1 OCTOBER 2020

ZARAKAS ET AL.

Plant Physiology Increases the Magnitude and Spread of the Transient Climate
Response to CO, in CMIP6 Earth System Models?

CLAIRE M. ZARAKAS

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

ABIGAIL L. S. SWANN

Department of Atmospheric Sciences, and Department of Biology, University of Washington, Seattle, Washington

MARYSA M. LAGUE

Department of Atmospheric Sciences, University of Washington, Seattle, Washington, and Department of Earth and Planetary
Science, University of California, Berkeley, Berkeley, California

KYLE C. ARMOUR

Department of Atmospheric Sciences, and School of Oceanography, University of Washington, Seattle, Washington

JAMES T. RANDERSON

Department of Earth System Science, University of California, Irvine, Irvine, California

(Manuscript received 5 February 2020, in final form 23 May 2020)

ABSTRACT

Increasing concentrations of CO; in the atmosphere influence climate both through CO,’s role as a green-
house gas and through its impact on plants. Plants respond to atmospheric CO, concentrations in several ways
that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conduc-
tance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth
system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the
physiological contribution to transient warming has yet to be assessed systematically in Earth system models.
Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model
Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate
response (TCR), which is defined as the change in globally averaged near-surface air temperature during the
20-yr window centered on the time of CO, doubling relative to preindustrial CO, concentrations. In CMIP6
models, the physiological effect contributes 0.12°C (o 0.09°C; range: 0.02°-0.29°C) of warming to the TCR,
corresponding to 6.1% of the full TCR (o: 3.8%; range: 1.4%-13.9%). Moreover, variation in the physiological
contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR
estimates than it does to the mean. The largest contribution of plant physiology to CO,-forced warming—and
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the intermodel spread in warming—occurs over land, especially in forested regions.

1. Introduction

Increasing concentrations of atmospheric CO, alter global
temperature both through CO,’s role as a greenhouse gas
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0078.s1.
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within the atmosphere (radiative effect) and through
plants’ response to CO, at the land surface (physiolog-
ical effect). Plants respond to atmospheric CO, con-
centrations by regulating their stomata (pores on the
leaves that modulate the exchange of CO, and water
vapor between the leaf and the atmosphere), changing
water use, adjusting canopy leaf area, and, ultimately,
changing species composition and vegetation cover.
These plant physiological responses to higher CO,
can physically influence land surface temperature by
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altering land evapotranspiration, surface albedo, and
surface roughness, which are important controls over
the fluxes of water and energy between the land surface
and the atmosphere. Here we use the term ‘““physiolog-
ical effect” to encompass the net biogeophysical effect
of all plant responses to increasing CO,, but note that in
some previous studies (e.g., Skinner et al. 2018) the term
refers solely to the effect of changes in stomatal con-
ductance. The physiological effect in this study may
therefore be smaller than some previous estimates (e.g.,
Skinner et al. 2018; Cao et al. 2010) because increases in
leaf area can counteract the influence of changes in
stomatal conductance on land evapotranspiration.

Plant responses to CO, modulate land evapotranspi-
ration through two opposing mechanisms. Higher con-
centrations of CO, in the atmosphere provide a larger
gradient over which CO, diffuses into the interior air-
space of leaves. As a result, most plant types close their
stomata in response to increasing CO,, thereby de-
creasing transpiration per unit of leaf area (Field et al.
1995). In contrast, photosynthetic rates under some en-
vironmental conditions are limited by access to CO,,
and in these instances more CO, can lead to higher rates
of photosynthesis, which is often referred to as CO,
fertilization. CO, fertilization tends either to have no
influence on canopy leaf area or to increase canopy leaf
area (Norby and Zak 2011; Donohue et al. 2013), which
increases transpiration. The physiological effect’s net
influence on land evapotranspiration therefore depends
on the relative magnitude of the stomatal response and
the leaf area response, as well as the extent to which
vegetation influences land—-atmosphere interactions in a
given region (Lian et al. 2018). Most Earth system
models (ESMs; Swann et al. 2016; Lemordant et al. 2018)
and field experiments (Hungate et al. 2002; Leakey et al.
2009) suggest that the stomatal response term dominates
in areas with moderate to high leaf area, leading to a net
decrease in land evapotranspiration. However, future
projections of photosynthetic rates, leaf growth rates, and
thus transpiration remain highly uncertain (Friedlingstein
et al. 2006; Anav et al. 2013; Piao et al. 2013; Smith et al.
2016; Lian et al. 2018).

Physiologically driven reductions in evapotranspiration
can warm local land temperatures directly by decreasing
evaporative cooling, as well as indirectly through influ-
ences on low-level humidity, cloud cover, and precipita-
tion. Recent modeling studies have demonstrated that
physiologically driven decreases in land evapotranspira-
tion can reduce cloud cover by decreasing low-level rel-
ative humidity (Doutriaux-Boucher et al. 2009; Andrews
et al. 2011, 2012; de Arellano et al. 2012; Lemordant et al.
2018), which amplifies regional physiologically driven
warming. If the leaf area response were to dominate over
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stomatal responses, the resulting increase in evapotrans-
piration could decrease land temperatures through these
same mechanisms. Physiologically forced drying of the
boundary layer and warming of the land surface can also
impact large-scale atmospheric dynamics and regional
precipitation (Kooperman et al. 2018a; Langenbrunner
et al. 2019; Saint-Lu et al. 2019; Park et al. 2020).

In addition to influencing land surface temperature by
altering evapotranspiration, the plant physiological re-
sponse to CO, can also influence land surface temper-
ature by altering land surface albedo. CO, fertilization
generally decreases albedo (thereby increasing tem-
perature) by increasing leaf area and, within dynamic
vegetation models, by shifting plant functional types
from grasses to trees (Bala et al. 2006; Andrews et al.
2019). Expansion of forests in boreal and Arctic regions
can result in especially large albedo decreases (Betts
2000; Bala et al. 2006; O’ishi et al. 2009; Andrews et al.
2019; Xu et al. 2020) because increases in foliage mask
bright snow.

The global-scale temperature implications of plants’
physiological responses to CO, have been long ac-
knowledged. Sellers et al. (1996) were the first to
quantify physiologically driven warming by coupling a
biosphere model to an atmosphere model, finding that
under a doubling of CO, the physiological effect in-
creased global land temperature by about 0.3°C and
mean global temperature by about 0.1°C. Since then,
multiple modeling studies have demonstrated that the
plant physiological response tends to increase land
temperature in most modern ESMs on annual time
scales (Betts et al. 2007; Cao et al. 2010; Andrews et al.
2011; Arora et al. 2013; Swann et al. 2016; Lemordant
etal.2016,2018; Arora et al. 2019) and during heatwaves
(Lemordant et al. 2016; Skinner et al. 2018; Lemordant
and Gentine 2019). In particular, as part of their analysis
to disentangle carbon-concentration and carbon-climate
feedbacks, Arora et al. (2013, 2019) show that the physi-
ological effect drives modest transient global warming in
most ESMs from phases 5 (Arora et al. 2013; Figs. 2a—c)
and 6 (Arora et al. 2019; Figs. 4a—c) of the Coupled Model
Intercomparison Project (CMIP5 and CMIP6, respec-
tively), although they explicitly quantify the physiological
warming only for the multimodel mean.

Despite this demonstrated physiological influence on
global surface temperatures, the physiological effect has
received limited recognition in the climate dynamics
literature. Although plants’ physiological responses to
CO; are already embedded in many ESMs that are used
to estimate the transient climate response (TCR) and
equilibrium climate sensitivity (ECS), studies that ex-
plicitly quantify the physiological contribution to such
global-scale climate sensitivity metrics have been limited
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TABLE 1. Summary of CMIP experiments used.

Influence of CO, concentration on

Experiment CMIPS5 experiment name CMIP6 experiment name Land Ocean Atmosphere
FULL 1pctCO2 1pctCO2 1% per year 1% per year 1% per year
PHYS esmFixClim1 1pctCO2-bgc 1% per year 1% per year Pre-industrial
RAD exmFdbk1 1pctCO2-rad Pre-industrial Pre-industrial 1% per year
PI piControl piControl Pre-industrial Pre-industrial Pre-industrial

to ESMs from a few individual modeling centers (sum-
marized in Table S1 in the online supplemental material;
Sellers et al. 1996; Betts et al. 1997; Cox et al. 1999;
Douville et al. 2000; Levis et al. 2000; Bala et al. 2006;
Betts et al. 2007; Doutriaux-Boucher et al. 2009;
Boucher et al. 2009; Cao et al. 2009; O’ishi et al. 2009;
Cao et al. 2010; Andrews et al. 2011; Pu and Dickinson
2012). Physiology’s contribution to the TCR has not
been systematically assessed across models and
CMIP phases.

Additionally, past studies in the climate sensitivity
literature have not specifically quantified the physio-
logical contribution to the TCR using the same ex-
perimental methodology from which the full TCR is
calculated. For example, baseline levels of CO, have
ranged from 280 to 400 ppm across experiments (Table S1)
and the physiological effect’s influence on temperature has
been analyzed from both abrupt (Doutriaux-Boucher et al.
2009; Cao et al. 2010; Andrews et al. 2011) and transient
(Bala et al. 2006; Boucher et al. 2009) CO, perturbations.
Modeling studies have also differed in whether they in-
clude both the stomatal and leaf area components of the
physiological effect or only the stomatal component. While
these different experimental designs have provided in-
sights into the mechanisms and time scales of the physio-
logical effect’s influence on climate, they do not provide
systematic estimates of the full physiological contribution
to the TCR across ESMs.

The lack of systematic intermodel comparison of the
physiological contribution to the TCR is a problematic
gap in the existing literature because past work suggests
that physiologically driven warming differs across models.
Arora et al. (2013, 2019) documented that the magni-
tude of global physiologically driven warming varies
across models, reflecting that models differ both in how
plants respond to increasing CO, (Friedlingstein et al.
2006; Anav et al. 2013; Piao et al. 2013; Smith et al. 2016;
Lian et al. 2018) and in how the atmosphere responds
to perturbations to the land surface energy budget
(Andrews et al. 2009; Devaraju et al. 2018). This sug-
gests that intermodel disagreement about the magnitude
of physiologically driven warming may be an unrecog-
nized contributor to intermodel spread in CO,-forced
warming. Additionally, poor model agreement on the

magnitude of physiologically driven warming would
mean that an estimate derived from a single model may
not capture the true multimodel mean. To address this
gap, we use standardized carbon cycle model simula-
tions from the CMIP5 and CMIP6 archives to assess
1) the magnitude of the physiological effect’s influence
on temperature across models, 2) whether trends in the
physiological effect contribute to the increase in the
TCR noted for many recent models (Andrews et al.
2019; Golaz et al. 2019; Flynn and Mauritsen 2020),
3) the spatial pattern of physiologically driven temper-
ature changes, 4) how physiological processes contribute
to variability in multimodel estimates of the TCR, and
5) the mechanisms through which the physiological ef-
fect influences temperature.

2. Methods
a. CMIP experiments

As part of CMIP5 and CMIP6, modeling groups per-
formed three concentration-driven experiments (sum-
marized in Table 1) in which CO, concentrations increase
by 1% per year from preindustrial levels (284.3 ppm) to a
quadrupling of CO, (1144.9 ppm), while all other forcings
remain at preindustrial levels. The spatial pattern of
vegetation in these simulations comes from the pre-
industrial era; this spatial pattern remains constant
throughout the simulation except for in land models
with dynamic vegetation (Tables S2 and S3), where the
distribution of plant functional types changes based
on climate and resource availability. In one set of sim-
ulations, referred to here as FULL (CMIP6 experiment
“IpctCO2”), both the atmosphere and carbon cycle
(on land and in the oceans) experience increasing CO,
concentrations. Additional experiments conducted as
part of the Coupled Climate-Carbon Cycle Model
Intercomparison Project (C4MIP; Friedlingstein et al.
2006; Jones et al. 2016) enable us to isolate how much
the physiological and radiative effects of CO, each
contribute to surface warming. In a set of C4AMIP sim-
ulations, referred to here as RAD (CMIP6 experiment
“1pctCO2-rad”), only the atmosphere experiences in-
creasing CO, concentrations, while the terrestrial and
oceanic carbon cycles experience constant preindustrial
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CO, concentrations. In another set of C4MIP simula-
tions, referred to here as PHYS (CMIP6 experiment
“1pctCO2-bgc”), the radiative transfer submodels in
the atmosphere experience constant preindustrial CO,
concentrations, while the land surface and ocean carbon
cycle submodels experience the increasing CO, con-
centrations. We use the concentration-driven preindus-
trial control experiment (referred to here as PI; CMIP6
experiment “piControl”) as the baseline from which
anomalies are calculated.

b. Models

We analyze output from all ESMs that had uploaded
near-surface air temperature monthly data for the FULL,
PI, and PHYS and/or RAD experiment to the Earth
System Grid by 13 May 2020. This consisted of 8 CMIP5
models (Table S2) and 12 CMIP6 models (Table S3).
These models all include interactive representations of
the carbon cycle; plants in these models respond to in-
creasing CO, by changing leaf area, stomatal conduc-
tance, and, in some models, the location and distribution
of plant functional types (indicated in Tables S2 and S3).
Three models from CMIP6 have dynamic vegetation;
however, we do not believe this is a large enough set
of models to draw general conclusions about the impact
of dynamic vegetation. In addition, one of these three
models is UKESM1-0-LL, which has a significantly
larger physiologically driven temperature response rel-
ative to other models, but it is unclear if this stronger
temperature response is driven by dynamic vegetation.

Ocean responses to increasing CO; include changes in
inorganic and biological carbon cycling, which have
negligible direct influences on modeled ocean surface
temperature. The only potential direct influences of
ocean carbon cycle responses on ocean surface tem-
peratures in the PHYS experiments are through changes
in plankton community structure, which can alter 1)
ocean biogeophysical properties and 2) the emission of
gases and particles, which influence aerosol formation
(Hense et al. 2017). These effects are not represented in
most models. We calculate multimodel mean maps after
regridding model output to a consistent 0.9424° latitude X
1.25° longitude grid.

¢. Calculation of climate sensitivity metrics TCR
and T140

We calculate the TCR as the change in globally av-
eraged near-surface air temperature during the 20-yr
window centered on the time of CO, doubling (years 61—
80 of the simulation where CO, concentration increases
by 1% per year) relative to preindustrial atmospheric
CO; concentration. When using the PI experiment as a
control, we account for model drift by subtracting the

JOURNAL OF CLIMATE

VOLUME 33

linear trend of PI years 1-140 following Gregory and
Forster (2008), where year 1 corresponds to the year at
which FULL, RAD, and PHYS were branched from PI.
We refer to the physiological and radiative contributions
to the full TCR as TCRppys and TCRgr ap, respectively.
We also quantify the physiological and radiative con-
tributions to the T140 metric (Gregory et al. 2015; Grose
et al. 2018). We calculate T140 as the change in globally
averaged near-surface air temperature during the 20-yr
window that ends at the time of CO, quadrupling (years
121-140 of the simulation where CO, concentration
increases by 1% per year) relative to the linearly de-
trended PI experiment following Gregory et al. (2015).
We assess whether our estimates of physiologically
driven warming are robust relative to variability in the
Earth system by comparing TCRpyys and T140pgys to
the distribution of 20-yr running mean global tempera-
tures in the full PI control experiments (Fig. S1). In two
of the CMIP6 models evaluated here (BCC-CSM2-MR
and CNRM-ESM2-1), large multidecadal (greater than
20 years) oscillations exist in the PI control (Fig. S1;
noted in Parsons et al. 2020). The magnitude of these
oscillations greatly exceeds the magnitude of the TCRpyys
signal, and thus we cannot confidently quantify
TCRpyys for these two models. These models’ large
multidecadal PI oscillations also have implications for
TCREuLL, as they suggest that model TCRgyyp esti-
mates may be strongly influenced by variability rather
than only representing the CO,-forced warming signal,
since for these models smoothing out variability would
require an averaging period of greater than 20 years.

d. Isolating physiology’s influence on temperature

We quantify the influence of the physiological effect
in two ways: as the difference between the FULL and
RAD simulations (FULL-RAD) and as the difference
between the PHYS and PI simulations (PHYS-PI).
Both represent physiology’s influence on the TCR, but
FULL-RAD includes any nonlinear interactions be-
tween the radiative and physiological effects of in-
creasing CO,, while PHYS-PI does not. For example,
FULL-RAD would include the interaction between
CO, fertilization and changes in leaf area [quantified as
the leaf area index (LAI)] induced by radiatively driven
warming. Warming generally increases vegetation pro-
ductivity in high latitudes that are temperature-limited
under current conditions (Qian et al. 2010), thereby in-
creasing leaf area (Keenan and Riley 2018), while some
ESMs suggest warming may decrease vegetation pro-
ductivity and leaf area in the tropics (Mahowald et al.
2016) where current temperatures are already near
plants’ optimal temperatures for photosynthesis. We
focus on the FULL-RAD methodology in the main text
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FI1G. 1. Time series of global mean temperature change for (a) all CO,-forced warming, as calculated from FULL-PI; (b) the radiative
contribution to global mean CO,-forced warming, as calculated from RAD-PI; and (c) the physiological contribution to global mean CO,-
forced warming, as calculated from FULL-RAD. Time series in (a), (b), and (c) are smoothed with a 20-yr rolling average. The dark gray
vertical line marks the time of CO, doubling, and the light gray bar indicates the 20-yr period surrounding the time of CO, doubling.
Colors indicate modeling center and line types indicate CMIP phase (CMIP5: dashed; CMIP6: solid). Temperature changes for GFDL-
ESM2M are only shown for years 1-80 because this model stopped ramping up CO; concentration after reaching 2xCO,. Note that the set
of models included in the average differs between CMIP5 and CMIP6, and that the y-axis scale in (c) differs from (a) and (b).

because it emphasizes how much the physiological effect
changes climate relative to what models would other-
wise show from radiative forcing alone. Because FULL
and RAD branch from the same point of the PI simu-
lation, using FULL-RAD to quantify the physiological
effect also avoids issues related to drift in the PI control.
We discuss the nonlinearity between the radiative and
physiological effects of CO, in more detail in the sup-
plemental material (Note S1; Figs. S2-S5).

e. Partitioning physiological influences on
evapotranspiration

To partition the total physiologically driven change in
land evapotranspiration into its component physiologi-
cal drivers, we derived Eq. (1) (see Derivation S1 in the
supplemental material). The four terms on the right-
hand side of Eq. (1) indicate the land evapotranspiration
change due to 1) changes in leaf area, 2) changes in sto-
matal conductance (approximated as changes in transpi-
ration per leaf area), 3) interactions between changes in
stomatal conductance and changes in leaf area, and 4)
changes in land evaporation:

T T T
AET = <7) AL+ Lygp Ay +AZAL+AE, (1)
REF

where ET is evapotranspiration (mmday '), T is tran-
spiration (mmday '), L is leaf area index (unitless), and
E is evaporation (mmday '). The REF subscript indi-
cates the value from the reference experiment without

physiological responses to CO, (RAD for the FULL-
RAD method and PI for the PHYS-PI method), and
A indicates the physiologically driven change (e.g., as
calculated from FULL-RAD).

3. Results
a. Physiology’s contribution to the TCR and T140

The radiative effect of CO, is, unsurprisingly, the
dominant contributor to both the TCR and T140. However,
we also find that the physiological response to increased
CO, makes a nonnegligible secondary contribution to
the TCR and T140 in many CMIP5 and CMIP6 models
(Figs. 1 and 2). In CMIP6 models, the physiological ef-
fect contributes about 0.12°C (o: 0.09°C; range: 0.02°-
0.29°C) to the TCR, corresponding to 6.1% of the full
TCR (0:3.8%; range: 1.4%-13.9%) (Table 2). For a few
CMIP6 models (especially UKESM1-0-LL and CESM2),
the physiological contribution to warming is quite large,
accounting for over 10% of the full TCR (Table 2).
Physiologically driven warming increases with increas-
ing CO, concentration (Fig. 1¢), on average contributing
0.21°C (o: 0.12°C; range: 0.03°-0.45°C) to the T140
metric (Table S4). On a percentage basis, the physio-
logical effect contributes proportionally less to the T140
metric (4.9%; o: 2.5%) than to the TCR, although this
varies across models (Table S4).

In CMIP5 models, the physiological effect contributes
0.14°C (o: 0.16°C; range: 0.00°-0.51°C) to the TCR,
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Relationship between TCRgap and TCRgy .
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FIG. 2. The relationship between TCRrap (RAD-PI) and
TCRgyrL (FULL-PI). The gray 1:1 line is where we would expect
all models to be if the TCR were entirely caused by the radiative
effects of CO,. The added warming from the physiological effect is
the vertical distance between the gray 1:1 line and each point.
Marker types indicate CMIP phase (CMIP5: circles; CMIP6: tri-
angles) and colors indicate modeling center. Crosses demarcate the
CMIP6 (solid) and CMIP5 (dashed) multimodel means, and the
width of each cross corresponds to two times the ensemble mean
standard deviation in global mean near-surface temperature from
the preindustrial control.
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corresponding to 6.6% of the full TCR (o 6.3%; range:
0.1%-20.1%). When comparing the same subset of eight
models for which we have model output from both
CMIP phases, physiologically driven warming is com-
parable in CMIP5 and CMIP6 (Table 2). This suggests
that the increases in TCRgyy . from CMIP5 to CMIP6
noted for many recent models (Andrews et al. 2019;
Golaz et al. 2019; Flynn and Mauritsen 2020) were
driven primarily by increases in TCRrap rather than
TCRppys.

The multimodel mean TCRpyvs values reported here
are within the range of estimates from other studies
(summarized in Table S1) but on the low side of this
range, likely for two reasons. First, many previous
studies isolated the effect of the stomatal response on
near-surface temperatures rather than the net effect
of both the stomatal and leaf area responses to in-
creasing CO, (Table S1); we expect a larger temperature
increase from the stomatal response alone than from the
combined stomatal and leaf area responses because in-
creases in leaf area counteract the stomatal response’s
influence on evapotranspiration. Second, our study is
the first to compare TCRpyys across models (12 from
CMIP6 and 8 from CMIPS), and the fact that the ex-
isting literature did not capture the full spread in
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TCRpyys across models underscores the importance
of a multimodel approach.

The global mean TCRpyys signal is small in com-
parison to TCRgyrr, and it is statistically significant
relative to the preindustrial control for only 7 of 12
CMIP6 and 5 of 8 CMIP5 models at 2xCO, (Table S5).
By 4xCO,, the physiologically driven warming signal
emerges from the noise for more models (Fig. S1), be-
coming statistically significant for 9 CMIP6 and 7
CMIP5 models (Table S5). The three CMIP6 models
that are not statistically significant by 4xCO, (CNRM-
ESM2-1, BCC-CSM2-MR, and IPSL-CM6A-LR) are
the three models with the most variability in the PI
control of all the CMIPS5 and CMIP6 models we ana-
lyze (Fig. S1).

b. Spatial pattern of physiologically driven warming

The physiological effect only directly influences land
surface properties, and thus the largest warming driven
by the physiological effect occurs over land. In CMIP6
models, the physiological effect results in nonglaciated
land warming by 0.22°C at 2xCO, and 0.41°C at 4xCO,
on average, relative to a corresponding mean ocean
warming of 0.09° and 0.14°C respectively (Fig. 3a).
Physiologically driven warming over land is also statis-
tically significant for more ESMs than it is for the global
mean at both 2xCO, and 4xCO, (Table S5). The spatial
pattern of physiologically driven warming that we find
is consistent with other studies, which also show the
greatest warming over land and modest ocean warming
(Table S1).

The greatest mean physiologically driven warming
occurs over boreal forests and nonglaciated high-
latitude land, followed by temperate and tropical
forested regions. The agreement across models is rea-
sonably high—at least 8 of 12 CMIP6 models agree that
the physiological effect results in warming in these three
biomes at 2xCO, (Fig. S4) and 10 of 12 CMIP6 models
show warming in these biomes at 4xCO, (Fig. S95).
Relative to radiatively driven warming, physiology also
contributes more to land warming than ocean warming,
with physiological forcing constituting a mean 7.4% of
total CO,-forced land warming at 2xCO, compared to
4.5% of ocean warming (Fig. 3b). The physiological ef-
fect therefore amplifies the land—ocean warming con-
trast: at 4xCO, nonglaciated land warms faster than the
ocean with a mean ratio of 1.60 for the RAD simulations
from CMIP6, whereas the mean land-ocean warming
contrast for the FULL simulations is 1.64, due to the
addition of the physiological effect (Fig. 4). This phys-
iologically driven enhancement of the land-ocean
warming contrast was previously demonstrated for
Met Office Hadley Centre models (Joshi et al. 2008;
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Physiological Absolute Contribution to Warming at 2xCO,
= = = -m—

: 1
Land: 0.22°C

(0.41°C at 4xCO,)
Ocean: 0.09°C
(0.14°C at 4xCO,)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 06 0.8
Multi-Model Mean Near-Surface Air Temperature Change at 2xCO, (°C)

:
(6.7% at 4xCO5)

Ocean: 4.5%
(3.5% at 4xCO,)

0
Percent

FIG. 3. Spatial pattern of (a) absolute physiologically driven
warming and (b) physiological percent contribution to total
warming at 2xCO,, where physiologically driven warming is cal-
culated by FULL-RAD. Multimodel means include the 12 CMIP6
models. Stippling indicates regions where less than 8 out of the 12
models agree on the sign of change.

Dong et al. 2009), and we show here that this warming
contrast is robust across most CMIP models. In two
models the physiological effect reduces the land—ocean
warming contrast (Fig. 4). These outliers may result
from large leaf area increases counteracting the influence
of stomatal closure on evapotranspiration (resulting in
minimal net physiologically driven change in evapo-
transpiration or even small increases in evapotranspi-
ration; Fig. S7) or from large multidecadal variability
in some models (Fig. S1) overwhelming the physiologi-
cal signal.

The larger absolute and relative physiologically
driven warming over nonglaciated land is consistent
with the physiological effect directly influencing land
surface properties in regions with plant cover, while
influencing glaciated land and oceans only indirectly
through changes in heat transport, clouds, and other
aspects of climate dynamics. Although the remote in-
fluence of physiological forcing on oceans and glaciated
land is relatively modest, most models agree that the
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Land-Ocean Warming Contrast at 2xCO,
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FIG. 4. The relationship between the land-ocean warming con-
trast (the ratio of the change in mean nonglaciated land near-
surface air temperature to the change in mean ocean near-surface
air temperature) from RAD (RAD-PI) and FULL (FULL-PI) at
2xCO,. The gray 1:1 line is where we would expect all models to be
if the warming contrast were entirely caused by the radiative effects
of CO,. Physiology’s addition to the warming contrast is the ver-
tical distance between the gray 1:1 line and each point. Marker
types indicate CMIP phase (CMIP5: circles; CMIPG6: triangles) and
colors indicate modeling center as in Fig. 2. Crosses demarcate
multimodel means, where the width of each cross is two standard
deviations across models. Note that the set of models included in
the average differs between CMIPS and CMIP6.

physiological effect results in mean warming of near-
surface oceanic air and ocean surface layers. The regions
of the most robust physiologically driven oceanic
warming across models are the western North Atlantic,
equatorial Pacific, equatorial Indian Ocean, and high-
latitude Pacific.

Byrne and O’Gorman (2018) suggest that increases in
the near-surface land—ocean temperature contrast are
causally driven by temperature change over the ocean.
However, the physiologically driven enhanced land-
ocean contrast, where the only initial difference is over
the land surface, shows that land surface processes can
also initiate the feedback loop where decreasing relative
humidity over land leads to a larger increase in tem-
perature over land relative to over ocean. The potential
to initiate this loop through land processes is noted by
Byrne and O’Gorman (2016), and we further emphasize
that point here. It is important to acknowledge the
physiological effect’s greater relative contribution to
land warming because land warming (rather than global
mean warming) is the most relevant metric for many
societal climate impacts.
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TABLE 3. Drivers of intermodel spread in global mean warming, as quantified by the standard deviation. “Land” specifically means
nonglaciated land.

2xCO, (TCR)

4xCO, (T140)

CMIP phase Region FULL-PI RAD-PI FULL-PI RAD-PI
CMIP6 Global 043°C 0.40°C (92%) 1.02°C 0.98°C (96%)
Land 0.58°C 0.50°C (86%) 1.32°C 1.19°C (90%)
Ocean 0.38°C 0.36°C (95%) 0.91°C 0.90°C (99%)
CMIP5 Global 0.40°C 0.30°C (76%) 1.09°C 0.95°C (87%)
Land 0.58°C 0.39°C (68%) 1.55°C 1.24°C (80%)
Ocean 0.33°C 0.27°C (81%) 0.91°C 0.84°C (91%)

c¢. Physiology’s contribution to uncertainty in
COs-forced warming

The magnitude of global physiologically driven warm-
ing varies significantly across models (Figs. 1 and 2; see
also Fig. S6) and this uncertainty contributes to the in-
termodel spread of TCR estimates. In the CMIP6
models analyzed here, the radiative effect alone explains
about 91.9% of the standard deviation in the TCR across
models (Table 3), with the physiological effect contrib-
uting the remaining 8.1%. Thus, the impact of the
physiological effect on model-to-model variability is
disproportionately large relative to its contribution to
the mean (8.1% for the standard deviation versus 6.1%
for the mean). The physiological effect accounts for
relatively less intermodel spread in the T140 metric
(Table 3), consistent with other work (Geoffroy et al.
2012, Lutsko and Popp 2019) demonstrating that radi-
ative feedbacks contribute increasingly more to inter-
model disagreement in warming with increasing time in
the transient 1pctCO, experiment.

The physiological effect contributes more to uncer-
tainty in CO,-forced warming over land. Averaged
across all nonglaciated land, the physiological effect
explains about 13.6% of the standard deviation in mean
land warming across models at 2xCO, in CMIP6
(Table 3). In some highly forested land regions (tropical
Africa, northwestern South America, and the south-
eastern United States), intermodel disagreement in lo-
cal warming at 2xCO, is driven by approximately equal
contributions of uncertainty from physiologically and
radiatively forced warming (Fig. 5). These results sug-
gest that the physiological effect is a nonnegligible
contributor to intermodel spread in the TCR and re-
gional land CO,-forced warming at 2xCO,. However,
some of these preindustrial forested regions are largely
deforested in the present day, which means that in
scenario-based future projections the physiological ef-
fect may contribute less to uncertainty in these regions
than Fig. 5 implies.

The physiological effect contributes less to uncertainty
in CO,-forced warming over the ocean, explaining about

5.1% of the standard deviation of the mean ocean
warming across models at 2xCO, in CMIP6 (Table 3). In
all oceanic regions, intermodel disagreement in CO,-
forced warming is driven more by radiative processes
than the physiological effect (Fig. 5). However, Fig. 5
suggests that physiology is a significant secondary driver
of intermodel disagreement in the magnitude of CO,-
forced warming in some ocean regions (e.g., North
Atlantic and North Pacific), possibly due to intermodel
disagreement in the extent to which physiological re-
sponses influence cloud cover in these regions [discussed
in section 3d(2)].

d. Mechanisms of physiologically driven warming

1) MECHANISMS OVER LAND

The physiological effect increases near-surface air
temperatures over land by modifying surface properties
that modulate terrestrial energy fluxes (Bonan 2008;

Physiology’s Relative Contribution to Uncertainty
in Total Warming at 2xCO,

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of the standard deviation of TCRpys to the standard deviation of TCRgap

FIG. 5. Spatial pattern of physiology’s relative contribution to
intermodel spread in CO,-forced warming, as quantified by the
ratio of the standard deviation (o7 at each grid cell, across models)
of physiologically forced warming (calculated from FULL-RAD)
to o of radiatively forced warming (calculated from RAD-PI) at
2xCO, for CMIP6 models, i.e., opygys(lat, lon)/ogap(lat, lon). A
value of 1 means that the physiological and radiative effects of CO,
contribute equally to the total uncertainty in local warming at
2xCO, across models.
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Physiologically Driven Change in Land Surface Albedo at 2xCO,
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FI1G. 6. Land zonal means of physiologically driven changes in (a) land surface albedo and
(b) evapotranspiration at 2xCO, for CMIP6 models, as calculated by FULL-RAD. (c) Zonal
means of how much physiologically driven changes in different land processes (LAI, stomatal
conductance g, and evaporation) contribute to the total multimodel mean physiologically
driven change in land evapotranspiration, where the partitioning is calculated with Eq. (1).
Multimodel means in this figure are averaged across all CMIP6 models for which model
output is available. Transpiration and LAI data necessary for this partitioning were not
available for GFDL-ESM4, MPI-ESM1.2-LR, and ACCESS-ESM1.5 so these models are
only included in the multimodel mean for the total evapotranspiration change.
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Lagué et al. 2019). This occurs through 1) changes in
the partitioning between surface turbulent fluxes re-
sulting from physiological influences on evapotrans-
piration, 2) radiative changes due to physiologically
driven changes in albedo, cloud cover, and column
water vapor, and 3) changes in surface roughness
resulting from changes in leaf area and vegetation
distribution.

In most models, plants’ response to CO, causes a net
decrease in mean land evapotranspiration, especially in

the tropics (Fig. 6 and Fig. S7), indicating that stomatal
closure decreases evapotranspiration by enough to off-
set increases in evapotranspiration from increased
leaf area, though the magnitude and sign of evapo-
transpiration change does vary spatially across models
(Fig. S7). In the CMIP6 multimodel mean at 2xCO,,
global leaf area changes increase land evapotranspi-
ration by 0.19mmday ' (o: 0.17mmday '; range:
0.00-0.52 mm day '), changes in stomatal conductance

(approximated by the change in transpiration per leaf area)
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Influence of Physiological Effect on Surface Energy Flux (W/m?2)

FIG. 7. Spatial pattern of multimodel mean physiologically driven changes in surface energy fluxes as cal-
culated by FULL-RAD at the point of CO, doubling (averaged over years 61-80) for (a) clear-sky
downwelling shortwave radiation, (b) cloudy downwelling shortwave radiation, (c) upwelling shortwave
radiation, (d) net shortwave radiation, (e) clear-sky downwelling longwave radiation, (f) cloudy down-
welling longwave radiation, (g) upwelling longwave radiation, (h) net longwave radiation, (i) latent heat
(LH), (j) sensible heat (SH), (k) heat uptake (G), and (1) net radiation (R,). Because the surface energy
budget is balanced, LH + SH + G = R,.. The cloudy radiative fluxes in (b) and (f) are calculated as the
difference between all-sky and clear-sky radiative fluxes. Multimodel means include all CMIP6 models for
which model output is available; this consists of up to 12 models. Data for some surface energy fluxes were
not available for the following models: GFDL-ESM4 [in (a), (b), (e), and (f)], GISS-E2.1-G [in (j) and (k)],
and NorESM2-LM [in (e) and (f)]. Stippling indicates regions where fewer than eight models agree on the

sign of change.

decrease global land evapotranspiration by 0.13 mm day !
(o2 0.10mmday '; range: 0.00-0.29 mmday '), and
the interaction between changes in stomatal conduc-
tance and leaf area decreases evapotranspiration by
an additional 0.08 mm day ' (¢: 0.10 mm day '; range:
0.00-0.29 mm day '; Fig. 6¢). Land evaporation changes
minimally (0.0lmmday '; ¢: 0.03mmday !; range:
from —0.06 to +0.06 mmday !; Fig. 6¢). In the multi-
model mean, the net effect of these physiological re-
sponses is a decrease in evapotranspiration, with the
largest and most robust decrease in the tropics (Fig. 6;
see also Fig. S7). This physiologically driven decrease in
evapotranspiration due to increased CO, has previously
been documented for CMIP5 models (Swann et al. 2016;
Lemordant et al. 2018) and holds for the new CMIP6
models analyzed here. Under constant net radiation at
the surface, this physiologically driven decrease in evapo-
transpiration results in more energy leaving the land sur-
face through sensible heating (Fig. 7), thereby increasing
near-surface air temperatures.

The physiological effect also increases surface and
near-surface temperatures by generally increasing the
net radiation at the surface. Net shortwave radiation on
land increases primarily through decreases in albedo

and cloud cover (Fig. 7d). Albedo decreases primarily in
high latitudes (Fig. 6), due to both increases in leaf area
and decreases in snow cover due to increased tem-
peratures. Consistent with previous studies (Doutriaux-
Boucher et al. 2009; Andrews et al. 2011, 2012; de
Arellano et al. 2012; Lemordant et al. 2018), down-
welling shortwave radiation (SWyown) reaching the surface
also increases as a consequence of decreases in cloud
cover (especially in the Northern Hemisphere middle
and high latitudes and over the northeastern Amazon;
Fig. 7b), which are driven both by decreases in rela-
tive humidity from physiologically forced reductions in
evapotranspiration and by increases in air temperature.
In the multimodel mean, the physiological effect causes
only modest changes in clear-sky SWyow, (Fig. 7), al-
though some individual models do show significant
SWaown changes, which could be modified by changes in
water vapor and aerosols [e.g., as Andrews et al. (2012)
documented in HadGEM2-ES due to vegetation’s in-
fluence on dust optical depthl].

The physiological effect also influences surface net
longwave radiation (Fig. 71) through changes in sur-
face and boundary layer temperatures, cloud cover,
atmospheric column water vapor, and the partitioning of
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surface energy fluxes. Outgoing longwave radiation
from the land surface (LW,,,) increases with increasing
surface temperature through the Planck feedback (Fig.
7g). This increase in LW, is partially offset by increases
in clear-sky downward longwave radiation at the land
surface (LWgown; Fig. 7¢). Clear-sky LW 4y, increases
due to warming of the boundary layer driven by both
increased sensible heating and by longwave radiation
associated with surface warming (Vargas Zeppetello
et al. 2019), and clear-sky LW g, can also be influenced
by physiologically driven changes in atmospheric water
vapor. Cloud changes resulting from reduced land
evapotranspiration decrease LWgow, (Fig. 7f). The
net effect of all of these processes generally resultsin a
decrease of net longwave radiation over most vege-
tated land (Fig. 7h).

2) MECHANISMS OVER OCEAN

Because most models do not have any mechanism
through which ocean carbon cycle responses to CO, can
influence ocean temperatures, the modeled oceanic
warming as calculated by FULL-RAD must be the re-
sult of remote, land-driven warming. Recognizing the
oceanic component of physiologically driven warming
is important because it constitutes about half of
TCRpyys—even though the magnitude of physiologi-
cally driven oceanic warming is much smaller than land
warming on a per area basis, the TCR is a global-scale
metric and ocean constitutes about 70% of Earth’s
surface area.

The physiological effect on land can alter ocean
temperatures through advection of continental air that
has been directly influenced by changes in land surface
properties (e.g., changes in air temperature or moisture
content) as well as through changes in atmospheric or
oceanic circulation. Some robust oceanic warming re-
gions are downwind of warming land regions, which
could be associated with advection of warm continental
air by the prevailing winds. Cloud cover over oceans
also decreases in some regions that are downwind
of land, particularly in the North Atlantic, increasing
ocean temperatures by increasing net radiation (Fig. 7).
Teleconnections likely also contribute to ocean warm-
ing, based on past work indicating that changes in large-
scale atmospheric circulation and atmospheric energy
transport can be induced by physiological forcing
(Kooperman et al. 2018a; Langenbrunner et al. 2019;
Saint-Lu et al. 2019; Park et al. 2020) or other changes
in land surface properties (Swann et al. 2012, 2014;
Devaraju et al. 2015; Lagué and Swann 2016; Devaraju
et al. 2018). Additionally, the physiological effect has
the potential to induce changes in ocean circulation
(e.g., Diffenbaugh et al. 2004). Exploration of the links
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between land surface perturbations and ocean temper-
ature merits further research.

4. Discussion and implications

a. Magnitude of the physiological contribution to the
transient climate response

The biological and ecological processes governing
canopy leaf area and stomatal conductance are often
considered to exist squarely in the domain of carbon
cycle feedbacks (i.e., they impact the climate system
through their influence on CO, concentrations them-
selves). Our analysis demonstrates that these terrestrial
carbon cycle processes are also embedded in global cli-
mate sensitivity metrics like the TCR through plants’
impact on land surface properties and surface en-
ergy fluxes.

We quantified the plant physiological effect’s small
but significant influence on CO,-forced temperature
changes, finding that at 2xCO, the physiological ef-
fect contributes about 0.12°C (6.1%) to the TCR and
leads to about 0.22°C of warming over nonglaciated
land. Recognizing this physiological component of CO,
forcing is necessary for understanding forcing differ-
ences across greenhouse gases (e.g., increasing N,O
concentration does not induce warming from physio-
logical responses) and has implications for estimating
the TCR from historical observations. Because some of
the observed historical temperature change has been
driven by non-CO, forcing agents that do not induce
physiological responses in plants, estimates of the TCR
from historical observations may be biased low, al-
though this is likely a small effect since CO, currently
constitutes the majority of the total radiative forcing.
While the physiological effect can constitute over 10%
of the total TCR in some CMIP6 models, changes in the
representation of plant physiology do not appear to be a
driver of the increase in the TCR observed from CMIP5
to CMIP6.

The significant physiologically driven warming at
higher CO, concentrations, intermodel agreement in
the sign of TCRpyys, and consistent spatial pattern of
warming give us confidence that we are detecting a real
physiologically driven signal and not just a residual
from internal variability. However, internal variability
is a large source of uncertainty in quantifying TCRppys
(Fig. 1c), and this uncertainty is intrinsically included
in estimates of TCRgypL. Integration of a large-
ensembles approach into the next C4MIP is necessary
to address this issue and to reduce uncertainties in the
TCR in future work (Deser et al. 2020). This could be
done by integrating a requirement for a minimum
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number of initial condition ensembles in the
experiment.

A limitation of our study is that the CAMIP model
output necessary to disentangle physiologically and
radiatively forced warming is only available for about
a quarter of the models for which we can estimate the
full TCR (12 of 47 for CMIP6 and 8 of 30 for CMIP5).
We therefore cannot quantify TCRpyys, or the physi-
ological contribution to uncertainty in the TCR, for the
remaining CMIP models. Future work could further
leverage CAMIP model output to assess whether signa-
tures of physiologically driven warming (such as sea-
sonal variations in the CO,-forced change of the diurnal
temperature range; Bounoua et al. 1999; Collatz et al.
2000) could be used to estimate the physiological con-
tributions to mean warming from the FULL experi-
ments alone.

b. Physiology’s role in forcing, feedbacks, and
equilibrium climate sensitivity

From the perspective of the classical radiative forcing-
feedback framework (Gregory et al. 2004; Bony et al.
2006; Roe 2009; Boucher et al. 2013), plants’ physio-
logical response to increasing CO, can be considered a
forcing—rather than a feedback—on the climate system
because by definition plants are responding to changes
in CO, rather than to the relatively slow changes in
global temperature. The time scale over which plants
respond to increasing CO, ranges from on the order of
seconds to decades. The stomatal response is fast; at
the leaf level, stomata respond to changing environ-
mental conditions in less than an hour (Vico et al. 2011),
and the time scale of the atmospheric adjustment to the
stomatal response occurs on the time scale of a few
months (Doutriaux-Boucher et al. 2009; Andrews et al.
2011). Doutriaux-Boucher et al. (2009) have demon-
strated that this fast stomatal response rapidly reduces
low cloud cover and thereby the cloud radiative effect,
which has been shown to be an important contributor to
global warming and its uncertainty (Geoffroy et al. 2012).
The leaf area and plant distribution responses are slower,
occurring on time scales of years to decades (Fisher
et al. 2019).

Whether the physiological effect will be included in
the calculation of radiative forcing depends on the
definition used. The physiological effect would be ex-
cluded from the instantaneous radiative forcing, which
accounts only for the instantaneous impact of CO,
on the top-of-atmosphere radiation budget. However,
it would be included in the effective radiative forcing,
which is commonly expressed as a change in net
top-of-atmosphere (TOA) radiation following CO,-
driven adjustments in tropospheric and stratospheric
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temperatures, water vapor, clouds, and surface prop-
erties, prior to any global mean surface temperature
change (e.g., Boucher et al. 2013; Sherwood et al. 2015).
In practice, the effective radiative forcing is often cal-
culated using simulations in which CO, is increased
while sea surface temperatures (SSTs) are prescribed
to be fixed at preindustrial values, with some studies
estimating and removing the TOA radiative response
to land warming when calculating the forcing value
(Hansen et al. 2005; Vial et al. 2013; Tang et al. 2019).
Meanwhile, radiative feedbacks are traditionally de-
fined by the change in net TOA radiation for a given
change in global mean surface temperature (Bony et al.
2006; Roe 2009).

The physiological response of plants to increasing
CO; poses a challenge to this radiative forcing—feedback
paradigm. On the one hand, plants respond directly to
the atmospheric CO, concentration, suggesting that the
physiological effect should be classified as part of the
forcing. On the other hand, this direct physiological re-
sponse of plants to CO, induces changes in surface
temperature due to reduction in evaporative cooling
from stomatal responses (even in the absence of the
radiative effects of CO, changes). The TOA radiative
response to these changes could thus be classified as part
of the feedback within a framework that defines the
effective radiative forcing as the TOA radiation change
with fixed global mean temperature (e.g., Hansen et al.
2005). Meanwhile, temperature-driven changes in veg-
etation distribution and leaf area that influence land
surface albedo and evapotranspiration should clearly be
classified as feedbacks. While it is unclear to us how best
to interpret the physiological effect in terms of the
forcing—feedback paradigm, the distinction does not
impact the results presented here because of our results’
focus on the TCR instead of forcing or feedbacks
separately.

Understanding of the role of the physiological effect
in TCR and ECS uncertainty would benefit from greater
clarity on whether it should be treated as a forcing or
feedback. Indeed, recent work suggests that the TCR
may be more sensitive to uncertainty in CO, radia-
tive forcing than to uncertainty in radiative feedbacks
(Lutsko and Popp 2019), but that the ECS is more sen-
sitive to uncertainty in radiative feedbacks (Geoffroy
et al. 2012). Thus, while the results here suggest that the
physiological effect will act to increase the ECS and its
uncertainty—as it has for the TCR—we cannot cur-
rently quantify the magnitude of the effect on the ECS
across models in the CMIP5 or CMIP6 ensembles. In
this regard, it would be helpful if more modeling centers
conducted additional radiation-only experiments for
abrupt CO, quadrupling, using both coupled model
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simulations to be able to estimate ECS [e.g., as done for
UKESM by Andrews et al. (2019)] and fixed SSTs' to be
able to quantify the effective radiative forcing.

¢. Broad implications of carbon cycle uncertainty

The terrestrial carbon cycle’s influence on global
temperature means that uncertainty in terrestrial carbon
cycle processes contributes to uncertainty in CO,-forced
warming. We find that in CMIP6, the physiological ef-
fect explains about 13.6% of the standard deviation in
CO,-forced warming over nonglaciated land. We also
identify several forested land regions (tropical Africa,
northwestern South America, and the southeastern
United States) for which the physiological effect con-
tributes as much as the radiative effect (i.e., about
50% of the total) to intermodel disagreement in local
warming at 2xCO,. The spread in the magnitude of
physiologically driven warming across CMIP6 models
represents real scientific uncertainty, as there are limited
observational constraints to suggest that either the high
or low extremes of modeled physiological responses of
stomatal conductance, leaf area, and resulting evapo-
transpiration are within expectations (Medlyn et al.
2011; De Kauwe et al. 2013; Schimel et al. 2015).

It is also possible that ESMs do not probe the full
scientific uncertainty surrounding plants’ responses to
CO,, as models may contain systematic biases. For ex-
ample, many models represent stomatal conductance
using the same key parameters [e.g., the same slope
constant in the Ball-Berry stomatal conductance model
(Ball et al. 1987) or the same g1 fitted parameter in the
Medlyn et al. (2011) model] to govern how stomatal
conductance responds to increasing CO,, despite the
wide variation in these parameters across and within
plant functional types (Lin et al. 2015; Wolz et al. 2017).
Similarly, some studies suggest (e.g., Smith et al. 2016)
that ESMs systematically overestimate the leaf area in-
creases resulting from CO, fertilization, which would
mean that models overestimate physiologically driven
albedo decreases and underestimate physiologically
driven evapotranspiration decreases. We would expect
this to result in a true physiologically forced tempera-
ture change that is smaller than models suggest at high
latitudes (where albedo matters more) and larger than
models suggest at low latitudes (where ET matters more).
Furthermore, Green et al. (2017) suggest that ESMs may

! For example, the CMIP6 Cloud Feedback Model Intercomparison
Project (CFMIP; Webb et al. 2017) tier 2 experiment piSST-
4xCO2-rad, in which SSTs are fixed at preindustrial levels and
only the radiation scheme (and not the vegetation scheme) expe-
riences an abrupt quadrupling of CO,.

VOLUME 33

systematically underestimate some feedbacks between
land biosphere changes and the atmosphere.

On the one hand, acknowledging the physiological
contribution to uncertainty in modeled CO,-forced
warming suggests that models agree more on the mag-
nitude of radiatively forced warming than the prevailing
narrative implies. For atmospheric dynamicists most
interested in purely radiatively driven processes, these
findings therefore motivate more deliberate consider-
ation of plant functioning in experimental designs; RAD
simulations may be more appropriate than FULL sim-
ulations for some climate dynamics questions. On the
other hand, acknowledging the physiological contribu-
tion means that reducing uncertainty in the full (Earth
system) TCR requires reducing uncertainty in land
surface processes which are especially difficult to con-
strain. From this perspective, these findings provide a
new motivation for further experimental studies to re-
duce uncertainty in terrestrial carbon cycle processes.
For example, we identify that plants’ responses to CO,
are a major driver of uncertainty in transient warming
in tropical Africa, and no free-air CO, enrichment
(FACE) experiments currently exist in tropical forests
to constrain uncertainty in how those ecosystems will
respond to increasing CO,.

Additionally, while this study focuses on how the
physiological effect influences temperature and the TCR,
uncertainty surrounding plant physiological responses
to CO, can influence many aspects of the climate
system. Because plant physiological responses affect
land evapotranspiration, uncertainty surrounding plant
physiological responses propagates to uncertainty in the
hydrologic cycle. Previous studies have demonstrated
that plant physiological responses play a critical role in
determining the influence of increasing CO, concen-
tration on runoff (Kooperman et al. 2018b) and pre-
cipitation (Kooperman et al. 2018a; Chadwick et al.
2017,2019), especially in the Amazon (Richardson et al.
2018; Langenbrunner et al. 2019). Our finding that plant
physiology contributes to intermodel variation in CO,-
forced warming could therefore motivate further an-
alyses of RAD and PHYS experiments to quantify the
physiological contribution to uncertainty in these
quantities. Carbon cycle uncertainty is not limited to the
carbon cycle, and efforts to reduce uncertainty in plants’
responses to CO, will also help to reduce uncertainty in
the physical climate response to increasing CO,.

Acknowledgments. CMZ was supported by the
University of Washington Program on Climate Change
Fellowship and the Department of Energy Computational
Science Graduate Fellowship (DE-SC0020347). MML was
supported by the James S. McDonnell Foundation. ALSS,

020z 4equadas 10 uo 3senb Aq jpd-82000ZP!I0//9699661/1958/6 L/£S/4Pd-8|oIHE/0l/BI10 00s)8WeE S[euINOl//:dRYy WOl papeojumoq



1 OCTOBER 2020

MLL, and CMZ were supported by the National
Science Foundation AGS-1553715 to the University
of Washington. KCA was supported by the National
Science Foundation AGS-1752796 to the University
of Washington. JTR acknowledges support from the
RUBISCO Scientific Focus Area that receives fund-
ing from the Regional and Global Modeling program
within the Biological and Environmental Research
division of DOE’s Office of Science. We acknowledge
the organizations responsible for CMIP, including the
climate modeling groups that participated in C4MIP
and shared their model output by uploading it to the
Earth System Grid Federation.

Data availability statement. The majority of model
output data used in this study are available in the pub-
licly accessible Earth System Grid Federation (ESGF)
repository at https://esgf-node.llnl.gov/projects/esgf-lInl/.
Model output from the CESM2 RAD experiment is not
yet available on the ESGF repository and is stored on
data servers at the National Center for Atmospheric
Research. The code used for this study is available from
the corresponding author upon request.

REFERENCES

Anav, A., and Coauthors, 2013: Evaluating the land and ocean
components of the global carbon cycle in the CMIPS Earth
system models. J. Climate, 26, 6801-6843, https://doi.org/
10.1175/JCLI-D-12-00417.1.

Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface
energy perspective on climate change. J. Climate, 22, 2557-
2570, https://doi.org/10.1175/2008J CLI12759.1.

——, M. Doutriaux-Boucher, O. Boucher, and P. M. Forster, 2011:
A regional and global analysis of carbon dioxide physiological
forcing and its impact on climate. Climate Dyn., 36, 783-792,
https://doi.org/10.1007/s00382-010-0742-1.

—— M. A. Ringer, M. Doutriaux-Boucher, M. J. Webb, and W. J.
Collins, 2012: Sensitivity of an Earth system climate model to
idealized radiative forcing. Geophys. Res. Lett., 39, L10702,
https://doi.org/10.1029/2012GL051942.

——, and Coauthors, 2019: Forcings, feedbacks, and climate sensi-
tivity in HadGEM3-GC3.1 and UKESML. J. Adv. Model. Earth
Syst., 11, 4377-4394, https://doi.org/10.1029/2019MS001866.

Arora, V. K., and Coauthors, 2013: Carbon—concentration and
carbon—climate feedbacks in CMIPS5 Earth system models.
J. Climate, 26, 5289-5314, https://doi.org/10.1175/JCLI-D-12-
00494.1.

——, and Coauthors, 2019: Carbon-concentration and carbon-
climate feedbacks in CMIP6 models, and their comparison
to CMIP5 models. Biogeosci. Discuss., https://doi.org/10.5194/
bg-2019-473.

Bala, G., K. Caldeira, A. Mirin, M. Wickett, C. Delire, and T. J.
Phillips, 2006: Biogeophysical effects of CO, fertilization on
global climate. Tellus, 58B, 620-627, https://doi.org/10.1111/
j.1600-0889.2006.00210.x.

Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model
predicting stomatal conductance and its contribution to the

ZARAKAS ET AL.

8575

control of photosynthesis under different environmental
conditions. Progress in Photosynthesis Research, J. Biggins,
Ed., Springer, 221-224.

Betts, R. A.,2000: Offset of the potential carbon sink from boreal
forestation by decreases in surface albedo. Nature, 408, 187—
190, https://doi.org/10.1038/35041545.

——, P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting
physiological and structural vegetation feedbacks in climate change
simulations. Nature, 387, 796-799, https://doi.org/10.1038/42924.

——, and Coauthors, 2007: Projected increase in continental runoff
due to plant responses to increasing carbon dioxide. Nature,
448, 1037-1041, https://doi.org/10.1038/nature06045.

Bonan, G. B., 2008: Forests and climate change: Forcings, feed-
backs, and the climate benefits of forests. Science, 320, 1444—
1449, https://doi.org/10.1126/science.1155121.

Bony, S., and Coauthors, 2006: How well do we understand and
evaluate climate change feedback processes? J. Climate, 19,
3445-3482, https://doi.org/10.1175/JCLI3819.1.

Boucher, O., A. Jones, and R. A. Betts, 2009: Climate response to
the physiological impact of carbon dioxide on plants in the
Met Office Unified Model HadCM3. Climate Dyn., 32, 237-
249, https://doi.org/10.1007/s00382-008-0459-6.

——, and Coauthors, 2013: Clouds and aerosols. Climatic Change
2013: The Physical Science Basis, T.F. Stocker et al., Eds.,
Cambridge University Press, 571-657.

Bounoua, L., and Coauthors, 1999: Interactions between vegeta-
tion and climate: Radiative and physiological effects of dou-
bled atmospheric CO,. J. Climate, 12, 309-324, https://doi.org/
10.1175/1520-0442(1999)012<0309:IBV ACR>2.0.CO;2.

Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases
in land relative humidity with global warming: Conceptual
model and GCM simulations. J. Climate, 29, 9045-9061,
https://doi.org/10.1175/JCLI-D-16-0351.1.

——, and ——, 2018: Trends in continental temperature and
humidity directly linked to ocean warming. Proc. Natl.
Acad. Sci. USA, 115, 4863-4868, https://doi.org/10.1073/
pnas.1722312115.

Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2009:
Climate response to physiological forcing of carbon dioxide
simulated by the coupled Community Atmosphere Model
(CAM3.1) and Community Land Model (CLM3.0). Geophys.
Res. Lett., 36, 110402, https://doi.org/10.1029/2009GL037724.

3 , ——, and ——, 2010: Importance of carbon di-
0x1de physmloglcal forcing to future climate change. Proc.
Natl. Acad. Sci. USA, 107, 9513-9518, https://doi.org/10.1073/
pnas.0913000107.

Chadwick, R., H. Douville, and C. B. Skinner, 2017: Timeslice
experiments for understanding regional climate projections:
Applications to the tropical hydrological cycle and European
winter circulation. Climate Dyn., 49, 3011-3029, https://
doi.org/10.1007/s00382-016-3488-6.

——,D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating
the influences of land warming, the direct CO, effect, the plant
physiological effect, and SST warming on regional precipita-
tion changes. J. Geophys. Res. Atmos., 124, 624-640, https:/
doi.org/10.1029/2018JD(029423.

Collatz, G.J., L. Bounoua, S. O. Los, D. A. Randall, I. Y. Fung, and
P.J. Sellers, 2000: A mechanism for the influence of vegetation
on the response of the diurnal temperature range to changing
climate. Geophys. Res. Lett., 27, 3381-3384, https://doi.org/
10.1029/1999GL010947.

Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R.
Rowntree, and J. Smith, 1999: The impact of new land surface

020z 4equadas 10 uo 3senb Aq jpd-82000ZP!I0//9699661/1958/6 L/£S/4Pd-8|oIHE/0l/BI10 00s)8WeE S[euINOl//:dRYy WOl papeojumoq


https://esgf-node.llnl.gov/projects/esgf-llnl/
https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1175/2008JCLI2759.1
https://doi.org/10.1007/s00382-010-0742-1
https://doi.org/10.1029/2012GL051942
https://doi.org/10.1029/2019MS001866
https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.5194/bg-2019-473
https://doi.org/10.5194/bg-2019-473
https://doi.org/10.1111/j.1600-0889.2006.00210.x
https://doi.org/10.1111/j.1600-0889.2006.00210.x
https://doi.org/10.1038/35041545
https://doi.org/10.1038/42924
https://doi.org/10.1038/nature06045
https://doi.org/10.1126/science.1155121
https://doi.org/10.1175/JCLI3819.1
https://doi.org/10.1007/s00382-008-0459-6
https://doi.org/10.1175/1520-0442(1999)012<0309:IBVACR>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<0309:IBVACR>2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0351.1
https://doi.org/10.1073/pnas.1722312115
https://doi.org/10.1073/pnas.1722312115
https://doi.org/10.1029/2009GL037724
https://doi.org/10.1073/pnas.0913000107
https://doi.org/10.1073/pnas.0913000107
https://doi.org/10.1007/s00382-016-3488-6
https://doi.org/10.1007/s00382-016-3488-6
https://doi.org/10.1029/2018JD029423
https://doi.org/10.1029/2018JD029423
https://doi.org/10.1029/1999GL010947
https://doi.org/10.1029/1999GL010947

8576

physics on the GCM simulation of climate and climate sen-
sitivity. Climate Dyn., 15, 183-203, https://doi.org/10.1007/
s003820050276.

de Arellano, J. V.-G., C. C. van Heerwaarden, and J. Lelieveld,
2012: Modelled suppression of boundary-layer clouds by
plants in a CO,-rich atmosphere. Nat. Geosci., 5, 701-704,
https://doi.org/10.1038/ngeo1554.

De Kauwe, M. G., and Coauthors, 2013: Forest water use and water
use efficiency at elevated CO,: A model-data intercomparison
at two contrasting temperate forest FACE sites. Global Change
Biol., 19, 1759-1779, https://doi.org/10.1111/gcb.12164.

Deser, C., and Coauthors, 2020: Insights from Earth system model
initial-condition large ensembles and future prospects. Nat.
Climate Change, 10, 277-286, https://doi.org/10.1038/s41558-
020-0731-2.

Devaraju, N., G. Bala, and A. Modak, 2015: Effects of large-scale
deforestation on precipitation in the monsoon regions:
Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112,
3257-3262, https://doi.org/10.1073/pnas.1423439112.

——, N. de Noblet-Ducoudré, B. Quesada, and G. Bala, 2018:
Quantifying the relative importance of direct and indirect
biophysical effects of deforestation on surface temperature
and teleconnections. J. Climate, 31, 3811-3829, https://doi.org/
10.1175/JCLI-D-17-0563.1.

Diffenbaugh, N. S., M. A. Snyder, and L. C. Sloan, 2004: Could
CO,-induced land-cover feedbacks alter near-shore upwelling
regimes? Proc. Natl. Acad. Sci. USA, 101, 27-32, https:/
doi.org/10.1073/pnas.0305746101.

Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding
land-sea warming contrast in response to increasing green-
house gases. Part I: Transient adjustment. J. Climate,22,3079—
3097, https://doi.org/10.1175/2009J CLI12652.1.

Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar,
2013: Impact of CO, fertilization on maximum foliage cover
across the globe’s warm, arid environments. Geophys. Res. Lett.,
40, 3031-3035, https://doi.org/10.1002/grl.50563.

Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher,
2009: Carbon dioxide induced stomatal closure increases radi-
ative forcing via a rapid reduction in low cloud. Geophys. Res.
Lett., 36, 1.02703, https://doi.org/10.1029/2008 GL036273.

Douville, H., S. Planton, J.-F. Royer, D. B. Stephenson, S. Tyteca,
L. Kergoat, S. Lafont, and R. A. Betts, 2000: Importance of
vegetation feedbacks in doubled-CO, climate experiments.
J. Geophys. Res. Atmos., 105, 14 841-14 861, https://doi.org/
10.1029/19997D901086.

Field, C. B., R. B. Jackson, and H. A. Mooney, 1995: Stomatal
responses to increased CO,: Implications from the plant to the
global scale. Plant Cell Environ., 18, 1214-1225, https:/
doi.org/10.1111/§.1365-3040.1995.tb00630.x.

Fisher, R. A., and Coauthors, 2019: Parametric controls on vege-
tation responses to biogeochemical forcing in the CLMS.
J. Adv. Model. Earth Syst., 11, 2879-2895, https://doi.org/
10.1029/2+019MS001609.

Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and
historical warming evolution in recent coupled model en-
sembles. Atmos. Chem. Phys., 20, 7829-7842, https://doi.org/
10.5194/acp-20-7829-2020.

Friedlingstein, P., and Coauthors, 2006: Climate—carbon cycle feed-
back analysis: Results from the C4AMIP model intercomparison.
J. Climate, 19, 3337-3353, https://doi.org/10.1175/JCLI3800.1.

Geoffroy, O., D. Saint-Martin, and A. Ribes, 2012: Quantifying the
sources of spread in climate change experiments. Geophys.
Res. Lett., 39, 1.24703, https://doi.org/10.1029/2012GL054172.

JOURNAL OF CLIMATE

VOLUME 33

Gettelman, A., and Coauthors, 2019: High climate sensitivity in
the Community Earth System Model version 2 (CESM2).
Geophys. Res. Lett., 46, 8329-8337, https://doi.org/10.1029/
2019GL083978.

Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model
version 1: Overview and evaluation at standard resolution.
J. Adv. Model. Earth Syst., 11, 2089-2129, https://doi.org/
10.1029/2018MS001603.

Green, J. K., A. G. Konings, S. H. Alemohammad, J. Berry,
D. Entekhabi, J. Kolassa, J.-E. Lee, and P. Gentine, 2017:
Regionally strong feedbacks between the atmosphere and
terrestrial biosphere. Nat. Geosci., 10,410-414, https://doi.org/
10.1038/nge02957.

Gregory, J. M., and P. M. Forster, 2008: Transient climate response
estimated from radiative forcing and observed temperature
change. J. Geophys. Res., 113, D23105, https://doi.org/10.1029/
2008JD010405.

——, and Coauthors, 2004: A new method for diagnosing radiative
forcing and climate sensitivity. Geophys. Res. Lett., 31, 103205,
https://doi.org/10.1029/2003GL018747.

——, T. Andrews, and P. Good, 2015: The inconstancy of the
transient climate response parameter under increasing
CO,. Philos. Trans. Roy. Soc., 373, 20140417, https://
doi.org/10.1098/rsta.2014.0417.

Grose, M. R., J. Gregory, R. Colman, and T. Andrews, 2018: What
climate sensitivity index is most useful for projections?
Geophys. Res. Lett., 45, 1559-1566, https://doi.org/10.1002/
2017GL075742.

Hansen, J., and Coauthors, 2005: Efficacy of climate forcings.
J. Geophys. Res., 110, D18104, https://doi.org/10.1029/
2005JD005776.

Hense, I., I. Stemmler, and S. Sonntag, 2017: Ideas and perspec-
tives: Climate-relevant marine biologically driven mecha-
nisms in Earth system models. Biogeosciences, 14, 403-413,
https://doi.org/10.5194/bg-14-403-2017.

Hungate, B. A., M. Reichstein, P. Dijkstra, D. Johnson, G. Hymus,
J. D. Tenhunen, C. R. Hinkle, and B. G. Drake, 2002:
Evapotranspiration and soil water content in a scrub-oak wood-
land under carbon dioxide enrichment. Global Change Biol., 8,
289-298, https://doi.org/10.1046/j.1365-2486.2002.00468.x.

Jones, C. D., and Coauthors, 2016: C4MIP—The Coupled
Climate—Carbon Cycle Model Intercomparison Project:
Experimental protocol for CMIP6. Geosci. Model Dev., 9,
2853-2880, https://doi.org/10.5194/gmd-9-2853-2016.

Joshi, M. M.,J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C.
Johns, 2008: Mechanisms for the land/sea warming contrast
exhibited by simulations of climate change. Climate Dyn., 30,
455-465, https://doi.org/10.1007/s00382-007-0306-1.

Keenan, T. F. and W. J. Riley, 2018: Greening of the land surface in
the world’s cold regions consistent with recent warming. Nat.
Climate Change, 8, 825-828, https://doi.org/10.1038/s41558-
018-0258-y.

Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven,
K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson,
2018a: Forest response to rising CO, drives zonally asymmetric
rainfall change over tropical land. Nat. Climate Change, 8, 434—
440, https://doi.org/10.1038/s41558-018-0144-7.

—— M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S.
Pritchard, A. L. S. Swann, and J. T. Randerson, 2018b: Plant
physiological responses to rising CO, modify simulated daily
runoff intensity with implications for global-scale flood risk
assessment. Geophys. Res. Lett., 45, 12457-12 466, https://
doi.org/10.1029/2018 GL079901.

020z 4equadas 10 uo 3senb Aq jpd-82000ZP!I0//9699661/1958/6 L/£S/4Pd-8|oIHE/0l/BI10 00s)8WeE S[euINOl//:dRYy WOl papeojumoq


https://doi.org/10.1007/s003820050276
https://doi.org/10.1007/s003820050276
https://doi.org/10.1038/ngeo1554
https://doi.org/10.1111/gcb.12164
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1073/pnas.1423439112
https://doi.org/10.1175/JCLI-D-17-0563.1
https://doi.org/10.1175/JCLI-D-17-0563.1
https://doi.org/10.1073/pnas.0305746101
https://doi.org/10.1073/pnas.0305746101
https://doi.org/10.1175/2009JCLI2652.1
https://doi.org/10.1002/grl.50563
https://doi.org/10.1029/2008GL036273
https://doi.org/10.1029/1999JD901086
https://doi.org/10.1029/1999JD901086
https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
https://doi.org/10.1029/2+019MS001609
https://doi.org/10.1029/2+019MS001609
https://doi.org/10.1029/2+019MS001609
https://doi.org/10.5194/acp-20-7829-2020
https://doi.org/10.5194/acp-20-7829-2020
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.1029/2012GL054172
https://doi.org/10.1029/2019GL083978
https://doi.org/10.1029/2019GL083978
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1038/ngeo2957
https://doi.org/10.1038/ngeo2957
https://doi.org/10.1029/2008JD010405
https://doi.org/10.1029/2008JD010405
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1098/rsta.2014.0417
https://doi.org/10.1098/rsta.2014.0417
https://doi.org/10.1002/2017GL075742
https://doi.org/10.1002/2017GL075742
https://doi.org/10.1029/2005JD005776
https://doi.org/10.1029/2005JD005776
https://doi.org/10.5194/bg-14-403-2017
https://doi.org/10.1046/j.1365-2486.2002.00468.x
https://doi.org/10.5194/gmd-9-2853-2016
https://doi.org/10.1007/s00382-007-0306-1
https://doi.org/10.1038/s41558-018-0258-y
https://doi.org/10.1038/s41558-018-0258-y
https://doi.org/10.1038/s41558-018-0144-7
https://doi.org/10.1029/2018GL079901
https://doi.org/10.1029/2018GL079901

1 OCTOBER 2020

Lagué, M. M., and A. L. S. Swann, 2016: Progressive midlatitude
afforestation: Impacts on clouds, global energy transport,
and precipitation. J. Climate, 29, 5561-5573, https://doi.org/
10.1175/JCLI-D-15-0748.1.

——, G. B.Bonan, and A. L. S. Swann, 2019: Separating the impact
of individual land surface properties on the terrestrial surface
energy budget in both the coupled and uncoupled land-
atmosphere system. J. Climate, 32, 5725-5744, https://doi.org/
10.1175/JCLI-D-18-0812.1.

Langenbrunner, B., M. S. Pritchard, G. J. Kooperman, and J. T.
Randerson, 2019: Why does Amazon precipitation decrease
when tropical forests respond to increasing CO,? Earth’s
Future, 7, 450-468, https://doi.org/10.1029/2018EF001026.

Leakey, A.D.B.,E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. P.
Long, and D. R. Ort, 2009: Elevated CO, effects on plant
carbon, nitrogen, and water relations: Six important lessons
from FACE. J. Exp. Bot., 60, 2859-2876, https://doi.org/
10.1093/jxb/erp096.

Lemordant, L., and P. Gentine, 2019: Vegetation response to rising
CO, impacts extreme temperatures. Geophys. Res. Lett., 46,
1383-1392, https://doi.org/10.1029/2018 GL080238.

——, ——, M. Stéfanon, P. Drobinski, and S. Fatichi, 2016:
Modification of land—atmosphere interactions by CO, effects:
Implications for summer dryness and heat wave amplitude.
Geophys. Res. Lett., 43, 10 240-10 248, https://doi.org/10.1002/
2016GL069896.

—— ——, A. S. Swann, B. I. Cook, and J. Scheff, 2018: Critical
impact of vegetation physiology on the continental hydrologic
cycle in response to increasing CO,. Proc. Natl. Acad. Sci. USA,
115, 4093-4098, https://doi.org/10.1073/pnas.1720712115.

Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vege-
tation feedbacks on a doubled CO, climate. J. Climate, 13,
1313-1325, https://doi.org/10.1175/1520-0442(2000)013<1313:
LSVFOA>2.0.CO;2.

Lian, X., and Coauthors, 2018: Partitioning global land evapo-
transpiration using CMIP5 models constrained by observa-
tions. Nat. Climate Change, 8, 640-646, https://doi.org/10.1038/
$41558-018-0207-9.

Lin, Y.-S., and Coauthors, 2015: Optimal stomatal behaviour
around the world. Nat. Climate Change, S, 459-464, https://
doi.org/10.1038/nclimate2550.

Lutsko, N. J., and M. Popp, 2019: Probing the sources of un-
certainty in transient warming on different timescales.
Geophys. Res. Lett., 46, 11367-11377, https://doi.org/10.1029/
2019GL084018.

Mahowald, N., F. Lo, Y. Zheng, L. Harrison, C. Funk,
D. Lombardozzi, and C. Goodale, 2016: Projections of leaf
area index in Earth system models. Earth Syst. Dyn., 7, 211-
229, https://doi.org/10.5194/esd-7-211-2016.

Medlyn, B. E., and Coauthors, 2011: Reconciling the optimal and
empirical approaches to modelling stomatal conductance.
Global Change Biol., 17, 2134-2144, https://doi.org/10.1111/
j.1365-2486.2010.02375 x.

Norby, R.J., and D. R. Zak, 2011: Ecological lessons from free-air
CO, enrichment (FACE) experiments. Annu. Rev. Ecol.
Evol. Syst., 42, 181-203, https://doi.org/10.1146/annurev-
ecolsys-102209-144647.

O’ishi, R., A. Abe-Ouchi, I. C. Prentice, and S. Sitch, 2009:
Vegetation dynamics and plant CO, responses as positive
feedbacks in a greenhouse world. Geophys. Res. Lett., 36,
L11706, https://doi.org/10.1029/2009GL038217.

Park, S.-W., J.-S. Kim, and J.-S. Kug, 2020: The intensification
of Arctic warming as a result of CO, physiological forcing.

ZARAKAS ET AL.

8577

Nat. Commun., 11, 2098, https://doi.org/10.1038/s41467-020-
15924-3.

Parsons, L. A., K. M. Brennan, R. C. Jnglin Wills, and
C. Proistosescu, 2020: Magnitudes and spatial patterns of
interdecadal temperature variability in CMIP6. Geophys.
Res. Lett., 47, e2019GL086588, https://doi.org/10.1029/
2019GL086588.

Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon
cycle models for their response to climate variability and to
CO, trends. Global Change Biol., 19, 2117-2132, https:/
doi.org/10.1111/gcb.12187.

Pu, B., and R. E. Dickinson, 2012: Examining vegetation feed-
backs on global warming in the Community Earth System
Model. J. Geophys. Res., 117, D20110, https://doi.org/10.1029/
2012JD017623.

Qian, H., R. Joseph, and N. Zeng, 2010: Enhanced terrestrial carbon
uptake in the northern high latitudes in the 21st century from the
Coupled Carbon Cycle Climate Model Intercomparison Project
model projections. Global Change Biol., 16, 641-656, https://
doi.org/10.1111/j.1365-2486.2009.01989.x.

Richardson, T. B., and Coauthors, 2018: Carbon dioxide physi-
ological forcing dominates projected eastern Amazonian
drying. Geophys. Res. Lett., 45, 2815-2825, https://doi.org/
10.1002/2017GL076520.

Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu.
Rev. Earth Planet. Sci., 37, 93-115, https://doi.org/10.1146/
annurev.earth.061008.134734.

Saint-Lu, M., R. Chadwick, F. H. Lambert, and M. Collins, 2019: Surface
warming and atmospheric circulation dominate rainfall changes
over tropical rainforests under global warming. Geophys. Res. Lett.,
46, 13 410-13 419, https://doi.org/10.1029/2019GL085295.

Schimel, D., B. B. Stephens, and J. B. Fisher, 2015: Effect of in-
creasing CO, on the terrestrial carbon cycle. Proc. Natl. Acad.
Sci. USA, 112, 436441, https:/doi.org/10.1073/pnas.1407302112.

Sellers, P. J., and Coauthors, 1996: Comparison of radiative
and physiological effects of doubled atmospheric CO, on
climate. Science, 271, 1402-1406, https://doi.org/10.1126/
science.271.5254.1402.

Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster,
J. M. Gregory, and B. Stevens, 2015: Adjustments in the
forcing-feedback framework for understanding climate
change. Bull. Amer. Meteor. Soc., 96,217-228, https://doi.org/
10.1175/BAMS-D-13-00167.1.

Skinner, C. B., C. J. Poulsen, and J. S. Mankin, 2018: Amplification
of heat extremes by plant CO, physiological forcing. Nat.
Commun., 9, 1094, https://doi.org/10.1038/s41467-018-03472-w.

Smith, W. K., S. C. Reed, C. C. Cleveland, A. P. Ballantyne,
W. R. L. Anderegg, W. R. Wieder, Y. Y. Liu, and S. W.
Running, 2016: Large divergence of satellite and Earth
system model estimates of global terrestrial CO, fertiliza-
tion. Nat. Climate Change, 6, 306-310, https://doi.org/
10.1038/nclimate2879.

Swann, A. L. S., 1. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude
afforestation shifts general circulation and tropical precipita-
tion. Proc. Natl. Acad. Sci. USA, 109, 712-716, https://doi.org/
10.1073/pnas.1116706108.

——, ——, Y. Liu, and J. C. H. Chiang, 2014: Remote vegetation
feedbacks and the mid-Holocene Green Sahara. J. Climate, 27,
4857-4870, https://doi.org/10.1175/JCLI-D-13-00690.1.

——, F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016:
Plant responses to increasing CO, reduce estimates of climate
impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113,
10 019-10 024, https://doi.org/10.1073/pnas.1604581113.

020z 4equadas 10 uo 3senb Aq jpd-82000ZP!I0//9699661/1958/6 L/£S/4Pd-8|oIHE/0l/BI10 00s)8WeE S[euINOl//:dRYy WOl papeojumoq


https://doi.org/10.1175/JCLI-D-15-0748.1
https://doi.org/10.1175/JCLI-D-15-0748.1
https://doi.org/10.1175/JCLI-D-18-0812.1
https://doi.org/10.1175/JCLI-D-18-0812.1
https://doi.org/10.1029/2018EF001026
https://doi.org/10.1093/jxb/erp096
https://doi.org/10.1093/jxb/erp096
https://doi.org/10.1029/2018GL080238
https://doi.org/10.1002/2016GL069896
https://doi.org/10.1002/2016GL069896
https://doi.org/10.1073/pnas.1720712115
https://doi.org/10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2
https://doi.org/10.1038/s41558-018-0207-9
https://doi.org/10.1038/s41558-018-0207-9
https://doi.org/10.1038/nclimate2550
https://doi.org/10.1038/nclimate2550
https://doi.org/10.1029/2019GL084018
https://doi.org/10.1029/2019GL084018
https://doi.org/10.5194/esd-7-211-2016
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1146/annurev-ecolsys-102209-144647
https://doi.org/10.1146/annurev-ecolsys-102209-144647
https://doi.org/10.1029/2009GL038217
https://doi.org/10.1038/s41467-020-15924-3
https://doi.org/10.1038/s41467-020-15924-3
https://doi.org/10.1029/2019GL086588
https://doi.org/10.1029/2019GL086588
https://doi.org/10.1111/gcb.12187
https://doi.org/10.1111/gcb.12187
https://doi.org/10.1029/2012JD017623
https://doi.org/10.1029/2012JD017623
https://doi.org/10.1111/j.1365-2486.2009.01989.x
https://doi.org/10.1111/j.1365-2486.2009.01989.x
https://doi.org/10.1002/2017GL076520
https://doi.org/10.1002/2017GL076520
https://doi.org/10.1146/annurev.earth.061008.134734
https://doi.org/10.1146/annurev.earth.061008.134734
https://doi.org/10.1029/2019GL085295
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1126/science.271.5254.1402
https://doi.org/10.1126/science.271.5254.1402
https://doi.org/10.1175/BAMS-D-13-00167.1
https://doi.org/10.1175/BAMS-D-13-00167.1
https://doi.org/10.1038/s41467-018-03472-w
https://doi.org/10.1038/nclimate2879
https://doi.org/10.1038/nclimate2879
https://doi.org/10.1073/pnas.1116706108
https://doi.org/10.1073/pnas.1116706108
https://doi.org/10.1175/JCLI-D-13-00690.1
https://doi.org/10.1073/pnas.1604581113

8578 JOURNAL OF CLIMATE

Tang, T., and Coauthors, 2019: Comparison of effective radiative
forcing calculations using multiple methods, drivers, and models.
J. Geophys. Res. Atmos., 124, 4382-4394, https://doi.org/10.1029/
2018JD030188.

Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019:
Does surface temperature respond to or determine down-
welling longwave radiation? Geophys. Res. Lett., 46, 2781—
2789, https://doi.org/10.1029/2019GL082220.

Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-
model spread in CMIP5 climate sensitivity estimates. Climate Dyn.,
41, 3339-3362, https://doi.org/10.1007/s00382-013-1725-9.

Vico, G., S. Manzoni, S. Palmroth, and G. Katul, 2011: Effects of
stomatal delays on the economics of leaf gas exchange under

VOLUME 33

intermittent light regimes. New Phytol., 192, 640-652, https:/
doi.org/10.1111/j.1469-8137.2011.03847 x.

Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model
Intercomparison Project (CFMIP) contribution to CMIP6.
Geosci. Model Dev., 10, 359-384, https://doi.org/10.5194/gmd-
10-359-2017.

Wolz, K. J., T. M. Wertin, M. Abordo, D. Wang, and A. D. B.
Leakey, 2017: Diversity in stomatal function is integral to
modelling plant carbon and water fluxes. Nat. Ecol. Evol., 1,
1292-1298, https://doi.org/10.1038/s41559-017-0238-z.

Xu, X., W. J. Riley, C. D. Koven, G. Jia, and X. Zhang, 2020:
Earlier leaf-out warms air in the north. Nat. Climate Change,
10, 370-375, https://doi.org/10.1038/s41558-020-0713-4.

020z 4equadas 10 uo 3senb Aq jpd-82000ZP!I0//9699661/1958/6 L/£S/4Pd-8|oIHE/0l/BI10 00s)8WeE S[euINOl//:dRYy WOl papeojumoq


https://doi.org/10.1029/2018JD030188
https://doi.org/10.1029/2018JD030188
https://doi.org/10.1029/2019GL082220
https://doi.org/10.1007/s00382-013-1725-9
https://doi.org/10.1111/j.1469-8137.2011.03847.x
https://doi.org/10.1111/j.1469-8137.2011.03847.x
https://doi.org/10.5194/gmd-10-359-2017
https://doi.org/10.5194/gmd-10-359-2017
https://doi.org/10.1038/s41559-017-0238-z
https://doi.org/10.1038/s41558-020-0713-4

