feedbacks are
likely to have a small sum because of a natural tendency to oppose one
another; in the latter case, because sufficiently small feedbacks will have
a small sum. Although we experimented with both types of prior, we
judged the latter, small‐feedback type to be unacceptable because it would

assign an extremely small prior probability to the most likely values of some of the feedback components
(e.g., Planck, see section 3). We therefore limit further consideration to US priors achieved by feedback
anticorrelation.

To construct a prior with a uniform PPD for S using the full inference model, we take the sample from
the Baseline UL prior and weight each sample instance according to its predictive value for S in order to
give a uniform PPD for S (see section 2.3). This approach is similar to that followed by Aldrin et al. (2012)
to construct a uniform prior for S when using an inference model with priors on multiple variables.
Recalculation of the posterior PDF of S from all evidence using this prior gives a 66% range of 2.8–
4.5 K (Table 10). This shows that our final result with all evidence is encouragingly stable to changes
in prior; even with this quite drastic change in the prior and corresponding PPD for S, the posterior
PDF of S only changes by 0.2 K at the lower end and 0.6 K at the upper end of the 66% range.
While other priors could be considered, the UL and US priors appear to span the range of reasonable
options for broad priors.

This US prior does, however, have characteristics that some may find hard to justify. It requires abandoning
the presumption that feedbacks are a priori independent, instead assuming that they are anticorrelated or
naturally compensate (in our prior sample, the prior correlation of any one λi component with the sum of
the other five is −0.83). While some feedbacks do indeed negatively correlate (e.g., water vapor and lapse
rate, see section 3.2.3), discovering this for some feedbacks through process knowledge and evidence is
not the same as assuming it beforehand for all feedbacks. Doing so would imply that if knowledge is gained
about one feedback (say, ice albedo), one's confidence in the other feedbacks (e.g., clouds) will automatically
improve and best estimates possibly shift, even though nothing was directly observed about the others, and
we have no evidence for such a link. It would also imply that uncertainty could become smaller when feed-
backs are summed, rather than larger as would normally be the case. There is no evident a priori rationale
for preferring this negative (compensating) correlation over a positive (reinforcing) one—and allowing for a
broad range of possible correlations of both directions and averaging the results would produce an outcome
very close to that with no correlation (our Baseline UL prior). Previous work on feedbacks or using climate
models has never, to our knowledge, treated evidence in this way.

Note that our priors on λi feedbacks should not be considered comparable to priors used in Bayesian studies
(e.g., Johansson et al., 2015; Skeie et al., 2014, and others discussed in section 4) that do not explicitly con-
sider individual feedback processes as evidence, and which take S or λ as an independent variable, rather
than λi which are the independent variables used here. In our inference model, the process information
and prior together play the same role as would the prior in any study not treating process information about
individual feedbacks as evidence (cf. Equation 10), and a good deal of this information is not new (e.g., the
Planck response and lapse rate/water vapor feedbacks). Therefore, such studies would in principle be

Figure 22. Graphical summary of statistics of posterior PDFs for S. UL is
the Baseline calculation with a uniform prior on λ and US has a uniform
prior on S. The middle group shows the effect of removing various lines of
evidence in turn. UL + EC shows the impact of including the effect of
emergent constraints. The effect of substituting fat‐tailed distributions for
some lines of evidence is also shown for the Baseline case.

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 68 of 92



expected to include some of our process evidence in their prior, which should be considered if comparing
assumptions here to those used elsewhere.

7.3. Sensitivity to Specification of Evidence

Here we test the sensitivity of our calculations to modifying the evidence as encoded in our likelihood
functions for S. First, we exclude each line of evidence in turn from the Baseline calculation. These
“leave‐one‐out” calculations give an indication of the relative effectiveness of the various lines of evidence
in constraining S. Although we compared marginal likelihoods and PDFs from individual lines of evidence
compared with priors in section 7.1, the sensitivity tests shown here may be considered more relevant to
identifying the impacts of individual lines of evidence on the posterior PDF in a context where the majority
of evidence is being applied. The results are summarized in Table 10 and Figure 22 (see UL No Process, UL
No Historical, UL No PaleoWarm, and UL No Paleo Cold). Comparing the results of the different leave‐one‐
out tests confirms the relative strengths of the constraints of the individual lines of evidence on the upper
and lower bounds for S reported in section 7.1 (see Figure 20).

We also show the impact of removing the process evidence under a uniform Prior for S (US No Process).
This mimics some past studies that did not use process understanding and expressed a uniform prior on
S; it therefore considers the situation where one views the process understanding (including a UL prior
and the structural understanding of Equation 5) as a process model replacing a uniform‐S prior (see
US No Process BU, Table 10, and Figure 22; Figure 20b). This results in higher sensitivities than UL
No Process BU, such that if one considers the removal of this process model and replacement with
uniform‐S, the process model is found to exert a stronger constraint at the high end but less at the low
end, compared to the conclusions if one discards only the process evidence but still maintains a consistent
UL prior.

In addition, we explore the possibility that our Baseline range for Smay be overconfident due to limitations
in our treatment of the various lines of evidence. The Bayesian approach is by its very nature subjective, and
our inference model (or some other analysis choice) may have limitations that potentially result in overcon-
fident predictions. Other researchers may make different assumptions, and we would like to explore what
range of results is at the edges of what we think plausible. Hence, we use sensitivity tests to explore the con-
sequences of possible alternative assumptions. For further discussion of the limitations of our approach, see
section 7.5 below.

First we revisit the “leave‐one‐out” calculations, which may also be considered as worst‐case explorations of
what our results would look like if a line of evidence were for some reason substantially compromised, or not
accepted by some readers, or highly codependent with another evidence line in some way unrecognized in
our analysis. As such these can be used to place generous upper bounds on the impacts of uncertainties in
individual lines of evidence on our posterior PDF for S.

Excluding the process evidence from the Baseline calculation increases the 66% posterior range for S from
2.6–3.9 to 2.4–4.1 K and the 5–95% range from 2.3–4.7 to 2.0–5.2 K. Excluding the process evidence from
the calculation with the uniform S prior has a larger effect, increasing the 66% and 5–95% ranges to
2.8–5.2 and 2.3–6.9 K, respectively. Hence, the upper tail of the distribution is not robustly constrained by
historical and paleoclimate information combined alone, as the resulting constraint depends strongly on
the prior. Nevertheless, even then sensitivities beyond 5.9 K are estimated to have <10% probability, yielding
a similar upper bound to the IPCC AR5 assessment, which estimated the probability of sensitivities above
6 K as “very unlikely,” that is, <10%.

These are very extreme sensitivity tests; for them to be considered reasonable, new evidence would need to
come to light that would justify complete dismissal of all of the multiple elements of the process evidence
(and hence much of our physical understanding of the climate system). Since this is a very extreme scenario,
we do not consider the “No Process” case to plausibly represent the overall structural uncertainty. The strong
sensitivity to removing the Process evidence illustrates how important this line of evidence is to constraining
the upper bounds on S, under a uniform‐S prior.

The other leave‐one‐out tests may be considered less extreme in that they gauge the impact of excluding indi-
vidual sets of observations (historical, warm, and cold paleoclimate) from the Baseline calculation for S.
Excluding these lines of evidence from the Baseline calculation individually reduces the 5th percentile by
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at most 0.3 K, to 2.0 K and increases the 95th percentile value by at most
0.4 K, to 5.1 K. Although we consider it extremely unlikely that new infor-
mation could ever lead a future assessment to dismiss an entire line of evi-
dence, it is conceivable that multiple lines of evidence (including the
process evidence) could weaken or be interdependent to a level which
has a similar‐order effect on the range of S to the above (see Figure 24).
The leave‐one‐out tests also place a generous upper bound on the effects
of dependencies between any two lines of evidence, given that removing
one line of evidence in a pair will remove the effect of dependencies
between that pair but also removes the independent contribution of that
line of evidence.

The Baseline calculation does not include any evidence arising from
emergent constraints based upon present‐day climate observations (see discussion in section 3.6). In addi-
tion to the above sensitivity tests, we test the impact of adding this line of evidence to the Baseline calculation
(see UL + Emergent Constraints in Table 10 and Figure 22). This shifts the 66% range from 2.6–3.9 to 2.7–
4.0 K and the 5–95% range from 2.3–4.7 to 2.4–4.8 K. The shift upward of 0.1 K is consistent with the higher
S suggested by this evidence and demonstrates the potential for future revisions to our assessment of the evi-
dence to improve our estimate of S. However, its impact is small and is bounded by the selected leave‐one‐
out tests above. This reflects the relatively low confidence placed in this line of evidence and the fact that its
maximum‐likelihood S is not far from that of the other evidence.

Another potential limitation of our approach is that we assume Gaussian distributions for many prior expert
PDFs on independent variables. This does not allow for uncertainty in the assigned means and standard
deviations themselves. Accounting for this uncertainty by sampling from a distribution of candidate stan-
dard deviation values would lead to a distribution with more kurtosis, that is, fatter tails. Another way of
looking at this is that Gaussians may express overconfidence in our ability to dismiss surprising values far
from the most likely one and may therefore not well represent fully informed beliefs that are appropriately
aware of structural uncertainty. To address this concern, we include an additional sensitivity test in which
we replace many of the Gaussian evidence distributions with Student's t distributions with 5 degrees of free-
dom. (A t distribution formally results if the Gaussian parameters are being estimated empirically from a
finite, unbiased sample, see Gelman et al., 2013; although our distributions are arguably better viewed as
expert judgments, the t distribution is still a useful generalization for our purposes.) We perform this repla-
cement for variables where small samples, structural uncertainty or possible unrecognized factors could be a
significant concern. The choice of 5 degrees of freedom ismotivated by the historical pattern effect correction
term Δλ, which is informed by the sample mean and standard deviation of six GCM experiments. This is
represented by the Gaussian N(−0.5, 0.3) in the Baseline calculation. In our sensitivity test we replace this
with a t distribution with 5 degrees of freedom and mean and scale parameters equal to the mean and stan-
dard deviation of the Gaussian distribution, respectively. This increases the standard deviation by 30% from
0.3 to 0.39. The resulting distribution has a 66% range of [−0.82, −0.18], which is very similar to that for
the Gaussian distribution ([−0.79, −0.21]) but has a 5–95% range of [−1.1, +0.1], which is 22% wider than
that from the Gaussian distribution ([−0.99, −0.01]). We apply the same procedure to fatten the tails of
the following other independent variables: the process evidence feedback likelihoods λi, the adjusted forcing
ΔF and state dependence correction factor α for the paleoclimate cold periods, the CO2 concentration and
slow‐feedback scaling fESS for the paleoclimate warm periods, and the ratio (1 + ζ) of ECS to S. In each case
the t distribution gives a very similar 66% range to that of the Gaussian distribution it replaces. We find that
substituting these fat‐tailed distributions for all of the above into the Baseline calculation increases the width
of the 66% range for S slightly from 2.6–3.9 to 2.5–4.0 K and increases the width of the 5–95% range a little
more, from 2.3–4.7 to 2.2–4.9 K. These wider ranges are already encompassed by our other plausible sensi-
tivity tests described above, indicating that our conclusions on the bounds of both ranges for S are reasonably
robust to structural uncertainty.

7.4. Implications for Related Sensitivity Measures and Future Warming

Here we present results showing how S and its PDF map onto a few other related quantities of interest. To
relate these, we must rely entirely on GCMs, which can predict S and the other quantities.

Table 11
Medians and 66% Probability Ranges (in Brackets), for ECS (for One
Doubling of CO2), TCR, and Warmings in Figure 23, for Our Baseline
and Using a Uniform Prior on S

Baseline Uniform‐S PPD

ECS 3.2 [2.6,4.1] 3.5 [2.7,4.6]
TCR 1.8 [1.5, 2.2] 1.9 [1.6, 2.4]
RCP2.6 warming 1.0 [0.7, 1.4] 1.2 [0.8, 1.7]
RCP4.5 warming 1.8 [1.4, 2.3] 2.0 [1.5, 2.6]
RCP6.0 warming 2.0 [1.6, 2.6] 2.3 [1.7, 3.0]
RCP8.5 warming 3.5 [3.0, 4.2] 3.8 [3.2, 4.8]

Note. All values are in K.
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Via Equation 8 and the PDF on ζ given in section 5.2.3, our calculation pro-
vides a simultaneous calculation of the posterior PDF of ECS, which may
be compared with that of S. For our Baseline case the 5–95% (2.2–4.9 K)
and 66% (2.6–4.1 K) ranges of ECS (Table 11) are slightly wider and
stretched higher than those for S (2.3–4.7 and 2.6–3.9 K, respectively).
This is as expected from the comparison shown in Figure 1 and resulting
distribution of ζ. There is only a modest increase in the widths of the
ECS PDFs compared to those for S, presumably because the paleo evidence
more directly constrains ECS, while other evidence more directly con-
strains S. Under our uniform‐S prior, however, the 66% range for ECS
(2.7–4.6 K) expands slightly compared to that for S (2.8–4.5 K) but does
not shift upward, while the 5–95% range for ECS (2.3–5.6 K) is shifted
slightly toward lower values than for S (2.4–5.7 K). This counterintuitive
result may be due to the a priori correlation structure implicitly required
to reconcile the physical model (section 2.2) with a uniform prior probabil-
ity of S: Because ζ is uncertain, the strong expectation for high S expressed
by this prior (compared to that of the Baseline prior) combined with the
evidentiary constraints against high S implies that a posteriori ζ has a
strong chance to be negative even though a priori it was expected to be
positive on average (remembering that, in a Bayesian analysis, the PDFs
of all variables are updated when evidence is considered). Because of this,
the bounds from reasonable sensitivity tests we obtain for ECS are slightly
smaller than those for S.

For other quantities (TCR and future warming), we obtained approximate PDFs from their fits to S, broa-
dened according to the sample spread about this fit. These fits were shown in Figure 1; the resulting PDFs
of warming are shown in Figure 23 for the Baseline case, and ranges are given in Table 11 for other cases.
As the relationship between the different climate sensitivity measures is not well understood (e.g., AR4;

Figure 10.15, Frey et al., 2017; Grose et al., 2018), we choose linear fits.
These linear fits do not extrapolate through the origin for nonequilibrium
scenarios, but this is expected, as the fraction of warming that remains
unrealized (at the end of century in the case of the RCPs, or time of dou-
bling in the case of TCR) will vary with S. Within the range of substantial
probability of S, the relationships do not show any robust nonlinearity, so
none is accounted for.

The 66% range we find for TCR (1.5–2.2 K in the Baseline calculation and
up to 2.4 K otherwise) is much narrower than the IPCC AR5 likely range
of 1.0–2.5 K. However, our assessment of this quantity is very limited and
should be treated with considerable caution, as it comes largely from
sources of information more relevant to S (paleoclimate and atmospheric
process evidence), which is then converted to TCR using coupled climate
models from AR5, rather than a bottom‐up assessment of TCR that prop-
erly accounts for our physical understanding, uncertainties in transient
processes (in particular, ocean processes), and historical changes on
shorter time horizons of greater relevance to TCR. A more thorough
assessment of TCR is set aside for future projects.

For the Baseline case shown, the future‐warming PDFs indicate that the
probability that warming relative to 1995 will exceed 1.4 K (roughly
equivalent to 2 K above preindustrial, Hawkins et al., 2017) by late this
century is 17% under RCP2.6, 83% under RCP4.5, 92% under RCP6.0,
and >99% under RCP8.5. Note that while RCP8.5 has sometimes been pre-
sented as a “business as usual” scenario, it is better viewed as a worst case
(e.g., Hausfather & Peters, 2020). We make no claims here on scenario

Figure 24. PDFs of S in comparison with AR5. The Baseline PDF is shown
in black, and its 66% range (2.6–3.9 K) in gray. Colored curves show
PDFs from sensitivity tests which cover a range for S, which could plausibly
arise given reasonable alternative assumptions or interpretations of the
evidence, summarized by the magenta line (2.3–4.5 K). These are the
Baseline case but with a uniform S prior (red), the Baseline without the
Historical evidence (orange), and the Baseline case without the cold
paleoclimate evidence (blue). The 66%‐or‐greater (“likely”) range from the
most recent IPCC assessment (AR5) (1.5–4.5 K) is shown in cyan. Circles
indicate 17th and 83rd percentile values.

Figure 23. PDFs of the warming by late this century, from our Baseline
PDF of S. These warming PDFs are obtained by converting S to warming
using the best linear fit and then convolving the induced PDF with
Gaussian uncertainty, as shown by the shading in Figure 1b. Results from
RCP6.0 employ data from Forster et al. (2013). Note that the warming is
calculated relative to 1985–2005; approximate warming relative to
preindustrial is shown at the top, based on 0.6‐K warming having occurred
by 1985–2005. Warming was estimated using the difference of 20‐year
means centered on the years 1995 or 2089.

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 71 of 92



probabilities, only on warming probabilities conditional on a broad range of possible scenarios.

7.5. Limitations, Caveats, and Potential Future Approaches

Our assessment has taken an ambitious approach that has for the first time attempted to model the relation-
ships between diverse lines of evidence (including feedback components and pattern effects) with S in a con-
sistent overarching inference model framework. This approach like any other has its potential limitations,
which will only become clearer in future work which develops the approach. Here we discuss various lim-
itations of the statistical approach outlined here that could potentially be improved in future work.

First, in each section we have made those choices that we consider the most defensible and carried a single
likelihood function for each line of evidence forward into the synthesis calculations. In future work it could
be possible to develop a range of plausible alternative likelihoods for each line of evidence and apply these as
sensitivity tests in the synthesis. While we have tested the effect of substituting symmetric fatter‐tailed dis-
tributions for Gaussian distributions, future studies could test the sensitivity to other changes, for example,
skewed distributions. The statistical models developed here are intended to codify the existing knowledge
from the literature. Future research should develop these models, and it is quite likely that they may be
reparameterized and may even be formulated in terms of other variables.

Our treatment of possible dependencies across evidence lines was limited to use of ΔF2xCO2 throughout and
some sensitivity tests around pattern effect dependence. Treatments for dependencies are best addressed by
modeling them directly within the inference model. This could be taken further in future work, for instance,
by explicitly building in additional dependencies between feedback components, forcings and feedbacks, or
other quantities for which there is evidence of dependence (e.g., see Annan & Hargreaves, 2017). In particu-
lar, dependencies arising from pattern effects could be modeled more carefully once better understood, and
other dependencies (including “buffered” ones) could be modeled. The dependence between forcing and
feedbacks remains poorly understood (section 3.4), and better understanding might suggest a different
approach to that taken here, although we do not expect this to significantly affect results.

Zelinka et al. (2020) show that the range in S increases from 2.1–4.7 K in CMIP5 to 1.8–5.6 K in CMIP6. This
demonstrates the importance of combining multiple lines of evidence, as GCMs alone are not producing
increasingly confident estimates. We have deliberately not used the range of S values from climate models
to directly inform our likelihoods, but climate models inevitably inform our estimates, for example, in the
estimation of the pattern effect term in the historical likelihood, some of the feedback subcomponents from
the process evidence, and some of the paleo radiative forcing estimates (see section 6.2). We have incorpo-
rated some new results from CMIP6, but results from CMIP6 models on the strength of the pattern effect
are not yet fully available. It is in principle possible that our results could change, for example, if newmodels
predicted radically different pattern effects, which could change our interpretation of evidence from the his-
torical period, or different feedbacks which are not strongly constrained by other evidence. However, any
change in the range of S from a synthesis of all lines of evidence would be expected to be smaller than the
change in the model range alone.

Finally, there are other possible choices that could be made for the synthesis methodology, or in the use of
alternative lines of evidence, and sometimes our reasons for choosing one over another are based on very
subjective judgments. Some of the difficult issues (arising around the specifications of the priors for example)
could potentially be addressed in future using statistical simulation approaches.

7.6. Summary

Our Baseline calculation gives a 66% (17–83%) range for S of 2.6–3.9 K (gray line, Figure 24) and a 5–95%
range of 2.3–4.7 K. This case includes all evidence considered in this report, except the “emergent constraint”
evidence, whose independence from other evidence is uncertain (section 3.6). We consider the sensitivity
tests where we individually remove the historical, cold, or warm paleoclimate evidence to bound any
changes to these ranges that could plausibly occur due to reasonable alternative interpretations of the evi-
dence (see orange and blue lines in Figure 24). These place bounds of 2.3 and 4.1 K on the 66% range and
2.0 and 5.1 K on the 5–95% range for S. If we additionally include a sensitivity test where we substitute a uni-
form S prior into the Baseline calculation, we obtain bounds of 2.3 and 4.5 K on the 66% range (see magenta
line, Figure 24) and 2.0 and 5.7 K on the 5–95% range for S. Modifying the baseline calculation to include the
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emergent constraint evidence or to assume fat tailed‐distributions results in ranges which are bounded by
the above.

All of our plausible alternate calculations for the PDF of S suggest a considerable narrowing of the range
compared to that assessed at the time of the AR5 (cyan line, Figure 24). This remains true for the ECS. A
weaker constraint would be found if we disregarded all process evidence, since in that case the resulting
combined paleo and historical PDF would be highly sensitive to prior information in the upper tail. Yet even
the most generous allowances for uncertainty result in a stronger constraint on S than that which was avail-
able at the time of the AR5 assessment, indicating an advance in our assessment of the evidence for S. This
increased constraint comes almost entirely from bringing up the low end, rather than reducing the high end.

8. Summary and Conclusions
8.1. Considerations

The objective of this work was to analyze all important evidence relevant to climate sensitivity and use that
evidence to draw conclusions about the probabilities of various values of the sensitivity. In so doing we have
examined the interdependence of different lines of evidence and the possibility that structural or other flaws
in our understanding might affect conclusions or lead to overconfidence. There are subjective elements to
such an exercise, but there are also objective ones—in particular, enforcing mathematical rules of probabil-
ity to ensure that our beliefs about climate sensitivity are internally consistent and consistent with our beliefs
about the individual pieces of evidence.

All observational evidence must be interpreted using some type of model that relates underlying quantities
to observables; hence, there is no such thing as a purely observational estimate of climate sensitivity.
Uncertainty associated with any evidence therefore comes from three sources: observational uncertainty,
potential model error, and unknown influences on the evidence such as unpredictable variability (which
may or may not be accounted for in one's model). By comparing past studies that used different models
for interpreting similar evidence (see, e.g., section 4.1), we find that the additional uncertainty associated
with the model itself is considerable compared with the stated uncertainties typically obtained in such stu-
dies assuming one particular model. When numerical global climate models (GCMs) are used to interpret
evidence, they reveal deficiencies in the much simpler models used traditionally—in particular, the failure
of these models to adequately account for the effects of inhomogeneous warming. This insight is particularly
important for the historical temperature record (section 4.2), which is revealed by GCMs to be compatible
with higher climate sensitivities than previously inferred using simple models. In general, many published
studies appear to have overestimated the ability of a particular line of evidence to constrain sensitivity, some-
times leading to contradictory conclusions (see section 4.1). When additional uncertainties are accounted
for, single lines of evidence can sometimes offer only relatively weak constraints on the sensitivity.

The effective sensitivity S analyzed here is defined based on the behavior during the first 150 years after a
step change in forcing, which is chosen for several practical reasons explained in section 2.1. While our study
also addresses other measures of sensitivity (the TCR and long‐term equilibrium sensitivity), the calculations
of these were not optimal and future studies could apply a methodology similar to that used here to quantify
them, or other quantities perhaps more relevant to medium‐term warming, more rigorously.

After extensively examining the evidence qualitatively and quantitatively (sections 3–5), we followed a num-
ber of past studies and used Bayesian methods to attempt to quantify the implications and probability distri-
bution function (PDF) for S. It must be remembered that every step of this process (choosing priors,
computing likelihoods, etc.) involves judgments or models, and results will depend on assumptions and
assessments of structural uncertainties that are hard to quantify. Thus, we emphasize that a solid qualitative
understanding of how the evidence stacks up is at least as important as any probabilities we assign.
Nonetheless, sensitivity tests shown in section 7 suggest that our results are not very sensitive to reasonable
assumptions in the statistical approach.

8.2. Key Findings

Each main line of evidence considered here—process knowledge, the historical warming record, and the
paleoclimate record—accords poorly with values outside the traditional “Charney” range of 1.5–4.5 K for
climate sensitivity S. When these lines of evidence are taken together, because of their mutual

10.1029/2019RG000678Reviews of Geophysics

SHERWOOD ET AL. 73 of 92



reinforcement, we find the “outside” possibilities for S to be substantially reduced compared to those
from individual lines of evidence. Whatever the true value of S is, it must be reconcilable with all pieces
of evidence; if any one piece of evidence effectively rules out a particular value of S, that value does not
become likely again just because it is consistent with some other, weaker, piece of evidence as long as
there are other S values consistent with all the evidence (see SSBW16). If on the other hand every value
of S appeared inconsistent with at least one piece of evidence, the evidence would need reviewing to look
for mistakes. But we do not find this situation. Instead, we find that the lines are broadly consistent in
the sense that there is plenty of overlap between the ranges of S each supports. This strongly affects our
judgment of S: if the true S were 1 K, it would be highly unlikely for each of several lines of evidence to
independently point toward values around 3 K. And this statement holds even when each of the indivi-
dual lines of evidence is thought to be prone to errors.

We asked the following question (following SSBW16): What would it take, in terms of errors or
unaccounted‐for factors, to reconcile an outside value of S with the totality of the evidence? A very low sen-
sitivity (S ~ 1.5 K or less) would require all of the following:

1. Negative low‐cloud feedback. This is not indicated by evidence from satellite or process‐model studies and
would require emergent constraints on GCMs to be wrong. Or, a strong and unanticipated negative feed-
back from another cloud type such as cirrus, which is possible due to poor understanding of these clouds
but is neither credibly suggested by anymodel, nor by physical principles, nor by observations (section 3).

2. Cooling of climate by anthropogenic aerosols over the instrumental period at the extreme weak end of
the plausible range (near 0 or slight warming) based both on direct estimates and attribution results using
warming patterns. Or, that forced ocean surface warming will be much more heterogeneous than
expected and cooling by anthropogenic aerosols is from weak to middle of the assessed range (section 4).

3. Warming during the mPWP well below the low end of the range inferred from observations and
cooling during the LGM also below the range inferred from observations. Or, that S is much more
state‐dependent than expected in warmer climates and forcing during these periods was higher than esti-
mated (section 5).

In other words, each of the three lines of evidence strongly discounts the possibility of S around 1.5 K or
below: The required negative feedbacks do not appear achievable, the industrial‐era global warming of
nearly 1 K could not be fully accounted for, and large global temperature changes through Earth history
would also be inexplicable.

A very high sensitivity (S > 4.5 K) would require all of the following to be true:

1. Total cloud feedback stronger than suggested by process‐model and satellite studies (section 3).
2. Cooling by anthropogenic aerosols near the upper end of the plausible range. Or, that future feedbacks

will be much more positive than they appear from this historical record because the mitigating effect
of recent SST patterns on planetary albedo has been at the high end of expectations (section 4).

3. Much weaker‐than‐expected negative forcing from dust and ice sheets during the LGM (section 5). Or, a
strong asymmetry in feedback state dependence (significantly less positive feedback in cold climates than
in the present, but relatively little difference in warmer paleoclimates).

Thus, each of the three lines of evidence also argues against very high S, although not as strongly as they do
against low S. This is mainly because of uncertainty in how strongly “pattern effects” may have postponed
the warming from historical forcing, which makes it difficult to rule out the possibility of warming acceler-
ating in the future based on what has happened so far. Indeed, we find that the paleoclimate record (in par-
ticular, the LGM) now provides the strongest evidence against very high S, while all lines provide more
similar constraints against low S (paleo slightly less than the others).

An important question governing the probability of low or high S is whether the lines of evidence are inde-
pendent, such that multiple chance coincidences would be necessary for each of them to be wrong in the
same direction (section 6). For the most part, the various elements in low‐ and high‐S scenarios do appear
superficially independent. For example, while possible model errors are identified that (if they occurred)
could affect historical or paleo evidence, they mostly appear unrelated to each other or to global cloud feed-
back or model‐predicted S. Some key unknowns act in a compensating fashion (i.e., where an unexpected
factor would oppositely affect two lines of evidence, effectively canceling out most of its contributed
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uncertainty). Even in the one identified possibility (see below) where an unknown could affect more than
one line of evidence in the same direction, modeling indicates a relatively modest impact on the PDF.

IPCC AR5 concluded that climate sensitivity is likely (≥66% probability) in the range 1.5–4.5 K. The prob-
ability of S being in this range is 93% in our Baseline calculation and is no less than 82% in all other “plau-
sible” calculations considered as indicators of reasonable structural uncertainty (see section 7.3). Although
consistent with IPCC's “likely” statement, this indicates considerably more confidence than the minimum
implied by the statement. We also find asymmetric probabilities outside this range, with negligible probabil-
ity below 1.5 K but up to an 18% chance of being above 4.5 K (7% in the Baseline calculation). This is con-
sistent with all three lines of evidence arguing against low sensitivity fairly confidently, which strengthens
in combination. Given this consensus, we do not see how any reasonable interpretation of the evidence
could assign a significant chance to S < 1.5 K. Moreover, our plausible sensitivity experiments indicate a
less‐than‐5% chance that S is below 2 K: Our Baseline 5–95% range is 2.3–4.7 K and remains within 2.0
and 5.7 K under reasonable structural changes.

Since the extreme tails of the PDF of S are more uncertain and possibly sensitive to “unknown unknowns”
and mathematical choices, it may be safer to focus on 66% ranges (the minimum for what the IPCC terms
“likely”). This range in our Baseline case is 2.6–3.9 K, a span less than half that of AR5's likely range, and
is bounded by 2.3 and 4.5 K in all plausible alternative calculations considered. Although we are more con-
fident in the central part of the distribution, the upper tail is important for quantifying the overall risk asso-
ciated with climate change and so does need to be considered (e.g., Sutton, 2019; Weitzman, 2009). We also
note that allowing for “surprises” in individual lines of evidence via “fat‐tailed” likelihoods had little effect
on results, as long as such surprises affect the evidence lines independently.

Our S is not the true equilibrium sensitivity ECS, which is expected to be somewhat higher than S due
to slowly emerging positive feedback. Values are similar, however, because we define S for a quadru-
pling of CO2, while ECS is defined for a doubling, which cancels out most of the expected effect of
these feedbacks (section 2.1). We find that the 66% ECS range, at 2.6–4.1 K (Baseline) bounded by
2.4 and 4.6 K, is not very different from that of S, though slightly higher. Thus, our constraint on
the upper bound of the “likely” range for ECS is close to that of the IPCC AR5 and previous assess-
ments, which formally adopt an equilibrium definition. The constraint on the lower bound of the
“likely” range is substantially stronger than that of AR5 regardless of the measure used. The uncertain-
ties in ECS and S assessed here are similar because each is somewhat better constrained than the other
by some subset of the evidence.

Among the plausible alternate calculations (see section 7.3), the one producing the weakest high‐end con-
straint on S uses a uniform‐S‐inducing prior, which shifts the ranges upward to 2.8–4.5 K (66%) and
2.4–5.7 K (90%). Our Baseline calculation assumes feedbacks are independent (or that dependence is
unknown), which predicts a nonuniform prior PDF for S; to predict a uniform one requires instead assuming
a known, prior dependence structure among the feedbacks (see section 7.2). Although lack of consensus on
priors remains a leading‐order source of spread in possible results, we still find that sensitivity to this is suf-
ficiently modest that strong constraints are possible, especially at the low end of the S range.

The main reason for the stronger constraints seen here in contrast to past assessments is that new analysis
and understanding has led us to combine lines of evidence in a way the community was not ready to do pre-
viously. We also find that the three main lines of evidence are more consistent than would be expected were
the true uncertainty to be as large as in previous assessments. While some individual past studies have
assigned even narrower ranges, as discussed above, past studies have often been overconfident in assigning
uncertainty so not too much weight should be given to any single study. We note that although we did not
use GCM “emergent constraint” studies using present‐day climate system variables in our base results, our
results are nonetheless similar to what those studies suggest in the aggregate (see section 3.6 for discussion of
these studies and why they were excluded from our Baseline calculation).

New models run for CMIP6 are showing a broader range of S than previous iterations of CMIP (Zelinka
et al., 2020). Our findings are not sensitive to GCM S distributions since we do not directly rely on them (see
section 6.1). The highest and lowest CMIP6 S values are much less consistent with evidence analyzed here
than those near the middle of the range. Some of the effects quantified in this paper with the help of
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GCMs were looked at only with pre‐CMIP6 models, and interpretations of evidence might therefore shift in
the future upon further analysis of newer models, but we would not expect such shifts to be noteworthy
unless they involved significant improvements in model skill against relevant observations (see below).

8.3. Looking Forward

Our approach not only yields new estimates of uncertainty but points to particular directions in which
research could most productively improve constraints in the future. Here we review these; for more details
see sections 3.7, 4.3, 5.5, and 6.2.

One uncertainty particularly stands out in our analysis. Recent inhomogeneities of surface warming in the
Pacific (with less or no warming in the cooler regions compared to the warmer regions) are not fully cap-
tured by any CMIP5 coupled climate models with historical forcings, and we are unsure whether this is
due predominantly to model errors in internal variability, ocean heat uptake, or the equilibrium forced
SST warming pattern. Internal variability is strongly suspected and ocean heat uptake errors are also likely;
but if unexpected model errors in the equilibrium response pattern are involved, this would affect both pro-
cess and historical evidence, compromising the assumed independence. A preliminary calculation
(section 6.3) suggests that this issue is unlikely to substantially change results, but the matter needs further
exploration. Therefore, a high priority for further constraining climate sensitivity, especially at the high end,
is to more convincingly explain this pattern of surface warming (related to the so‐called “warming hiatus”)
and quantify its impact on the planetary energy balance. It might be similarly helpful to better understand
the “Grand Hiatus” of the 1960s. Doing so would make historical warming a better constraint.

Process information played a significant role in our analysis (section 3) but is currently limited by our under-
standing of how behavior we observe in response to short‐term (i.e., interannual) variability relates to feed-
backs on forced climate change. Further modeling work is needed to improve this. There has been rapid
progress in recent years in the understanding of cloud feedback mechanisms, and continued progress could
substantially improve constraints—but with much recent progress on tropical low clouds, more emphasis is
needed on other cloud types. Satellite observations that provide information on the vertical distribution of
clouds and its changes have recently proven valuable in testing model feedback predictions, and their con-
tinuation would increase the chances of further constraints.

The historical record currently provides a useful constraint only against very low S, but there is potential for
improvement. Better constraints on aerosol forcing have proven elusive, but with further effort using more
comprehensive models, the time and geographic evolution of climate signals may finally allow the cooling
by aerosols and warming by GHGs to be teased apart, with the decrease in emissions from some regions pro-
viding potential for better constraints already. Progress on quantifying “pattern effects” (see above) is also
ongoing and will benefit from improved process understanding. To fully resolve both issues may require
further improvement of climate models to better reproduce decadal climate variations. Evidence from the
historical record will also continue to grow in its power to constrain S with the gradual lengthening of the
record (with the crucial proviso that the key variables continue to be well monitored by global observing sys-
tems). This should particularly help with disentangling aerosol cooling from greenhouse warming, due to
divergent forcing patterns with aerosol influences globally close to flat while GHGs are continuing to sharply
increase.

Evidence from the paleorecord will benefit from the continuing growth of modeling activities and improved
observation/proxy characterization of other warm periods in the geological past, which are not yet suffi-
ciently understood to be considered here. Additionally, research into the magnitudes, efficacies and uncer-
tainties of forcings in the paleoclimate periods assessed is also needed. In particular, better characterization
of ice sheets, dust, and potentially other aerosol effects are needed. How S depends on background state
remains a critical topic where better observations and modeling are needed. We strongly suggest that more
work on paleoclimate be performed with the same models that are being used for the historical and future
projections.

Although any single metric of global warming has limitations, S is a bedrock parameter of the global climate
system. The scientific community has had difficulty narrowing its uncertainty range far beyond the prescient
initial estimate by Charney (National Research Council, 1979), which was based on very limited informa-
tion. While much research since has confirmed this range, we now argue that in combination this wealth
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of evidence has indeed narrowed it and shifted the central value upward. Moreover, we see prospects for
research to further narrow the range in the not too distant future, and believe that this is an important con-
tinuing goal for climate science.

Data Availability Statement

Data and code supporting this analysis have been made publicly available via Zenodo archive site (available
via http://doi.org/10.5281/zenodo.3945276).
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