
Plant Physiology Increases the Magnitude and Spread of the Transient Climate
Response to CO2 in CMIP6 Earth System Models

CLAIRE M. ZARAKAS

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

ABIGAIL L. S. SWANN

Department of Atmospheric Sciences, and Department of Biology, University of Washington, Seattle, Washington

MARYSA M. LAGUË

Department of Atmospheric Sciences, University ofWashington, Seattle,Washington, andDepartment of Earth andPlanetary

Science, University of California, Berkeley, Berkeley, California

KYLE C. ARMOUR

Department of Atmospheric Sciences, and School of Oceanography, University of Washington, Seattle, Washington

JAMES T. RANDERSON

Department of Earth System Science, University of California, Irvine, Irvine, California

(Manuscript received 5 February 2020, in final form 23 May 2020)

ABSTRACT

Increasing concentrations of CO2 in the atmosphere influence climate both through CO2’s role as a green-

house gas and through its impact on plants. Plants respond to atmospheric CO2 concentrations in several ways

that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conduc-

tance, water use, and canopy leaf area. These plant physiological responses are already embedded inmost Earth

systemmodels, and a robust literature demonstrates that they can affect global-scale temperature. However, the

physiological contribution to transient warming has yet to be assessed systematically in Earth system models.

Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model

Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate

response (TCR), which is defined as the change in globally averaged near-surface air temperature during the

20-yr window centered on the time of CO2 doubling relative to preindustrial CO2 concentrations. In CMIP6

models, the physiological effect contributes 0.128C (s: 0.098C; range: 0.028–0.298C) of warming to the TCR,

corresponding to 6.1% of the full TCR (s: 3.8%; range: 1.4%–13.9%). Moreover, variation in the physiological

contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR

estimates than it does to the mean. The largest contribution of plant physiology to CO2-forced warming—and

the intermodel spread in warming—occurs over land, especially in forested regions.

1. Introduction

Increasing concentrationsof atmosphericCO2alter global

temperature both through CO2’s role as a greenhouse gas

within the atmosphere (radiative effect) and through

plants’ response to CO2 at the land surface (physiolog-

ical effect). Plants respond to atmospheric CO2 con-

centrations by regulating their stomata (pores on the

leaves that modulate the exchange of CO2 and water

vapor between the leaf and the atmosphere), changing

water use, adjusting canopy leaf area, and, ultimately,

changing species composition and vegetation cover.

These plant physiological responses to higher CO2

can physically influence land surface temperature by
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altering land evapotranspiration, surface albedo, and

surface roughness, which are important controls over

the fluxes of water and energy between the land surface

and the atmosphere. Here we use the term ‘‘physiolog-

ical effect’’ to encompass the net biogeophysical effect

of all plant responses to increasing CO2, but note that in

some previous studies (e.g., Skinner et al. 2018) the term

refers solely to the effect of changes in stomatal con-

ductance. The physiological effect in this study may

therefore be smaller than some previous estimates (e.g.,

Skinner et al. 2018; Cao et al. 2010) because increases in

leaf area can counteract the influence of changes in

stomatal conductance on land evapotranspiration.

Plant responses to CO2 modulate land evapotranspi-

ration through two opposing mechanisms. Higher con-

centrations of CO2 in the atmosphere provide a larger

gradient over which CO2 diffuses into the interior air-

space of leaves. As a result, most plant types close their

stomata in response to increasing CO2, thereby de-

creasing transpiration per unit of leaf area (Field et al.

1995). In contrast, photosynthetic rates under some en-

vironmental conditions are limited by access to CO2,

and in these instances more CO2 can lead to higher rates

of photosynthesis, which is often referred to as CO2

fertilization. CO2 fertilization tends either to have no

influence on canopy leaf area or to increase canopy leaf

area (Norby and Zak 2011; Donohue et al. 2013), which

increases transpiration. The physiological effect’s net

influence on land evapotranspiration therefore depends

on the relative magnitude of the stomatal response and

the leaf area response, as well as the extent to which

vegetation influences land–atmosphere interactions in a

given region (Lian et al. 2018). Most Earth system

models (ESMs; Swann et al. 2016; Lemordant et al. 2018)

and field experiments (Hungate et al. 2002; Leakey et al.

2009) suggest that the stomatal response term dominates

in areas with moderate to high leaf area, leading to a net

decrease in land evapotranspiration. However, future

projections of photosynthetic rates, leaf growth rates, and

thus transpiration remain highly uncertain (Friedlingstein

et al. 2006; Anav et al. 2013; Piao et al. 2013; Smith et al.

2016; Lian et al. 2018).

Physiologically driven reductions in evapotranspiration

can warm local land temperatures directly by decreasing

evaporative cooling, as well as indirectly through influ-

ences on low-level humidity, cloud cover, and precipita-

tion. Recent modeling studies have demonstrated that

physiologically driven decreases in land evapotranspira-

tion can reduce cloud cover by decreasing low-level rel-

ative humidity (Doutriaux-Boucher et al. 2009; Andrews

et al. 2011, 2012; de Arellano et al. 2012; Lemordant et al.

2018), which amplifies regional physiologically driven

warming. If the leaf area response were to dominate over

stomatal responses, the resulting increase in evapotrans-

piration could decrease land temperatures through these

same mechanisms. Physiologically forced drying of the

boundary layer and warming of the land surface can also

impact large-scale atmospheric dynamics and regional

precipitation (Kooperman et al. 2018a; Langenbrunner

et al. 2019; Saint-Lu et al. 2019; Park et al. 2020).

In addition to influencing land surface temperature by

altering evapotranspiration, the plant physiological re-

sponse to CO2 can also influence land surface temper-

ature by altering land surface albedo. CO2 fertilization

generally decreases albedo (thereby increasing tem-

perature) by increasing leaf area and, within dynamic

vegetation models, by shifting plant functional types

from grasses to trees (Bala et al. 2006; Andrews et al.

2019). Expansion of forests in boreal and Arctic regions

can result in especially large albedo decreases (Betts

2000; Bala et al. 2006; O’ishi et al. 2009; Andrews et al.

2019; Xu et al. 2020) because increases in foliage mask

bright snow.

The global-scale temperature implications of plants’

physiological responses to CO2 have been long ac-

knowledged. Sellers et al. (1996) were the first to

quantify physiologically driven warming by coupling a

biosphere model to an atmosphere model, finding that

under a doubling of CO2 the physiological effect in-

creased global land temperature by about 0.38C and

mean global temperature by about 0.18C. Since then,

multiple modeling studies have demonstrated that the

plant physiological response tends to increase land

temperature in most modern ESMs on annual time

scales (Betts et al. 2007; Cao et al. 2010; Andrews et al.

2011; Arora et al. 2013; Swann et al. 2016; Lemordant

et al. 2016, 2018; Arora et al. 2019) and during heatwaves

(Lemordant et al. 2016; Skinner et al. 2018; Lemordant

and Gentine 2019). In particular, as part of their analysis

to disentangle carbon-concentration and carbon-climate

feedbacks, Arora et al. (2013, 2019) show that the physi-

ological effect drives modest transient global warming in

most ESMs from phases 5 (Arora et al. 2013; Figs. 2a–c)

and 6 (Arora et al. 2019; Figs. 4a–c) of the CoupledModel

Intercomparison Project (CMIP5 and CMIP6, respec-

tively), although they explicitly quantify the physiological

warming only for the multimodel mean.

Despite this demonstrated physiological influence on

global surface temperatures, the physiological effect has

received limited recognition in the climate dynamics

literature. Although plants’ physiological responses to

CO2 are already embedded in many ESMs that are used

to estimate the transient climate response (TCR) and

equilibrium climate sensitivity (ECS), studies that ex-

plicitly quantify the physiological contribution to such

global-scale climate sensitivity metrics have been limited
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to ESMs from a few individual modeling centers (sum-

marized in Table S1 in the online supplemental material;

Sellers et al. 1996; Betts et al. 1997; Cox et al. 1999;

Douville et al. 2000; Levis et al. 2000; Bala et al. 2006;

Betts et al. 2007; Doutriaux-Boucher et al. 2009;

Boucher et al. 2009; Cao et al. 2009; O’ishi et al. 2009;

Cao et al. 2010; Andrews et al. 2011; Pu and Dickinson

2012). Physiology’s contribution to the TCR has not

been systematically assessed across models and

CMIP phases.

Additionally, past studies in the climate sensitivity

literature have not specifically quantified the physio-

logical contribution to the TCR using the same ex-

perimental methodology from which the full TCR is

calculated. For example, baseline levels of CO2 have

ranged from 280 to 400ppm across experiments (Table S1)

and the physiological effect’s influence on temperature has

been analyzed fromboth abrupt (Doutriaux-Boucher et al.

2009; Cao et al. 2010; Andrews et al. 2011) and transient

(Bala et al. 2006; Boucher et al. 2009) CO2 perturbations.

Modeling studies have also differed in whether they in-

clude both the stomatal and leaf area components of the

physiological effect or only the stomatal component.While

these different experimental designs have provided in-

sights into the mechanisms and time scales of the physio-

logical effect’s influence on climate, they do not provide

systematic estimates of the full physiological contribution

to the TCR across ESMs.

The lack of systematic intermodel comparison of the

physiological contribution to the TCR is a problematic

gap in the existing literature because past work suggests

that physiologically driven warming differs across models.

Arora et al. (2013, 2019) documented that the magni-

tude of global physiologically driven warming varies

across models, reflecting that models differ both in how

plants respond to increasing CO2 (Friedlingstein et al.

2006; Anav et al. 2013; Piao et al. 2013; Smith et al. 2016;

Lian et al. 2018) and in how the atmosphere responds

to perturbations to the land surface energy budget

(Andrews et al. 2009; Devaraju et al. 2018). This sug-

gests that intermodel disagreement about themagnitude

of physiologically driven warming may be an unrecog-

nized contributor to intermodel spread in CO2-forced

warming. Additionally, poor model agreement on the

magnitude of physiologically driven warming would

mean that an estimate derived from a single model may

not capture the true multimodel mean. To address this

gap, we use standardized carbon cycle model simula-

tions from the CMIP5 and CMIP6 archives to assess

1) the magnitude of the physiological effect’s influence

on temperature across models, 2) whether trends in the

physiological effect contribute to the increase in the

TCR noted for many recent models (Andrews et al.

2019; Golaz et al. 2019; Flynn and Mauritsen 2020),

3) the spatial pattern of physiologically driven temper-

ature changes, 4) how physiological processes contribute

to variability in multimodel estimates of the TCR, and

5) the mechanisms through which the physiological ef-

fect influences temperature.

2. Methods

a. CMIP experiments

As part of CMIP5 and CMIP6, modeling groups per-

formed three concentration-driven experiments (sum-

marized in Table 1) in which CO2 concentrations increase

by 1% per year from preindustrial levels (284.3ppm) to a

quadrupling ofCO2 (1144.9ppm), while all other forcings

remain at preindustrial levels. The spatial pattern of

vegetation in these simulations comes from the pre-

industrial era; this spatial pattern remains constant

throughout the simulation except for in land models

with dynamic vegetation (Tables S2 and S3), where the

distribution of plant functional types changes based

on climate and resource availability. In one set of sim-

ulations, referred to here as FULL (CMIP6 experiment

‘‘1pctCO2’’), both the atmosphere and carbon cycle

(on land and in the oceans) experience increasing CO2

concentrations. Additional experiments conducted as

part of the Coupled Climate–Carbon Cycle Model

Intercomparison Project (C4MIP; Friedlingstein et al.

2006; Jones et al. 2016) enable us to isolate how much

the physiological and radiative effects of CO2 each

contribute to surface warming. In a set of C4MIP sim-

ulations, referred to here as RAD (CMIP6 experiment

‘‘1pctCO2-rad’’), only the atmosphere experiences in-

creasing CO2 concentrations, while the terrestrial and

oceanic carbon cycles experience constant preindustrial

TABLE 1. Summary of CMIP experiments used.

Influence of CO2 concentration on

Experiment CMIP5 experiment name CMIP6 experiment name Land Ocean Atmosphere

FULL 1pctCO2 1pctCO2 1% per year 1% per year 1% per year

PHYS esmFixClim1 1pctCO2-bgc 1% per year 1% per year Pre-industrial

RAD exmFdbk1 1pctCO2-rad Pre-industrial Pre-industrial 1% per year

PI piControl piControl Pre-industrial Pre-industrial Pre-industrial
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CO2 concentrations. In another set of C4MIP simula-

tions, referred to here as PHYS (CMIP6 experiment

‘‘1pctCO2-bgc’’), the radiative transfer submodels in

the atmosphere experience constant preindustrial CO2

concentrations, while the land surface and ocean carbon

cycle submodels experience the increasing CO2 con-

centrations. We use the concentration-driven preindus-

trial control experiment (referred to here as PI; CMIP6

experiment ‘‘piControl’’) as the baseline from which

anomalies are calculated.

b. Models

We analyze output from all ESMs that had uploaded

near-surface air temperature monthly data for the FULL,

PI, and PHYS and/or RAD experiment to the Earth

System Grid by 13 May 2020. This consisted of 8 CMIP5

models (Table S2) and 12 CMIP6 models (Table S3).

These models all include interactive representations of

the carbon cycle; plants in these models respond to in-

creasing CO2 by changing leaf area, stomatal conduc-

tance, and, in somemodels, the location and distribution

of plant functional types (indicated in Tables S2 and S3).

Three models from CMIP6 have dynamic vegetation;

however, we do not believe this is a large enough set

of models to draw general conclusions about the impact

of dynamic vegetation. In addition, one of these three

models is UKESM1-0-LL, which has a significantly

larger physiologically driven temperature response rel-

ative to other models, but it is unclear if this stronger

temperature response is driven by dynamic vegetation.

Ocean responses to increasing CO2 include changes in

inorganic and biological carbon cycling, which have

negligible direct influences on modeled ocean surface

temperature. The only potential direct influences of

ocean carbon cycle responses on ocean surface tem-

peratures in the PHYS experiments are through changes

in plankton community structure, which can alter 1)

ocean biogeophysical properties and 2) the emission of

gases and particles, which influence aerosol formation

(Hense et al. 2017). These effects are not represented in

most models. We calculate multimodel mean maps after

regriddingmodel output to a consistent 0.94248 latitude3
1.258 longitude grid.

c. Calculation of climate sensitivity metrics TCR
and T140

We calculate the TCR as the change in globally av-

eraged near-surface air temperature during the 20-yr

window centered on the time of CO2 doubling (years 61–

80 of the simulation where CO2 concentration increases

by 1% per year) relative to preindustrial atmospheric

CO2 concentration. When using the PI experiment as a

control, we account for model drift by subtracting the

linear trend of PI years 1–140 following Gregory and

Forster (2008), where year 1 corresponds to the year at

which FULL, RAD, and PHYS were branched from PI.

We refer to the physiological and radiative contributions

to the full TCR as TCRPHYS and TCRRAD, respectively.

We also quantify the physiological and radiative con-

tributions to the T140metric (Gregory et al. 2015; Grose

et al. 2018). We calculate T140 as the change in globally

averaged near-surface air temperature during the 20-yr

window that ends at the time of CO2 quadrupling (years

121–140 of the simulation where CO2 concentration

increases by 1% per year) relative to the linearly de-

trended PI experiment following Gregory et al. (2015).

We assess whether our estimates of physiologically

driven warming are robust relative to variability in the

Earth system by comparing TCRPHYS and T140PHYS to

the distribution of 20-yr running mean global tempera-

tures in the full PI control experiments (Fig. S1). In two

of the CMIP6 models evaluated here (BCC-CSM2-MR

and CNRM-ESM2-1), large multidecadal (greater than

20 years) oscillations exist in the PI control (Fig. S1;

noted in Parsons et al. 2020). The magnitude of these

oscillations greatly exceeds themagnitude of theTCRPHYS

signal, and thus we cannot confidently quantify

TCRPHYS for these two models. These models’ large

multidecadal PI oscillations also have implications for

TCRFULL, as they suggest that model TCRFULL esti-

mates may be strongly influenced by variability rather

than only representing the CO2-forced warming signal,

since for these models smoothing out variability would

require an averaging period of greater than 20 years.

d. Isolating physiology’s influence on temperature

We quantify the influence of the physiological effect

in two ways: as the difference between the FULL and

RAD simulations (FULL-RAD) and as the difference

between the PHYS and PI simulations (PHYS-PI).

Both represent physiology’s influence on the TCR, but

FULL-RAD includes any nonlinear interactions be-

tween the radiative and physiological effects of in-

creasing CO2, while PHYS-PI does not. For example,

FULL-RAD would include the interaction between

CO2 fertilization and changes in leaf area [quantified as

the leaf area index (LAI)] induced by radiatively driven

warming. Warming generally increases vegetation pro-

ductivity in high latitudes that are temperature-limited

under current conditions (Qian et al. 2010), thereby in-

creasing leaf area (Keenan and Riley 2018), while some

ESMs suggest warming may decrease vegetation pro-

ductivity and leaf area in the tropics (Mahowald et al.

2016) where current temperatures are already near

plants’ optimal temperatures for photosynthesis. We

focus on the FULL-RADmethodology in the main text
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because it emphasizes howmuch the physiological effect

changes climate relative to what models would other-

wise show from radiative forcing alone. Because FULL

and RAD branch from the same point of the PI simu-

lation, using FULL-RAD to quantify the physiological

effect also avoids issues related to drift in the PI control.

We discuss the nonlinearity between the radiative and

physiological effects of CO2 in more detail in the sup-

plemental material (Note S1; Figs. S2–S5).

e. Partitioning physiological influences on
evapotranspiration

To partition the total physiologically driven change in

land evapotranspiration into its component physiologi-

cal drivers, we derived Eq. (1) (see Derivation S1 in the

supplemental material). The four terms on the right-

hand side of Eq. (1) indicate the land evapotranspiration

change due to 1) changes in leaf area, 2) changes in sto-

matal conductance (approximated as changes in transpi-

ration per leaf area), 3) interactions between changes in

stomatal conductance and changes in leaf area, and 4)

changes in land evaporation:

DET5

�
T

L

�
REF

DL1L
REF

D
T

L
1D

T

L
DL1DE, (1)

where ET is evapotranspiration (mmday21), T is tran-

spiration (mmday21),L is leaf area index (unitless), and

E is evaporation (mmday21). The REF subscript indi-

cates the value from the reference experiment without

physiological responses to CO2 (RAD for the FULL-

RAD method and PI for the PHYS-PI method), and

D indicates the physiologically driven change (e.g., as

calculated from FULL-RAD).

3. Results

a. Physiology’s contribution to the TCR and T140

The radiative effect of CO2 is, unsurprisingly, the

dominant contributor to both theTCRandT140.However,

we also find that the physiological response to increased

CO2 makes a nonnegligible secondary contribution to

the TCR and T140 in many CMIP5 and CMIP6 models

(Figs. 1 and 2). In CMIP6 models, the physiological ef-

fect contributes about 0.128C (s: 0.098C; range: 0.028–
0.298C) to the TCR, corresponding to 6.1% of the full

TCR (s: 3.8%; range: 1.4%–13.9%) (Table 2). For a few

CMIP6 models (especially UKESM1-0-LL and CESM2),

the physiological contribution to warming is quite large,

accounting for over 10% of the full TCR (Table 2).

Physiologically driven warming increases with increas-

ing CO2 concentration (Fig. 1c), on average contributing

0.218C (s: 0.128C; range: 0.038–0.458C) to the T140

metric (Table S4). On a percentage basis, the physio-

logical effect contributes proportionally less to the T140

metric (4.9%; s: 2.5%) than to the TCR, although this

varies across models (Table S4).

In CMIP5 models, the physiological effect contributes

0.148C (s: 0.168C; range: 0.008–0.518C) to the TCR,

FIG. 1. Time series of global mean temperature change for (a) all CO2-forced warming, as calculated from FULL-PI; (b) the radiative

contribution to global meanCO2-forcedwarming, as calculated fromRAD-PI; and (c) the physiological contribution to global meanCO2-

forced warming, as calculated from FULL-RAD. Time series in (a), (b), and (c) are smoothed with a 20-yr rolling average. The dark gray

vertical line marks the time of CO2 doubling, and the light gray bar indicates the 20-yr period surrounding the time of CO2 doubling.

Colors indicate modeling center and line types indicate CMIP phase (CMIP5: dashed; CMIP6: solid). Temperature changes for GFDL-

ESM2Mare only shown for years 1–80 because this model stopped ramping up CO2 concentration after reaching 2xCO2. Note that the set

of models included in the average differs between CMIP5 and CMIP6, and that the y-axis scale in (c) differs from (a) and (b).

1 OCTOBER 2020 ZARAKAS ET AL . 8565

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/19/8561/4996696/jclid200078.pdf by guest on 04 Septem
ber 2020



corresponding to 6.6% of the full TCR (s: 6.3%; range:

0.1%–20.1%).When comparing the same subset of eight

models for which we have model output from both

CMIP phases, physiologically driven warming is com-

parable in CMIP5 and CMIP6 (Table 2). This suggests

that the increases in TCRFULL from CMIP5 to CMIP6

noted for many recent models (Andrews et al. 2019;

Golaz et al. 2019; Flynn and Mauritsen 2020) were

driven primarily by increases in TCRRAD rather than

TCRPHYS.

The multimodel mean TCRPHYS values reported here

are within the range of estimates from other studies

(summarized in Table S1) but on the low side of this

range, likely for two reasons. First, many previous

studies isolated the effect of the stomatal response on

near-surface temperatures rather than the net effect

of both the stomatal and leaf area responses to in-

creasing CO2 (Table S1); we expect a larger temperature

increase from the stomatal response alone than from the

combined stomatal and leaf area responses because in-

creases in leaf area counteract the stomatal response’s

influence on evapotranspiration. Second, our study is

the first to compare TCRPHYS across models (12 from

CMIP6 and 8 from CMIP5), and the fact that the ex-

isting literature did not capture the full spread in

TCRPHYS across models underscores the importance

of a multimodel approach.

The global mean TCRPHYS signal is small in com-

parison to TCRFULL, and it is statistically significant

relative to the preindustrial control for only 7 of 12

CMIP6 and 5 of 8 CMIP5 models at 2xCO2 (Table S5).

By 4xCO2, the physiologically driven warming signal

emerges from the noise for more models (Fig. S1), be-

coming statistically significant for 9 CMIP6 and 7

CMIP5 models (Table S5). The three CMIP6 models

that are not statistically significant by 4xCO2 (CNRM-

ESM2-1, BCC-CSM2-MR, and IPSL-CM6A-LR) are

the three models with the most variability in the PI

control of all the CMIP5 and CMIP6 models we ana-

lyze (Fig. S1).

b. Spatial pattern of physiologically driven warming

The physiological effect only directly influences land

surface properties, and thus the largest warming driven

by the physiological effect occurs over land. In CMIP6

models, the physiological effect results in nonglaciated

land warming by 0.228C at 2xCO2 and 0.418C at 4xCO2

on average, relative to a corresponding mean ocean

warming of 0.098 and 0.148C respectively (Fig. 3a).

Physiologically driven warming over land is also statis-

tically significant for more ESMs than it is for the global

mean at both 2xCO2 and 4xCO2 (Table S5). The spatial

pattern of physiologically driven warming that we find

is consistent with other studies, which also show the

greatest warming over land and modest ocean warming

(Table S1).

The greatest mean physiologically driven warming

occurs over boreal forests and nonglaciated high-

latitude land, followed by temperate and tropical

forested regions. The agreement across models is rea-

sonably high—at least 8 of 12 CMIP6 models agree that

the physiological effect results in warming in these three

biomes at 2xCO2 (Fig. S4) and 10 of 12 CMIP6 models

show warming in these biomes at 4xCO2 (Fig. S5).

Relative to radiatively driven warming, physiology also

contributes more to land warming than ocean warming,

with physiological forcing constituting a mean 7.4% of

total CO2-forced land warming at 2xCO2 compared to

4.5% of ocean warming (Fig. 3b). The physiological ef-

fect therefore amplifies the land–ocean warming con-

trast: at 4xCO2 nonglaciated land warms faster than the

ocean with amean ratio of 1.60 for the RAD simulations

from CMIP6, whereas the mean land–ocean warming

contrast for the FULL simulations is 1.64, due to the

addition of the physiological effect (Fig. 4). This phys-

iologically driven enhancement of the land–ocean

warming contrast was previously demonstrated for

Met Office Hadley Centre models (Joshi et al. 2008;

FIG. 2. The relationship between TCRRAD (RAD-PI) and

TCRFULL (FULL-PI). The gray 1:1 line is where we would expect

all models to be if the TCR were entirely caused by the radiative

effects of CO2. The added warming from the physiological effect is

the vertical distance between the gray 1:1 line and each point.

Marker types indicate CMIP phase (CMIP5: circles; CMIP6: tri-

angles) and colors indicatemodeling center. Crosses demarcate the

CMIP6 (solid) and CMIP5 (dashed) multimodel means, and the

width of each cross corresponds to two times the ensemble mean

standard deviation in global mean near-surface temperature from

the preindustrial control.
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Dong et al. 2009), and we show here that this warming

contrast is robust across most CMIP models. In two

models the physiological effect reduces the land–ocean

warming contrast (Fig. 4). These outliers may result

from large leaf area increases counteracting the influence

of stomatal closure on evapotranspiration (resulting in

minimal net physiologically driven change in evapo-

transpiration or even small increases in evapotranspi-

ration; Fig. S7) or from large multidecadal variability

in some models (Fig. S1) overwhelming the physiologi-

cal signal.

The larger absolute and relative physiologically

driven warming over nonglaciated land is consistent

with the physiological effect directly influencing land

surface properties in regions with plant cover, while

influencing glaciated land and oceans only indirectly

through changes in heat transport, clouds, and other

aspects of climate dynamics. Although the remote in-

fluence of physiological forcing on oceans and glaciated

land is relatively modest, most models agree that the

physiological effect results in mean warming of near-

surface oceanic air and ocean surface layers. The regions

of the most robust physiologically driven oceanic

warming across models are the western North Atlantic,

equatorial Pacific, equatorial Indian Ocean, and high-

latitude Pacific.

Byrne and O’Gorman (2018) suggest that increases in

the near-surface land–ocean temperature contrast are

causally driven by temperature change over the ocean.

However, the physiologically driven enhanced land–

ocean contrast, where the only initial difference is over

the land surface, shows that land surface processes can

also initiate the feedback loop where decreasing relative

humidity over land leads to a larger increase in tem-

perature over land relative to over ocean. The potential

to initiate this loop through land processes is noted by

Byrne and O’Gorman (2016), and we further emphasize

that point here. It is important to acknowledge the

physiological effect’s greater relative contribution to

land warming because land warming (rather than global

mean warming) is the most relevant metric for many

societal climate impacts.

FIG. 3. Spatial pattern of (a) absolute physiologically driven

warming and (b) physiological percent contribution to total

warming at 2xCO2, where physiologically driven warming is cal-

culated by FULL-RAD. Multimodel means include the 12 CMIP6

models. Stippling indicates regions where less than 8 out of the 12

models agree on the sign of change.

FIG. 4. The relationship between the land–ocean warming con-

trast (the ratio of the change in mean nonglaciated land near-

surface air temperature to the change in mean ocean near-surface

air temperature) from RAD (RAD-PI) and FULL (FULL-PI) at

2xCO2. The gray 1:1 line is where we would expect all models to be

if the warming contrast were entirely caused by the radiative effects

of CO2. Physiology’s addition to the warming contrast is the ver-

tical distance between the gray 1:1 line and each point. Marker

types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and

colors indicate modeling center as in Fig. 2. Crosses demarcate

multimodel means, where the width of each cross is two standard

deviations across models. Note that the set of models included in

the average differs between CMIP5 and CMIP6.
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c. Physiology’s contribution to uncertainty in
CO2-forced warming

The magnitude of global physiologically driven warm-

ing varies significantly across models (Figs. 1 and 2; see

also Fig. S6) and this uncertainty contributes to the in-

termodel spread of TCR estimates. In the CMIP6

models analyzed here, the radiative effect alone explains

about 91.9%of the standard deviation in the TCR across

models (Table 3), with the physiological effect contrib-

uting the remaining 8.1%. Thus, the impact of the

physiological effect on model-to-model variability is

disproportionately large relative to its contribution to

the mean (8.1% for the standard deviation versus 6.1%

for the mean). The physiological effect accounts for

relatively less intermodel spread in the T140 metric

(Table 3), consistent with other work (Geoffroy et al.

2012, Lutsko and Popp 2019) demonstrating that radi-

ative feedbacks contribute increasingly more to inter-

model disagreement in warming with increasing time in

the transient 1pctCO2 experiment.

The physiological effect contributes more to uncer-

tainty in CO2-forced warming over land. Averaged

across all nonglaciated land, the physiological effect

explains about 13.6% of the standard deviation in mean

land warming across models at 2xCO2 in CMIP6

(Table 3). In some highly forested land regions (tropical

Africa, northwestern South America, and the south-

eastern United States), intermodel disagreement in lo-

cal warming at 2xCO2 is driven by approximately equal

contributions of uncertainty from physiologically and

radiatively forced warming (Fig. 5). These results sug-

gest that the physiological effect is a nonnegligible

contributor to intermodel spread in the TCR and re-

gional land CO2-forced warming at 2xCO2. However,

some of these preindustrial forested regions are largely

deforested in the present day, which means that in

scenario-based future projections the physiological ef-

fect may contribute less to uncertainty in these regions

than Fig. 5 implies.

The physiological effect contributes less to uncertainty

in CO2-forced warming over the ocean, explaining about

5.1% of the standard deviation of the mean ocean

warming across models at 2xCO2 in CMIP6 (Table 3). In

all oceanic regions, intermodel disagreement in CO2-

forced warming is driven more by radiative processes

than the physiological effect (Fig. 5). However, Fig. 5

suggests that physiology is a significant secondary driver

of intermodel disagreement in the magnitude of CO2-

forced warming in some ocean regions (e.g., North

Atlantic and North Pacific), possibly due to intermodel

disagreement in the extent to which physiological re-

sponses influence cloud cover in these regions [discussed

in section 3d(2)].

d. Mechanisms of physiologically driven warming

1) MECHANISMS OVER LAND

The physiological effect increases near-surface air

temperatures over land by modifying surface properties

that modulate terrestrial energy fluxes (Bonan 2008;

TABLE 3. Drivers of intermodel spread in global mean warming, as quantified by the standard deviation. ‘‘Land’’ specifically means

nonglaciated land.

2xCO2 (TCR) 4xCO2 (T140)

CMIP phase Region FULL-PI RAD-PI FULL-PI RAD-PI

CMIP6 Global 0.438C 0.408C (92%) 1.028C 0.988C (96%)

Land 0.588C 0.508C (86%) 1.328C 1.198C (90%)

Ocean 0.388C 0.368C (95%) 0.918C 0.908C (99%)

CMIP5 Global 0.408C 0.308C (76%) 1.098C 0.958C (87%)

Land 0.588C 0.398C (68%) 1.558C 1.248C (80%)

Ocean 0.338C 0.278C (81%) 0.918C 0.848C (91%)

FIG. 5. Spatial pattern of physiology’s relative contribution to

intermodel spread in CO2-forced warming, as quantified by the

ratio of the standard deviation (s; at each grid cell, across models)

of physiologically forced warming (calculated from FULL-RAD)

to s of radiatively forced warming (calculated from RAD-PI) at

2xCO2 for CMIP6 models, i.e., sPHYS(lat, lon)/sRAD(lat, lon). A

value of 1 means that the physiological and radiative effects of CO2

contribute equally to the total uncertainty in local warming at

2xCO2 across models.
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Laguë et al. 2019). This occurs through 1) changes in

the partitioning between surface turbulent fluxes re-

sulting from physiological influences on evapotrans-

piration, 2) radiative changes due to physiologically

driven changes in albedo, cloud cover, and column

water vapor, and 3) changes in surface roughness

resulting from changes in leaf area and vegetation

distribution.

In most models, plants’ response to CO2 causes a net

decrease in mean land evapotranspiration, especially in

the tropics (Fig. 6 and Fig. S7), indicating that stomatal

closure decreases evapotranspiration by enough to off-

set increases in evapotranspiration from increased

leaf area, though the magnitude and sign of evapo-

transpiration change does vary spatially across models

(Fig. S7). In the CMIP6 multimodel mean at 2xCO2,

global leaf area changes increase land evapotranspi-

ration by 0.19 mm day21 (s: 0.17 mm day21; range:

0.00–0.52 mmday21), changes in stomatal conductance

(approximated by the change in transpiration per leaf area)

FIG. 6. Land zonal means of physiologically driven changes in (a) land surface albedo and

(b) evapotranspiration at 2xCO2 for CMIP6 models, as calculated by FULL-RAD. (c) Zonal

means of howmuch physiologically driven changes in different land processes (LAI, stomatal

conductance gs, and evaporation) contribute to the total multimodel mean physiologically

driven change in land evapotranspiration, where the partitioning is calculated with Eq. (1).

Multimodel means in this figure are averaged across all CMIP6 models for which model

output is available. Transpiration and LAI data necessary for this partitioning were not

available for GFDL-ESM4, MPI-ESM1.2-LR, and ACCESS-ESM1.5 so these models are

only included in the multimodel mean for the total evapotranspiration change.
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decrease global land evapotranspiration by 0.13mmday21

(s: 0.10mmday21; range: 0.00–0.29mmday21), and

the interaction between changes in stomatal conduc-

tance and leaf area decreases evapotranspiration by

an additional 0.08mmday21 (s: 0.10mmday21; range:

0.00–0.29mmday21; Fig. 6c). Land evaporation changes

minimally (0.01mmday21; s: 0.03mmday21; range:

from 20.06 to 10.06mmday21; Fig. 6c). In the multi-

model mean, the net effect of these physiological re-

sponses is a decrease in evapotranspiration, with the

largest and most robust decrease in the tropics (Fig. 6;

see also Fig. S7). This physiologically driven decrease in

evapotranspiration due to increased CO2 has previously

been documented for CMIP5 models (Swann et al. 2016;

Lemordant et al. 2018) and holds for the new CMIP6

models analyzed here. Under constant net radiation at

the surface, this physiologically driven decrease in evapo-

transpiration results in more energy leaving the land sur-

face through sensible heating (Fig. 7), thereby increasing

near-surface air temperatures.

The physiological effect also increases surface and

near-surface temperatures by generally increasing the

net radiation at the surface. Net shortwave radiation on

land increases primarily through decreases in albedo

and cloud cover (Fig. 7d). Albedo decreases primarily in

high latitudes (Fig. 6), due to both increases in leaf area

and decreases in snow cover due to increased tem-

peratures. Consistent with previous studies (Doutriaux-

Boucher et al. 2009; Andrews et al. 2011, 2012; de

Arellano et al. 2012; Lemordant et al. 2018), down-

welling shortwave radiation (SWdown) reaching the surface

also increases as a consequence of decreases in cloud

cover (especially in the Northern Hemisphere middle

and high latitudes and over the northeastern Amazon;

Fig. 7b), which are driven both by decreases in rela-

tive humidity from physiologically forced reductions in

evapotranspiration and by increases in air temperature.

In the multimodel mean, the physiological effect causes

only modest changes in clear-sky SWdown (Fig. 7), al-

though some individual models do show significant

SWdown changes, which could be modified by changes in

water vapor and aerosols [e.g., as Andrews et al. (2012)

documented in HadGEM2-ES due to vegetation’s in-

fluence on dust optical depth].

The physiological effect also influences surface net

longwave radiation (Fig. 7l) through changes in sur-

face and boundary layer temperatures, cloud cover,

atmospheric columnwater vapor, and the partitioning of

FIG. 7. Spatial pattern of multimodel mean physiologically driven changes in surface energy fluxes as cal-

culated by FULL-RAD at the point of CO2 doubling (averaged over years 61–80) for (a) clear-sky

downwelling shortwave radiation, (b) cloudy downwelling shortwave radiation, (c) upwelling shortwave

radiation, (d) net shortwave radiation, (e) clear-sky downwelling longwave radiation, (f) cloudy down-

welling longwave radiation, (g) upwelling longwave radiation, (h) net longwave radiation, (i) latent heat

(LH), (j) sensible heat (SH), (k) heat uptake (G), and (l) net radiation (Rnet). Because the surface energy

budget is balanced, LH 1 SH 1 G 5 Rnet. The cloudy radiative fluxes in (b) and (f) are calculated as the

difference between all-sky and clear-sky radiative fluxes. Multimodel means include all CMIP6 models for

which model output is available; this consists of up to 12 models. Data for some surface energy fluxes were

not available for the following models: GFDL-ESM4 [in (a), (b), (e), and (f)], GISS-E2.1-G [in (j) and (k)],

and NorESM2-LM [in (e) and (f)]. Stippling indicates regions where fewer than eight models agree on the

sign of change.
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surface energy fluxes. Outgoing longwave radiation

from the land surface (LWup) increases with increasing

surface temperature through the Planck feedback (Fig.

7g). This increase in LWup is partially offset by increases

in clear-sky downward longwave radiation at the land

surface (LWdown; Fig. 7e). Clear-sky LWdown increases

due to warming of the boundary layer driven by both

increased sensible heating and by longwave radiation

associated with surface warming (Vargas Zeppetello

et al. 2019), and clear-sky LWdown can also be influenced

by physiologically driven changes in atmospheric water

vapor. Cloud changes resulting from reduced land

evapotranspiration decrease LWdown (Fig. 7f). The

net effect of all of these processes generally results in a

decrease of net longwave radiation over most vege-

tated land (Fig. 7h).

2) MECHANISMS OVER OCEAN

Because most models do not have any mechanism

through which ocean carbon cycle responses to CO2 can

influence ocean temperatures, the modeled oceanic

warming as calculated by FULL-RAD must be the re-

sult of remote, land-driven warming. Recognizing the

oceanic component of physiologically driven warming

is important because it constitutes about half of

TCRPHYS—even though the magnitude of physiologi-

cally driven oceanic warming is much smaller than land

warming on a per area basis, the TCR is a global-scale

metric and ocean constitutes about 70% of Earth’s

surface area.

The physiological effect on land can alter ocean

temperatures through advection of continental air that

has been directly influenced by changes in land surface

properties (e.g., changes in air temperature or moisture

content) as well as through changes in atmospheric or

oceanic circulation. Some robust oceanic warming re-

gions are downwind of warming land regions, which

could be associated with advection of warm continental

air by the prevailing winds. Cloud cover over oceans

also decreases in some regions that are downwind

of land, particularly in the North Atlantic, increasing

ocean temperatures by increasing net radiation (Fig. 7).

Teleconnections likely also contribute to ocean warm-

ing, based on past work indicating that changes in large-

scale atmospheric circulation and atmospheric energy

transport can be induced by physiological forcing

(Kooperman et al. 2018a; Langenbrunner et al. 2019;

Saint-Lu et al. 2019; Park et al. 2020) or other changes

in land surface properties (Swann et al. 2012, 2014;

Devaraju et al. 2015; Laguë and Swann 2016; Devaraju

et al. 2018). Additionally, the physiological effect has

the potential to induce changes in ocean circulation

(e.g., Diffenbaugh et al. 2004). Exploration of the links

between land surface perturbations and ocean temper-

ature merits further research.

4. Discussion and implications

a. Magnitude of the physiological contribution to the
transient climate response

The biological and ecological processes governing

canopy leaf area and stomatal conductance are often

considered to exist squarely in the domain of carbon

cycle feedbacks (i.e., they impact the climate system

through their influence on CO2 concentrations them-

selves). Our analysis demonstrates that these terrestrial

carbon cycle processes are also embedded in global cli-

mate sensitivity metrics like the TCR through plants’

impact on land surface properties and surface en-

ergy fluxes.

We quantified the plant physiological effect’s small

but significant influence on CO2-forced temperature

changes, finding that at 2xCO2 the physiological ef-

fect contributes about 0.128C (6.1%) to the TCR and

leads to about 0.228C of warming over nonglaciated

land. Recognizing this physiological component of CO2

forcing is necessary for understanding forcing differ-

ences across greenhouse gases (e.g., increasing N2O

concentration does not induce warming from physio-

logical responses) and has implications for estimating

the TCR from historical observations. Because some of

the observed historical temperature change has been

driven by non-CO2 forcing agents that do not induce

physiological responses in plants, estimates of the TCR

from historical observations may be biased low, al-

though this is likely a small effect since CO2 currently

constitutes the majority of the total radiative forcing.

While the physiological effect can constitute over 10%

of the total TCR in some CMIP6 models, changes in the

representation of plant physiology do not appear to be a

driver of the increase in the TCR observed from CMIP5

to CMIP6.

The significant physiologically driven warming at

higher CO2 concentrations, intermodel agreement in

the sign of TCRPHYS, and consistent spatial pattern of

warming give us confidence that we are detecting a real

physiologically driven signal and not just a residual

from internal variability. However, internal variability

is a large source of uncertainty in quantifying TCRPHYS

(Fig. 1c), and this uncertainty is intrinsically included

in estimates of TCRFULL. Integration of a large-

ensembles approach into the next C4MIP is necessary

to address this issue and to reduce uncertainties in the

TCR in future work (Deser et al. 2020). This could be

done by integrating a requirement for a minimum
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number of initial condition ensembles in the

experiment.

A limitation of our study is that the C4MIP model

output necessary to disentangle physiologically and

radiatively forced warming is only available for about

a quarter of the models for which we can estimate the

full TCR (12 of 47 for CMIP6 and 8 of 30 for CMIP5).

We therefore cannot quantify TCRPHYS, or the physi-

ological contribution to uncertainty in the TCR, for the

remaining CMIP models. Future work could further

leverage C4MIP model output to assess whether signa-

tures of physiologically driven warming (such as sea-

sonal variations in the CO2-forced change of the diurnal

temperature range; Bounoua et al. 1999; Collatz et al.

2000) could be used to estimate the physiological con-

tributions to mean warming from the FULL experi-

ments alone.

b. Physiology’s role in forcing, feedbacks, and
equilibrium climate sensitivity

From the perspective of the classical radiative forcing-

feedback framework (Gregory et al. 2004; Bony et al.

2006; Roe 2009; Boucher et al. 2013), plants’ physio-

logical response to increasing CO2 can be considered a

forcing—rather than a feedback—on the climate system

because by definition plants are responding to changes

in CO2 rather than to the relatively slow changes in

global temperature. The time scale over which plants

respond to increasing CO2 ranges from on the order of

seconds to decades. The stomatal response is fast; at

the leaf level, stomata respond to changing environ-

mental conditions in less than an hour (Vico et al. 2011),

and the time scale of the atmospheric adjustment to the

stomatal response occurs on the time scale of a few

months (Doutriaux-Boucher et al. 2009; Andrews et al.

2011). Doutriaux-Boucher et al. (2009) have demon-

strated that this fast stomatal response rapidly reduces

low cloud cover and thereby the cloud radiative effect,

which has been shown to be an important contributor to

global warming and its uncertainty (Geoffroy et al. 2012).

The leaf area and plant distribution responses are slower,

occurring on time scales of years to decades (Fisher

et al. 2019).

Whether the physiological effect will be included in

the calculation of radiative forcing depends on the

definition used. The physiological effect would be ex-

cluded from the instantaneous radiative forcing, which

accounts only for the instantaneous impact of CO2

on the top-of-atmosphere radiation budget. However,

it would be included in the effective radiative forcing,

which is commonly expressed as a change in net

top-of-atmosphere (TOA) radiation following CO2-

driven adjustments in tropospheric and stratospheric

temperatures, water vapor, clouds, and surface prop-

erties, prior to any global mean surface temperature

change (e.g., Boucher et al. 2013; Sherwood et al. 2015).

In practice, the effective radiative forcing is often cal-

culated using simulations in which CO2 is increased

while sea surface temperatures (SSTs) are prescribed

to be fixed at preindustrial values, with some studies

estimating and removing the TOA radiative response

to land warming when calculating the forcing value

(Hansen et al. 2005; Vial et al. 2013; Tang et al. 2019).

Meanwhile, radiative feedbacks are traditionally de-

fined by the change in net TOA radiation for a given

change in global mean surface temperature (Bony et al.

2006; Roe 2009).

The physiological response of plants to increasing

CO2 poses a challenge to this radiative forcing–feedback

paradigm. On the one hand, plants respond directly to

the atmospheric CO2 concentration, suggesting that the

physiological effect should be classified as part of the

forcing. On the other hand, this direct physiological re-

sponse of plants to CO2 induces changes in surface

temperature due to reduction in evaporative cooling

from stomatal responses (even in the absence of the

radiative effects of CO2 changes). The TOA radiative

response to these changes could thus be classified as part

of the feedback within a framework that defines the

effective radiative forcing as the TOA radiation change

with fixed global mean temperature (e.g., Hansen et al.

2005). Meanwhile, temperature-driven changes in veg-

etation distribution and leaf area that influence land

surface albedo and evapotranspiration should clearly be

classified as feedbacks. While it is unclear to us how best

to interpret the physiological effect in terms of the

forcing–feedback paradigm, the distinction does not

impact the results presented here because of our results’

focus on the TCR instead of forcing or feedbacks

separately.

Understanding of the role of the physiological effect

in TCR and ECS uncertainty would benefit from greater

clarity on whether it should be treated as a forcing or

feedback. Indeed, recent work suggests that the TCR

may be more sensitive to uncertainty in CO2 radia-

tive forcing than to uncertainty in radiative feedbacks

(Lutsko and Popp 2019), but that the ECS is more sen-

sitive to uncertainty in radiative feedbacks (Geoffroy

et al. 2012). Thus, while the results here suggest that the

physiological effect will act to increase the ECS and its

uncertainty—as it has for the TCR—we cannot cur-

rently quantify the magnitude of the effect on the ECS

across models in the CMIP5 or CMIP6 ensembles. In

this regard, it would be helpful if more modeling centers

conducted additional radiation-only experiments for

abrupt CO2 quadrupling, using both coupled model
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simulations to be able to estimate ECS [e.g., as done for

UKESM byAndrews et al. (2019)] and fixed SSTs1 to be

able to quantify the effective radiative forcing.

c. Broad implications of carbon cycle uncertainty

The terrestrial carbon cycle’s influence on global

temperaturemeans that uncertainty in terrestrial carbon

cycle processes contributes to uncertainty in CO2-forced

warming. We find that in CMIP6, the physiological ef-

fect explains about 13.6% of the standard deviation in

CO2-forced warming over nonglaciated land. We also

identify several forested land regions (tropical Africa,

northwestern South America, and the southeastern

United States) for which the physiological effect con-

tributes as much as the radiative effect (i.e., about

50% of the total) to intermodel disagreement in local

warming at 2xCO2. The spread in the magnitude of

physiologically driven warming across CMIP6 models

represents real scientific uncertainty, as there are limited

observational constraints to suggest that either the high

or low extremes of modeled physiological responses of

stomatal conductance, leaf area, and resulting evapo-

transpiration are within expectations (Medlyn et al.

2011; De Kauwe et al. 2013; Schimel et al. 2015).

It is also possible that ESMs do not probe the full

scientific uncertainty surrounding plants’ responses to

CO2, as models may contain systematic biases. For ex-

ample, many models represent stomatal conductance

using the same key parameters [e.g., the same slope

constant in the Ball–Berry stomatal conductance model

(Ball et al. 1987) or the same g1 fitted parameter in the

Medlyn et al. (2011) model] to govern how stomatal

conductance responds to increasing CO2, despite the

wide variation in these parameters across and within

plant functional types (Lin et al. 2015; Wolz et al. 2017).

Similarly, some studies suggest (e.g., Smith et al. 2016)

that ESMs systematically overestimate the leaf area in-

creases resulting from CO2 fertilization, which would

mean that models overestimate physiologically driven

albedo decreases and underestimate physiologically

driven evapotranspiration decreases. We would expect

this to result in a true physiologically forced tempera-

ture change that is smaller than models suggest at high

latitudes (where albedo matters more) and larger than

models suggest at low latitudes (where ETmatters more).

Furthermore, Green et al. (2017) suggest that ESMs may

systematically underestimate some feedbacks between

land biosphere changes and the atmosphere.

On the one hand, acknowledging the physiological

contribution to uncertainty in modeled CO2-forced

warming suggests that models agree more on the mag-

nitude of radiatively forced warming than the prevailing

narrative implies. For atmospheric dynamicists most

interested in purely radiatively driven processes, these

findings therefore motivate more deliberate consider-

ation of plant functioning in experimental designs; RAD

simulations may be more appropriate than FULL sim-

ulations for some climate dynamics questions. On the

other hand, acknowledging the physiological contribu-

tion means that reducing uncertainty in the full (Earth

system) TCR requires reducing uncertainty in land

surface processes which are especially difficult to con-

strain. From this perspective, these findings provide a

new motivation for further experimental studies to re-

duce uncertainty in terrestrial carbon cycle processes.

For example, we identify that plants’ responses to CO2

are a major driver of uncertainty in transient warming

in tropical Africa, and no free-air CO2 enrichment

(FACE) experiments currently exist in tropical forests

to constrain uncertainty in how those ecosystems will

respond to increasing CO2.

Additionally, while this study focuses on how the

physiological effect influences temperature and the TCR,

uncertainty surrounding plant physiological responses

to CO2 can influence many aspects of the climate

system. Because plant physiological responses affect

land evapotranspiration, uncertainty surrounding plant

physiological responses propagates to uncertainty in the

hydrologic cycle. Previous studies have demonstrated

that plant physiological responses play a critical role in

determining the influence of increasing CO2 concen-

tration on runoff (Kooperman et al. 2018b) and pre-

cipitation (Kooperman et al. 2018a; Chadwick et al.

2017, 2019), especially in the Amazon (Richardson et al.

2018; Langenbrunner et al. 2019). Our finding that plant

physiology contributes to intermodel variation in CO2-

forced warming could therefore motivate further an-

alyses of RAD and PHYS experiments to quantify the

physiological contribution to uncertainty in these

quantities. Carbon cycle uncertainty is not limited to the

carbon cycle, and efforts to reduce uncertainty in plants’

responses to CO2 will also help to reduce uncertainty in

the physical climate response to increasing CO2.
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